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Abstract

The adult human olfactory bulb neural stem/progenitor cells (OBNC/PC) are promising candidate for cell-based
therapy for traumatic and neurodegenerative insults. Exogenous application of NGF was suggested as a promising
therapeutic strategy for traumatic and neurodegenerative diseases, however effective delivery of NGF into the CNS
parenchyma is still challenging due mainly to its limited ability to cross the blood-brain barrier, and intolerable side
effects if administered into the brain ventricular system. An effective method to ensure delivery of NGF into the
parenchyma of CNS is the genetic modification of NSC to overexpress NGF gene. Overexpression of NGF in adult
human OBNSC is expected to alter their proliferation and differentiation nature, and thus might enhance their
therapeutic potential. In this study, we genetically modified adult human OBNS/PC to overexpress human NGF
(hNGF) and green fluorescent protein (GFP) genes to provide insight about the effects of hNGF and GFP genes
overexpression in adult human OBNS/PC on their in vitro multipotentiality using DNA microarray,
immunophenotyping, and Western blot (WB) protocols. Our analysis revealed that OBNS/PC-GFP and OBNS/PC-
GFP-hNGF differentiation is a multifaceted process involving changes in major biological processes as reflected in
alteration of the gene expression levels of crucial markers such as cell cycle and survival markers, stemness
markers, and differentiation markers. The differentiation of both cell classes was also associated with modulations of
key signaling pathways such MAPK signaling pathway, ErbB signaling pathway, and neuroactive ligand-receptor
interaction pathway for OBNS/PC-GFP, and axon guidance, calcium channel, voltage-dependent, gamma subunit 7
for OBNS/PC-GFP-hNGF as revealed by GO and KEGG. Differentiated OBNS/PC-GFP-hNGF displayed extensively
branched cytoplasmic processes, a significant faster growth rate and up modulated the expression of oligodendroglia
precursor cells markers (PDGFRa, NG2 and CNPase) respect to OBNS/PC-GFP counterparts. These findings
suggest an enhanced proliferation and oligodendrocytic differentiation potential for OBNS/PC-GFP-hNGF as
compared to OBNS/PC-GFP.
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Introduction primates [4-7], and phase-I clinical trial of NGF gene therapy
for Alzheimer’s disease (AD) provided promising data [8,9].

Exogenous application of nerve growth factor (NGF) for the Effective delivery of NGF into the CNS parenchyma is still

treatment of traumatic and neurodegenerative insults is a challenging due mainly to its limited ability to cross the blood—

promising therapeutic strategy. NGF enhances the survival of brain barrier, and intolerable side effects (pain, aberrant

cholinergic neurons in basal forebrain in rats [1-3] and sympathetic, sensory neurite sprouting, and weight loss) if
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administered into the brain ventricular system Intranasal
administration of NGF rescued recognition memory deficits in
an anti-NGF transgenic mouse model which shows typical
features of AD [10-12]. Previous studies using adenoviral
neurotrophic gene transfer indicate that it provided an effective
tool for the delivery of potentially therapeutic proteins to the
injured or diseased spinal cord [13,14].

An effective method to ensure delivery of NGF into the
parenchyma of CNS is the genetic modification of cells to
overexpress NGF gene(s). In this regard, engraftments of cells
that secrete NGF promote the growth of host spinal axons after
injury [15] and protect cholinergic neurons from degeneration in
chemical lesions [16,17] or aged brain [18—20]. Transplantation
of fibroblasts encoding NGF gene in the primate brain rescued
degenerating cholinergic neurons, and reduce degree of
cognitive decline [20].

Identification of suitable cellular carriers for therapeutic
transgenes is a crucial prerequisite for successful application of
in vivo gene transfer to the CNS. In adult humans, neural stem/
progenitor cells (NS/PC) have successfully been isolated from
the olfactory bulb (OB), which therefore represents an
accessible source of neural precursors for transplantation-
based therapy that avoids the ethical issues raised by the use
of human embryos, and provide an innovative
autotransplantation strategy for neurodegenerative diseases
[21-24] The discovery of a large number of immunoreactive
tyrosine hydroxylase structures in the olfactory bulbs of elderly
humans [22] suggests that the olfactory bulb is a source for the
autotransplantation therapy in Parkinson’s disease.

It has been suggested that the NSCs engrafted at sites of
nerve injury promote functional recovery by producing trophic
factors such as nerve growth factor (NGF) which induces the
survival and regeneration of different neuronal subtypes
[25-32]. Transplantation of human NSCs expressing diverse
functional genes, especially encoding growth factors, preserves
host cells and restored function in animal models of AD,
Parkinson’s disease (PD), Huntington’'s disease (HD),
Amyotrophic Lateral Sclerosis (ALS), stroke and spinal cord
injury (SCI) [33—40]. In our previous work, we have studied the
gene expression profile of wild type adult human OBNS/PC in
comparison to embryonic ones and demonstrated the
existence of distinct signaling pathways and epigenetic control
between them [41,42]. In this study, we genetically modified
adult human OBNS/PC to overexpress human NGF (hNGF)
and green fluorescent protein (GFP) genes, which are common
genes used to trace engrafted NSCs and to enhance their
therapeutic potential against traumatic and neurodegenerative
diseases [44,45]. Wether or not such genetic alterations will
have an effect on their in vitro proliferation and differentiation
potential is still not clear. Therefore, the primary objective of
this study was to provide insight about the effects of ANGF and
GFP genes over expression in adult human OBNS/PC on their
in vitro proliferation and differentiation potential as revealed
from modulations in their target genes and corresponding
pathways during their proliferation and differentiation using
DNA microarray, immunophenotyping and Western blot
protocols. The present study reports the up-regulation of
immature oligodendrocyte markers such as PDGFRa, NG2 and

PLOS ONE | www.plosone.org

Expression of hNGF in Human Olfactory Bulb NSC

CNPase proteins in differentiated OBNS/PC-GFP-hNGF, while
reveals a down modulation of the same markers in
differentiated OBNS/PC-GFP. These findings suggest an
enhanced proliferation and oligodendrocytic differentiation
potential for OBNS/PC-GFP-hNGF as compared to OBNS/PC-
GFP.

Materials and Methods

Isolation and Culturing of Human Olfactory Bulb NS/PC
Ethical statement

Written informed consent was obtained and all patients were
fully aware of the scope and aims of work. This procedure was
obtained in the past years between 2006 and 2008. The
informed consent was requested by the PLoS one journal to
publish our article: Tumorigenic Potential of Olfactory Bulb-
Derived Human Adult Neural Stem Cells Associates with
Activation of TERT and NOTCH1. Patrizia Casalbore et al.
February 2009 | Volume 4 | Issue 2 | e4434, and our second
article: Marei HE, Ahmed AE, Michetti F, Pescatori M, Pallini R,
Casalbore P, Cenciarelli C, Elhadidy M. Gene expression
profile of adult human olfactory bulb and embryonic neural
stem cell suggests distinct signaling pathways and epigenetic
control. PLoS One. 2012; 7(4):e33542. doi: 10.1371/journal.
pone.0033542. Epub 2012 Apr 2. Procedures for collection and
isolation of adult human OBNS/PC were approved by the
Ethical Committee of the Catholic University, Italy.

We have used the same clinical materials, and protocol used
in our previous papers to isolate, and culture the human
OBNS/PC [41,42]. In brief, the OB cells were harvested from
adult patients undergoing craniotomy at the Institute of
Neurosurgery, Catholic University, Rome [22]. Immediately
after removal, the OBs were dissociated in Papain 0.1%
(Sigma-Aldrich, St. Louis, MO) for 30 minutes at 37°C.
Dissociated cells were cultured in the presence of human
recombinant EGF (20 ng/ml; PeproTech, Rocky Hill, NJ),
human recombinant bFGF (10 ng/ml; PeproTech), and LIF (20
ng/ml; Immunological Sciences, Rome, Italy) in DMEM/F12
(1:1) serum-free medium (Invitrogen, Carlsband, CA)
containing L glutamine 2 mM, glucose 0.6%, putrescine 9.6
ug/ml, progesterone 0.025 mg/ml, sodium selenite 5.2 ng/ml,
insulin 0.025 mg/ml, apo-transferrin sodium salt 0.1 mg/ml,
sodium bicarbonate 3 mM, Hepes 5 mM, BSA 4 mg/ml, heparin
4 ug/ml. Primary neurospheres were dissociated with Accutase
(Invitrogen), serially diluted and plated one cell per mini-well
onto 96-well plates. Mini-wells containing one single cell were
marked after microscopic confirmation and assessed for
secondary neurosphere generation after two weeks. Secondary
neurospheres were subsequently dissociated, plated at the
density of 102 cells/cm? in serum-free medium containing EGF
and bFGF, and passaged up to P30. Between P7 and P10
OBNS/PC were infected with lentivirus transducing hNGF.
Differentiation assays were performed within 5 days after
plating on Matrigel coated glass coverslips in the absence of
EGF and bFGF and in the presence of 1% fetal calf serum
(Hyclone) supplemented with 100uM 3'-5'-cyclic adenosine
monophosphate (cAMP), 1uM all-trans retinoic acid (Sigma
Aldrich) and 30nM triiodothyronine (T3) (Sigma Aldrich) [21].
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Construction of lentiviral expression vectors

