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Abstract

In evidence synthesis, dealing with zero-events studies is an important and

complicated task that has generated broad discussion. Numerous methods pro-

vide valid solutions to synthesizing data from studies with zero-events, either

based on a frequentist or a Bayesian framework. Among frequentist frame-

works, the one-stage methods have their unique advantages to deal with zero-

events studies, especially for double-arm-zero-events. In this article, we give a

concise overview of the one-stage frequentist methods. We conducted simula-

tion studies to compare the statistical properties of these methods to the

two-stage frequentist method (continuity correction) for meta-analysis with

zero-events studies when double-zero-events studies were included. Our simu-

lation studies demonstrated that the generalized estimating equation with

unstructured correlation and beta-binomial method had the best performance

among the one-stage methods. The random intercepts generalized linear mixed

model showed good performance in the absence of obvious between-study

variance. Our results also showed that the continuity correction with inverse-

variance heterogeneous (IVhet) analytic model based on the two-stage frame-

work had good performance when the between-study variance was obvious

and the group size was balanced for included studies. In summary, the one-

stage framework has unique advantages to deal with studies with zero events

and is not susceptive to group size ratio. It should be considered in future

meta-analyses whenever possible.

KEYWORD S

beta-binomial model, generalized estimating equation, generalized linear mixed model,
meta-analysis, zero-events study

Highlights

What is already known
• Dealing with studies with zero events in both arms has raised broad discus-

sions in the community of meta-analysis methodology; the routine scheme
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is to remove them from the meta-analysis or, in rare situations, to use a con-
tinuity correction to produce rough estimates.

• Methods based on the one-stage framework have a unique advantage to deal
with studies with zero events in both arms.

What is new
• Among many one-stage methods that can be used to deal with studies with

zero events in both arms, the generalized estimating equation (GEE) with
unstructured correlation and beta-binomial (BB) method generally have the
best performance.

• The one-stage meta-analytic methods are not susceptive to group size ratio;
even for extremely unbalanced studies, they generally perform well.

Potential impact for Research Synthesis Methods readers outside the
authors' field
• Our study provide evidence that current routine methods for dealing with

studies with no events in both arms in meta-analysis may not be the optimal
choice; at least, the one-stage methods should be considered.

• Whenever possible, systematic review authors should consider the GEE
method with unstructured correlation to deal with zero-events problems
when there is small between-study variance in a meta-analysis, and the BB
method when there is considerable between-study variance.

1 | INTRODUCTION

In evidence synthesis, dealing with zero-events studies
is an important and complicated task and has gener-
ated broad discussion.1–8 Zero-events occur when the
risk of events is low and/or the sample size is small,
frequently seen with safety outcomes. For studies with
zero-events in a single arm, there is a unanimous
agreement that such studies should be incorporated
into meta-analysis, and many well-established methods
(e.g., Peto's odds ratio, continuity correction) are avail-
able to achieve this.9–11 However, for studies with zero-
events in both arms (known as double-arm-zero-events
studies), controversy remains whether such studies
should be incorporated into meta-analysis or not.
Researchers who tend to discard double-arm-zero-
events studies from a meta-analysis may argue that
such studies are non-informative and they add nothing
to the pooled effect sizes of relative measures, such as
odds ratio (OR) and risk ratio (RR).12 Although this
assumption is supported by the theory of conditional
likelihood, it is problematic and has been criticized by
the following three arguments.

1. Meta-analysis is a process to synthesize all available
evidence for studies on the same topic for a compre-
hensive inference, and double-arm-zero-events studies
are an important source of evidence.

2. Double-arm-zero-events studies are not necessarily
“non-informative.” For example, for studies with bal-
anced sample sizes, zero-events in both arms indicate
there are comparable treatment effects; excluding
them may lead to under- or over-estimation of the
effects.4 Xu et al have shown that excluding studies
with no events in both arms can result in the change
of the direction of ORs, confidence intervals (CIs),
and significance of p-values.13

3. From the statistical point of view, whether double-
arm-zero-events studies contribute information for the
inference depends on the methods (along with its
assumptions) and the effect measure chosen. Based on
the one-stage methods, the effect and variance of such
studies could be defined, and they contribute informa-
tion for the inference. On this basis, we believe that
these studies should not be simply discarded.

