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A B S T R A C T   

Achieving the healing of chronic diabetic ulcers, burn wounds and large traumatic wounds is a major clinical 
challenge. A variety of approaches have been undertaken to generate skin substitutes, wound healing patches or 
dressings with adequate barrier properties, stability, degradation, exudate uptake capacity, antimicrobial 
properties, vascularization potential and wound-healing capacity. Recent approaches to support chronic wound 
healing focus on the development of a natural extracellular matrix (ECM) mimetic microenvironment in the 
wound bed. Submicron fiber-based membranes have been shown to successfully mimic many features of the ECM 
such as its architecture, mechanical properties, composition, and function. Electrospinning is one of the most 
successful methods for producing porous submicron fiber based wound coverage matrices for promoting wound 
healing and achieving tissue regeneration. The ECM mimetic properties of the membranes have also been 
improved with the use of recently developed methods such as coaxial electrospinning with other polymers. 
Various active components such as therapeutic agents, nanoparticles and biomolecules can be incorporated in 
electrospun fibers to improve ECM mimetic features and provide additional advantages like antibacterial and 
angiogenic properties. This article comprehensively overviews the applications of ECM mimetic electrospun 
membranes as structural and functional components in wound healing and the potential challenges imposed by 
them in a clinical point of view.   

1. Introduction 

Skin is the largest organ of human body that functions as a barrier 
preventing the entry of pathogens into the body, minimizes fluid loss, 
act as a thermal barrier and protect the body [1,2]. Such a 
multi-functional organ requires immediate recovery in case of an injury 
to avoid further complications and pathogenesis. Wound healing is a 
very complex process involving cellular, molecular, physiological and 
biochemical activities which help to allow the repairing of damaged skin 
as well as underlying tissue [3]. This process is orchestrated by the co-
ordinated functioning of many cell groups such as blood cells, vascular 
cells, stem cells, epithelial cells as well as many soluble factors like 
growth factors and cytokines [4,5]. Thus, wound healing is a dynamic 
and highly controlled process involving various components from the 
starting of the injury to the complete closure of the wound and beyond to 

reestablish the original tissue in a most functional state as possible [6]. 
Extracellular matrix (ECM) plays important roles in the wound 

healing process. The ECM not only acts as an architectural support, but 
also plays a major role in cytokine activity and intracellular signaling 
helping the regulation and activation of pathways related to cell dif-
ferentiation and proliferation [7]. By interacting with receptors on the 
surface of cells, the ECM directly promotes cell adhesion, migration, 
growth, differentiation and apoptosis [8,9]. To regenerate a fully func-
tional tissue, both the complex function and fibrous form of the native 
ECM needs to be mimicked by the wound healing matrices or skin 
substitutes. For this, several material and design characteristics need to 
be considered. For instance, the base material used for the development 
of wound dressings or biomaterial scaffolds must not direct any adverse 
immune reactions. The material must also be biodegradable such that it 
can be gradually absorbed by the neighboring tissue [10]. Also, the 
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engineered ECM needs to mimic the geometry and topographical fea-
tures of native ECM not only at the macro level but also at the submicron 
level, as each of these influences the cellular response on the engineered 
biomaterial [11]. 

Nanofibers have various innate properties that make them promising 
candidates for the wound healing applications. The topographical 
characteristics of nanofibers have morphological resemblances to the 
native ECM of skin which makes them recapitulate the structure and 
function of ECM (Fig. 1). Nanofibrous membranes show high gas 
permeation capacity, ability to protect the wound from protein and fluid 
loss, and aiding in the removal of exudates from the wound site [12,13]. 
These membranes have shown to improve hemostasis at injury because 
of the high surface area to volume ratio. Nano-submicron fibers further 
helps in the absorption of fluids and also allow the incorporation of 
specific chemical functionalities on the surface of the fibers [14,15]. The 
fibers can also be loaded with many variety of bioactive molecules 
which can promote wound healing [16–18]. Such active agents loaded 
matrices have shown to be as promising candidates for tissue 
regeneration. 

Many methods have been employed to generate porous scaffolds like 
self-assembly, phase separation, solvent-casting and three-dimensional 
printing (3D printing). But, many of these methods pose the incapa-
bility of creating highly porous scaffolds that can mimic native aniso-
tropic ECM structure [19,20]. An ECM mimetic architecture helps in the 
precise guiding of cell growth and for the fast regeneration of tissues that 
recapitulate both the structure and function of lost or damaged ones. For 

this reason, such fibrous matrices have demonstrated the ability to 
determine cell morphology and influence their functioning in compari-
son to bulk-porous scaffolds [21]. Moreover, some studies report that 
aligned fibers give contact guidance to cultured cells resulting in the 
alignment of cells along the contact direction [22,23]. Also, morpho-
logical features of myoblasts and endothelial cells have been shown to 
be influenced by the aligned nature of fibrous scaffolds [20]. 

Electrospinning is a nano/submicron fiber development method 
which has gained a lot of attention in the past few decades for the 
preparation of highly porous biomaterials for wound healing applica-
tions [24]. Five different methods of loading the fibers with active 
agents have been reported in the literature. These include blending of 
active agent with the polymer before electrospinning [25], fabricating 
core/shell structures through coaxial spinning, attaching the fiber sur-
face with active agents and post-fabrication surface treatment or surface 
conjugation of active agents [26]. Various biomolecules like enzymes 
[27], plasmid genes [28], liposomes [29] and proteins [30] have been 
incorporated into the fibers to achieve controlled release. Various 
studies have focused on the approaches to better mimic the features of 
native ECM in electrospun matrices and elicit optimal cellular responses 
to drive rapid wound healing or tissue regeneration. 

