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Abstract: Autism spectrum disorder (ASD) is an umbrella term that includes many different disor-
ders that affect the development, communication, and behavior of an individual. Prevalence of ASD
has risen exponentially in the past couple of decades. ASD has a complex etiology and traditionally
recognized risk factors only account for a small percentage of incidence of the disorder. Recent studies
have examined factors beyond the conventional risk factors (e.g., environmental pollution). There
has been an increase in air pollution since the beginning of industrialization. Most environmental
pollutants cause toxicities through activation of several cellular receptors, such as the aryl hydrocar-
bon receptor (AhR)/cytochrome P450 (CYPs) pathway. There is little research on the involvement of
AhR in contributing to ASD. Although a few reviews have discussed and addressed the link between
increased prevalence of ASD and exposure to environmental pollutants, the mechanism governing
this effect, specifically the role of AhR in ASD development and the molecular mechanisms involved,
have not been discussed or reviewed before. This article reviews the state of knowledge regarding
the impact of the AhR/CYP pathway modulation upon exposure to environmental pollutants on
ASD risk, incidence, and development. It also explores the molecular mechanisms involved, such as
epigenesis and polymorphism. In addition, the review explores possible new AhR-mediated mecha-
nisms of several drugs used for treatment of ASD, such as sulforaphane, resveratrol, haloperidol,
and metformin.

Keywords: autism; environmental pollutants; AhR; CYP1A1; epigenetic modifications; polymorphism

1. Introduction

Autism spectrum disorder (ASD) is a disease that affects the development, commu-
nication, and behavior of an individual. It usually evolves during early childhood and
persists throughout the lifetime of the affected individual, causing social and behavioral
impairments. These defects may impede individuals with their day-to-day lives and make
them dependent on the people around them [1]. Earlier understanding of autism was lim-
ited to a more severe variety of the spectrum, which resulted in pronounced speech defects,
learning disabilities, and below-average IQ. Consequently, high-functioning individuals
with variants of autism were misdiagnosed or underdiagnosed [1]. ASD is now used as an
umbrella term encapsulating a large variation in developmental and behavioral disorders,
including autism disorder, Asperger’s disorder, childhood disintegrative disorder, and
pervasive developmental disorder—not otherwise specified [2].
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Prevalence of autism has risen in recent years, from 0.4% in the 1960s–1970s to ap-
proximately 1.9%, affecting approximately 1 in 54 children in 2016 [3]. Although part of
the increase could be attributed to better awareness and early detection, diagnostic drift
does not completely account for the astounding numbers [4]. Individuals with ASD have
symptoms and signs that are characteristically different from each other. Nonetheless, the
diagnosis of ASD is dependent on two core domains, the social communication deficit and
repetitive–restrictive behavior [5]. According to the Diagnostic and Statistical Manual of
Mental Disorders criteria for ASD (DSM-5), social communication deficits are characterized
by the impairment of socioemotional reciprocity, non-verbal communicative behaviors,
and poor ability to develop, maintain, and understand relationships [6]. Manifestations
of the repetitive–restrictive behavior include stereotyped or repetitive motor movements,
inflexible adherence to routines or ritualized patterns of verbal and non-verbal behavior,
abnormally high restricted or fixated interests, and hyper-reactivity or hypo-reactivity to
sensory input [7].

The etiology of ASD is complex with several neurobiological factors contributing to
its development, including genetic, epigenetic, and environmental factors [8,9]. Genetic
influences have been recognized as the most likely cause of autism, in which approximately
50% ASD cases are inherited [10]. De novo mutations in the parent gametes have been
established as a cause of sporadic occurrence of autism, accounting for nearly 30% of all
autism cases in males and 45% in females [11]. Epigenetic causes, such as DNA methylation,
genomic imprinting, and histone modification also instigate ASD [12–14]. Prenatal factors
that induce changes in inflammatory cytokines, such as diabetes, Rubella, cytomegalovirus
infections, and persistent fever during pregnancy are risk factors leading to autism [15]. In
this regard, it has been shown that gene expression and plasma levels of several proinflam-
matory cytokines, prostaglandins, chemokines, and inflammation/oxidative stress-related
proteins are highly elevated and strongly correlated with clinical features of children with
ASD when compared with age-matched control [16–19]. Alternatively, a link between low
thyroid hormone levels during pregnancy and an increased risk for autistic traits has been
reported [20].

Although some factors contributing to the development of autism have been identified
and characterized, these traditionally recognized risk factors alone cannot explain the rapid
increase of autism incidence worldwide. There is extensive, ongoing research taking place
to examine the possibility of the involvement of other risk factors, particularly exposure
to environmental pollutants. The U.S. Environmental Protection Agency has reported an
increase in the role of environmental factors in ASD incidence and development more
than what was previously thought. In the past decades, uncontrolled industrialization
and development of several human activities resulted in the emission of pollutants, such
as heavy metals, aromatic hydrocarbons, dioxins, and phthalates, into the air, water, and
soil, finally resulting in a massive environmental pollution. Consequently, people have
been exposed to a mixture of these environmental chemicals/pollutants unknowingly,
continually, and chronically. Co-contamination with complex mixtures of environmental
pollutants is a common environmental problem with multiple biological consequences,
particularly to the enzyme systems and metabolism in the body. The American and
Canadian agencies for Environmental Protection Act rank heavy metals, polycyclic aromatic
hydrocarbons (PAHs), and other environmental pollutants among the most hazardous
and toxic substances in the environment [21,22]. The increase in everyday exposure
and accumulation of environmental toxins through air, water, soil, and food have been
revealed to play a critical role in the pathogenesis of several diseases, such as cardiovascular
diseases [23,24], cancer [25,26], respiratory diseases [26,27], diabetes mellitus [28], and
neurological diseases [29].

2. Environmental Pollution and ASD

Brain development during fetal and infant period is a critical stage and, consequently,
toxicants may affect and alter brain development most dramatically at this stage compared
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to adults [30]. Prenatal exposure to air pollution has been associated with a range of
adverse birth consequences, particularly with brain structural and neuropsychological
abnormalities in childhood. These abnormalities include brain immune function, synaptic
plasticity, brain circuitry, and stem cell development, in addition to selective exclusion
of excess neuronal synapses [31–33]. The hypothesis that ASD development in early
childhood or during adulthood is a result of prenatal exposure to environmental pollutants
has been tested in human and animal studies. In that, a growing body of literature has
now established an increase in the risk, incidence, and severity of ASD development with
exposure to environmental pollutants during pregnancy and early childhood.