There are now many methods that provide valid solu-
tions to synthesizing data from double-arm-zero-events
studies. They are well-suited for analysis of various effect
measures, including both relative and absolute mea-
sures.14–21 These advances make it possible to solve the
problem of zero-events in meta-analysis, and they
improve decision-making. Kuss4 has summarized
11 methods for meta-analysis to include information
from studies with no events in both arms without a conti-
nuity correction. These methods are either based on a
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two-stage frequentist framework, for example, the arcsine
difference1 and MH risk difference,22 or a one-stage
frequentist framework, for example, the generalized lin-
ear mixed model (GLMM)23,24 and beta-binomial model
(BB).5,25,26 In addition, Bayesian methods were also pro-
posed to deal with studies with no events.27,28 The advan-
tages of the Bayesian methods have been widely
recognized and documented. With proper prior distribu-
tions for the event risks and sample distributions for the
events, Bayesian methods are expected to produce satis-
factory effect estimates.27,28 However, the major limita-
tion of the Bayesian methods is that the choice of prior
distributions may greatly influence the results (at least
for those with double-arm-zero-events studies), resulting
in uncertainty of the inference.13,29 The one-stage
frequentist framework methods do not suffer from such a
problem because there is no need to borrow strength
from prior information or post hoc continuity correc-
tions. Moreover, the one-stage methods are generally eas-
ier to implement by a wide range of statistical software
than the Bayesian methods.

Although the one-stage methods present their unique
advantages to deal with zero-events studies, a very small
proportion of meta-analyses utilized this group of
methods in practice. As the most important methods
under the one-stage framework, the GLMM23,24,29–33 and
BB5,25,26 for meta-analysis have been widely discussed.
The generalized estimating equation (GEE) is another
one-stage framework method,34,35 but it is seldom
described in the meta-analysis literature. The lack of
global recognition of one-stage methods results in unfa-
miliarity among most systematic reviewers with these
methods. Kuss4 has investigated the statistical properties
of these methods and confirmed the superiority of them
for meta-analysis with zero-events studies, while there
are two additional issues to be addressed: (1) whether the
total event count of a meta-analysis impacts the perfor-
mance of one-stage methods? (2) whether the sample size
ratio impacts the performance of one-stage methods? In
this article, we give an overview of the one-stage
frequentist methods for meta-analysis with zero-events
studies, and compare these methods with continuity cor-
rection for the two-stage method.

2 | METHODS

2.1 | One-stage versus two-stage
methods for meta-analysis

To begin with, we must distinguish the concepts of “one-
stage” methods and “two-stage” methods. The “two-
stage” methods refer to the standard meta-analysis

methods that contain a two-stage procedure. In the first
stage, the study-specific effect sizes (and standard errors)
are obtained or estimated from the included studies, and
then these effect sizes are combined in the second stage
through a certain weighting scheme (e.g., inverse vari-
ance).36,37 For the “one-stage” methods, there is no need
to obtain the study-specific effect sizes; instead, each
study is treated as a stratum or cluster, and the overall
effect size is directly obtained by either a generalized lin-
ear model or population-averaged method.38,39 This arti-
cle focuses on the frequentist framework and does not
consider the one-stage Bayesian model. The “one-stage”
methods include the “treat-as-one-trial” methods, the
GLMMs, the stratified exact (logistic or Poisson) regres-
sion model (SERM), the GEE methods, and the BB
model. The first three belong to a class of generalized lin-
ear models, while the GEE is a population-averaged
method. The “treat-as-one-trial” method has been criti-
cized as it may lead to Simpson's paradox as weights are
not assigned to the studies, and it is considered not an
appropriate solution.40 Of note, both “one-stage” and
“two-stage” methods are feasible for aggregated and indi-
vidual participant data. We focus on the application of
these methods to aggregated data because such data are
easily accessible and commonly seen in practice.

2.2 | The one-stage framework:
Generalized linear mixed model

GLMMs are the most commonly used one-stage method
in meta-analysis and are feasible to a wide range such as
meta-analysis of prevalence,41 network meta-analysis,33

diagnostic meta-analysis,5 dose–response meta-analysis,42

and so on. GLMMs provide a good solution to modeling
individual-specific correlation and between-study vari-
ance by setting various random effects. The standard ran-
dom effects GLMMs for meta-analysis include the
random slope GLMM and random intercept and slope
GLMMs. We use i (1,2,…,k) to denote the included stud-
ies and j to denote treatment status ( j = 0 for control and
j = 1 for treatment). Suppose the study-specific true event
risk is πij. A random intercept and slope GLMM has the
following form as described as model 3 by Jackson et al.30