Herein this review article, we try to gather all the available infor-
mation about the latest advances in the development of ECM mimetic 
electrospun membranes for wound healing applications. We also discuss 
the structural as well as functional breakthroughs that the researchers 
have achieved in the field of wound healing and skin tissue engineering 

Fig. 1. A scheme showing the major extra-cellular matrix (ECM) mimetic features of electrospun membranes which help in wound healing and tissue regeneration. 
Abbreviations; GAGs: glycosaminoglycans, FN: fibronectin, HA: Hyaluronic acid. 
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using such matrices. 

2. ECM structure and function 

ECM is a highly porous biological macromolecular scaffold 
composed of fibers with varying diameters that give structural and 
biochemical support for the cells it holds. Tissue source, its structural 
and functional molecules define the composition of ECM [31,32]. The 
cells and the ECM in a tissue interact dynamically and have a reciprocal 
relationship [33]. The cells synthesize the ECM to have specific char-
acteristics and compositions, and the ECM in turn has significant influ-
ence on the differentiation, growth and migration of the cells through 
chemical and biophysical signals. Some signaling molecules are stored 
within the ECM and are released gradually to act as soluble ligands [9]. 
Other molecules attach to the surface and interact with the cell receptors 
to cause haptotaxis induction and activate signaling cascades [7]. 

Primary constituents of ECM are water, proteins and poly-
saccharides. Each of these constituents assemble to form a unique niche, 
tailor-made for the cells of that particular tissue type and helps it to 
sustain, differentiate and carry out its specific functions [8]. ECM gets 
remodeled enzymatically and non-enzymatically and by dynamic post 
translational modifications which occur in the ECM at the molecular 
level. These biochemical and physical attributes exhibited by the ECM 
generates specific characteristics of each organs. These properties 
include extracellular homeostasis, compressive and tensile strength, 
elasticity and water retention along with other major functions like gene 
regulation by signal transduction on the binding of growth factors and 
morphological organization. The ECM consists of two major types of 
macromolecules: hydrogel like proteoglycans that fill most of the 
extracellular interstitial areas within the tissue [34] and fibrous proteins 
like collagens, fibronectins, elastin and laminins. 

Proteoglycans are formed by glycosaminoglycan (GAG) chains 
covalently linked to a particular protein core. The three major classifi-
cations of proteoglycans are SLRPS (Small leucine rich proteoglycans) 
which are involved in signaling pathways, modular proteoglycans which 
modulate cell adhesion and proliferation, and cell surface proteoglycan 
that behave as co-receptors assisting ligand encounters with signaling 
receptors. Additionally, GAG can be split into sulfated and non-sulfated 
GAGs. Chondroitin sulphate (contributes to cartilage tensile strength 
and neuroplasticity), heparan sulphate (involved in angiogenesis, blood 
coagulation, developmental process and tumor metastasis) and keratan 
sulphate (contributes to cartilage tensile strength, tendons, aorta walls 
and ligaments) are the sulfated GAGs. Non-sulfated GAG consists of 
hyaluronic acid which, by counteracting turgor force through water 
absorption, helps to resist compression. The hydrophilicity of these 
molecules contributes to the ability to withstand high compressive force 
by extending to various conformations that are necessary for the for-
mation of hydrogel and that allow the formation of molecular matrices 
that give it the power to resist excessively higher stress. 

Elastin, collagen, laminin and fibronectin are the key fibrous ECM 
proteins. Within the interstitial ECM, collagen constitutes up to 30% of 
the total protein mass of an animal [35]. The architecture of the collagen 
fiber greatly influences the natural scaffold’s biomechanical features 
[36,37]. Regulating cell adhesion, promoting chemotaxis, providing 
tensile strength and migration, and direct tissue growths are influenced 
by collagen type and amount [38]. Collagen fibers composed of a het-
erogeneous mixture of different types of collagens [39]. Elastin is 
required for tissues that experience repetitive rebound stretches. 
Importantly, the stretch of elastin is typically restricted by a close 
connection with collagen fibrils. Elastin fibers are protected by micro-
fibrils of glycoprotein, primarily fibrillin, which are also important for 
their integrity [40]. Elastin is a protein found mainly associated with 
collagen in the ECM of connective tissues helping tissues to return to 
their original shape after a temporary deformation [41]. Another fibrous 
protein, fibronectin (FN), is closely involved in directing the interstitial 
ECM organization and plays a crucial role in mediating the attachment 

and function of cells. Cellular traction forces will extend FN several 
times over its resting length [42]. Such force-dependent FN unfolding 
makes FN as an extracellular mechano-regulator. During wound repair, 
FN is also important for cell migration [43]. After all, Laminins are large 
heterotrimers constituting the main component of the basal lamina, i.e., 
one of the basal membrane layers. Laminin plays important role of 
enhancing cell adhesion, migration, differentiation and proliferation 
within ECM [44]. 

To create a suitable microenvironment for the regulation of differ-
entiation, growth and migration of cells, the developed skin substitutes 
or scaffolds must have analogous structural, chemical and functional 
properties like the native ECM. As a substrate for the adhesion and 
proliferation of cells, some other properties of scaffolds like signal 
reception capacity, growth factor binding, growth factor storage and 
serving of growth factors are also critical to function as a biologically 
active ECM mimetic material [45]. As it was impossible to completely 
mimic such a highly complex structures of ECM, researchers initially 
focused to develop properties that mimicked the tissue at the micro-
scopic level without giving much focus on functional aspects. As of late, 
scientists are combining biopolymers with these structures to provide 
signaling and bio-functionality which are necessary for cell attachment 
and migration. Even the ultrastructural features of the scaffold influence 
the ability of cells to migrate into the scaffold or control tissue-specific 
cell phenotypes. For example, an irregular loosely arranged fibrous 
surface can facilitate the infiltration of cells into the scaffold whereas 
scaffolds composed of closely packed fibers prevent cell penetration 
deep into the scaffold forming confluent cell populations on the surface 
[46]. Thus, it is very much necessary to create the structural and func-
tional analogy while developing biomaterials to better mimic the native 
ECM. 