Carter and Blizard have conducted a study to examine ASD gene-environment in-
teraction and showed that approximately 67,861 chemical–gene interactions affected the
autism susceptibility genes (ASGs), among which 4428 environmental toxins and chemicals
affected one or more ASG, suggesting that ASGs are targets for environmental toxins [34].
For example, autism has been linked with organochlorine insecticides via disruption of pre-
and post-synaptic dopamine, GABA, and glutamate function [34]. Another example of a
close relationship between genes and the environment is the toxicogenomic effect of copper
metal on reducing ProSAP/Shank protein levels in the brain, and decreasing the expres-
sion of the N-methyl-D-Aspartate receptor (GRIN1) in the excitatory synapse associated
with autism [35]. A recent nationwide case-control study conducted in Denmark, which
included 15,387 children with autism and 68,139 healthy age- and sex-matched children,
revealed that exposure to air pollution in early stages of infancy, but not during pregnancy,
contributed to increased risk of ASD [33].

Particulate matters (PMs) are small air pollutants composed of microscopic solid
particles or liquid droplets that can easily enter the lungs and cause diseases, including
autism [36]. PMs are one of the most investigated air pollutants with regards to autism
as they carry all hazardous particles suspended in the air, including organic compounds,
diesel exhaust, polycyclic aromatic hydrocarbons, endotoxins, and reactive heavy met-
als [37]. Traffic, domestic heating, and industrial emission are major contributors to ambient
PM concentrations [38]. For example, traffic diesel exhaust has been estimated to contribute
to more than 35% of air PM [39] and, thus, increased autism incidence was positively corre-
lated with proximity to highways and exposure to PM10 during the third trimester, with an
estimated odds ratio of 1.36 [32,40–42]. Although several studies have shown an associa-
tion between PM and ASD; specific evidence for individual constituents is conflicting. A
case-control study in Shanghai reported an increased risk of developing ASD among chil-
dren below 3 years who were exposed to PMs [43]. Systematic reviews and meta-analysis
studies conducted to review epidemiological literature on the impact of PM exposure
on ASD showed a strong evidence of association for prenatal and postnatal exposure to
PM2.5, with little evidence for PM10 [44–46]. Geng and coworkers have demonstrated a
significant correlation between autism severity and the PM2.5 serum levels of children
with autism [47]. At the experimental level, exposure of neonatal male Sprague–Dawley
rats to PM2.5 caused autism-like behavioral abnormalities, such as communication deficits,
decreased social interaction, and aversion to unfamiliar objects [48]. This delirious effect
could be possibly attributed to induction of neuroinflammation, dysregulation of immune
system, mutation of a pivotal gene involved in formation, maturation, and maintenance of
synapses [48], and DNA methylation and oxidative stress [49].

Heavy metals are stable air pollutants that are neither created nor biodegradable,
making the exposure to metallic elements a matter of growing concern [50]. Heavy met-
als are known as neurodevelopmental toxicants causing fetal damage and neurological
diseases, including autism. Several case-control studies revealed that chronic exposure to
inorganic mercury resulted in a staggering 60% increase in susceptibility to autism. Recent
systematic reviews and meta-analysis studies showed that ASD patients exhibited higher
concentrations of heavy metals, such as antimony, mercury, lead, in their hair and blood,
which were positively associated with an increased risk of autism [46,51]. In addition,
the higher levels of heavy metals in children with autism than matched controls were
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positively correlated with maternal fish consumption, maternal use of dental amalgam,
residing near gasoline stations, and usage of aluminum pans [52]. These results imply that
development index of countries significantly influences the overall concentrations of heavy
metal toxicity between patients with ASD and control subjects, which support the theory
that environmental pollution is a contributory factor to ASD.

Organic pollutants are long-lived toxic substances in the environment. They are gen-
erally divided into persistent and non-persistent, where non-persistent organic pollutants
(NPOPs) are toxins that do not remain in the human body, but still harmfully affect various
physiological pathways. The link between exposure to NPOPs, such as phthalate and
bisphenol A (BPA), and autism development in children, has been reported in several
studies that showed higher levels of phthalates and BPA compounds in the blood and
urine of children with autism compared to healthy subjects [53–55]. On the contrary, other
studies demonstrated that prenatal exposure to phthalates during the second and third
trimesters of pregnancy was not associated with an increased risk of autism in children
from this cohort [56]. On the other hand, persistent organic pollutants (POPs), such as
organochlorine pesticides, polychlorinated biphenyls (PCBs), perfluoroalkyl substances
(PFAS), polychlorinated dibenzofurans (PCDFs), and polycyclic aromatic hydrocarbons
(PAHs) are generated from anthropogenic activities that resulted in the accumulation
of these toxic substances in the soil, air, and water [34,57]. The direct link between ex-
posure to POPs and autism has been reported. A population-based case-control study
aimed to determine the impact of prenatal exposure to PCBs during pregnancy on autism
demonstrated that elevated levels of PCB138/158, 155, and 170, were associated with
higher risk of development of ASD, probably through specific gene modulations [58]. In
addition, exposure to PCBs causes 15q11-q13 duplication autism spectrum disorder and
development of autistic traits [59–62]. Further supporting evidence for the association
of environmental pollutants and autism is the observation that elevated levels of 2,3,7,8,-
tetrachlorodibenzo-p-dioxin (TCDD), a well-known PAH, in breast milk, increased autistic
traits of 3-year-old children in Vietnam [63]. Importantly, these POPs and PAHs are known
to exhibit their toxic effects on the human body through the activation of a cytosolic protein
known as the aryl hydrocarbon receptor (AhR) [21], suggesting high possibility that the
AhR pathway could mediate increased autism development and incidence. The next part
of the review discusses recent advances and studies, highlighting the impact and role of
the AhR pathway in the incidence of autism.