logit
πij

1�πij

� �
¼ γiþ jθi, ð1Þ

where θi �N θ,τ2ð Þ, γi � γ,σ2ð Þ, τ2 and σ2 refer to
between-study variance on treatment effects and study
effects. The model assumes that the true study effects
(i.e., baseline risks) and true study-specific treatment
effects differ across studies (i.e., random-effect model). If
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we assume that true study effects are the same, then the
above model degrades to a random slope GLMM:

logit
πij

1�πij

� �
¼ γþ jθi: ð2Þ

If we assume treatment effects are the same
(i.e., fixed-effect model) but the study effects differ, that
is, replacing θi with θ, then the model degrades to a ran-
dom intercept GLMM. By centering the treatment status
for Equation (1), say, replacing j with j�0:5, we can
establish a modified random intercept and slope GLMM
(i.e., model 5 in Jackson et al); similarly, by replacing j
with j�0:5 for Equation (2), we can establish a modified
random slope GLMM, say, model 4 in Jackson et al.30,33

The joint likelihood function could be established
when no random terms are involved, and we can esti-
mate the parameters by maximizing the log-likelihood.
Whenever there are random terms, the likelihood func-
tion has no closed-form, and some optimization
methods should be used for the estimation. These
include the Laplace approximation, the penalized quasi-
likelihood, the (adaptive) Gauss–Hermite quadrature,
iteratively weighted least squares, and the expectation–
maximization algorithm.43 A large-scale simulation
study has found that Laplace approximation performs
better than the penalized quasi-likelihood and adaptive
Gauss–Hermite quadrature for GLMMs.32

GLMMs have been shown to have good properties for
meta-analysis of rare events.30–33 The major advantage of
GLMMs is their ability to incorporate information from
double-arm-zero-events studies without any prior infor-
mation or post hoc correction. However, GLMMs cannot
deal with the situation when the total event count of the
meta-analysis is zero in either of the arm or both arms.
In addition, when the total event in either arm is insuffi-
cient, the GLMMs may have poor performance.30 Ju
et al32 suggested that at least 10 total events per arm
should be contained to ensure the robustness of the
results when utilizing GLMMs for meta-analysis.

2.3 | The one-stage framework: stratified
exact regression model

The stratified exact regression model (SERM) provides a
solution to analyzing single-arm-zero-events of binary
outcomes as it does not rely on an asymptotic distribu-
tion; instead, it produces estimates through the exact dis-
tribution.4 This method is similar to the random
intercept GLMM; the difference is that the latter uses the
likelihood estimation by an asymptotic distribution.
There are two major SERMs for meta-analysis in terms of

the link functions, that is, logit or log, which are referred
to as stratified exact logistic regression and stratified
exact Poisson regression, respectively. A stratified logistic
regression model can be written as:

logit
πij

1�πij

� �
¼ γiþ jθ: ð3Þ

Here, γi 's are study-specific study effects, and θ is the
regression coefficient indicating the treatment effect, that
is, exp θð Þ represents the OR for the logistic model or the
RR for the Poisson model. All studies are assumed to
share a common effect. The SERM uses the permutation
distribution of the sufficient statistics of γi and θ to obtain
the exact probability of each permutation for parameter
estimation.44 The detailed algorithm of the exact regres-
sion is provided by Tritchler.45

The advantage of SERM is that it can deal with
single-arm zero events based on exact estimation and
thus does not suffer from the problem of separation.46 It
should be noted that there would be no finite estimates
when a conditional likelihood method is employed for
strata with zero events, so the conditional likelihood
method is unsuitable here. Another advantage is that it
considers the variation of the study effects across studies
that allows more “freedom” for the variance.33 The major
limitation is that this method is not sensible when deal-
ing with double-arm-zero-events studies.4 This can be
easily illustrated by considering the models that include
and exclude double-arm-zero-events studies with the
same data set, which will give exactly the same results.
Another limitation is that the exact estimation process is
computationally expensive when the number of included
studies is large.