3. Role of ECM in wound healing 

In every phase of the wound healing process, the whole ECM as well 
as its constituents play several influential roles. Primarily, it influences 
the structural biomechanical aspects because the natural scaffold pro-
vided by the ECM is necessary for the cell adhesion, migration and 
proliferation which are key steps in repairing process. Also, the ECM 
components play the role of linking the functional characteristics of the 
healing processes like the signal transduction, growth factor delivery, 
mediation of cell and matrix interactions, and many other major func-
tions [47,48]. 

Cytokines, growth factors and interactions between ECM compo-
nents control the functions of cells involved in the wound healing pro-
cess. For example, the metalloproteinase matrix helps in the migration 
of cells, while components like the macrophage proteases break down 
the damaged components of the matrix [49]. In various wound healing 
studies, ECM components like collagen, glycosaminoglycans, etc. have 
been found to be very effective in promoting healing [50]. An interesting 
study found that the use of active agents expedites the repair process by 
promoting the deposition of glycosaminoglycan necessary for granula-
tion and the closure of the wound [51]. It is evident from the above 
examples that proteoglycans and glycosaminoglycans play a key role in 
wound healing. New therapeutic strategies aiming at creating a favor-
able biochemical environment to promote the wound healing process 
are of great importance for achieving further advances in the manage-
ment of chronic wounds. Therefore, it is very evident that providing an 
ECM mimetic microenvironment through rationally designed bio-
materials with bioactivity and functionality in wound bed is very 
important to achieve rapid wound healing and desirable therapeutic 
outcome. 

4. Methods for the development of ECM mimetic materials 

The selection of fabrication technique along with the choice of ma-
terial determine the properties of the resulting scaffolds. Many 
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approaches have been developed and used for the fabrication of ECM 
mimetic porous 3D scaffolds to act as a platform for the adhesion, pro-
liferation and ingrowth of cells. The following section briefly describes 
various conventional as well as modern techniques that are being used 
for the development of porous matrices or scaffolds for wound healing 
and tissue regeneration applications. 

4.1. Self-assembly 

The property of autonomous organization of components into 
structures and patterns, known as self-assembly, can be utilized for the 
fabrication of ECM mimetic structures. Various complex, highly specific 
non-covalent interactions drive the assembly of structures like micelle/ 
bilayer lipids, and α-helix and β-sheet structural motifs of proteins [52, 
53]. This method produces fibers having diameters in the range of tens 
of nanometers. The assembling mechanisms are initiated through mix-
ing of components or by an external stimulus like change in pH, tem-
perature, etc. [54,55]. This makes it possible to directly encapsulate 
cells, which is easier in comparison to other fabrication methods that 
require sophisticated instruments. But the mechanisms governing the 
self-assembly are more complicated and therefore require careful and 
complex experimental design. Scaffolds produced by self-assembly of 

proteins and peptides which have been shown to mimic the natural ECM 
[56,57]. Despite the many advantages, matrices fabricated by this 
approach show poor mechanical strength and the fragmented fibers pose 
the threat of endocytosis. Along with these drawbacks, the high cost of 
synthesis restricts their applications in tissue engineering and regener-
ative medicine [58]. 

4.2. Thermally induced phase separation 

In biological systems, phase separation is a process where the bio-
macromolecules such as nucleic acids or proteins spontaneously sepa-
rates a dense and a dilute phase [59–61]. Similarly, the thermal energy 
difference during a quenching process is utilized to initiate the pahe 
separation and void formation in a homogenous polymer solution. After 
exposing the solubilized polymer to high temperatures, the temperature 
is rapidly decreased to prompt the phase separation [102,103]. By 
strong fluid de-blending, the solution then forms polymer-free phase and 
solvent-free phase. In this technique, the scaffolds microstructure can be 
manipulated by controlling the polymer properties, solvents and the 
working temperature [62]. The phase separation can be carried out 
either between solid-liquid or liquid-liquid phase. This technique offers 
the benefit of compatibility with many of the other manufacturing 

Fig. 2. Electrospinning setup and various active-agent incorporation methods. A. The basic setup of the electrospinning method depicting the necessary components. 
B. Blended electrospinning setup C. Core-shell electrospinning setup D. Surface functionalization electrospinning setup E. Emulsion-based electrospinning setup. 
Figures B–E are reproduced from Ref. [190] with the permission of American Chemical Society. 
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techniques and gives superior mechanical properties with controlled 
porous structure. 

4.3. Melt molding 

Melt-based fabrication methods are derived from the conventional 
polymer fabrication methods. However, these methods are then coupled 
with pore-generating techniques to generate porosity in the material 
[63]. Generally, water soluble salts are mixed with polymer during 
molding and the salts are dissolved in water after molding leading to a 
porous structure. The advantages of this process are that toxic solvents 
are avoided, and the pore size can also be controlled by using porogens 
of suitable size. By combining with techniques like particle leaching, gas 
foaming and use of porogens, this method shows great potential for the 
generation of ECM-mimetic tissue regeneration studies. 

4.4. Gas foaming 

This technique uses a foaming agent with the polymer. To initiate the 
nucleation and development of gas microbubbles in the substance, high 
pressure gas is applied on the disks of polymer. These are then lyophi-
lized to generate scaffolds having pore sizes in the range of 100 μm and 
porosity of about 93% after releasing of gases [64]. The formation of gas 
is due to reaction of foaming agent with the acidic solution producing 
porous structure. This procedure has great reliability to create 
solvents-free scaffolds. But the heterogeneity of the structure having 
irregular porosity is the major disadvantage of this process. Studies 
using this method with stem cells have been showing promising results 
for bone tissue engineering [65]. 