3. Aryl Hydrocarbon Receptor Pathway and ASD
3.1. Aryl Hydrocarbon Receptor Pathway

AhR is a ligand-activated transcription factor that belongs to basic-helix-loop-helix
(bHLH)/Per-ARNT-Sim (PAS) family, which is involved in the regulation of cell differenti-
ation, proliferation, and cancer imitation [64,65]. AhR plays an important role in various
physiological pathways, including host defense, immunity, stem cell maintenance, cell dif-
ferentiation, and xenobiotic metabolism [66]. It was initially believed that AhR is activated
only by a group of environmental pollutants, such as polycyclic aromatic hydrocarbons
(PAHs). However, it is now reported that several non-PAHs, such as ketoconazole [67]
and heavy metals [22,68], could modulate AhR. Human AhR is found in the cytosol in
complex with XAP2, an inhibiting chaperone protein Heat Shock Protein 90 (HSP90) and
is protected from degradation by its association with p23 [69]. Activation of AhR upon
binding to its ligand results in its translocation from the cytosol into to the nucleus and dis-
sociation from HSP90 (Figure 1). The activated AhR heterodimerizes with a transcription
factor, known as the AhR nuclear translocator (ARNT), inside the nucleus. The resulting
complex binds to specific DNA sequence, xenobiotic response element (XRE), located on
the enhancer regions of specific genes, leading to initiation of their transcriptional and
translational expression [70]. Examples of these AhR regulated genes include, CYP1A1,
CYP1A2, CYP1B1, and AhR repressor (AhRR). Induction of CYP1 genes is capable of
bioactivating environmental toxicants and transforming them into their reactive moieties,
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such as epoxide, which can attack general macromolecules, such as RNA, DNA, and pro-
teins of specific organs and tissues, by forming DNA adducts, inducing oxidative stress,
forming genotoxic compounds and eventually resulting in tissue damage [71]. Activation
of AhR is now known to be involved in the pathogenesis of several diseases, such as
cancer [72,73], cardiovascular diseases [74], inflammatory diseases [75], atherosclerosis [76],
and neurodegenerative disease [77].
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3.2. Evidence of Involvement of AhR/CYP1A Pathway in Autism Development

Dioxin-like chemicals are well-known neurotoxic pollutants, where exposure to these
chemicals has been linked with increased the risk of autism. Since these environmental
toxicants target AhR to mediate their toxicities, it is highly possible that AhR could play
a role in autism development during childhood; however, the links between AhR and
autism are still not fully revealed. What supports this possibility is that AhR and its
regulated genes, CYP1A1, CYP1A2, and CYP1B1, are highly and constitutively expressed
in the placenta, which may be activated by exposure to environmental toxicants during
pregnancy and, hence, increase the incidence of autism [78]. In addition, activation of the
AhR/CYP1 results in DNA adduct formation and DNA strand breakage [79,80], considered
as risk factors for the development of autism [80]. These results collectively indicate that
AhR/CYP1 could play a role in ASD incidence. This section summarizes the most recent
human and experimental studies (Table 1) and evidence for the potential role of AhR and
its regulated genes, CYP1A1, CYP1B1, and CYP1A2 on autism development.

3.2.1. Human and Epidemiological Studies

Neuroinflammation has been hypothesized to contribute to autism development; for
example, it was reported that the levels of pro-inflammatory cytokines are high in the
blood and cerebrospinal fluid of patients with autism. A recent study on children with
autism and age-matched healthy children showed elevated levels of AhR- mediated gene
expressions of several inflammatory cytokines, such as interleukin-6 and signal transducer
and activator of transcription 3 (STAT3) in children with autism, more than in healthy
individuals [16]. This is supported by reports showing that STAT3 binds to its motif in the
AhR promoter region; thus, activating AhR. There is a strong correlation between autism
severity and the levels of vitamin D, in which children with autism are usually associated
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with vitamin D deficiency. Knowing that vitamin D is metabolized by CYP1B1, it is highly
suggested that variation in CYP1B1 expression could play a role. The link between CYP1B1-
mediated vitamin D deficiency and autism has been examined by El-Ansary and coworkers,
who were the first to show that the plasma levels of CYP1B1 and vitamin D in 28 children
with autism were 70% lower than their age- and sex-matched neurotypical children [81].
Although there is no other supporting study, it was postulated that decreased CYP1B1
levels in patients with ASD could be attributed to epigenetic silencing of the CYP1B1.

Meta-analysis studies across two prospective pregnancy cohorts showed that the
CYP1A1 gene expression was downregulated in umbilical cord blood from subjects with
autism, suggesting its involvement in ASD etiology [82]. In addition, it has been reported
in two separate studies that exposure of Vietnamese and Taiwanese pregnant women
to dioxin, an AhR activator, was associated with increased neurodevelopmental deficits
and autistic traits in children with ASD [63,83]. A cohort study examined the impact of
prenatal exposure to PCDFs on autistic traits in middle- to late childhood using the Social
Responsiveness Scale (SRS), and found that higher levels of PCDFs in maternal blood
during pregnancy were associated with lower SRS scores in children, which resulted in
greater autistic-like social traits [61]. A recent case-control study showed that elevated
levels of POPs (PCBs, dioxins, PFAS), elements, and heavy metals in the amniotic fluids
of children with autistic traits were associated with increased transactivation of AhR [61].
This study provides evidence that environmental pollutants can cross the placenta and,
hence, increase the risk of toxicities and ASD. Although the levels of PFAS were lower in
ASD cases compared to the control, this could be explained by the possible removal of
some PFAS congeners during the process of extraction, as PFASs are high albumin-binding
compounds [78].