pLentiTrident1, the lentiviral vector backbone, was
purchased by Cistronics Cell Technology GmbH (Zurich,
Switzerland). The construction of pLentiTrident(CMV)::EGFP
has been described [43], hereby it is briefly summarized: the
PCR fragment coding EGFP was derived from pEGFP-C1
(Clontech). The pLentiTrident1-CMV::EGFP::Ires::Neo/Kana
(GFP-vector) was realized by cloning Neomycin/Kanamycin
open reading frame digested with Not1-Cla1l enzymes and
ligated downstream to the first IRES (internal ribosomal entry
site) of pLentiTrident1-CMV::EGFP. The pLentiTrident1-
CMV::EGFP::Ires::Neo/Kana::Ires::hNGF (or hNGF-vector) was
obtained by PCR of the pro-peptide hNGF cDNA derived from
pCMVSPORT 6-hNGF. Subsequently, the PCR product
digested with Pac1 and Swal enzymes was ligated
downstream to the second IRES of pLentiTrident1-
CMV:EGFP::Ires::Neo/Kana. The hNGF and EGFP PCR
products were sequenced to verify accuracy (MWG Biotech).

Transfection and infection

Human embryonic kidney (HEK)-293T cells in log-phase
growth were transiently transfected, using standard
LipofectAmine reagent (Invitrogen), with either GFP-Vector or
hNGF-vector plus helper plasmids to produce virions [43].
Media containing virions were collected two days after cell
transfection and transferred directly onto OBNS/PC. Lentiviral
infection was performed in the presence of polybrene solution
at 8 mg/ml (Sigma-Aldrich). Antibiotic G418 (Euroclone) was
added to the cells at 400mg/ml over time for OBNS/PC
selection and maintenance.

Enzyme linked immunosorbent assay (ELISA)

hNGF released by the group of control OBNS/PC-GFP and
OBNS/PC-GFP-hNGF was measured by two-site ELISA kit
(R&D System Kit) as described previously [43]. For hNGF
detection conditioned media were collected from the cell
cultures seeded in ftriplicates in either proliferation or
differentiation conditions. Cellular pellets were also collected
from each group respectively for protein determination. Optical
absorbance was read at 450 nm by a microplate reader. The
readouts expressed in pg/ml were adjusted by the total amount
of cellular protein contents. P values <0.05 (*) and <0.001 (***)
were considered statistically significant

Affymetrix Genechip hybridizations and analysis of
expression data

Total RNA was extracted using the TriZol reagent (TriZol,
Invitrogen, Carlsbad, CA, USA) and further purified using the
RNAeasy mini kit following the RNA cleanup protocol as
indicated by the manufacturer (Qiagen, Valencia, CA, USA).
RNA purity was assessed by spectrophotometric analysis and
integrity by microfluidic molecular sizing using the Bioanalyzer
2100 (Agilent). Samples with RIN (RNA Integrity Number) <8
were discarded and not used in the gene expression analysis.
One microgram of total RNA was converted in cRNA and
labeled as described in the Affimetrix GeneChip® Whole
Transcript (WT) Sense Target Labeling Assay Manual. We
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made use of the Affymetrix technology to analyze the
expression of 32,020 RefSeq coding transcript with well-
established annotations, using the Human Gene 1.0 ST Array
(Affymetrix, Santa Clara, CA, USA) following standard
protocols. Hybridised Genechips were processed] and
experiments were performed in triplicate.

Gene expression measures were extracted and normalized
from CEL files using the RMA algorithm implemented in
Affymetrix Expression Console. The same software was used
for QC analysis of the genechips. Statistical analysis and
visualization of gene expression data was performed using
BRB-ArrayTools, developed by R. Simon and the BRB
ArrayTools Development Team. To define the gene expression
changes induced by NGF over-expression and cell
differentiation, we computed the probability of genes being
differentially expressed between the classes using the random
variance t test as implemented in BRBArrayTools. Genes were
considered statistically significant if p<0.001. Per gene false
discovery rate was computed using the method of Benjamini
and Hochberg [46]. Significant genes were clustered and
displayed as heatmap using the clustering tool in BRB
ArrayTools.

Data analysis

Gene Ontology Analysis. Gene ontology analysis was
conducted according to [46-50]. For each GO group we
computed the number n of genes represented on the
microarray in that group, and the statistical significance pi value
for each gene i in the group. We considered a GO category
significantly differentially regulated if either significance level
was less than 0.01.

The evaluation of which Gene Ontology classes are
differentially expressed between pre- and post treatment
samples was performed using a functional class scoring
analysis as described by Pavlidis et al. [49]. The functional
class scoring analysis for Gene Ontology classes was
performed using BRB-ArrayTools. MATLAB software (v. 7.3)
was used for clustering and correlation. Expander software (v.
5.07) [50] was used for the hierarchical clustering of transcripts
overexpressed in each stage separately and cell cycle
associated transcripts. The STRING database (version 8.1)
[51] was used to construct a regulatory network of differentially
expressed transcripts. The visualization of networks was
performed using Cytoscape (version 2.6.3) [52]. We used
BiINGO (a Cytoscape plugin) [53] to find statistically over- or
underrepresented Gene Ontology (GO) categories in the
biological data as a tool to enrich the analysis of the
transcriptome dataset.

Functional Annotation and Molecular Network
Analysis. Functional annotation of significant genes identified
by microarray analysis was searched by the web-accessible
program named Database for Annotation, Visualization and
Integrated Discovery (DAVID) version 2009, National Institute
of Allergy and Infectious Diseases (NIAID), National Institutes
of Health (NIH) (david.abcc.ncifcrf.gov) [41,42]. Gene ontology
(GO) and KEGG molecular pathway analysis was performed to
identify possible enrichment of genes with specific biological
themes using both the data set as a whole and then in the
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individual K-means clusters. DAVID calculates a modified
Fishers Exact p-value to demonstrate GO or molecular
pathway enrichment, where p-values less than 0.05 after
Benjamini multiple test correction are considered to be strongly
enriched in the annotation category [54,55].

Immunocytochemistry

OBNS/PC-derived cell populations finely dissociated with
Pasteur pipettes were plated onto Matrigel GFR-coated glass
coverslips (BD-ltalia) to assay their multipotentiality within 5
days in vitro (DIV) by withdrawal of EGF and bFGF and adding
of 1% fetal calf serum (Hyclone, Logan, USA) supplemented
with 1uM ATRA, 100uM 3'-5'-cyclic adenosine monophosphate
(cAMP), with or w/o 30nM triiodothyronine (T3) and 40ng/ml
PDGFAA (all purchased from Sigma Aldrich) [23]. OBNS/PC
were fixed in 4% paraformaldehyde and permeablized with
0.2% Triton-100 (last step was not performed for NG2 and O4
immunostaining) and subsequently processed for
immunolabeling. The following antibodies were used: anti-glial
fibrillary acidic protein (GFAP) rabbit polyclonal (DAKO), anti-
tubulin B-isoform Il mouse monoclonal, mouse anti-MAP2
(a/b), rabbit anti-pro-oligodendrocytes chondroitin sulphate
proteoglycan (NG2) and IgM anti-O4 (all from Chemicon),
rabbit  anti-Nestin  (Millipore).  Tetramethyl  rhodamine
isothiocyanate (TRITC) affinity purified goat anti-rabbit for dual
labeling (Chemicon) and fluorescein isothiocyanate (FITC)
affinity purified donkey anti-mouse for dual labeling
(Chemicon). Cellular nuclei were stained with Hoechst 33258
diluted in PBS (0,2ug/ml; SIGMA). Immunocytochemistry
analysis was performed using a fluorescent microscope
(Olympus microscope OLYMPUS Bx5 with Spot CCD Camera)
and cell were photographed at 400X and 600X magnification
with either two filter or three filter sets for detection of
immunolabelled cells Differentiated cells percentage was
evaluated by counting 100cells/field of six independent fields
positive for each specific antibody respect to total stained
nuclei.