4.5. 3D-printing 

3D-printing is an additive manufacturing technique first portrayed in 
1986. In this technique, thin layers of materials are deposited in a 
layered manner intermitted by hardening of the layers by ultraviolet 
(UV) radiation [66]. This method then developed to photo-
polymerization where mixed layers of a monomer gel and a 
photo-initiator are cured and crosslinked by a laser source according to 
the computer design [67]. This method offers many advantages like 
flexibility to use different polymers, fillers and binders to tune various 
properties like mechanical strength, porosity, biocompatibility, etc. to 
generate scaffolds which can better mimic the ECM. In a study on bone 
regenerative scaffolds, pore sizes in the range of 20–50 μm were ach-
ieved [68]. An impediment drawback of 3D printing is the high tem-
peratures used during the extrusion of polymer which would limit the 
use of proteins and cells because of their temperature-sensitivity [69]. 
Recent approaches using water soluble polymers and photo crosslinking 
could solve this issue. 

4.6. Decellularization 

Decellularization is a method which removes cells and debris from 
tissues and organs while preserving the biological activity, the 
biochemical composition and the 3D organization and integrity of the 
native ECM. As the decellularized constructs are devoid of foreign cells, 
there is no significant chances of immune rejection [70]. Other than the 
use in tissue regeneration, it has also gained popularity in other fields 
like drug screening and stem cell differentiation studies. Different 
methods for decellularization include physical, chemical and enzymatic 
treatments. After decellularization, the matrices can further be pro-
cessed to generate injectable hydrogels, which can then be used as 
method for localized delivery with minimally invasive intervention 
[71]. Another simple but effective technique to enhance scaffold 
bioactivity is the deposition of solubilized ECM on the prefabricated 
scaffold surface. This allows the cells to interact directly with the ECM 
proteins which improves bioactivity along with achieving high 

mechanical properties [72]. 

4.7. Electrospinning 

This technique utilizes electric voltage to generate a 3D structure 
having fibers in the range of nanometers to micrometers with higher 
surface area. Many natural and synthetic polymers have been used in 
this process like chitosan [73], gelatin [74], collagen [75], polyvinyl 
alcohol (PVA) [17], polycaprolactone (PCL) [76], etc. A high DC voltage 
in the range of 10–40 kV is used to produce the fibers. Upon the appli-
cation of such a high voltage, the polymer solution taken in the syringe 
becomes charged and the polymer droplet at the tip of syringe needle 
tend to move towards negatively charged/grounded collector as sub-
micron fibers (Fig. 2). Typical electrospun scaffolds show pore sizes in 
the range of 5–150 μm. To mimic native ECM, these scaffolds provide 
nano-scale fibrous structures having interconnected pores, and thereby 
showing great potential to fabricate functional tissues [77]. In addition 
to ECM mimetic structural features, the ability to impart bioactivity has 
led to the use of electrospun membranes as biomimetic scaffolds for 
wound healing and tissue regeneration applications. 

Some other techniques like surface functionalization, emulsion- 
based electrospinning, etc. have also been reported for generating 
ECM mimetic scaffolds. Keeping in mind the various pros and cons of the 
various fabricating techniques discussed above, better techniques need 
to be developed which will help us fabricate biomaterials showing 
improved mimicry of the native ECM. 

5. Nano-fibrous materials as ECM mimetics 

Most of the ECM proteins have a fiber like architecture with di-
ameters in the sub-micrometer range. For instance, collagens possess a 
fibrous structure in which the diameter varies from 50 to 500 nm. There 
have been many recent advances in the methods to develop ECM- 
mimetic nanofibrous materials. Nanofibrous materials have high 
surface-to-volume ratio with large porosity and offer the flexibility to be 
made into a wide variety of sizes and shapes [78]. These unique features 
make the nanofibrous scaffolds promising for many biomedical and 
tissue engineering applications [79,80]. 

Electrospinning and other related technologies like electro-spraying 
and air-jet spinning are some of the nanofabrication techniques that are 
used to generate nanofibrous microporous materials. The use of different 
polymers, their blends, or nanocomposites paves way for producing 
membranes of varied chemical compositions. These membranes are 
known for their great extent of processing flexibility which is helpful in 
optimizing their physical parameters such as fiber diameter, porosity, 
and pattern formation on fiber surface increasing the potential for 
wound healing applications. Electrospinning is one of the proven tech-
niques to generate nanofibrous material that have a soldering-like 
attachment of the nanofibers at their intersections due to polymer 
chain entanglements and interpenetration after annealing [78]. 

Nano-fibrous membranes have been found to adsorb higher serum 
proteins than less-porous macro -fibrous membranes [81]. Furthermore, 
studies have revealed that the nano-fibrous scaffolds adsorbed larger 
amounts of fibronectin from serum in comparison to macro-porous 
scaffolds. These data indicate that the nano-fibrous scaffolds have bet-
ter prospects of mimicking the natural ECM with enhanced tissue 
regeneration and which can also circumvent the potentially adverse 
immune reaction and possible chances of pathogen transmission when 
using naturally derived ECM based constructs. The promising ECM 
mimicry of nanofibrous biomaterials has led to their increased utiliza-
tion in the management of chronic wounds. 

6. Electrospinning for ECM mimetic membranes 

Both natural and synthetic polymers can be used to generate fibers 
using electrospinning either individually or in combination. The natural 
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polymers are more favorable for ECM production because of their 
physiological similarity to the native ECM, great biocompatibility, lower 
toxicity and high biodegradability. Synthetic materials, on the other 
hand, can be easily produced, provide better physical properties along 
with moderate biodegradability. Most of the synthetic materials lack 
functional groups on their surface which makes them unrecognizable by 
the immune system as a foreign material and thus preventing an in-
flammatory response [82]. 