3.2.2. Experimental Animal Studies

A handful of animal studies has linked environmental pollutants to autism-like be-
havior through the AhR pathway. An in utero electroporation study by Kimura et al.,
conducted on pregnant C57BL/6N mice on gestational day 14, to transfect the neurons
with constitutively active AhR vector plasmids, showed a constitutively activated AhR sig-
naling [84]. This activation detrimentally affects neuronal migration during hippocampal
development [84]. The cholinergic system is one of the pathways that has been investi-
gated in neurotoxicity, ASD, and associated core symptoms [63,85,86]. Acetylcholinesterase
(AChE) in the brain hydrolyzes the neurotransmitter acetylcholine (ACh) into acetyl-CoA
and choline, which is a critical player in learning cognition and memory, especially during
fetal and infant development stages. Dysregulation of AChE may have lasting detrimental
effects on neural development contributing to autistic-like behavior [87]. Many dioxin-like
compounds, such as TCDD, downregulate the transcription of AChE and suppress neu-
ronal activity [88]. AhR activation via exposure to TCDD during the perinatal period of a
rat model caused permanent brain damage and impaired the development of cerebellum
of their offspring [89]. These toxic effects are believed to be attributed to a decrease in the
levels of thyroid hormone, AChE, and monoamines levels, with an increase in gamma
aminobutyric acid (GABA) levels in cerebellum of offspring [89]. Xie et al. have provided
more evidence supporting the involvement of AChE, in that treatment of cultured SK-N-SH
human-derived neurons with TCDD resulted in a significant decrease in enzymatic activity
of AChE, whereas treatment with AhR inhibitor, CH223191 resulted in the restoration of
the TCDD-mediated suppression of AChE [90], indicating that AChE is regulated, at least
in part, through an AhR-dependent mechanism.

Autism-like behavior, including anxiety, locomotor activity, repetitive behavior, and
altered swimming pattern was induced in zebrafish when gestationally exposed to heavy
metal lead, which was associated with upregulation of CYP1A [91]. On the other hand,
Glazer et al. have studied the impact of developmental exposure to low levels of PCB126
on early- and later-life behavioral phenotypes in the zebrafish model system [92]. In this
study, adult behavioral assays, including shoaling and the novel tank assay, showed that
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exposure to PCB126 had impaired short- and long-term habituation to the unfamiliar
environment, and exhibited high anxiety-related behavior with no change in the larval
locomotor activity. These autistic effects of PCB126 were associated with a significant
induction of CYP1A in early stages of development, with no significant upregulation at
adulthood [92], implying that activation of AhR in the early developmental stages due to
exposure to POPs is linked with autistic traits. In addition, Colter et al. and coworkers
have used high affinity AhrbCyp1a2(−/−) and poor affinity AhrdCyp1a2(−/−) knockout mice
models to study the effect of developmental PCB exposure on autism development [93]. In
their studies, they found that both high- and poor-affinity knockout mice displayed motor
dysfunction when exposed to high PCB levels during gestation and lactation, with higher
susceptibility to nigrostriatal dysfunction and motor deficit in high-affinity AhrbCyp1a2(−/−)

knockout mice [93]. A follow-up study on the same mouse models has also established
that high-affinity AhrbCyp1a2(−/−) mice exposed to PCBs displayed the highest levels of
toxicity and variation in gene expression in the cerebellum and cortex, the two centers of
the brain responsible for motor activity and memory [94]. These studies clearly provide
strong evidence for the involvement of the CYP1A2 gene in the neurotoxicity caused by
developmental exposure to PCBs.

Table 1. The role and mechanisms of AhR/CYP1 pathway in ASD development.

Gene Study Model Study Design AhR/CYP1
Modulator

Effect on AhR/CYP1
Pathway

Effect on Autism Incidence
& Development References

AhR

Human
SK-N-SH

human-derived
neurons

TCDD AhR activation→
↓AChE ↓ Neuronal activity [90]

CH223191 AhR inhibitor,
CH223191→ ↑ AChE ↑ Neuronal activity

Pregnant
amniotic fluids

PCBs & heavy
metals ↑ AhR transactivation

↓ The levels of PFAS were
lower in ASD cases compared

to control.
[78]

Rats
Perinatal

exposure to
TCDD

TCDD

Activation of AhR→
↓ AChE, monoamines,
↑ stimulation of

GABA
↓ thyroid hormones,

increase in TSH,
decrease growth

hormones in
cerebellum of

offspring

↑ Permanent brain damage.
Impaired the development of
cerebellum of their offspring

[89]

CYP1A

Human
Autistic subject

↓ CYP1A1 gene
expression in

umbilical cord blood

↑ ASD incidence compared to
control [82]

Pregnant Dioxin ↑ dioxin levels in
maternal blood

↑ Neurodevelopmental
deficits and autistic traits in

the children with ASD
[63,83]

PCDFs ↑ PCDFs levels in
maternal blood

↑ Autistic traits in middle to
late childhood using SRS [61]

Zebrafish

Developmental
exposure to

PCB126 on early-
and later-life
behavioral

PCB126

↑ CYP1A1 in early
stages of

development, with no
significant

upregulation at
adulthood

Impaired short-term and
long-term habituation to
unfamiliar environment
↑ Anxiety-related behavior

with no change in the larval
locomotor activity

[91,92]

Mice
Pregnant

C57BL/6N
AhR plasmid
transfection

Constitutive AhR
activation

Affects neuronal migration
during hippocampal

development.
[84]

High affinity
Cyp1a2(−/−) PCBs CYP1A2 Knockout

↑Motor dysfunction
compared to wild-type mouse.
↑ Susceptibility to nigrostriatal
dysfunction and motor deficit,
and toxicity of the cerebellum

and cortex.

[93,94]

CYP1B1 Human Autistic children Vitamin D
deficiency

↓ CYP1B1 plasma
levels by 70% through
epigenetic silencing of

CYP1B1

↓ Vitamin D by 60%→
positively correlates with ASD [81]
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4. Molecular Mechanisms of AhR/CYP1A Regulation in ASD Development

The interplay between genetics and environmental factors, mediated by AhR, and
the cause for autism raises the question of how exactly changes in the AhR pathway is
capable of contributing to ASD. Human neurodevelopmental diseases are well-linked to
genetic disruptions. Although, the genetic and epigenetic mechanisms controlling ASD
were recently reviewed by Yoon et al. [95] and others [96,97], these reviews did not discuss
the impacts of genetic, epigenetic, and polymorphic regulations of AhR and CYP1 genes
on ASD risk. This section discusses the most recent studies and evidence (Table 2) for the
role and impact of epigenesis and polymorphism of AhR and regulated genes in autism
development and risk. The roles of epigenesis and polymorphism are summarized in
Figure 2.
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4.1. Epigenesis

Human neurodevelopmental diseases are well-linked to epigenetic disruptions. Epi-
genesis is an interesting area that gives insight into the machinery processes involved
in disease development, including ASD. These machinery processes include DNA mod-
ification, histone tails modification, chromatin organization, and remodeling. Although
some recent reviews have addressed the impact of transcriptional regulatory influences
of environmental pollution and factors on the epigenetic mechanism of ASD etiology, the
role of AhR and regulated genes was not discussed. This section discusses evidence for
epigenetic changes in ASD through regulation of AhR/CYP1 pathway.