Western Blot

OB cells kept in proliferation and differentiation conditions
(almost 2 x10° cells) were harvested after 5 Days in vitro (DIV),
lysed and sonicated with two pulses of 5 sec with 50% of
amplitude (Sonics and Materials, Newtown, CT) in lysis buffer
containing: 1% NP-40, 0.01% SDS, 20mM Tris—HCI pH 7.4,
300mM NaCl, 1mM EGTA, 1mMEDTA, 1mM Na ,VO, and
protease inhibitors cocktail (Sigma Aldrich). Equal amount (40—
50ug) of total protein extracts, determined using Bio-Rad
protein Assay (Bio-Rad, Munchen, Germany), were loaded on
NuPAGE Bis-Tris gels (Invitrogen), then transferred on
Hybond-P Extra membrane (Amersham Biosciences, GE
Healthcare Life  Science-Buckinghamshire, UK) and
immunoblotted using the following primary antibodies: rabbit
anti-p-ERK1/2 and anti-ERK1/2 (Cell Signaling, MA-USA),
rabbit anti-p-CREB and mouse anti-CREB (Cell Signaling),
mouse anti-p-AKT1 and rabbit anti-AKT1 (Calbiochem), rabbit
anti-NeuroD1 and anti-Nurr1 (Millipore), rabbit anti-TH (Cell
Signaling), rabbit anti-CyclinD1, anti-p27, anti-Trks, anti-TrkA
and anti-Sox2 (all purchased from Santa Cruz-USA), rabbit
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anti-Oct4 (Millipore), rabbit anti-NICD1 (Cell Signaling), mouse
anti-GFAP (Covance), rabbit anti-NG2 and mouse anti-CNPase
(Chemicon), goat anti-PDGFRa and mouse anti-B-actin (from
SIGMA). After three washing with TBS-T buffer, immuno-
reactive proteins were detected using rabbit-anti-mouse,
donkey-anti-rabbit and donkey anti-goat horseradish
peroxidase-conjugated secondary antibodies directed to the
appropriate primary antibodies (Jackson Immunoresearch
Laboratories, West Grove, PA). The proteins were then
visualized using the chemiluminescence system (Millipore).

The densitometric analysis of protein bands normalized
against to B-actin protein levels were performed from three
independent experiments using the ImageJ software (NIH,
USA).

MTS assay

We used the CellTiter 96 Aqueous One Solution Reagent
(Promega), a cell proliferation colorimetric assay containing a
novel tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium;
MTS] and an electron-coupling reagent (phenazine
methosulfate). Neurospheres were dissociated into single cells
and 10 cells/well plated in triplicate for each group on six-well
plates. The day after cells were collected at 0, 1, 2, 3 and 4 DIV
in growth medium cells and incubated with 100pl/ml MTS at
37° C for approximately 1 h. The metabolically active cells
reduced MTS into a soluble formazan product, the absorbance
of which was measured at 490 nm. The absorbance values of
the collected samples were subtracted from the background
absorbance of medium-only control and expressed as
absorbance values. P values <0.05 (*) and <0.001 (***) were
considered statistically significant.

Statistical analysis

Statistical analysis was performed with Prism5 (GraphPad)
and Microsoft Office Excel 2007. MTS and ELISA assays were
analyzed by Two-way ANOVA and Bonferroni’'s post tests.
Data are expressed as mean + standard error of mean (S.E.M)
and P values <0.05 (*) and <0.001 (***) were considered
statistically significant.

Results and Discussion

In our previous study, we have deciphered the basal gene
expression profile of human OBNS/PC and demonstrated that
there were no significant differences in the gene expression
profiles of our examined OBNS/PC populations over prolonged
period of culture, and that OBNSCs were genetically stable
during the examined time scale [41,42]. Here, we carried out
microarray gene expression studies to identify the target genes
and corresponding pathways in response to overexpression of
NGF genes during their proliferation and differentiation.
Understanding mechanisms involved in modulation of
proliferation and differentiation potential of adult human
OBNSC is crucial for enhancement of their therapeutic
potentials against a wide range of traumatic and
neurodegenerative diseases such as AD, PD among others.
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Figure 1. Heatmap of representative cluster transcripts
involved in NGF signaling. A. OBNS/PC-GFP proliferation
(OBNSC prol.), OBNS/PC-hNGF proliferation (NGF prol.),
OBNS/PC-GFP differentiation (OBNSC diff.), and OBNS/PC-
GFP-hNGEF differentiation (NGF diff). Transcripts that are highly
up-regulated are red compared with the down-regulated ones
which are green. NGF is up-regulated in OBNS/PC-GFP-hNGF
respect to OBNS/PC-GFP in proliferation conditions. In
differentiation conditions NGF is repressed in both of cell. B.
Elisa results showing significant differences between NGF
protein levels in OBNS/PC-GFP-hNGF compared to control
cells. C. hNGF signal intensity between OBNS/PC-GFP and
OBNS/PC-GFP-hNGF. Biological replicates (n=3) of the
aforementioned 4 cell classes were compared under
proliferation and differentiation conditions.

doi: 10.1371/journal.pone.0082206.9001

In the present study, the proliferated and differentiated
human olfactory bulb neural stem/progenitor cells (OBNS/PC)
were infected with lentivirus transducing GFP and GFP-hNGF
gene(s). Following lentivirus-mediated of GFP and GFP-hNGF
gene (s) transduction, the OBNS/PC-GFP and OBNS/PC-GFP-
hNGF were analysed for NGF mRNA and protein expression.

To ensure the effectiveness of our infection protocol, the
expression levels of hNGF were evaluated. Based on the
results of our microarray analysis, hNGF mRNA levels are
higher in OBNS/PC-GFP-hNGF respect to OBNS/PC-GFP
(Figure 1 A and C). Accordingly by ELISA, we could detect
higher hNGF protein in OBNS/PC-GFP-hNGF cell medium
than in medium of OBNS/PC-GFP, under proliferating
conditions, at day 6 (Figure 1B). Following differentiation, NGF
release was repressed in both hNGF+ and WT cells, although
higher level of hANGF could still be detected in OBNS/PC-GFP-
hNGF (Figure 1B). The heatmap shows the effect of
differentiation on the expression level of a cluster of transcripts
involved in NGF signaling (Figure 1A). These results suggested
that the genetic engineering of these cells to achieve the over-
expression of ANGF would be a viable route for directing these
cells toward a mature neuronal phenotype in view of future cell
transplantation experiments in animal models
of neurodegenerative diseases.
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Gene Expression Profiling of OBNS/PC-GFP, and
OBNS/PC-GFP-hNGF During Proliferation and
Following Differentiation

To assess correlations between our examined four cell
classes, we performed gene expression profiling for
differentially expressed genes between OBNS/PC-GFP
(proliferated and differentiated), and OBNS/PC-GFP-hNGF
(proliferated and differentiated). Biological replicates (n=3) of
the aforementioned 4 cell classes were compared under
proliferation and  following differentiation  conditions.
Relative gene expression for representative probsets (250—
400) in different populations was plotted using a heatmap. The
proliferating OBNS/PC-GFP were distinguished from the
differentiating OBNS/PC-GFP. Similarly, the proliferating
OBNS/PC-GFP-hNGF  were  distinguished  from  the
differentiating OBNS/PC-GFP-hNGF.