Recent advances have made it possible to produce 3D nanofibrous 
scaffolds with the desired microstructure. In bioengineering, 3D scaf-
folds should bridge the gap between the nanofibrous technology and 
clinical applications [83]. There is also a great possibility of integrating 
bioactive molecules such as drugs, nanostructures and growth factors 
into nanofibers developed using various techniques (Fig. 2B–E). The 
high-loading capacity of electrospun nanofibers make them promising 
materials for gene and drug delivery applications [84,85]. Encapsula-
tion efficiency and the retained bioactivity of the therapeutic agents can 
be optimized by careful selection of materials and processing conditions 
[86]. Coaxial electrospinning is an advanced technique in which the 
fibers are in a core-shell form with complex microstructures produced 
using multiple pump system through coaxial nozzles. Many parameters 
influence the characteristics of the fibers such as the type of polymer, 
surface tension and viscosity of the solution, the polymer solution feed 
rate, needle-collector distance, needle tip size, etc. By precisely con-
trolling these parameters it is possible to adjust the fiber diameter, 
porosity, and the nanofiber architecture [87]. 

Electrospun fibers offer several applications in tissue engineering 
such as vascular grafts, nerve regeneration and bone regeneration. They 
have been shown to enhance homeostasis, offer flexibility and me-
chanical strength, functionality when used as wound dressings [88]. A 
biologically inspired ocular repair dressing composed of hydrogel and 
electrospun fibers have been designed to treat corneal abrasions and 
ulcers on eye surfaces [89,90]. In other studies, collagen fibrils are 
mixed with other polymers as a traditional wound dressing so that the 
ECM mimetic structure would allow wound exudate absorption and 
moisture preservation which improves wound healing [91,92]. Sun et al. 
attempted to imitate the collagen’s basketweave pattern to generate 
ECM-mimetic microenvironment. Interestingly, the developed scaffolds 
provided higher fibroblast cell response during wound healing 
compared to random/aligned nanofibers [93]. 

Overall, electrospinning technology has immense potential in the 
field of wound healing and tissue regeneration. It offers the advantage of 
flexibility to use a variety of suitable polymers, polymer composites and 
polymer/inorganic composites. It also provides the flexibility to tune the 
microstructural properties as well as the capability to load bioactive 
molecules to combine therapeutic activity and tissue regeneration ca-
pacity at the implantation site. ECM-inspired surface modification or 
coating techniques provide additional biological attributes to facilitate 
rapid tissue regeneration [94]. 

In nutshell, there are many advantages for electrospun nanofibers, 
such as polymer-dependent biodegradability and biocompatibility, 
relatively ECM-like mechanical properties, capability to load surface 

Fig. 3. A scheme showing the incorporation of various active agents in ECM mimetic electrospun fibers and their salient features that help in wound protection 
and healing. 
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functional moieties and growth factors make it the most practical 
approach for the development of ECM mimetic membranes/scaffolds. 
Also, the high flexibility in choice of materials opens doors for delivering 
a wide variety of bioactive agents including proteins, antibiotics and 
anticancer drugs. The loading of drugs can be carried out by embedding, 
coating or encapsulation. A plethora of polymers, drugs and signaling 
molecules can be chosen to mimic the native tissues’ structure and 
function [95]. The electrospun nanofibers have showed excellent 
capability for cell proliferation and differentiation both in vitro and in 
vivo. Hence, the multitude of advantages and the relative simplicity of 

technique offered by the electrospinning process has made it the most 
promising fabrication method to develop nanofibrous biomaterials for 
wound healing applications. 

7. Active agent incorporated ECM function mimetic membranes 

Under the wound dressings, infection impedes re-epithelialization 
and synthesis of collagen which slowdowns the process of healing. In 
order to prevent bacterial infection, wounds must also be treated with 
wound dressings containing bioactive agents. In this sense, it is desirable 
to incorporate antibiotics such as penicillin and methicillin in wound 
healing patches and dressings [96]. Sustained release of bioactive mol-
ecules with anti-inflammatory and anti-bacterial properties from elec-
trospun fibers can be achieved for days to months, which is useful for 
wound healing. Complex cellular activities which require growth fac-
tors, proteins and so on also have a major role in tissue repair and wound 
treatment [97]. Major classes of active agents integrated into ECM 
mimetic fibers are drugs, biological molecules and nanoparticles 
(Fig. 3). 

7.1. Drug-loaded nanofibers 

High drug loading potential of electrospun nanofibers are exciting 
for drug delivery applications in wounds [98]. Despite the microbial 
barrier properties [18,99], nanofibers alone are rarely able to 
adequately satisfy both wound healing and disinfection requirements. 
For this reason, they need to be loaded with functional agents which can 
promote the rate of healing and have anti-bacterial properties. VC-2-p 
(L-ascorbic acid 2-phosphate) loaded silk fibroin (SF) imparts L929 cell 
adhesion and proliferation [100,101]. Traditionally, antibiotics are 
introduced into nanofibers by combining them into the polymer, 
accompanied by blend electrospinning or core-shell electrospinning in 
which the bioactive drug is contained within the polymeric outer shell. 
Various reports of drug loaded electrospun ECM mimetic membranes 
and their features are provided in Table 1. Metronidazole-loaded chi-
tosan/polyethylene oxide (PEO) nanofibers provided promising out-
comes in the management of wound infections [102]. Sadri et al. 
developed a PEO/Chitosan (CS) electrospun nanofibers with cefazolin 
and observed that 1% of cefazolin loaded fibers exerted sufficient 
anti-microbial activity against Staphylococcus aureus and Escherichia coli 
[103]. Charernsriwilaiwat et al. showed that electrospun chitosan and 
PVA membranes loaded with ethylenediaminetetraacetic acid (EDTA) 

Table 1 
Electrospun drug-loaded membranes for wound healing applications.  

S. 
No 

Polymer Drug Other Active 
Agents 

Features Ref. 