2.4 | The one-stage framework:
Generalized estimating equation

The GEE combined with robust variance estimators is an
effective method to solve the problem of correlated data
within studies. It was proposed by Liang and Zeger,34,35

and is an extension of generalized linear model for the
estimation equation of likelihood function, which estab-
lishes a relationship between response means and the lin-
ear combination of potential predictors.47 The GEE
focuses on the population mean estimates and is consid-
ered a marginal approach.48,49 A working correlation
matrix R að Þ is used to define the GEE and obtain an effi-
cient estimate of the variance.34 The GEE is better
described as a semiparametric estimation method, rather
than a statistical model. We can specify the GEEs for
meta-analysis as:
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logit E
πijλ

1�πijλ

� �� �
¼ jθ: ð4Þ

The variance of subject λ has the form of
V λ ¼A1=2

λ R að ÞA1=2
λ =ψ , where Aλ is the usual estimate of

the variance based on the information matrix and is
obtained as the negative expected value of the second
derivative of the log-likelihood.47 Moreover, ψ is the dis-
persion parameter and can be readily estimated.34,47 The
working correlation R að Þ indicates the correlation of
the probabilities of an event in treatment and control
groups within each study (cluster). Liang et al34 intro-
duced seven types of working correlations, three of
which are suitable for meta-analysis, that is, indepen-
dent structure, exchangeable correlation, and unstruc-
tured correlation. The independent one assumes that
there is no correlation between treatment and control
arms; the exchangeable structure assumes an identical
correlation between all effects within studies; and an
unstructured one imposes no structure to the correlation
matrix.

Similar to the GLMMs, the GEEs have a major advan-
tage in dealing with double-arm-zero-events studies.
Again, the GEEs cannot deal with the situation when the
total event counts are zero in either of the arm or both
arms across included studies. When the total event in
either arm is insufficient, the estimation would be greatly
biased.

2.5 | The one-stage framework:
Beta-binomial model

The BB model was first introduced by Pearson50 to deal
with overdispersion for binomial data, and it has been
widely discussed for its application to meta-analyses
for zero-events studies in recent years.4,25,26,51–54 It
uses a mixture of binomial distribution of the number
of events (r) with a beta distribution for the true event
risk π: r�Bin(n, π) and π � Beta(a, b), where a>0,
b>0, and they are unknown parameters. Through the
reparameterization for a and b,say, μ¼ a= aþbð Þ and
ϕ¼ 1= aþbþ1ð Þ, we can obtain the expectation and vari-
ance: E(r) = nμ and Var(r) = nμ 1�μð Þ 1þ n�1ð Þϕ½ �.
Here, ϕ is the overdispersion parameter.53 This
reparameterization allows us to use the maximum likeli-
hood method to obtain the unknown parameters a and
b:55 Some more sophisticated parameter estimation
methods have been documented elsewhere.4,5,51 A feasi-
ble method to establish a one-stage BB model and
account for the variation of treatment effects (random-
effect model) across studies is to treat study as a time-
series variable t:

logit
πtj

1�πtj

� �
¼ γþ jθt: ð5Þ

The advantage of this procedure is that it is expected
to have better convergence than the multilevel random
effects models.

2.6 | The one-stage framework:
Bivariate model

Several GLMMs can be applied to establish the bivariate
model. A bivariate GLMM structure is24,30:

logit πi0= 1�πi0ð Þð Þ
logit πi1= 1�πi1ð Þð Þ

" #
�N

γ

γþθ

 !
,

σ20 ρσ0σ1

ρσ0σ1 σ21

� � !
:

ð6Þ

Here, σ20 and σ21 are the variances according to the
event risks on the logit scale, logit πi0= 1�πi0ð Þð Þ and
logit πi1= 1�πi1ð Þð Þ, in the control and treatment arms,
respectively. The ρ is the correlation coefficient between
logit πi0= 1�πi0ð Þð Þ and logit πi1= 1�πi1ð Þð Þ. The advantage
of the bivariate model is that it directly models the poten-
tial correlation of the event probabilities in two arms.
When there are correlations, a bivariate model is
expected to produce better point and variance estimates.
However, due to the additional nuisance parameters, the
estimation would be more complex and computationally
expensive.

2.7 | The two-stage framework:
Continuity correction

Within the two-stage framework, zero-events studies
are generally dealt with Peto's OR method, Mantel–
Haenszel method, or the continuity correction when
the relative risk is utilized. When the absolute risk is
utilized, zero-events studies are dealt with by the
Mantel–Haenszel risk difference or the double-arcsine
difference.1 We focus on the former situation where
the relative risk is used to measure the effect. When
facing studies with no events in both arms, the only
frequentist method is the continuity correction. Sweet-
ing et al have documented several correction methods
and discussed the performance of them.2 The most
widely used correction method is to add 0.5 to each cell
of the 2 � 2 table, which is primarily considered in this
article.