Proliferating OBNS/PC-GFP vs. Proliferating OBNS/PC-
GFP-hNGF

The analysis of transcriptome dynamics between
proliferating OBNS/PC-GFP vs. proliferating OBNS/PC-GFP-
hNGF revealed that 13 transcripts were modulated between
the two cell populations (Table S1 in File S1). The modulated
genes are EIF3L, CNIH2, MAPK10, ZNF585B, TUBA1A,
SNORA41, GFPT2, PTK2, OR4D6, SYNPR, LHFPL3, LSAMP,
and MIR9-1. While most 69% (9) of the modulated genes
(EIF3L, CNIH2, MAPK10, ZNF585B, TUBA1A, SNORA41,
GFPT2, PTK2, OR4D6) were up-regulated in OBNS/PS-GFP-
hNGF only, 31% (4) of modulated genes (SYNPR, LHFPL3,
LSAMP, and MIR9-1) were up-regulated in OBNS/PC-GFP.
KEGG pathway analysis for the 9 up-regulated genes in
OBNS/PC-GFP-hNGF revealed the enrichment of ErbB
signaling pathway. Insufficient ErbB signaling in humans is
associated with the development of neurodegenerative
diseases, such as multiple sclerosis and Alzheimer’s disease
[56]. In mice loss of signaling by any member of the ErbB
family results in embryonic lethality with defects in organs
including the lungs, skin, heart and brain. Excessive ErbB
signaling is associated with the development of a wide variety
of types of solid tumor. ErbB-1 and ErbB-2 are found in many
human cancers, and their excessive signaling may be critical
factors in the development and malignancy of these tumors
[56]. The enrichment of ErbB signaling pathway in our
OBNS/PC-GFP-hNGFin comparison to OBNS/PC-GFP might
promote their neurogenic and glial differentiation potential
which is crucial for directed therapeutic strategies against
traumatic and neurodegenerative insults. Moreover, the un-
modulation ErbB-1 and ErbB-2 in OBNS/PC-GFP-hNGF and
OBNS/PC-GFP might decrease their cancer transformation
potential.

Differentiated OBNS/PC-GFP Vs. Differentiated
OBNS/PC-GFP-hNGF

Thirteen transcripts were modulated between the
differentiated OBNS/PC-GFP and differentiated OBNS/PC-
GFP-hNGF (Table S2 in File S1). The modulated genes are
KCNN2, KIAA0825, GK, RPS27, MEIS2, TMEFF2, WBP11,
CASK, FST, RGS8, RARB, NR4A2, LRRTM2. While 23% (3
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genes) of the modulated genes (KCNN2, KIAA0825, GK) were
up-regulated in differentiated OBNS/PS-GFP-hNGF, 77% (10
genes) of modulated genes (RPS27, MEIS2, TMEFF2,
WBP11, CASK, FST, RGS8, RARB, NR4A2, LRRTM2) were
up-regulated in differentiated OBNS/PC-GFP. KEGG pathway
analysis for the 3 up-regulated genes in differentiating
OBNS/PC-GFP-hNGF revealed the enrichment of PPAR
signaling pathway. PPARs are nuclear hormone receptors that
bind peroxisome proliferators and control the size and number
of peroxisomes produced by cells. PPARs mediate a variety of
biological processes, and may be involved in the development
of several chronic diseases, including diabetes, obesity,
atherosclerosis, and cancer [58]. Enrichment of PPAR
signaling pathway in OBNS/PC-GFP-hNFG might increase
their cancer transformation potential as compared to
OBNS/PC-GFP.

Changes in the Gene Expression Profile of OBNS/PC-
GFP and OBNS/PC-GFP-hNGF in Response to
Differentiation

For OBNS/PC-GFP, 381 genes were modulated following
their “shifting” from proliferation to differentiation phase of
which 186 were up-regulated and 194 were down-regulated
(Table S 3 in File S1). For OBNS/PC-GFP-hNGF, 556 genes
were modulated of which 146 genes were up-regulated and
410 genes were down-regulated (Table S 4 in File S1).
Because the differentiation of OBNS/PC-GFP and OBNS/PC-
hNGF was associated with modulation of a variable number
(381 for OBNS/PCs-GFP vs. 556 for OBNS/PC-GFP-hNGF) of
genes, we reason that transduction of OBNS/PC-GFP with
hNGF gene may modulate the differentiation potential of them
[57].

Functional Annotation Clustering of Proliferated vs.
Differentiated OBNS/PC-GFP

To further highlight the effects of hNGF on the differentiation
potential of OBNS/PC-GFP, we did a functional annotation for
the significant genes that were identified by microarray analysis
during the shifting of OBNS/PC-GFP from proliferation to
differentiation phases using the web-accessible program
named Database for Annotation, Visualization and Integrated
Discovery (DAVID) version 2009. Clustering for the 186 up-
regulated genes (Table S 5 in File S1) of OBNS/PCs-GFP
using DAVID had identified 63 annotation clusters with an
enrichment score ranged from 9.47 to 0.01 (Table S 5 in File
S1).

The annotation cluster 9 had an enrichment score of 1.72
and included 9 groups of biological processes (BP): regulation
of nervous system development (8 genes), regulation of
neurogenesis (7 genes), regulation of neuron differentiation (6
genes), regulation of cell development (7 genes), negative
regulation of cell differentiation (7 genes), negative regulation
of neurogenesis (3 genes), negative regulation of cell
development (3 genes), regulation of neuron projection
development (3 genes), and regulation of cell projection
organization (3 genes). Transcripts of genes involved in
regulation of aforementioned 9 groups of BP comprised
EPHB2, TIMP2, FOXG1, MT3, NTRK2, OMG, PBX1 were up-
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regulated in differentiated OBNS/PC-GFP by 1.56, 1.84, 1.43,
1.43, 1.58, 1.96, and 1.48 respectively as compared to the
proliferating ones (Table S 3 in File S1). In addition, modulation
of the aforementioned genes was not revealed in differentiated
OBNS/PC-GFP-hNGF. This observation might indicate
different differentiation potential for the two cell classes (Table
S 3in File S1).

EPHB2 signaling controls lineage  plasticity  of
adult neural stem cell niche cells, ependymal cells and
astrocytes, in the neurogenic lateral ventricle walls in the adult
mouse brain. EphB2 acts downstream of Notch and is required
for the maintenance of ependymal cell characteristics, thereby
inhibiting the transition from ependymal cell to astrocyte [56].
The over expression of EphB2 in our differentiated OBNS/PC-
GFP as compared to differentiated OBNS/PC-GFP-hNGF
might indicate their less differentiated nature, and their
inclination to be differentiated into ependymal cells rather than
astrocyte.

The transcription factor Foxg1 is an important regulator of
telencephalic cell cycles. Its inactivation causes premature
lengthening of telencephalic progenitor cell cycles and
increased neurogenic divisions, leading to severe hypoplasia of
the telencephalon. These proliferation defects could be a
secondary consequence of the loss of Foxg1 caused by the
abnormal expression of several morphogens (Fibroblast growth
factor 8, bone morphogenetic proteins) in the telencephalon
of Foxg1 null mutants [59]. Brain-derived neurotrophic factor
(BDNF) and its TrkB receptors play a central role in neuronal
maturation and plasticity. The differences in expression profile
of intracellular calcium responses to BDNF and ATP in
subpopulations of differentiating NPCs combined with changes
in the expression of BDNF and TrkB suggest cell subtype-
specific alterations during early neuronal maturation [60].

The oligodendrocyte myelin glycoprotein (OMG) inhibits axon
regeneration after injury in the adult mammalian central
nervous system. Neural stem cells (NSC) expressed both OMG
and its receptor Nogo-R1. An over-expression of OMG affected
NSC expansion by reducing cell proliferation, but did not affect
their differentiation into neurons. The up-regulation of OMG in
differentiated OBNS/PC-GFP compared to OBNS/PC-GFP-
hNGF suggests a new role for OMG during brain development
as a possible regulator of neurogenesis [61]. These findings
indicate a new role for OMG during brain development as a
possible regulator of neurogenesis [61].

PBX1 is expressed embryonically in the telencephalon. In
addition, it is expressed at high levels postnatally in the SVZ, in
the migratory pathway to the olfactory bulb, and in the layers of
the olfactory bulb that are the targets of these migratory
neurons. SVZ proliferating cells and their neuronal progeny
express PBX1 mRNA, whereas glial cells do not express
detectable levels of PBX1. The expression of PBX1 in SVZ
precursor cells and postmitotic neurons suggests a role
for PBX1 in the generation of olfactory bulb interneurons and in
mammalian neurogenesis [62].

The annotation cluster 10 had an enrichment score of 1.7
and included 16 groups of biological processes (BP): cell
projection morphogenesis (8 genes), cell part morphogenesis
(8 genes), cell motion (11 genes), cell morphogenesis involved
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in neuron differentiation (7 genes), neuron projection
morphogenesis (7 genes), axon guidance (5 genes), neuron
differentiation (10 genes), cell morphogenesis involved in
differentiation (7 genes), neuron projection development (7
genes), axonogenesis (6 genes), neuron development (8
genes), central nervous system neuron development (3 genes),
cell morphogenesis (8 genes), cell projection organization (8
genes), central nervous system neuron differentiation (3
genes), and cellular component morphogenesis (8 genes).
Transcripts of genes involved in regulation of aforementioned
16 groups of BP comprised EPHA4, EPHB2, KITLG, EDNRB,
FEZ1, FOXG1, FOXJ1, ID1, NRXN1, and PPAP2B were up-
regulated in differentiated OBNS/PC-GFP by 1.42, 1.56, 1.5,
1.83, 1.49, 1.43, 1.89, 1.65, 1.54, and 1.47 respectively as
compared to the proliferated ones (Table S 5 in File S1), and to
differentiated OBNS/PC-GFP-hNGF.