4.1.1. DNA Methylation

DNA methylation is one of the important mechanisms in epigenetics, in which cytosine
is transformed into 5-methylcytosine by the transfer of a methyl group mediated by DNA
methyltransferase (DNMTs) enzymes [98]. DNA methylation is pivotal in the regulation of
gene expression, either by altering the recruitment of proteins or by hindering the binding
of transcription factors to DNA. Both de novo hypermethylation and hypomethylation
of the enhancer or promoter region of DNA during development are capable of changing
the pattern of DNA methylation in the genome. This results in cell differentiation and
development of a unique and stable DNA methylation pattern that can regulate tissue-
specific gene transcription [99].

DNA methylation can affect brain tissue differentiation, nervous system development,
and cause intellectual disorders, including autism. Mitchell et al. have reported that
persistent exposure to organic pollutants, such as PCBs, causes epigenetic DNA methylation
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that is implicated in 15q11-q13 duplication autism spectrum disorder [59]. A genomic DNA
study in postmortem individuals with ASD and in the cerebellum of BTBR T+tf/J autistic
mice showed a significant increase in the expression levels of DNMT3a and DNMT3b
as compared to non-autistic controls, which was positively correlated with the degree
of DNA damage [100]. DNA methylation is one of the suggested mechanisms by which
environmental pollutants, such as PCBs, are capable of inducing ASD development [101].
In that, the induction of oxidative DNA damage by AhR activation is aberrant DNA
methylation [102]. An epigenome-wide study conducted in individuals perinatally exposed
to PCBs and PCDFs compared to non-exposed subjects examined the methylation changes
lasting to adulthood. The study showed differential DNA methylation for 20 CpGs mapped
to 11 genes, including AhRR, CYP1B1, and CYP1A1 [102]. Men perinatally exposed to
PCBs and PCDFs showed hypermethylation of CpG cg06264984 at CYP1B1, cg05549655
at CYP1A1, and cg17924476 in AHRR, with positive correlation with gestational levels
of PCBs or PCDF toxic equivalency and exhibited hypomethylation of cg05575921 and
cg21161138 in AhRR that were inversely related to PCB levels [102].

Several cohort studies had linked hypomethylation of AhRR and hypermethylation of
CYP1A1 genes in cord blood of newborns with maternal smoking during pregnancy, indi-
cating that epigenetic mechanisms are involved in the pathogenesis of diseases associated
with in utero smoking exposure. For example, studies investigating maternal smoking dur-
ing pregnancy had reported AhRR hypomethylation in the offspring’s cord blood mononu-
clear cells (CBMCs), buccal epithelium, placenta tissue [103,104], and was confirmed in
the peripheral blood of their children at 17 years of age [105]. Additionally, a cohort study
conducted in the Japanese population identified hypomethylated CpG sites cg05575921
and cg21161138 in AhRR and hypermethylated site cg05549655 in CYP1A1, in cord blood
or newborn blood, due to prenatal tobacco smoke exposure [106]. However, whether
these alterations in DNA methylation patterns in AhRR and CYP1A1 persist after moth-
ers stopped smoking early during pregnancy remain controversial. While Miyake et al.
showed that these DNA methylation patterns persist after smoking cessation [106], others
have reported no significant differences between children from women who never smoked
and those who stopped smoking after pregnancy [104]. The AhRR hypomethylation results
in reduction in the ability of AhRR to compete with AhR to dimerize with the ARNT
and, thereby, affect binding to XREs, leading to activation of AhR and the target gene,
CYP1A1. These studies do not only indicate that the epigenetic postnatal stability of the
DNA methylation of AhRR at 18 months is a mediator for long-term impacts in humans due
to prenatal exposure to toxins [104], but also suggest DNA hypomethylation in the early
development period can persist for a long period, and indicate possibility of AhR/CYP1A1
causing autism in individuals facilitated by the hypomethylation of its repressor gene by
environmental toxins.

In experimental animal models, researchers have studied the effects of pre-and postna-
tal exposure to a mixture of AhR activators, such as PCBs, PCDD, methylmercury (MeHg),
and organochlorine pesticides, on hepatic, uterus, and brain DNA methylation in pre-
pubertal female Sprague–Dawley rats. In these studies, researchers found that the AhR
activators induced CYP1A1 activity, which was associated with a significant decrease in
the global genome DNA methylation and the mRNA levels for DNMT1, DNMT3a, and
DNMT3b in brain homogenate and brain areas, such as hypothalamus, hippocampus, and
cortex [107,108]. Mechanistically, inhibition of DNA methylation by the AhR activators
is mediated through downregulation of Sp1, a regulator of DNMT1 expression in the
brain [109] and the reduction of S-adenosyl methionine (SAM) concentrations, universal
methyl donor involved in DNA methylation [107].

A harmonious communication between various hormones is imperative to proper neu-
rodevelopment. Since ASD is more prevalent in males than females, endocrine disruption
is hypothesized to be a contributory factor to ASD. It has been found that DNA methylation
is a very important player in sex-specific gene expression. PCBs have influenced sexual
differentiation [110]. In one study, it was found that exposure of Sprague–Dawley rats to a
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mixture of PCBs, Aroclor 1221 on gestational days 1, 3, 16, and 18, caused a delay in onset of
puberty in males and estrous cyclicity in females [111]. These effects were associated with
significant increases in the gene expression of DNMT1 and ARNT in a sex-specific manner.
Increased DNA methylation in response to PCB exposure alters endocrine function and
gene expression in the brain, which influence the sexual development and sex-specific
transcriptional profile in the brain [101,111]. These studies support the possibility that
the AhR/CYP1 pathway is involved in ASD development through DNA methylation
changes, which could persist in the offspring for 20 years or even more, leading to diseases,
including autism.