We consider the increasingly popular tool, the inverse
variance heterogeneous model,56,57 to synthesis the study-
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specific effects. This model discards the classic random
effects assumption; instead, it treats the between-study vari-
ance as an overdispersion correction.56,57 Simulation studies
have demonstrated that the inverse variance heterogeneous
(IVhet) model outperformed other two-stage methods.56,57

This model can be implemented using the admetan mod-
ule58 in Stata. The pooled estimate and variance by this
model are given by:

θ̂IVhet ¼
Xk
i¼1

wiθi, wherewi ¼ 1
si2

.Xk
i¼1

1
si2

; ð7Þ

Var θ̂IVhet
� �¼Xk

i¼1

w2
i si

2ψ i ¼
Xk
i¼1

w2
i si

2þ τ2
� � ð8Þ

Here, si2 is the study-specific variance of study i in the
two-stage framework, wi is the study-specific weight, and
ψ i is the study-specific overdispersion correction which
can be calculated as si2þτ2

si2
. The advantage of this two-stage

method compared with the classic random effects
methods is that it is expected to have a better error esti-
mation and keep a better coverage.56,57

3 | REAL-LIFE EXAMPLE

The COVID-19 pandemic in 2020 hugely impacted our soci-
ety and threatened human lives. Physical prevention
(e.g., physical distance, face mask) is currently the most
important way to prevent person-to-person transmission of
COVID-19. Chu et al59 recently conducted a meta-analysis
on the effect of physical prevention for severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) and COVID-19.
In this meta-analysis, they collected 44 comparative studies,
including 29 that dealt with the preventive effect of face
masks, which were used as our example here (Table S2).
Among the 29 studies, 6 were single-arm-zero-events stud-
ies, and 6 were double-arm-zero-events studies, while no
arms' total counts were zero. Due to the involvement of
double-arm-zero-events studies, the SERM method could
not be used. Therefore, we employed the BB, GLMMs,
GEEs, and IVhet methods for the meta-analysis.

Table 1 presents the meta-analysis results. There was
an obvious preventive effect of face masks on reducing
the risk (ORs ranging from 0.16 to 0.53) of person-to-
person transmission of COVID-19 and SARS-CoV-2, con-
sistent with the original findings by Chu et al.59 Except
for the GEE with independent correlation and the bivari-
ate GLMM with unstructured correlation, the effects
were similar across the methods. When excluding six
double-arm-zero-events studies, there were some changes
in both ORs, CIs, and p-values.

4 | SIMULATION

4.1 | Data-generating mechanism

Table 2 presents the simulation settings. We conducted
three sets of simulations to investigate the statistical proper-
ties of the above methods, and we chose the OR as the
effect estimator. As mentioned earlier, the SERM can only
be used to deal with single-arm-zero-events studies but is
not feasible for double-arm-zero-events studies, so we did
not fit the SERM method here. We generated grouped data
for each meta-analysis based on the “PCRandom”method60

and specified the event risk in the control group as a ran-
dom variable. The event risk in the control group, the sam-
ple size in the control group, the (log) true treatment effect,
and the between-study variance were first defined, and
these parameters were used to estimate the event risk and
sample size of the treatment group. Then the simulated
meta-analysis with grouped data was generated.

In the first set of simulations, we considered an event
risk in the control arm ranging from 0.05 to 0.1 with a uni-
form distribution, that is, π0 �U 0:05,0:1ð Þ; in the second
set of simulations, we considered π0 �U 0:01,0:05ð Þ; and
in the third set of simulations, π0 �U 0,0:01ð Þ. These set-
tings were based on the empirical data (Supporting Infor-
mation) from the meta-analyses with double-arm-zero-
events studies in the Cochrane Database of Systematic
Reviews. Among those meta-analyses, in the control arm,
the sample sizes were fitted well by a log-normal distribu-
tion with the mean log value of 3.3537, the median event
risk of 0 (interquartile range: 0–0.09), and a mean event risk
of 0.07.13 The sample size in the control arm (n0) was then
set as logn0 �N 3:3537,0:9992ð Þ. The sample size in the
treatment arm was derived by logn0 and the empirical
sample size ratio: logn1 ¼ exp logn0ð Þ� ratio. In the
empirical data, the ratio ranged from 0.12 (1/0.12 = 8.33)
to 6. We used the 5% to 95% quartiles of the empirical
sample ratio to generate ratio �U 0:84,2:04ð Þ. In addi-
tion, since the continuity correction has been criticized
for its large bias when the sample ratio is strongly
unbalanced,2 we considered an additional scenario with
ratio �U 2:04,8:33ð Þ to examine if the one-stage frame-
work might perform better in this situation.