Ephrin-B3 has been shown to reduce the death of
endogenous NS/PC in the subventricular zone of the mouse
brain without inducing uncontrolled proliferation.
EphA4 receptors were expressed by spinal cord-derived
NS/PC. In vivo, ephrin-B3-Fc increased the proliferation of
endogenous ependymal cells and the proportion of
proliferating cells that expressed the glial fibrillary acidic protein
astrocytic marker in the injured spinal cord [63]. Based on this
information, the over expression of EPHA4 in OBNS/PC-GFP
as compared to the OBNS/PC-GFP-hNGF ones might increase
their potentiality toward the expression of the glial fibrillary
acidic protein astrocytic marker.

Two signaling systems mediated by EDNRB have been
identified as critical players in enteric neurogenesis. Interaction
between these signaling pathways controls enteric nervous
system development throughout the intestine. Activation
of EDNRB specifically enhances the effect of RET signaling on
the proliferation of uncommitted ENS progenitors [64].

Fasciculation and Elongation Protein Zeta-1 (FEZ1) interact
with DISC1 to synergistically regulate dendritic growth of
newborn neurons in the adult mouse hippocampus, and this
pathway complements a parallel DISC1-NDEL1 interaction that
regulates cell positioning and morphogenesis of newborn
neurons [65]. The expression of FoxJ1 in the brain acts on an
array of target genes to regulate the differentiation of
ependymal cells and a small subset of astrocytes in the
adult stem cell niche. Moreover, a subset
of FoxJ1(+) cells harvested from the stem cell niche can self-
renew and possess neurogenic potential [66]. The tumor
suppressor p53 regulates NSC proliferation and differentiation
via the bone morphogenetic proteins (BMP)-Smad1 pathway
and its target gene inhibitor of DNA binding 1 (Id1). p53
deficiency leads to up-regulation of Id1 which contributes to
augmented proliferation and, unexpectedly, accelerated
neuronal differentiation of p53(-/-) NSCs as well [67].
Decreased expression of NRXN1 in NSC resulted in changes
of expression levels for the cell adhesion pathway and neuron
differentiation pathway. Furthermore, astrocyte marker GFAP
was significantly reduced in a time dependent manner that
correlated with NRXN1 reduction. NRXN1 deletions impact
several biological processes during neurodevelopment,
including synaptic adhesion and neuron differentiation [68].
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Ppap2b(-/-) (Lpp3(-/-)) ES cells differentiated in vitro into spinal
neurons show a considerable reduction in the amount of
neural precursors and young neurons formed. In addition,
differentiated Lpp3(-/-) neurons exhibit impaired neurite
outgrowth [69].

From the preceding discussion, the overexpression of Foxg1,
PBX1, FEZ1, NRXN1 in differentiated OBNS/PC-GFP as
compared to differentiated OBNS/PC-GFP-hNGF might
highlight their enhanced neurogenic potential, and their
implication in the generation of interneurons in the olfactory
bulb.

The annotation cluster 11 had an enrichment score of 1.66
and included 3 groups of cellular components (CC): genes
related to synapse (10 genes), synapse part (7 genes), and
synapse (4 genes). Transcripts of genes involved in regulation
of aforementioned 3 groups of CC comprised ATP1A2,
CAMK2N1, CASK, GABBR1, MT3, neurexin 1, NTRK2,
SYT11, and VAMP2 were up-regulated in differentiated
OBNS/PC-GFP by 2.36, 1.57, 1.69, 1.72, 1,43, 1.58, 1.39, and
respectively as compared to the proliferated ones (Table S 5 in
File S1), and differentiated OBNS/PC-GFP-hNGF.

CASK modulates gene expression and its abundance in
cultured neurons is regulated by synaptic activity. During early
development, CASK was expressed in regions where neuronal
progenitor cells were actively dividing, the ventricular and
subventricular zones, suggesting that in addition to regulating
gene expression in mature neurons, CASK may also play a
role in dividing cells [70]. TrkB expression is essential for
dendrite retraction and functional maturation of these neurons
[71]. The overexpression of CASK and TrkB in OB/NS-GFP
might indicate their enhanced neurogenic potential as
compared to OBNS/PC-GFP-hNFG ones.

Clustering for the 194 down-regulated genes (Table S 6 in
File S1) of OBNS/PC-GFP using DAVID had identified 71
annotation clusters with an enrichment score ranged from 9.41
to 0.00 (Table S 6 in File S1).

The annotation cluster 2 had an enrichment score of 7.12
and included 13 groups of biological processes (BP): cell
division (20 genes), cell cycle (24 genes), cell cycle (31 genes),
cell division (19 genes), cell cycle process (25 genes), mitotic
cell cycle (19 genes), cell cycle phase (20 genes), mitosis (11
genes), M phase (15 genes), nuclear division (12 genes),
mitosis (12 genes), M phase of mitotic cell cycle (12 genes),
organelle fission (12 genes). The down-regulation of different
genes related to cell cycle, mitosis, and cell cycle process in
differentiated OBNS/PC-GFP as compared to proliferating ones
might indicate the less proliferating nature of OBNS/PC-GFP
following their differentiation where their genetic programs are
directed toward differentiation into glial and neural progenitors.

Functional Annotation Clustering of Proliferated vs.
Differentiated OBNS/PC-GFP-hNGF

For OBNS/PC-GFP-hNGF, 556 genes were modulated of
which 146 genes were up-regulated and 410 genes were
down-regulated (Table S4 in File S1). Clustering analysis for
the 146 up-regulated genes (Table S2, S7 in File S1) of
OBNS/PC-GFP-hNGFs using DAVID where we identified 47
annotation clusters (Table S 7 in File S1).
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The annotation cluster 14 showed an enrichment score of
0.86 and included 4 groups of biological processes (BP) that
include genes related to synaptic transmission (6 genes),
transmission of nerve impulse (6 genes), cell-cell signaling (8
genes), and neurological system process (7 genes) (Table S 7
in File S1). Transcripts of genes involved in regulation of
aforementioned 4 groups BP comprised CRYAB, GNAOf1,
ILDR2, IL6ST, MSI1, SORBS1, THRA, ERBB4, and were up-
regulated in differentiated OBNS/PC-GFP-hNGF by 3.14, 1.44,
1.52, 1.76, 1.56, 1.71, 1.5, 1.57, and 2.81 respectively as
compared to the proliferated ones (Table S 4 in File S1), and to
OBNS/PC-GFP.

CRYAB is one of the genes involved in cell death and
survival [72], and its up-regulation in our OBNS/PC-GFP-hNGF
as compared to OBNS/PC-GFP might indicate its critical role to
maintain the viability and the differentiated state of OBNS/PC-
GFP-hNGEF in culture.

IL6ST significantly enhanced in vitro survival and promoted
differentiation of human ESC-derived NP cells. It reduced
caspase-mediated apoptosis and reduced both spontaneous
and H202-induced reactive oxygen species in culture. In vitro,
NP cell proliferation and the yield of differentiated neurons
were significantly higher in the presence of LIF. In NP cells, LIF
enhanced cMyc phosphorylation, commonly associated with
self-renewal/proliferation. Also, in differentiating NP cells LIF
activated the phosphoinositide 3-kinase and signal transducer
and activator of transcription 3 pathways, associated with cell
survival and reduced apoptosis. When differentiated in LIF+
media, neurite outgrowth and ERK1/2 phosphorylation were
potentiated together with increased expression of gp130, a
component of the LIF receptor complex [73]. The up-regulation
of IL6ST in our OBNS/PC-GFP-hNGF might significantly
promote their cell proliferation, survival, and differentiation in
vitro as compared to OBNS/PC-GFP ones.