4.1.2. Histone Modifications

Histones are building blocks of eukaryotic chromatin, which play a pivotal role in
gene regulation. DNA wraps around these protein octamers, made of two each of H2A,
H2B, H3, and H4 [112,113]. Tails protrude from the nucleosome H3 and H4, allowing post-
translational modification to alter the histone interactions with DNA and other proteins.
Histone acetylation or deacetylation, through histone acetyltransferases (HATs) and histone
deacetylases (HDACs), and methylation, through methyltransferases, control genes of the
developmental stage and, thus, the regulation of many physiological and disease-related
pathways [114].

Epigenetic modifications of the histone either through acetylation or deacetylation
mechanisms impact neurodevelopmental diseases, including autism. Blocking of histone
deacetylation in the hippocampus leads to suppression of cognitive impairment and
neurogenesis. This hypothesis is supported by the observation that valproic acid, a well-
known inducer of autism, inhibits HDAC, causing hyperacetylation of the histone [115]. In
an in vivo mouse model of autism, Shpyleva et al. demonstrated that the expressions of
histone acetylation (H3K9ac and H3K56ac) and histone lysine 4 trimethylation (H3K4me3,
H3K9me3, H3K27me3, and H4K20me3) in the cerebellum of BTBR T+tf/J autistic mice
were not different from that of control C57BL/6J mice [100].

The higher incidence of ASD in males more than females suggests the role of prena-
tal exposure to male hormone androgens during brain development in animals and in
humans [116]. In that, it has been reported that fetal testosterone levels were positively
correlated with autistic traits, restricted interests and systemizing behaviors, and that
reduction of the levels of androgens in individuals with ASD or animals would cause a
significant decrease in their clinical symptoms [117,118]. In this context, several experimen-
tal [119] and epidemiological [120] studies have reported that exposure to AhR activators,
such as PCBs, transactivates androgen receptor by enhancing the epigenetic demethylation
of lysine 4 on histone H3 (H3K4me3) mediated by Jarid1b enzyme [121], causing mutations
and, hence, ASD [122]. In addition, it was demonstrated that PCBs directly activate the
XRE located on the androgen receptor promotor, along with androgen responsive element
facilitating transactivation of androgen receptor target genes through the recruitment of
Jarid1b [121,123], in which mutation of Jarid1b genes encoding for H3K4me3 demethylase
results in autism [122]. These studies clearly support the hypothesis that early-life expo-
sure to PCBs induces hyperandrogenization in the brain effects through AhR-mediated
epigenetic mechanisms.

4.1.3. MicroRNAs

MicroRNAs (miRNAs) are a group of small noncoding RNAs that are approximately
22 nucleotides long. They are involved in the post-transcriptional regulation of gene
expression by degrading their target mRNAs and, thus, modulating their translation [124].
They are capable of silencing mRNA by either cleavage of the mRNA strand, destabilization
of the mRNA by shortening its poly(A) tail, or reducing efficiency of translation of the
mRNA into proteins by ribosomes [125]. miRNA dysregulations are known to mediate
pathogenesis of several human diseases, including ASD, and, thus, are considered a
potential therapeutic target.



Int. J. Mol. Sci. 2021, 22, 9258 11 of 22

Altered expression of miRNAs and their role in autism have been reviewed by Schep-
ici et al., and others [126,127]; however, the effects of AhR/CYP on these miRNAs involved
in autism have not been discussed. Toxicities of environmental pollutants, including PCBs
and dioxins on autism, have been well characterized to be regulated by the AhR/CYP1
pathway, leading to the induction of a wide range of genes that express XREs on their
promoters. However, the involvement of miRNAs in this regulation is unclear, particularly
the effect of prenatal exposure to TCDD. In this context, it has been demonstrated that
prenatal exposure of a mouse to TCDD caused the alteration of more than 100 miRNAs in
fetal thymocytes [128]. Among these miRNAs, miR-379, which regulates brain neuronal
development, was upregulated, whereas let-7, which regulates neuronal stem cell prolifer-
ation, was downregulated. Induction of miR-379 induces hypo-social behavior observed in
autism patients. However, the regulation of miRNAs by the AhR/CYP1 pathway was not
investigated in autism and warrants further investigation.

4.2. Genetic Polymorphism

Gene polymorphism refers to the phenomenon where more than one allele occupies a
gene’s locus within a population. Polymorphism refers to mutation of a gene in a single
nucleotide (SNPs), or more. However, unlike any other mutation, an allele must occur in at
least 1% of the population for that allele to be considered a polymorphism of its gene [129].
Polymorphism in genes results in a change in gene expression or the production of an
altered form of a protein. These alterations can result in a cascade of changes that affect an
individual’s physiology.

The variation in the promoter region of several genes has been associated with ASD.
Evidence of multiplicative interaction between a common environmental air pollutant, NO2,
local traffic-related air pollution, and one of the functional promoter variants (rs1858830)
in the MET receptor tyrosine kinase in patients with ASD was reported [32]. Fujisawa
et al. examined the relationship between AhR-related gene polymorphisms and autism
susceptibility and severity. While there was no significant difference in the genotypes of
autistic and healthy subjects, there was a significant difference in the severity, particularly
social communication, in the ARNT gene (SPN rs2228099), but not AhR rs2066853, poly-
morphism [130]. Although the underlying mechanisms were not investigated, alteration of
the gonadal hormone balance mediated by regulating AhR was postulated and, thus, more
genetic analyses are necessary. Additionally, a genetic variant of ARNT2 (SPN rs17225178)
was associated with patients with Asperger syndrome, a subtype of autism that is not
associated with delay in language or cognitive development [131]. Since ARNT is an AhR
partner, it is highly suggested that exposure to environmental toxicants may affect the ASD.