1 PCL L-Arginine – Supported healing by releasing NO [163] 
2 Chitosan/PEO Teicoplanin – To treat acute and chronic wounds through local antibiotic 

delivery 
[164] 

3 PCL Silver Sulfadiazene – Topical drug delivery to prevent infection [165] 
4 Cellulose acetate/Gelatin Zataria multiflora essential oil 

nanoemulsion 
– Profound antioxidant and antibacterial activity [108] 

5 Alginate Dexpanthenol – Enhanced cell attachment and cell proliferation [166] 
6 Gelatin/PCL Chrysin – Immunomodulatory action and anti-inflammatory activity [167] 
7 PCL/Methyl-cellulose Manuka honey Bioactive glass Enhanced wound healing ability and dual therapeutic effect [120] 
8 PLA/PVP Levofloxacin Naproxen-sodium Antibacterial and anti-inflammatory activity [168] 
9 Gelatin/Polydopamine Chondroitin sulphate Magnesium Promoted wound healing process by providing anti- 

inflammatory activity 
[169] 

10 Gelatin/PVP and Cellulose 
acetate 

Gentamicin – Antimicrobial properties to prevent colonization by 
microorganisms 

[170] 

11 PLGA/Gelatin Liraglutide – Promoted angiogenic ability [171] 
12 Chitosan/PEO Moxifloxacin – Protected from infection [172] 
13 PLGA Propolis – A promising natural agent to treat burn wounds [173] 
14 PCL-chitosan/PVA/PCL- 

chitosan 
Metformin-Hydrochloride – Expedites wound healing by minimizing fibrosis [174] 

15 PCL/PLA Nigella sativa (Black seed) – Natural anti-inflammatory and anti-bacterial agent [175] 
16 PVA Cephalexin – Effective in inhibiting infections [176]  

Table 2 
Electrospun membranes loaded with growth factors for wound healing 
applications.  

S. 
No 

Polymer Growth 
Factor 

Other 
Active 
Agents 

Properties Ref. 

1 Collagen- 
HA 

VEGF- 
PDGF- 
EGF- 
bFGF 

Gelatin NP Supports re- 
epithelialization, 
dermal reconstruction 
and the formation of 
mature vasculature 

[177] 

2 PCL- 
Collagen 

bFGF – Significant 
granulation tissue 
formation, collagen 
deposition and re- 
epithelialization 

[178] 

3 PCL-PEG bFGF- 
EGF 

– High cellular 
proliferation and 
keratin 14, 5, 1 
expression levels 

[179] 

4 Chitosan- 
PEO 

VEGF PLGA NPs Increased 
angiogenesis, re- 
epithelialization and 
granulation tissue 
formation. 

[180] 

5 PELA (Poly 
(ethylene 
glycol)-poly 
(DL-lactide)) 

bFGF chloroform Enhanced cell 
adhesion, 
proliferation, and 
secretion of ECM 

[181] 

6 PCL-HA EGF – Enhanced cell 
proliferation and 
infiltration, 
upregulation of 
collagen I, collagen III 
and TGF-β 

[182]  
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Fig. 4. A. Results of the Live/Dead assay indicating the changes in the morphology of keratinocytes and endothelial cells when cultured with EGF loaded patches 
(PHBV-GelMA-EGF). B. (a) Schematic depiction of the steps for the in-situ crosslinking of patches in wounds and evaluating wound healing ability of the patches. (b) 
Photographs showing the healing wounds, circles indicate wounds treated with PHBV-GelMA, and doted circles indicate wounds treated with PHBV-GelMA-EGF 
hybrid patches. (c) Rate of wound contraction plot and (d) the histological analysis of healed wounds. Scale bars in histology images: 200 μm. Reproduced from 
Ref. [18] with Creative Commons Attribution License (CC-BY-0.4). 
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and hydroxy benzotriazole (HOBt) could effectively inhibit both 
gram-positive and gram-negative bacteria [104]. It has also been re-
ported that tetracycline hydrochloride (TCH) loaded PLLA core/shell 
nanofibers could provide a sustained drug delivery for up to 30 days 
[105]. Ampicillin loaded core/shell nanofibers were also reported as 
ECM mimetic antimicrobial membranes with potential for wound 
healing applications [106]. Functionalizing the surface of nanofibers 
with antimicrobial peptides and amino acids is another way to generate 
ECM mimetic antibacterial wound dressings [107]. 

Owing to the drawbacks of side-effects of synthetic substances in the 
human body, plant-derived compounds like essential oils are incorpo-
rated in ECM mimetic wound dressings [108–110]. They could provide 
antioxidant, and anti-inflammatory properties when mixed with nano-
fibers and promote wound healing. Most common essential oils that 
have been used widely for their antibacterial effects in wound healing 
matrices are cinnamaldehyde [111,112], thymol analogues [113–115], 
menthol [116] and carvacrol [117,118]. Honey is another bio-derived 
product that is used in electrospun membranes which help in skin 
repair by promoting cytokine release and tackle infection by stimulating 
the reaction of the immune system [119,120]. The dressings based on 
co-axial electrospun membranes provide a slow release of loaded drugs 
to ensure long term therapeutic efficacy. Ketoprofen (KET)-loaded cel-
lulose acetate (CA) co-axial nanofibers provided a better zero-order drug 
release profile [121]. Mineral oil/CA/PCL tri-axial nanofibers have 
shown to improve the proliferation of endothelial cells because of their 
controlled drug release profile [122]. 

There is more scope for research in the development of drug-loaded 

wound dressing materials where the drug release profile can be 
controlled so as to take into consideration the dynamicity of the native 
ECM in wounds. 