Musashi1 (Msi1) is an RNA-binding protein that is highly
expressed in neural stem/progenitor cells (NS/PC) as well as in
other tissue stem cells. Msi1 binds to the 3'-UTR of its target
mRNAs in NS/PC, prevents their translation, and interferes with
NS/PC differentiation. These results suggest that Msi1 can
influence stem cell maintenance and differentiation by
controlling the subcellular localization of proteins involved in
miRNA biogenesis, as well as by regulating the translation of
its target mMRNA [74]. Our study revealed that MSi1 is up-
regulated in both differentiated OBNS/PC-GFP-hNGF, and
differentiated OBNS/PC-GFP in comparison to their proliferated
counterparts, and was not  modulated between
differentiated OBNS/PC-GFP-hNGF,
and differentiated OBNS/PC-GFP or proliferated OBNS/PC-
GFP-hNGF, and proliferated OBNS/PC-GFP. The up-
regulation of Msi1 in our differentiated OBNS/PC-GFP-hNGF,
and differentiated OBNS/PC-GFP might suggest their high
proliferative nature although they are in differentiated state. So
this suggests that those cells still preserve a remarkable
fraction of cells which maintain the pool of stem cells

The annotation cluster 21 showed an enrichment score of
0.72 and included 16 groups of biological processes (BP) that
include genes related to locomotory behavior (6 genes), neuron
projection development (5 genes), cell projection organization
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(6 genes), axon guidance (3 genes), neuron differentiation (6
genes), neuron development (5 genes), axonogenesis (3
genes), cell morphogenesis involved in neuron differentiation (3
genes), and neuron projection morphogenesis (3 genes) (Table
S 7 in File S1).

Transcripts of genes involved in regulation of aforementioned
16 groups BP comprised EPHA4, FOXJ1, CALCOCO1,
GNAO1, MYO6, and NRXN1 and were up-regulated in
differentiated OBNS/PC-GFP by 1.63, 1.49, 1.54, 1.44, 1.49
respectively as compared to the proliferated ones (Table S 4 in
File S1).

Ephrins and their Eph receptors belong to a signaling
network that regulates neurogenesis. EphA4 is expressed only
by neural stem cells (NSCs), and its expression maintains
NSCs in an undifferentiated state. Epha4 knockdown resulted
in a decrease of NSC proliferation and premature differentiation
[75]. The up-regulation of Msi1 and EPHA4 in our OBNS/PC-
GFP-hNGF might indicate their high proliferation nature as
compared to OBNS/PC-GFP ones.

FOXJ1 is a member of the Forkhead/winged-helix (Fox)
family of transcription factors, which is required for the
differentiation of the cells acting as adult neural stem
cells which participate in neurogenesis and give rise to
neurons, astrocytes, oligodendrocytes. FOXJ1 plays an
important role on neuronal production and neurogenesis in the
adult brain after cerebral ischemia [76]. The present study
revealed that FOXJ1 was up-regulated in differentiated
OBNS/PC-GFP and OBNS/PC-GFP-hNGF by 1.89 and 1.49
folds respectively, a finding that might indicate the marked
ability of OBNS/PC-GFP-hNGF, and OBNS/PC-GFP for
neuronal production and neurogenesis. MYO6 may play a
pivotal role in the mechanism underlying the suppressed adult
neurogenesis after traumatic stress [77].

NRXN1 deletions impact several biological processes during
neurodevelopment, including synaptic adhesion and neuron
differentiation [78]. NRXN1 was up-regulated in differentiated
OBNS/PC-GFP-hNGF and OBNS/PC-GFP by 1.74 and 1.54
fold respectively. This finding indicates the crucial role NRXN1
in neuron differentiation of our examined two cell classes.

Following differentiation of OBNS/PC-GFP and OBNS/PC-
GFP-hNGF, the major markers of pluripotent such as NANOG,
OCT4 [POU5F1], REX1 [ZFP42], FGF4, FOXD3, CLDNS,
GDF3, DNMT3A, and CD2, were down-regulated. Genes
commonly associated with a neural stem/progenitor cell fate
and cycle progression: Jagged 1 (JAG1) [79], SOX2 [80],
SOX4 [81], Nestin (NES) [82], the oligodendrocyte lineage
transcription factor two (OLIG2) [81], the G protein-coupled
receptor 56 (GPR56) [83,84], the vascular endothelial growth
factor (VEGFdisintegrin and metalloproteinase domain nine
(ADAM9), HAT1-, protein kinase-, DNA-activated, catalytic
polypeptide (PRKDC), or RNA binding motif protein 3 (RBM3)
were down-regulated in both cell types (Table S 1, 2 in File
S1).

KEGG Pathway Analysis of the Enriched Genes of
Differentiated OBNS/PC-GFP vs. OBNS/PC-hNGF

To further decipher differences in the differentiation potential
of OBNS/PC-GFP and OBNS/PC-GFP-hNGF, we did KEGG
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pathway analysis of the up-regulated 186 genes which were
identified following the differentiation of OBNS/PC-GFP where
we have disclosed the enrichment of MAPK signaling pathway,
ErbB signaling pathway, Axon guidance, and neuroactive
ligand-receptor interaction pathway, (Table S 8 in File S1). In
comparison, the KEGG pathway analysis of the enriched 146
genes following differentiation of OBNS/PC-GFP-hNGF has
disclosed the enrichment of Axon guidance (Figure S 2), and
calcium channel, voltage-dependent, gamma subunit 7 (Table
S 9 in File S1). Enrichment of functionally distinct signaling
pathways between our examined two cell classes highlight
different capacity for propagation and differentiation following
hNGF infection with marked inclination of OBNS/PC-GFP-
hNGF and OBNS/PC-GFP toward propagation, and neurogenic
differentiation, respectively.

Taken together, the genetic and pathway analysis of our
examined two cell classes during their proliferation and
differentiation phases had revealed the variable modulation of
genes and corresponding pathways. The upregulation of
Foxg1, PBX1, FEZ1, NRXN1 CASK, TrkB and MAPK, ErbB,
axon guidance, and neuroactive ligand-receptor interaction
signalling pathway in differentiated OBNS/PC-GFP as
compared to differentiated OBNS/PC-GFP-hNGF might
highlight their enhanced neurogenic potential, and their
implication in the generation of interneurons in the olfactory
bulb. On the other hand, the up-regulation of CRYAB, GNAO1,
ILDR2, IL6ST, MSI1, SORBS1, THRA, ERBB4, and
enrichment of ErbB signaling pathway in OBNS/PC-GFP-hNGF
as comparison to OBNS/PC-GFP might promote their cell
growth, and glial differentiation potential especially their
tendency toward oligodendrocyte differentiation. The un-
modulation of cancer-related genes such as ErbB-1 and
ErbB-2 in OBNS/PC-GFP-hNGF and OBNS/PC-GFP might
decrease their cancer transformation potential.

Phase Contrast Microscopy, Inmunocytochemistry and
WB Confirmation

Adult Human OB-NS/PC in Culture. To decipher the
precise effects of hNGF overexpression on differentiation, we
validated the microarray data regarding the effects of hNGF on
the expression of the top 5 markers that were confirmed as
neurogenic and glial markers by ICC and WB. Under serum-
free conditions (proliferation media) and in the presence of
EGF and bFGF mitogens, adult human non-transfected
OBNS/PC proliferate to generate cellular clusters, primary
neurospheres, with latencies ranged from 6-8 weeks, and
proliferation capacity lasted for several months. Proliferating
adult human wild OBNS/PC exhibited an intense
immunoreactivity for nestin (Figure 2 A), none of them
expressed differentiation markers: GFAP, MAP2, and O4.
Differentiation assays were performed at passage 15 in the
absence of EGF, bFGF and in the presence of 1% fetal calf
serum supplemented with cAMP, all-trans retinoic acid. Using
phase contrast microscope, the day 4-5-differentiated
OBNS/PC-GFP-NGF showed extensively branched
cytoplasmic processes, and were more confluent (Figure 3, A,
B) in comparison to wild type OBNS/PC (Figure 3, C, D). The
cell growth assay revealed that OBNS/PC-GPF-hNGF grow at
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Figure 2. Fluorescence image (40X) of wild type OBNS/PC
at day 5 post differentiation (passage 15). The OBNS/PC
were stained for the NSC phenotype markers nestin (green)
and GFAP (green, b, c, and red, d), MAP (red, c), B-Tubulinlll
(red, b). Cell nuclei were counterstained with Hoechst (blue, a-
f). At the immunohistochemical level, differentiated wild type
OBNS/PC exhibited positive immunoreactivity for astrocytes
marker (65-75%) (B, C, D), MAP2, mature neuronal marker
(8%) (C), B-Tubulinlll, early neuronal marker (3%) (B).

doi: 10.1371/journal.pone.0082206.g002

a significantly faster rate to OBNS/PC-GPF (Figure S1). At the
immunocytochemical level, differentiated wild type OBNS/PC
exhibited positive immunoreactivity for nestin (Figure 2A),
astrocytes marker (65-75%) (Figure 2 B, C, D), MAP2 mature
neuronal marker (8%) (Figure 2 C), B-Tubulinlll immmature
neuronal marker (3%) (Figure 2 B), NG2 immature
oligodendrocyte marker (8% without PDGFAA+T3, and 15%
with PDGFAA+T3), and O4 mature oligodendrocyte marker
was not revealed in our ICC conditions.

