

Graduate Students

С 0

echnolo

catic

and

<u>nformation</u>

OPTIMIZATION MODELS FOR MULTIPLE RESOURCE PLANNING

Norah Mohammed Z Al-dossari^a, Mohamed Kharbeche^b, Mohamed Haouari^a

^aMechanical and Industrial Engineering Department, ^bQatar Transportation and Traffic Safety Center, Qatar University

Abstract

- Multiple Resource Planning (MRP) is a very crucial undertaking for most organizations.
- MRLPs are very prevalent in today's organizational environments and are particularly critical for organizations that handle concurrent, time-intensive, and multiple-resource projects.
- MRP facilitates efficient allocation of resources and reduces costs.
- Using data obtained from the Ministry of Administrative Development, Labour and Social Affairs (ADLSA), an MRLP is proposed.

Model Formulation

Model (*MM*, *MR*, *FC*): *Minimize* $\sum_{i=1}^{n}$

$$w_j T_j + \sum_{r=1}^R \sum_{t=1}^H \sigma_{rt} Z_{rt}$$

Subject to:

$$\sum_{\substack{k=1 \\ H \\ H}}^{m_j} X_{jk} = 1, \qquad j = 1, \dots, n$$

- A novel models and solution approach for the MRLP were proposed.
- The results show that the model performs well, even in higher instances.
- The positive results attest to the effectiveness of the proposed MRLP problem.

Introduction/Objectives

Create a solution that solves the key challenges that project managers encounter in day-today management of multiple projects.

Dealing with high project demands, uncertainties, project constraints, and dealing with competing priorities. Enhance project scheduling within a given time horizon to get the optimal resource allocation solution.

Methods and Materials

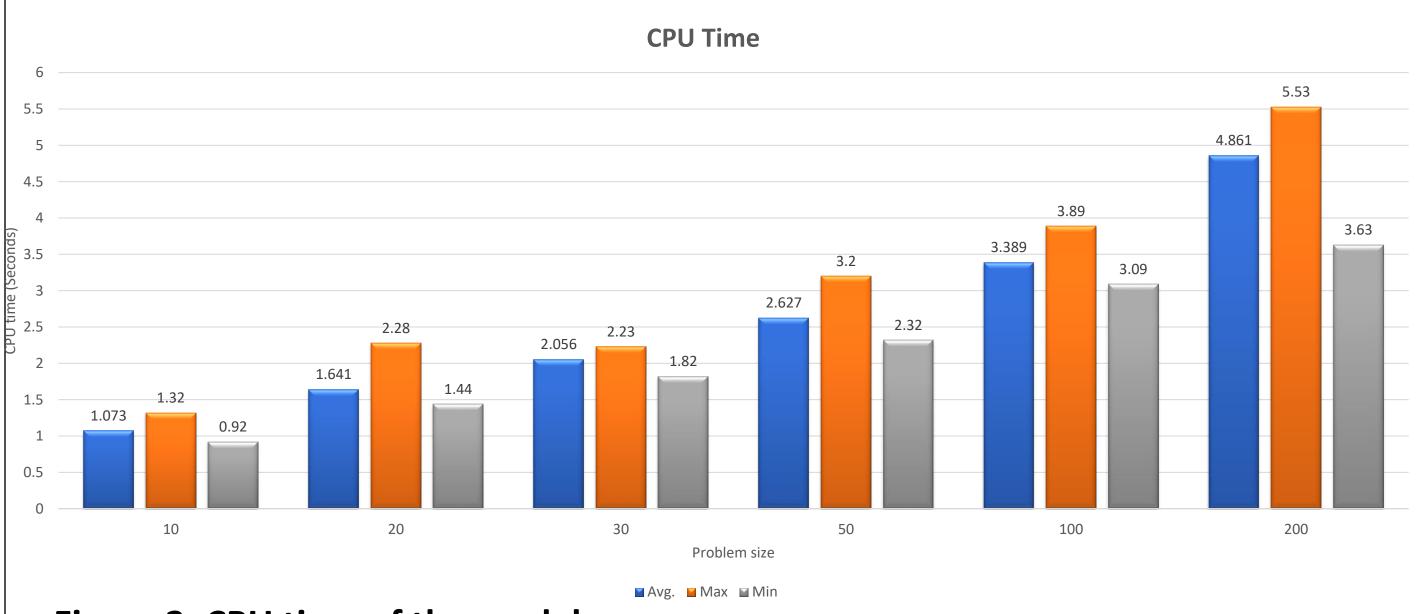
*Input Data:

n: Number of tasks, *R:* Number of resources,

$\sum_{\substack{t=1\\ H}}^{N} S_{jt} = 1, \qquad j = 1, \dots, n$ $\sum_{\substack{t=1\\ H}}^{L} f_{jt} = 1, \qquad j = 1, \dots, n$ $\sum_{\substack{t=1\\ H}}^{H} t S_{jt} \ge r_{j}, \qquad j = 1, \dots, n$ $\sum_{\substack{t=1\\ t}}^{H} t S_{jt} + \sum_{\substack{k=1\\ t}}^{m_{j}} p_{jk} x_{jk} = \sum_{\substack{t=1\\ t=1}}^{H} t f_{jt}, \qquad j = 1, \dots, n$ $\sum_{\substack{t=1\\ t}}^{n} S_{jt} - \sum_{\substack{t=1\\ t=1}}^{T} f_{jt} = y_{jt}, \qquad j = 1, \dots, n; t = 1, \dots, H$ $\sum_{\substack{j=1\\ j=1}}^{n} \sum_{\substack{k=1\\ t=1}}^{m_{j}} a_{jrk} u_{jkt} \le b_{rt} + z_{rt} \quad r = 1, \dots, R, ; t = 1, \dots, H$ $T_{j} \ge \sum_{\substack{t=1\\ t=1}}^{H} t f_{jt} - d_{j}, \qquad j = 1, \dots, n; R = 1, \dots, m_{j}; t = 1, \dots, H$ $x, y, z \ binary, T, s, f, u \ge 0,$

Results & Discussion

H: Time horizon,


- **b**_{rt}: Capacity of resource *r* at period *t*,
- m_j : Number of execution modes of task j,
- **a**_{jrk}: Consumption of resource r by task j under mode k,
- \vec{p}_j : Processing time of task *j* under mode *k*,
- $\vec{r_j}$: start date of the project
- \dot{d}_i : Due date of task *j*,
- $\dot{w_j}$: Weight of task *j*,
- σ_{rt} : Cost of adding one unit of capacity to resource r at period t.

*Decision Variables:

- x_{jk} : Binary variable that takes value 1 if task *j* is executed under mode *k*, and 0 otherwise.
- y_{jt} : Binary variable that takes value 1 if task *j* is executed during period *t*, and 0 otherwise.
- **s**_{jt}: Binary variable that takes value 1 if task *j* starts at the beginning of period *t*, and 0 otherwise (that means, $s_{jt} = 1 \Rightarrow \text{task } j$ starts at time *t*). **f**_{jt}: Binary variable that takes value 1 if task *j* finishes at the end of period *t*, and 0 otherwise (that means, $f_{jt} = 1 \Rightarrow \text{task } j$ finishes at time *t*+1).
- T_j : Tardiness of task *j*.

*Test Instances Ranges:

 $\vec{z_{rt}}$: Additional capacity of resource *r* at period *t*.

Figure 2. CPU time of the model

- As the complexity of the test instances increased, the CPU time has increased reasonably. The proposed model was performed within a very short time (seconds) even when increasing complexity of tasks number to 200.
- The maximum running time was completed in 5.53 seconds while the average time-solving time is between 1.073 and 4.861 seconds.

10 20 30 50 100 200

Figure 1. Number of projects ranges

Conclusions

Provides a solution that minimizes time wastages and ensures efficient resource utilization for both single-mode and multi modes projects, while allows the combination of resources while considering restrictions and time constraints to achieve optimal scheduling and resource planning.

References

- Bianco, L., & Caramia, M. (2013). A new formulation for the project scheduling problem under limited resources. Flexible Services and Manufacturing Journal, 25(1-2), 6-24.
- Chakrabortty, R., Abbasi, A., & Ryan, M. (2019). Multi-mode resource-constrained project scheduling using modified variable neighborhood search heuristic. International Transactions in Operational Research, 27(1), 138-167.

Contact

NORAH MOHAMMED Z AL-DOSSARI Mechanical and Industrial Engineering Department

Email: na1605829@qu.edu.qa

Phone: 66488858