7.2. Growth factor-loaded nanofibers 

Growth factors are bioactive macromolecules that are capable of 
regulating cell division, proliferation, differentiation, and metabolism 
during wound healing [43,123,124]. A broad range of growth factors 
and cytokines, especially epidermal growth factor (EGF), vascular 
endothelial growth factor (VEGF), etc. influence the different phases of 
the wound healing like granulation tissue formation, regulation of in-
flammatory response, and the promotion of angiogenesis [7,125–127]. 
In addition, growth factors are also necessary for ECM formation, 
remodeling and the re-epithelialization processes [128–130]. The 
topical administration of growth factors, however, has many drawbacks, 
such as poor in vivo stability, decreased absorption through the skin, 
removal by exudation before reaching the wounded location, and many 
other unwanted side effects due to high local concentrations. Table 2 
provides the details of reports that used growth factor loaded electro-
spun membranes for wound healing applications. For instance, Lee et al. 
demonstrated the development of recombinant human platelet-derived 
growth factor (rhPDGF) -loaded PLGA-collagen ECM mimetic scaffold 
where they observed a continuous release of growth factors from the 
patches which promoted chronic wound healing [131]. Core-shell fibers 
based on polylactic acid (PLA) and PVA could facilitate sustained release 
of connective tissue growth factor (CTGF) and promoted cell prolifera-
tion, cell migration and angiogenesis [132]. Nanopores present on the 
surface of ECM mimetic PLA shell ensured the slow and long-term 
release of CTGF from PVA core. Approaches like co-spinning of hydro-
philic polymers (E.g. PVA) loaded with growth factors (E.g. stromal 
derived factor, SDF1) and a mechanically stable polymer like PCL would 
also form a robust approach to generate ECM mimetic functional fibrous 
membranes [133]. Studies also have shown that incorporating EGF in a 
suitable hydrogel and infiltration of this hydrogel-EGF solution in 
electrospun membranes can generate hybrid patches that provide slow 
EGF release, higher cell proliferation and rapid wound healing (Fig. 4) 
[18]. Such a thin coating of GelMA can provide an ECM mimetic 
microenvironment for the cell proliferation. EGF released from the patch 
could induce epidermal to mesenchymal transition as evident from 
elongated morphology of cells [18]. In addition, EGF loaded patches 
showed higher angiogenesis. Finally, the patches applied on the wounds 
generated in diabetic rats by an in situ crosslinking approach healed 
much faster than EGF free patches. Thus, the incorporation of GFs into 
ECM mimetic nanofibers is therefore considered as a promising 
approach for expediting wound healing process. 

7.3. Nanoparticle-loaded nanofibers 

Due to the large surface area, tunable size with low dispersion sizes, 
easy functionalization and multifunctional capabilities, various inor-
ganic nanoparticles including gold, silica and quantum dots have been 
emerged as attractive in wound healing applications as antimicrobial 
agents and drug carriers [134]. In fact, because of the inherent strong 
antimicrobial property, nanoparticles based on metals and metal oxides 
have been used as the possible solution for the treatment of 
drug-resistant bacterial infections [135–137]. By using electrospinning 
and related techniques, many nanostructures have been integrated into 
electrospun polymeric wound dressings to promote overall wound 
healing (Table 3) [138,139]. Use of metallic (silver and gold) and metal 
oxide (primarily oxides of zinc, titanium, copper and iron) nanoparticles 
had been the focus of majority of these reports [140–142]. In order to 
improve the wound healing and simultaneously avoid infection, Rath 
et al. synthesized gelatin nanofibers containing ZnO nanoparticles and 
cefazolin [143]. Zn, as a metalloprotein cofactor, is essential for ECM 
regeneration. In another study, effect of zinc oxide (ZnO) nanoparticles 

Table 3 
Electrospun membranes loaded with nanoparticles for wound healing 
applications.  

S. 
No 

Polymer Nanoparticles Other 
Active 
Agents 

Properties Ref. 

1 PCL- 
Collagen 

Chitosan – Enhanced 
hydrophilicity, 
water-uptake, 
and blood 
compatibility, 
and better 
wound healing 

[75] 

2 PCL TiO2 – Improved cell 
migration, 
proliferation, 
angiogenesis, 
and wound 
healing 

[183] 

3 Collagen Ag – Improved 
antimicrobial 
efficacy 

[184] 

4 PCL CeO2 Gelatin Enhanced cell 
proliferation and 
viability by three 
folds 

[185] 

5 Polyurethane Ag lavender 
oil 

Improved 
hydrophilicity, 
proliferation of 
chicken embryo 
fibroblasts, 
antibacterial 
efficiency. 

[186] 

6 CS-PVA Ag – Improved 
antibacterial and 
wound healing 
properties 

[187] 

7 PVA-CS Carboxymethyl 
chitosan 

– Enhanced 
antibacterial 
properties and 
wound healing 

[188] 

8 PCL-PEG Fe3O4 – Improved cell 
adhesion 

[189]  
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Fig. 5. A. Effect of zinc oxide (ZnO) nanoparticles on wound healing when loaded in electrospun PCL membranes. A(a) Histology cross sections showing the 
migration and proliferation of cells through PCL and ZnO loaded PCL membranes after 20 days of implantation in guinea pig, A(b) The implanted PCL scaffolds 
containing 1 wt% ZnO NPs after 20 days of the subcutaneous implantation indicating the development of matured blood vessel. B. Effect of cerium oxide nano-
particles (nCeO2) on cell adhesion and proliferation when loaded in electrospun PHBV membranes. Adhesion and proliferation of human oral epithelial cells (HOEC) 
and human mammary epithelial cells (HMEC) on PHBV membranes imaged after B(a) DAPI- Phalloidin staining and B(b) crystal violet staining. C. Wound healing 
potential of silver nanoparticles (AgNP) loaded collagen fibers in rat models. C(a) Release of Ag ions from the nanofibers (Collagen with AgNP), C(b) Wound healing 
in rats after 15 days of treatment with collagen and AgNP loaded collagen membranes, and C(c) Histology of healed skin tissue after treatment with blank collagen 
nanofibers and AgNP-loaded collagen nanofibers (7th and 14th days). The thick deposition of the collagen matrix, which is connected to the dense population of 
fibroblast cells, is represented by Arrow. Figure A(a) is reproduced/Adapted from Ref. [191] with permission of The Royal Society of Chemistry. Figure A(b) is 
reproduced/Adapted from Ref. [192] with the permission of The Royal Society of Chemistry. Figure B is reproduced from Ref. [144] with the permission of American 
Chemical Society. Figure C is reproduced from Ref. [184] with the permission of Taylor and Francis online. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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on wound healing was studied when loaded in electrospun PCL mem-
branes. Fig. 5-A(a) shows histology cross sections showing the migration 
and proliferation of cells through PCL and ZnO loaded PCL membranes 
after 20 days of implantation in guinea pig. Subcutaneous implantation 
of ZnO nanoparticles loaded PCL led to the development of matured 
blood vessels (Fig. 5A(b)). The incorporation of cerium oxide nano-
particles (nCeO2) in electrospun poly(3-hydroxybutyrate-co-3-hydro 
xyvalerate) (PHBV) membranes resulted in increased adhesion and 
proliferation of human cells as well as higher wound healing in diabetic 
rat models (Fig. 5B) [144]. 