Thai children and adolescents with ASD exhibited increased frequencies of clinically
relevant polymorphisms of CYP1A1 at SNP rs1048943 and rs4646422 (30.3%), CYP1A2*1C
rs2069514 (30.3%) and CYP1A2*1F (rs762551, 23.9%) [132]. These results suggest that
polymorphism of AhR pathway genes plays an important role in the severity of autism,
especially in regard to social communication. Sleep onset delay in children with autism is
attributed to melatonin deficiency due to dysfunctional variation in genes related to the
melatonin pathway [133]. One of the genes mediating melatonin metabolism is CYP1A2
and, to a lesser extent, CYP1A1, in which polymorphism of CYP1A2 has been linked to
the susceptibility of ASD with combined disrupted sleep [134]. A significant decrease
in CYP1A2 enzyme activities in children with autism was associated with significantly
higher frequencies of three variant alleles CYP1A2*1C at SNP rs2069514, CYP1A2*4 at SNP
rs72547516), and CYP1A2*6 at SNP rs28399424 [134]. Thus, elevated levels of melatonin
results in loss of circadian rhythms and eventual loss of supplemental melatonin effec-
tiveness. Further evidence supporting the role of CYP1A2 variations in ASD is the low
urinary melatonin metabolite, 6-sulfatoxymelatonin, by CYP1A2 in mothers of children
with autism compared to control mothers [135]. These studies collectively indicate that low
CYP1A2-mediated melatonin deficiency is a risk factor and early indicator of ASD.
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Table 2. Impact of epigenetic and polymorphic changes by AhR/CYP1 on autism.

Mechanisms Study Model Study Design Gene/Enzyme
Changes Effect on Autism References

DNA
methylation

Human

Autistic subject ↑ DNMT3a, b ↑ DNA damage [100]

Autistic men
exposed prenatally

to PCBs

↑Methylation of
CYP1B1/Cyp1A1 ↑ Incidence of autism [102]

↓Methylation of
AhRR [102]

Newborns with
maternal smoking
during pregnancy

↑Methylation of
Cyp1A1 ↑ Incidence of autism [103,106]

↓Methylation of
AhRR

hypomethylation in the
early development period

can persist for a long
period

[103,104,106]

Rats Pre- & postnatal
exposure to AhR

activators

↓ DNA methylation
↓ DNMT1, 3a, 3b

mRNA levels in brain

↓ Sp1↓ S-adenosyl
methionine levels. [107–109]

↑ DNMT1 and ↑
ARNT

Delay in onset of puberty
in males and affecting

estrous cyclicity in females
[111]

Mice BTBR T+tf/J mice ↑ DNMT3a, b ↑ DNA damage and
autism risk [100]

Histone
modifications

Human

HEK293 cells
exposed to PCB

Human
post-mortem

cerebellum autistic
individuals

↑ Demethylation of
H3K4me3 by Jarid1b
↑ DNMT3a and 3b

↑ Activation of androgen
receptor transcriptional

activity
↑ DNA oxidative damage

genes 8-oxodG→ ↑
autism incidence

[100,121]

Rats
Valproic acid

-induced autism in
rats

↓ HDAC→
hyperacetylation of

histone
↑ Neurological birth defect [115]

Mice BTBR T+tf/J mice

↑ DNMT3a and 3b
↔ H3K9ac, H3K56ac,
H3K4me3, H3K9me3,

H3K27me3, and
H4K20me3 compared

to the control

↑ DNA oxidative damage
genes 8-oxodG→ ↑

autism incidence
[100]

MicroRNAs Mice Prenatal exposure
to TCDD

↑miR-379

↓ Brain neuronal
development→ ↑

hypo-social behavior
observed

[128]

↓ let-7 Regulated neuronal stem
cell proliferation [128]

Gene
polymorphism Human

Autistic subjects

↑ ARNT gene
(rs2228099), but not

AhR rs2066853,

Significant difference in
the severity, particularly

social communication
[130]

↑ ARNT2 (rs17225178) ↑ Association with
Asperger syndrome [131]

Autistic children

CYP1A1 rs1048943 and
rs4646422

CYP1A2*1C
(rs2069514)

CYP1A2*1F (rs762551)

Associated in Thai
children and adolescents

with autism spectrum
disorder

[132]

↑ CYP1A2*1C
(rs2069514),
CYP1A2*4

(rs72547516), and
CYP1A2*6

(rs28399424)→ ↓
CYP1A2 activity→ ↑

levels of melatonin

Loss of circadian rhythms
and loss of supplemental
melatonin effectiveness

[134]

5. The Involvement of AhR/CYP1 Pathways in Autism Development and Treatment
by Drugs
5.1. Sulforaphane

Sulforaphane is a natural dietary compound, derived from many cruciferous plants,
such as broccoli, cabbage, and cauliflower, with potent anticancer activity [136,137]. Pre-
vious placebo-controlled, double-blinded, randomized clinical trial, studies showed that
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sulforaphane treatment significantly reduced the symptoms of and improved the behav-
ioral abnormalities in male ASD [136,138]. The cytoprotective effect of sulforaphane is
mainly mediated by the activation of nuclear factor erythroid 2–related factor 2 (NRF2)-
dependent antioxidant genes, such as NAD(P)H: quinone oxidoreductase-1 (NQO1), and
heme oxygenase-1 (HO-1) [139,140]. In addition to its effect on the NRF2 pathway, it
was shown that sulforaphane is a potent antagonist for AhR activation and CYP1A1 and
CYP1A2 induction in human hepatoma HepG2 and breast cancer MCF-7 cells [141], and in
rat precision-cut liver slices [142], suggesting that the AhR/CYP pathway could mediate
sulforaphane’s protective effect on autism. Mechanistically, it could be postulated that
sulforaphane inhibits AhR/CYP1 activation, causing DNA adduct and a DNA strand
break [143]. This is supported by the observations that high levels of oxidative stress and
oxidative DNA damage, such as 8-oxo-7-hydrodeoxyguanosine, 5-methylcytosine, and
5-hydroxymethylcytosinehave, have been reported in subjects with ASD [144], and in the
cerebellum of a BTBR T+tf/J autistic mouse model [100]. A recent systematic review aimed
to evaluate the therapeutic use of sulforaphane on patients with autism showed evidence
that sulforaphane is an effective treatment option for treating ASD [145].