In the first set of simulations, the majority of the
meta-analyses had the total event count in each arm less
than 10; the median event count in each study's control
arm was exp(3.3537) � 0.01/2. In the second set of simu-
lations, about 50% of the meta-analyses had the total
event count in each arm more than 10; the median event
count in each study's control arm was exp(3.3537) �
(0.05+ 0.01)/2. In the third set of simulations, most of
the meta-analyses had the total event count in each arm
more than 10; the median event count in each study's
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control arm was exp(3.3537) � (0.1+ 0.05)/2. For the
number of studies included k, we took the first to third
quartiles of the empirical data; again, we assigned a dis-
crete uniform distribution to k in all simulations, that is,
k�U 4,10f g with a step width of 1. For the treatment
effect θ, two values were considered: exp(θ) = 1 and
2, representing scenarios without true treatment effect
(log1¼ 0) and with true treatment effect (log2), respec-
tively. For each of the three sets of simulations, four
equally-spaced monotonically increasing values of τ 0.2
(small), 0.4 (moderate), 0.6 (substantial), and 0.8 (large)
were set to generate small to large between-study vari-
ances.32 Therefore, each set of simulations contained 2 �
4 = 8 scenarios with different treatment effects and
between-study variances.

The following eight methods were compared: (1) the
two-stage method IVhet with continuity correction

(adding 0.5); (2) the BB model; (3) the GEE method with
independent correlations; (4) the GEE method with an
unstructured correlation matrix; (5) the random intercept
GLMM; (6) the random slope GLMM; (7) the random
intercept and slope GLMM; and (8) the bivariate GLMM
model. We did not consider the reparameterization of
GLMM models as in our previous study because we
found that the standard GLMMs performed better than
the former.32 For each scenario, we first simulated 5000
meta-analyses, and then excluded the meta-analyses with
zero total event counts in a single arm or in both arms.
The percentage bias (PB, defined as θ̂�θ

� �
=θ), mean

squared error (MSE, defined as Var θ̂
� �þ θ̂�θ

� �2
), cover-

age, and width of 95% CI were calculated; they were used
to quantify the statistical properties of the candidate
methods. Here, θ̂ represents the estimated effects by these
candidate methods. It should be noted that for the sce-
nario θ¼ 0, the PB is replaced by θ̂�θ. The PB and MSE
reflect the performance of point estimates and the width
of CI reflects that of interval estimates. Therefore, a
method was considered to have better performance if it
had a lower PB, lower MSE, and narrower CI while the
coverage was close to the nominal level 95%. All simula-
tions were performed through the Stata/SE 14.0 (Stata,
College Station, TX) software. The program for the simu-
lations is available in the Supporting Information.

4.2 | Simulation results

Table S1 presents the proportions of meta-analyses that
archived convergence. Generally, the BB model and the
GEEs showed better convergence, while the GLMMs

TABLE 1 Synthesized effects of face mask for preventing people-to-people transmission based on different meta-analysis methods

Method

Including double-arm-
zero-events studies

Excluding double-arm-
zero-events studies

OR 95% CI p-Value OR 95% CI p-Value

IVhet 0.27 0.18–0.39 <0.001 0.27 0.18–0.41 <0.001

Beta-binomial 0.28 0.15–0.53 <0.001 0.27 0.15–0.52 <0.001

GEE with independent correlation 0.53 0.42–0.60 <0.001 0.54 0.45–0.64 <0.001

GEE with exchangeable correlation 0.32 0.29–0.36 <0.001 0.33 0.29–0.37 <0.001

GEE with unstructured correlation 0.34 0.30–0.38 <0.001 0.35 0.31–0.41 <0.001

GLMM with random intercept 0.21 0.17–0.27 <0.001 0.22 0.17–0.27 <0.001

GLMM with random slope 0.23 0.08–0.71 0.010 0.42 0.16–1.12 0.081

GLMM with random intercept and slope 0.16 0.10–0.26 <0.001 0.35 0.21–0.58 <0.001

Bivariate GLMM with exchangeable correlation 0.30 0.16–0.58 <0.001 0.29 0.15–0.56 <0.001

Bivariate GLMM with unstructured correlation 0.44 0.22–0.87 0.018 0.47 0.21–1.04 0.061

Note: All GEEs did not employ the robust variance estimator because it had poor coverage in our simulations (data no shown). All the p-values are estimated
by the two-tailed z-test, where Z¼ θ̂ffiffiffiffi

Vθ
p , θ̂¼ logOR, and alpha = 0.05 was used as the criterion for statistical significance.