Adult Human OBNS/PC-GFP in Culture. Between P7 and
P10, OBNS/PC were infected with lentivirus transducing GFP,
which is one of the most common markers used to trace them
following engraftment. To clarify the possible effects of such
transfection protocol on proliferation and differentiation of
OBNS/PC-GPP, we applied the same differentiation protocols
previously described for differentiation of wild type (non-
transfected) OBNS/PC. Differentiation of OBNS/PC-GFP was
applied at passage 15, and differentiated exhibited positive
immunoreactivity for GFAP astrocytes marker (60-70%) (Figure
4 A, B, C, D), MAP2 mature neuronal marker (15%) (Figure 4C,
D), B-Tubulinlll immmature neuronal marker (8%) (Figure 4 A,
B), NG2 immature oligodendrocyte marker (7-8% without
PDGFAA+T3 (Figure 4 E), and 16% with PDGFAA+T3 (Figure
4 F), and O4 immmature oligodendrocyte marker is not
expressed in our conditions (Table 1).

Adult Human OBNS/PC-GFP-hNGF in Culture. Adult
human OBNS/PC-GFP-hNGF gave rise to proliferating
neurospheres, first appeared within 1 week of primary culture.
The proliferating cellular clusters increased in diameters and
attain 80% plate confluence within 2 weeks from the onset of
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Figure 3. Phase contrast microscope image for OBNS/PC-
GFP-hNGF (a,b), and wild type OBNS/PC (c,d) at day four
of differentiation. The OBNS/PC-GFP-hNGF were more
confluent and showed extensively branched processes in
comparison to the wild type OBNS/PC.

doi: 10.1371/journal.pone.0082206.g003

culture. The neurospheres were splitted into single cells using
accutase. Approximately 95% of the cells stained positive for
the undifferentiated NSC marker nestin, (data not shown), and
showed negative immunereactivity for GFAP, MAP2, indicating
their highly proliferative and undifferentiated nature. After four
days post differentiation, the OBNS/PC-GFP-NGF showed
extensively branched cytoplasmic processes (Figure 3, A,B) in
comparison to the wild type OBNS/PC (Figure 3, C,D). The
differentiation potential of OBNS/PC-GFP-hNGF was assessed
by examining their reactivity against different neuronal and glial
cells molecular markers at passage 15. In comparison to wild
type (control) OBNS/PC and OBNS/PC-GFP, differentiated
OBNS/PC-GFP-hNGF exhibited positive immunoreactivity for
GFAP astrocytes marker (45-55%) (Figure 5 D, E,F), MAP2
mature neuronal marker (25-30%) (Figure 5 C, F), B-Tubulin I1I
imature neuronal marker (6%) (Figure 5 A, B, E), NG2
immature oligodendrocyte marker (14%, without T3+PDGFAA
(Figure 6 B), and 25% with T3+PDGFAA) (Figure 6 C), and O4
mature oligodendrocyte marker was not revealed in our ICC
condition (data not shown). The OBNS/PC-GFP-hNGF could
be passed at least for 25 generations by mechanical
dissociation and their stemness and multipotency could be
maintained in serum-free medium supplemented with growth
factors for at least one year. NG2 is a type of glia found in
the central nervous system, which is distinct
from astrocytes and oligodendrocytes [85,86]. They get their
name from the expression of NG2 proteoglycan on their
surface. NG2-expressing glia were believed to be the
precursors of oligodendrocytes, but recent evidences suggest
that the different distribution of NG2 cells is correlated to
differences in physiology among cerebellar areas and reflects
changes during aging [87-89].
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Figure 4. Between P7 and P10 the OBNS/PC were infected
with lentivirus transducing GFP. Differentiation of
OBNS/PC-GPP was applied between passage 12-15. The
differentiated OBNS/PC-GFP exhibited positive
immunoreactivity for GFAP astrocytes marker (60-70%) (Figure
5, A,B,C,D), MAP2 mature neuronal marker (15%) (C, D), B-
Tubulinlll immature neuronal marker (8%) (A,B), NG2 positive
cells w/o T3 + PDGFAA (E) (7-8%), and with T3 + PDGFAA (F)
(16%). The nuclei were stained blue with Hoechst.

doi: 10.1371/journal.pone.0082206.g004

Table 1. Differences in differentiation potential between wild
OBNS/PC, OBNS/PC-GFP, and —OBNS/PC-GFP-hNGF

using GFAP, MAP2, B-Tubulinlll, NG2, and O4
immunocytochemistry markers.

Control GFP- GFP-NGF-
Cell Type OBNS/PC OBNS/PC OBNS/PC
GFAP +ve (Astrocyte marker) 65-75% 60-70% 45-55%
MAP2 +ve (Mature neurons) 8% 15% 25-30%
B-Tubulinlll +ve (Immmature

3% 8% 6%
neurons)
NG2+ve (Immature

_ 8% 7-8% 14%

oligodendrocytes)
NG2 +ve +PDGFAA+T3 15% 16% 25%
O4+ve (Immature

Negative negative negative

oligodendrocytes)
doi: 10.1371/journal.pone.0082206.t001
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Figure 5. The differentiation potential of OBNS/PC-GFP-
hNGF was assessed by examining their reactivity against
different neuronal and glial cells molecular markers
between passage 12-15. In comparison to wild type (control)
OBNS/PC and OBNS/PC-GFP, differentiated OBNS/PC-GFP-
hNGF exhibited positive immunoreactivity for GFAP astrocytes
marker (45-55%) (D,E,F), MAP2 mature neuronal marker
(25-30%) (C,D,F). B-Tubulinlll, immmature neuronal marker
(6%) (A,B,E). The nuclei were stained blue with Hoechst.

doi: 10.1371/journal.pone.0082206.g005

Western Blot (WB)

By Western blot (WB), NGF high-affinity receptor (TrkA) and
pan-Trk were down modulated in differentiation conditions.
hNGF protein levels reflected the result observed in ELISA
(Figure 6 A). This means that OBNS/PC-GFP-hNGF were
more active in releasing hNGF, that is also confirmed by
extensively branched cell processes and connections with one
another (Figure 3, A-D).

To highlight how overexpression of NGF influence OBNS/PC
potential to differentiate into neuronal and glial subtypes, we
have studied the effects of NGF over expression on modulation
of major cellular key markers such as high-affinity Trk receptor
and Trk signaling, stemness, survival, cell cycle and
differentiation markers. Earlier reports [90] shown that the
engagement of Trk receptors results in increase of extracellular
signal-related kinase 1/2 activities (Erk1/2), phosphatidylinositol
3-kinase (PI3K) and phospholipase C-gamma 1 (PLC-y1)
phosphorylation, as well as cyclic AMP response element-
binding protein (CREB). Several groups concurrently identified
Akt1 as a downstream target of PI3K activation [91].
Phosphorylated Akt1 positively regulates CREB and NF-kB,
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Figure 6. Western blot data revealed that the NGF protein
levels look similar although the NGF levels were higher in
differentiated OBNS/PC-GFP-NGF respect to OBNS/PC-
GFP. Up- regulation of early oligodendroglia markers
(PDGFRa, NG2 and CNPase) was observed in OBNS/PC-
GFP-hNGF respect to OBNS/PC-GFP. Sox2 and Oct4 were
up-regulated in OBNS/PC-GFP vs. OBNS/PC-GFP-hNGF.
Nurr1, TH, NeuroD1 and B-Tubulinlll expression were similarly
expressed in the 4 cell populations. Survival genes (ERK,
AKT1, CREB) were differently modulated between the 4
classes of cell populations; high-affinity Trk receptor was down
modulated in differentiated cell populations vs proliferated
ones. B. Without T3+PDGFAA, 14% of the differentiated
OBNS/PC-GFP-hNGF exhibited positive immunoreactivity for
NG2 oligodendrocyte marker. C. In the presence of
T3+PDGFAA, almost 25% of differentiated OBNS/PC-GFP-
hNGF were NG2 positive. The nuclei were stained blue with
Hoechst.