5.2. Valproic Acid

Valproic acid, or sodium valproate, is an archaic drug used to treat bipolar disorder
and epilepsy with low safety margins [146]. Maternal exposure to valproic acid during
pregnancy leads to development of autism-like behavior and in the offspring and child-
hood [147,148]. This effect seems to be only a property of valproic acid and no other
antiepileptic agents as exposures to carbamazepine, oxcarbazepine, lamotrigine, and clon-
azepam monotherapy did not increase risks of childhood autism, which could be attributed
to the difference in their structures [149]. Thus, valproic acid is a preferred model of study-
ing autism in rodents [115,149,150]. An ASD gene-environment interaction study showed
that approximately 130 ASGs are targeted by valproic acid [34]. However, some studies
have linked valproic acid-induced autism and AhR as a postulated mechanism. Knowing
that valproic acid is a HDA enzyme inhibitor that could alter histone structure and cause
changes in the binding of transcription factors to DNA, valproic acid induces the expression
of both AhR and CYP1A1 [151] through DNA methylation [152]. However, further studies
are needed to investigate the role of the AhR pathway in valproate-induced autism.

5.3. Resveratrol

Resveratrol is a dietary compound with neuroprotective, anti-inflammatory and an-
tioxidant properties. It is a known repressor of the AhR pathway [153]. Resveratrol and
its methoxy derivatives are capable of downregulating AhR-related genes [154]. Inter-
estingly, resveratrol, when administered prenatally, prevents social impairments in mice
models induced with autism-like behavior using valproic acid [155]. It was also found
to reverse cellular and behavioral sensory alteration in valproic acid-induced rat models
of ASD [156]. Furthermore, treatment with resveratrol of rats exposed prenatally with
progestin to induce autism caused dose-dependent reduction in core and autism symp-
toms, including neurological, sensory, behavioral, biochemical, and molecular deficits [157].
Importantly, resveratrol and its methoxy derivatives are capable of downregulating CYP1
genes [153,154]. Based on these results, it could be assumed that resveratrol is able to in-
duce such positive changes in autistic behavior by suppressing the AhR pathway; however,
more studies are needed to support this hypothesis.

5.4. Metformin

Metformin is a clinically used anti-hyperglycemic drug for treating diabetes mellitus
type II. Wang et al., who studied the effect of administration of metformin treatments
in BTBR mice, have demonstrated that metformin can enhance social interaction and
decrease repetitive behaviors [158]. The study suggested that neonatal metformin treat-
ment is capable of averting some of the classic behavioral symptoms commonly observed
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in patients with ASD. In addition, a recent study conducted on rats to examine the ef-
fect of metformin on valproic acid-induced autism-like behaviors has demonstrated that
postnatal treatment with metformin improved the sociability index, spatial learning, and
reference memory deficits through the attenuation of malondialdehyde and nitrite levels,
AChE activity, and antioxidant enzymes activities in the rat hippocampus and prefrontal
cortex [159]. In humans, the clinical studies on the beneficial effects of metformin are
controversial. A recent study on seven individuals with fragile X syndrome (FXS), a sub-
type of ASD, treated with metformin showed significant improvement in irritability, social
responsiveness, hyperactivity, language skills, and social avoidance, as compared to the
control [160]. This protective effect of metformin could be attributed to downregulation of
the mTOR/MEK/ERK pathway, which is overexpressed in FXS [160]. From the AhR/CYP1
perspective, the ability of metformin to inhibit AhR activation and CYP1A1 and CYP1B1
expression, leading to a decrease in the oxidative DNA damage [158,161], could also ex-
plain, to some extent, the protective effect of metformin in autism. However, more studies
are needed to further explore the role of AhR.

5.5. Haloperidol

Haloperidol is a first-generation antipsychotic drug, which has been in use for decades
to treat attention deficit hyperactivity disorder (ADHD), aggression, withdrawal, un-
cooperation, and stereotypy [162]. It has also been found beneficial for language training,
irritability [163], and decreasing behavioral symptoms in children with autism [164]. How-
ever, its use is limited due to increased susceptibility to acute dystonic reactions and dyski-
nesia [165]. Haloperidol is one of the drugs that can act as a substrate to CYP1A2 [166,167].
There has been suggested involvement of a potent inhibitor of CYP1A2, fluvoxamine, in dra-
matically increasing serum concentrations of haloperidol [168]. However, not many studies
have dived into the extent to which CYP1A2 is involved in the metabolism of haloperidol
in patients with autism, suggesting the possible involvement of AhR in haloperidol effec-
tiveness or toxicity. A dose-dependent increase in serum concentrations of haloperidol was
observed with co-administration of fluvoxamine, a potent inhibitor of CYP1A2 [168,169].
These studies suggest the involvement of AhR in the metabolism of haloperidol, but more
studies are encouraged to explore the involvement of AhR in the metabolism of haloperidol
in patients with ASD.

6. Conclusions and Remarks

Autism was earlier believed to be exclusively caused by genetic inheritance. Therefore,
for more than two decades now, research on the etiology of ASD has been dominated by
genetic studies. A wide range of genetic and environmental factors may contribute to the
cause of this disorder. Mass industrialization and globalization have contributed to the
increase in production and accumulation of toxicants and xenobiotics in the environment,
leading to an increase in various diseases and developmental disorders. ASD incidence has
been linked to an increase in pollution by numerous epidemiological studies and various
reviews have comprehensive compilation of the effects of pollutants during the critical
fetal and infant stages of development.

It is well established that many xenobiotic compounds in the environment are capable
of activating the AhR pathway by acting as ligands, binding to AhR protein, mediating
the cascade of transcription and translation, resulting in proteins that help bioactivate the
toxicants to their reactive entities. Although the AhR pathway has been well investigated
in the past decade for its potential role in various diseases, including cancer, diabetes,
and cardiotoxicity, there is a major void when it comes to ASD. This review explores the
association of exposure to air pollutions and ASD and the molecular mechanisms (Figure 3).
Evidence suggests the link between the AhR pathway and autism severity; however, few
(to no) studies have been carried out to explore this possibility. Examining AhR and its role
in autism may prove beneficial in understanding the etiology of the disease with deeper
comprehension. For example, CYP1A1 and CYP1A2 have the ability to form DNA adducts,
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which may explain how sporadic de novo mutations arise in some individuals, leading
to ASD development. AhR also alters DNA methylation, which has been suggested to
cause ASD as well. Histone modification and gene polymorphisms are also suggested
mechanisms by which environmental pollutants may increase the risk of ASD through
the AhR pathway. Additionally, the current review sheds light on some novel, postulated
AhR-mediated mechanisms for drugs that are currently used in autism.
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