TABLE 2 Simulation settings

Parameter Assigned values

Event risk of the control group 0–0.01; 0.01–0.05; or 0.05–0.1

Number of patients in control
group (n0)

mean(log) = 3.3537,
SD(log) = 0.9992

Sample size ratio Uniform (0.84, 2.04)

Number of patients in
experimental group (n1)

n1 = exp (log n0) � ratio

Effect size (OR) 1, 2

Between-study standard
deviation (τ)

0.2; 0.4; 0.6; or 0.8

Number of studies included in
each meta-analysis (k)

Uniform (4, 10)
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showed poor convergence under the tolerance of
0.000001. Figures 1–4 present the simulation results. In
the first set of simulations (first row in Figures 1–4),
where most of the meta-analysis (>98.07%) had less
than 10 total events in each arm, substantial biases
were observed (about � 24.14% to � 39.78% for OR = 1
and � 67.05% to � 93.72% for OR = 2). In the second set
of simulations (second row in Figures 1–4), about 62–70%
of the meta-analyses had at least 10 total events in both
arms, and we observed much smaller biases (� 0.06 to
13.83% for OR = 1 and � 22.59 to 20.38% for OR = 2). In
the third set of simulations (third row in Figure 1–4),

about 96% of the meta-analyses had at least 10 total
events in both arms, and the methods were almost unbi-
ased in more homogeneous meta-analyses (τ = 0.2). As
the number of total event counts increased, the estima-
tion showed increased precisions (i.e., narrower CIs).
This indicates that when the number of total events was
less than 10 in each arm, none of these one-stage and
two-stage methods showed good performance.

For the one-stage methods, when the event risk was
low, say 0 to 0.01, where most of the meta-analyses had
less than 10 total events in the arms, the performance
was poor with large bias, large MSE, large width of CI,
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FIGURE 1 Comparison of the 8 methods with respect to percentage bias. (1) IVhet; (2) BB model; (3) the GEE method with

independent correlations (GEE); (4) the GEE method with unstructured working matrix (GEE_B); (5) the random intercept GLMM

(GLMM_I); (6) the random slope GLMM (GLMM_R); (7) the random intercept and slope GLMM (GLMM_IR); (8) the bivariate GLMM with
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and extremely low coverage. As the event risk
increased, the total events became sufficient (≥ 10) in
each arm, the performance of one-stage methods was
good. The BB model, GEE with independent correlation,
GEE with unstructured correlation, and random-
intercept GLMM had better performance than the other
methods in terms of bias, MSE, width of CI, and cover-
age. This finding is similar to that by Kuss.4 Among these
methods, the GEE with unstructured correlation had the
best performance when the between-study variance was
not obvious (τ <0.6), while the other three also per-
formed reasonably well. The BB model had the best per-
formance when there was considerable between-study
variance (τ ≥ 0.6).

The IVhet model with the continuity correction per-
formed well in terms of MSE, width of CI, and coverage.
Generally, this method outperformed the one-stage
methods when the event risk ranged from 0 to 0.01 and
the sample size ratio was balanced. Under this setting,
we recorded that when OR = 2, the IVhet showed moder-
ately large bias but obviously better coverage than
one-stage methods. As the event risk increased, the per-
formance of one-stage methods became better, and the
advantage of IVhet against these methods decreased. This
was more obvious for the bias of all one-stage methods
and for the MSE, width of CI, coverage of the BB and
GEE with independent correlation. The IVhet model
showed larger bias than the one-stage methods when
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there was no obvious between-study variance. However,
when the between-study variance was considerable (τ ≥
0.6), it showed similar or smaller bias than the one-stage
methods. The forgoing was the situation when the group
size of included studies was comparable. In our addi-
tional simulations, when the ratio of group size was not
comparable, the continuity correction had poorer perfor-
mance than the BB model, GEE with independent
correlation, GEE with unstructured correlation, and
random-intercept GLMM (Figure S2). The ratio of group
size showed little impact on the performance of the
one-stage methods.