doi: 10.1371/journal.pone.0082206.9006

Hoechst-NG2

whose mediate the expression of several pro-survival genes
[92]. Initially described as a transcription factor activated by
stimuli that raise intracellular levels of cCAMP and lead to PKA
activation [92], CREB was found subsequently to be
phosphorylated also at Ser-133 on Ca?* influx or growth factor
stimulation or during multiple forms of synaptic hippocampal
plasticity [93,94,95]. Therefore, CREB seems to act as an
element of convergence and cross-talk between distinct
signaling pathways, rather than as a target of one single
pathway. In the present study, we assessed the regulation of
activated CREB phosphorylated at Ser-133 in OBNS/PC-GFP
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cells versus OBNS/PC-GFP-hNGF either in proliferation or
differentiation conditions. The densitometric analysis of
proteins bands normalized respect to B-actin levels reported a
significant increase of the p-CREB/CREB, p-ERK/ERK1/2 and
p-AKT1/AKT1 ratios in differentiated cells respect to
proliferated ones: 2.98, 17,82, 1,44 fold of expression
respectively in OBNS/PC-GFP-NGF and 1.83, 16,23 and 1,01
fold of expression in OBNS/PC-GFP respectively. In
conclusion, protein analysis of survival genes correlated with
microarray data and the morphological changes and suggest
that NGF over-expression exerted a beneficial neurotrophic
effect during cell differentiation. In addition, we took in account
the protein regulation of two pluripotent neural markers such as
Sox2 and Oct4 involved in NSC self-renewal and generation of
neuronal precursors [96]. Early reports have shown that
constitutive expression of Sox2 inhibits neuronal differentiation
and results in the maintenance of progenitor characteristics
[97]. We have reported up regulation of Sox2 and Oct4 in
OBNS/PC-GFP vs. OBNS/PC-GFP-hNGF in proliferation
conditions. By shifting cells to differentiate, Sox2 and Oct4
proteins expression is down-modulated in OBNS/PC-GFP and
undetectable levels were shown in OBNS/PC-GFP-hNGF
(Figure 6 A)

Another better characterized molecular pathways shared by
neural progenitor cells is the Notch signaling pathway [97]. This
pathway appears to play an essential role in the maintenance
of a stem/progenitor cell pool. During embryogenesis and in
adulthood, expression of Notch1 or its downstream regulators,
such as Hes-1, inhibits neuronal differentiation and results in
the maintenance of a progenitor state. Our data, in fact,
revealed a down-modulation of the Notch1 signaling
highlighted by a remarkable decrease of the intracytoplasmic
domain of Notch1 (NICD1) in both differentiated cells, which
suggest an induction toward neuronal and glial differentiation
(Figure 6 A).

Other WB data have shown a down modulation of immature
oligodendrocyte markers in 5-days differentiated OBNS/PC-
GFP vs. proliferatives ones, in fact, the densitometric analysis
of expression levels of NG2, PDGFRa and CNPase against the
protein levels of B-actin displayed a decrease to 0.17, 0.7 and
0.78 fold of expression respectively. On the contrary, we
observed an increase up to 1.44, 3.21 and 1.28 fold of
expression respectively for the same markers in differentiated
OBNS/PC-GFP-hNGF vs proliferated ones. Previous reports
observed that in the developing and neonatal rat CNS
PDGFRa and NG2 can be localized in the very same punctae
on the cell surface implying a close association of the two
molecules [98-100]. Other experiments by Nishiyama and
colleagues have shown that the co-expression of NG2 and
PDGFRa is important for the proliferative response of glial
progenitor cell to PDGF-AA [101]. The reduced expression of
NG2 resulted in a down regulation of PDGFRa expression and
the absence of NG2 leads to a defect in signal transduction,
most likely due to the inability of PDGFRa and NG2 to form a
complex on the surface of these cells. In conclusion, our WB
data reveal the down modulation of immature oligodendrocytes
markers, such as NG2 and PDGFRa, and CNPase in
OBNS/PC-GFP. On the contrary, OBNS/PC-GFP-hNGF
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because of their higher proliferative capacity, promote up-
regulation of PDGFRa and NG2 expression during the
differentiation process, delaying likely the acquisition of a
mature differentiation phenotype. Although during later stages
of neurogenesis the PDGFRa expression appears to be mainly
restricted to oligodendrocyte progenitor cells, few studies
showed that some neuronal populations of the developing and
adult CNS are able to express the PDGFRa [102-104]. This
suggests that PDGF signaling in our context may have
additional functions to its mitogenic actions for glial progenitors
in the adult CNS. Moreover, the over-expression of 1d1/2
observed in both differentiated cell populations by microarray
along with lack of oligodendroglial fate determinants, Olig1/2,
might play a crucial role in the astrocyte/oligodendrocyte fate
decision.

NeuroD1 and Nurr1, the transcriptional factors expressed
during neuronal dopaminergic commitment, and tyrosine
hydroxylase (TH), the enzyme required for dopamine
synthesis, were expressed in both cell populations and none
significant modulation was observed by the NGF over-
expression. This finding might indicate that the intrinsic ability
to differentiate toward dopaminergic lineage is retained in both
cell populations, although OBNS/PC-GFP-hNGF displayed a
better neuronal morphology as confirmed by
immunocytochemistry analysis (Figure 5).

Our DNA microarray data revealed that CycD1, CDK2
(cyclin-dependent kinase 2), key regulators in mammalian cell
cycle, were down-regulated in differentiated OPBNS/PC-GFP
as compared to proliferated ones with a fold change of 0.51
and 0.65 respectively (Table S 3 in File S1, and Table S 4 in
File S1). In the present study we also examined the modulation
of cell cycle proteins by WB analysis. CycD1 and Cdk4 resulted
down modulated following cell differentiation of both
differentiated cell populations, concurrently with the up
modulation of p27 expression (Cyclin—dependent kinase
inhibitor 1b) as consequence of cell cycle exit, a prerequisite
for cell differentiation.

Conclusions

In this study, we genetically modified adult human OBNS/PC
to overexpress human NGF (hNGF) and green fluorescent
protein (GFP) genes to provide insight about the effects of
hNGF and GFP gene overexpression in adult human
OBNS/PC on their in vitro multipotentiality using DNA
microarray, immunophenotyping, and WB protocols. Our
analysis revealed that OBNS/PC-GFP and OBNS/PC-GFP-
NGF differentiation is a multifaceted process involving changes
in major biological processes as reflected in alteration of the
gene expression levels of crucial markers such as cell cycle
and survival markers, stemness markers, and differentiation
markers. The differentiation of both cell classes was also
associated with modulations of key signaling pathways such
MAPK signaling pathway, ErbB signaling pathway, and
neuroactive ligand-receptor interaction pathway for OBNS/PC-
GFP, and Axon guidance, and calcium channel, voltage-
dependent, gamma subunit 7 for OBNS/PC-GFP-hNGF as
revealed by GO and KEGG. OBNS/PS-GFP-NGF express
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gene markers that predict higher cell survival and proliferation
potential vs. OBNS/PC-GFP. The OBNS/PC-GFP-NGF
produced more NGF during the proliferation phase only, with
suppression of NGF secretion following differentiation.
PDGFRa and NG2 protein expression was up regulated by WB
in differentiated OBNS/PC-GFP-hNGF respect to differentiated
OBNS/PC-GFP along with significant morphological changes
observed by ICC. Taken together these findings reveal the
trophic influence exerted by NGF on NG2-oligodendroglial
precursors and its ability to promote neuronal growth and
branching.

Supporting Information

File S1. Supporting tables.

Table S1 in File S1: Modulated genes between OBNS/PC-
GFP-hNGF proliferation (class 1) and WT OBNS/PC-GFP
proliferation (class 2).

Table S2 in file S1: Modulated genes between OBNS/PC-GFP-
hNGF differentiation (class 1) and WT OBNS/PC-GFP
differentiation (class 2).

Table S3 in file S1: Genes which are differentially expressed
among WT OBNS/PC-GFP differentiation (class 1) vs. WT
OBNS/PC-GFP proliferation (class 2).

Table S4 in file S1: Genes which are differentially expressed
among OBNS/PC-GFP-hNGF differentiation (class 1) vs.
OBNS/PC-GFP-hNGEF proliferation (class 2).

Table S5 in file S1: Functional Annotation Clustering using
DAVID for the 186 up-regulated genes of OBNS/PC-GFP had
identified 63 annotation clusters with an enrichment score
ranged from 9.47 to 0.01.

Table S6 in file S1: Clustering for the 194 down-regulated
genes of OBNS/PC-GFP using DAVID had identified 71
annotation clusters with an enrichment score ranged from 9.41
to 0.00.
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