For infections that occur in burns, open wounds, and chronic ulcers, 
silver is considered as a major antibacterial agent. Ag nanoparticles were 
also used antimicrobial agents in polymeric nanofibers developed for 
wound healing applications and offered good promise for resolving the 
main problems posed by microbial infections [145,146]. The wound 
healing potential of silver nanoparticles (AgNP) loaded collagen fibers 
was studied in rat models where a thick deposition of collagen fibers was 
observed for AgNP-loaded mats (Fig. 5C). However, the agglomeration 
of the nanoparticles in the nanofibers is an obstruction which could, in 
particular, compromise the antibacterial effectiveness of these nano-
particle systems [147,148]. Metal oxide nanoparticles such as TiO2 
[149–151], MgO [152,153], and ZnO [154–156] have also been exam-
ined for their antimicrobial properties. Zirconium oxide (ZrO2) nano-
particles have also been incorporated in ECM mimetic electrospun 
membranes due to satisfactory antibacterial and antifungal efficacy 
[157,158]. Bioactive glass nanoparticles loaded collagen/PCL ECM 
mimetic nanofibrous membranes was shown to improve endothelial cell 
proliferation and thus can be considered as a promising candidate for 
wound healing applications [159]. 

Therefore, nanoparticles offer various native ECM mimetic anti- 
bacterial properties along with the possibility to attach drugs or other 
active agents on them which can be released at the wound site in a 
controlled manner. 

8. Challenges and prospects 

Having low mechanical strength, especially for natural polymer- 
based membranes, prevents the widespread use of the otherwise bene-
ficial functions of electrospun nanofibers. Incorporation of various 
nanofillers in polymer matrix and blending with mechanically robust 
polymers are tried as the potential strategies to improve the mechanical 
properties of electrospun membranes. However, exactly mimicking the 
mechanical properties of electrospun membranes with that of ECM of 
various tissues is still challenging. Future research may focus on this 
direction where tissue specific ECM mimetic scaffolds with matching 
tensile strength, modulus and elasticity will be developed. In addition, 
biofouling is another major challenge that limit the widespread clinical 
use of nanofibrous membranes. Loading of antibiotics or antimicrobial 
nanoparticles in electrospun nanofibers have been reported to address 
such shortcomings of electrospun membranes. It is desperately impor-
tant to increase the efficiency of spinning machines and to scale up the 
infrastructure for commercial manufacturing which are the big chal-
lenges at this stage. 

Incorporation active agents such as growth factors, peptides and 
growth factors is very necessary to generate ECM mimetic functional 
scaffolds that can support cell adhesion, cell proliferation and wound 
healing [160]. However, loading of such agents in synthetic polymer 
based electrospun fibers is a challenging task as most of such synthetic 
polymers can only be dissolved in organic solvents [161] or acids. Most 
of the biological molecules are damaged or lost the functional attributes 
when introduced in organic solvents or acids [162]. Introduction of 
co-axial spinning where a core of hydrophilic polymer loaded with the 
active agent surrounded by a mechanically stable synthetic polymer is a 
promising approach to solve this challenge [132]. Loading of active 
agents in hydrophilic polymeric nanoparticles or nanotubes and incor-
poration of such nanostructures in electrospun membranes could be 

another approach to protect labile molecules. 
In addition to the electrospinning-based methods alone, combination 

of multiple techniques such as the integration of 3D printing or bio-
printing, cell-loaded hydrogel based electrospun membranes, may be 
another interesting solution. In fact, it can result in structures that have a 
high degree of resemblance to native ECM and native tissue using a 
mixture of specifically cell-laden hydrogel along with a regulated dis-
tribution of nanofibers. In addition, other beneficial techniques will be 
to use different methods to promote cell movement to non-woven 
structures, such as the application of electrical fields, the production 
of gradient properties (i.e., stiffness, pore diameter, porosity, etc.) 
within the scaffold. To sum up, there are already many new challenges 
with the use of electrospun membranes for wound healing applications 
which need to be meticulously solved in order to direct electrospun 
membranes towards the realization of ECM mimetics and thereby 
opening new doors for broader clinical applications in the future. 

9. Conclusions 

New developments in fabrication techniques and biomaterial sci-
ences catalyze the development of biomaterials that replicate the fea-
tures of biological structures thereby guiding the realization of intact 
tissue regeneration. Providing a suitable environment for the regulation 
of differentiation, growth and migration of cells, the developed bio-
materials that are having analogous structural, chemical and functional 
properties is necessary to mimic the native ECM. To further advance the 
research in the tissue regeneration, new therapeutic strategies related to 
creating favorable biochemical environments which can promote 
wound healing have been developed. The recent studies focused on the 
development of ECM mimetic scaffolds and wound healing patches that 
can protect wounds, provide a scaffold for cell proliferation and accel-
erate wound healing. The integration of bioactive agents, however, is 
not always easy, with the challenges associated with their limited sta-
bility in organic solvents. Loading of relatively stable nanomaterials as 
active agents in electrospun ECM mimetic membranes is a recent 
approach with promising outcomes. It is anticipated that the ongoing 
efforts, clear understanding on existing challenges and insights on 
possible solutions result in the emergence of novel approaches that help 
in the realization of electrospun wound healing matrices that closely 
mimic ECM. 
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