5 | DISCUSSION

In this study, we summarized five one-stage frequentist
methods for meta-analysis to deal with zero-events stud-
ies. In addition, we compared the three major one-stage
methods to a two-stage method (IVhet) that uses the con-
tinuity correction to deal with studies with no events in
both arms. Our simulation studies demonstrated that the
one-stage methods performed poorly when the total
events in each arm were insufficient. When the
total events in each arm were sufficient, they generally
performed well, and the GEE (in the case of low
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between-study variance) and BB model (in the case of
obvious between-study variance) had better properties
than other methods. The random intercepts GLMM also
performed well when there was no obvious between-
study variance. However, GLMMs seem to have serious
convergence problems under the environment of the
Stata program. We also found that, when the group size
was balanced in a meta-analysis, the continuity correc-
tion based on the IVhet model performed well in the
presence of obvious between-study variance. The conti-
nuity correction was susceptible to the group size ratio,
but this was not for the one-stage methods.

Although the continuity correction based on the two-
stage framework showed lower MSE and CI than the
one-stage methods, we should not ignore the impact of
the continuity correction on the error estimation. As we
observed in the three sets of simulations, error estimation
tended to be better when the total event count of each
arm increased. For the continuity correction, 0.5 was
added to each cell for zero-events studies, meaning the
total event count was increased; as a result, the estima-
tion is expected to be more precise, leading to smaller
variances. This was more obvious in the scenario of no
treatment effect, because studies with zero events and
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those without zero events shared the same true effect
and thus were more homogeneous, and precision sub-
stantially increased. In the simulations, there was a much
smaller gap between the IVhet method (with the continu-
ity correction) and the one-stage method (without the
continuity correction) in terms of the MSE as the event
risk increased. The increase in the event count by post
hoc corrections could be traded-off by the increase in the
total event count through the increase of the event risk.

The predominant advantage of the one-stage methods
is their ability to synthesize zero-events studies without
prior information or post hoc continuity corrections,
preventing “additional noise” in estimation.61 This fea-
ture makes them attractive for solving the problem of
zero-events. However, we demonstrated several limita-
tions that might restrict their application. In our simula-
tions, the total event count had a large impact on the
performance of both one-stage and two-stage methods.
For a meta-analysis with less than 10 total events in
either arm, the one-stage methods could have poor per-
formance. In addition, as mentioned earlier, when the
total event count was zero in either arm, the one-stage
methods were no longer feasible for meta-analysis. This
could be one of the major limitations of the one-stage
framework methods.

Other limitations of the one-stage framework include
that measuring the between-study variance is more com-
plex than with the standard two-stage methods. We can
use the intraclass correlation coefficients (ICC) to reflect
the proportion of between-study variance to the total var-
iance as a proxy for I-squared for GLMMs,62 but this is
difficult for GEEs. Second, likelihood-based methods gen-
erally face the problem of insufficient convergence, espe-
cially when random terms are added into the model.
Many factors can influence the convergence, including
the effect estimates (OR or RD), the setting of the toler-
ance for determining convergence, iteration times, the
choice of model (e.g., adding random terms), optimiza-
tion methods. For example, setting a less strict tolerance
(e.g., 0.001) can increase the convergence rate. As shown
in Table S1, the convergence rate was generally low,
especially for GLMMs, while this was not the case when
using the R program that we recorded previously.32 This
is likely due to the different default settings of parameters
for model estimation between software. A comprehensive
summary of the different settings in these programs in
the future would be useful. Third, it is difficult for the
one-stage methods to test for the potential publication
bias63; the conventional methods for publication bias
depend on study-specific effects and cannot be directly
applied to the one-stage framework.

In this study, the one-stage Bayesian methods were not
considered. Bayesian hierarchical models could be readily

established based on the GLMMs. As mentioned earlier, the
setting of prior distribution largely impacts the final results.
In the case of rare events, the prior information could pre-
dominate the weights, and the sample information might
have little contribution to the meta-results. In addition, a
random effects Bayesian model inevitably also has the same
problem of frequentist GLMMs, due to the random effects
assumption. Further investigation and improvement on the
Bayesian methods are worthwhile in this area.

In summary, the one-stage framework has a unique
advantage to deal with studies with zero events and could
be considered in future meta-analyses whenever possible.
The continuity correction based on the IVhet model is a
good alternative when the group size is balanced. Based
on our findings, researchers are advised to choose the
GEE method with unstructured correlation to deal with
zero-events problems when there is small between-study
variance in a meta-analysis, and choose the BB method
when there is considerable between-study variance.
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