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Abstract: One of the most effective technology for the 5G mobile communications is 
Device-to-device (D2D) communication which is also called terminal pass-through 
technology. It can directly communicate between devices under the control of a base 
station and does not require a base station to forward it. The advantages of applying D2D 
communication technology to cellular networks are: It can increase the communication 
system capacity, improve the system spectrum efficiency, increase the data transmission 
rate, and reduce the base station load. Aiming at the problem of co-channel interference 
between the D2D and cellular users, this paper proposes an efficient algorithm for 
resource allocation based on the idea of Q-learning, which creates multi-agent learners 
from multiple D2D users, and the system throughput is determined from the 
corresponding state-learning of the Q value list and the maximum Q action is obtained 
through dynamic power for control for D2D users. The mutual interference between the 
D2D users and base stations and exact channel state information is not required during 
the Q-learning process and symmetric data transmission mechanism is adopted. The 
proposed algorithm maximizes the system throughput by controlling the power of D2D 
users while guaranteeing the quality-of-service of the cellular users. Simulation results 
show that the proposed algorithm effectively improves system performance as compared 
with existing algorithms. 
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1 Introduction 
With the rapid development of the mobile Internet and the continuous updating of smart 
terminal technology, the number of wireless mobile users and wireless network traffic 
has exploded [Jameel, Hamid, Jabeen et al. (2019); Ahmad, Li, Waqas et al. (2018)]. It is 
predicted that by 2020, the wireless network traffic will show a thousand-fold increase 
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compared with now, “Internet of Everything” will become the development trend of the 
future wireless communication world [Shaikh and Wesissmuller (2018); Saraereh, 
Mohammed, Khan et al. (2019); Alemaishat, Saraereh, Khan et al. (2019)]. To meet the 
future development of wireless services, mobile communication systems need to find new 
technologies to significantly increase network capacity and spectrum efficiency [Jabeen, 
Ali, Khan et al. (2019); Bakht, Jameel, Ali et al. (2019)]. At present, for the future 
wireless communication networks, many new key technologies have appeared, such as 
millimeter-wave communication [Lee, Patil, Hunt et al. (2019); Jameel, Risaniemi, Khan 
et al. (2019); Saraereh, Alsaraira, Khan et al. (2019); Saraereh, Alsaraira, Khan et al. 
(2020); Shafi, Molisch, Smith et al. (2017); Alemaishat, Saraereh, Khan et al. (2019)], 
Massive MIMO [Saraereh, Khan, Lee et al. (2019); Khan, Rodrigues, Al-Muhtadi et al 
(2019)], heterogeneous networks [Stamou, Dimitriou, Kontovasilis et al. (2019)], Device-
to-Device (D2D) communication [Orsino, Ometo, Fodor et al. (2017)], etc., to explore 
the efficient use and promotion of spectrum and energy from two perspectives: system 
and network. Among these new technologies, D2D communication has attracted 
widespread attention from scholars and the industry. The basic principle of D2D 
communication is that users which are nearby can multiplex cellular user spectrum 
resources and establish direct links for communication to achieve low-power 
transmission, which can not only improve the system throughput, reduce the load on cell 
base stations, reduce terminal delay but can also achieve higher energy efficiency and 
spectral efficiency. Therefore, it has become one of the hotspots in future wireless 
communication technology research [Orsino, Ometo, Fodor et al. (2017); Wang, Zhang, 
Leung et al. (2018); Wang, Tang, Wu et al. (2017); Salehi, Mohammadi, Haenggi et al. 
(2017)]. D2D communication is divided into two types according to different ways of 
using spectrum resources. One is the overlay method. In the overlay method [Wang, 
Zhang, Leung et al. (2018)], the frequency band resources of the cellular user equipment 
and the D2D communication equipment are orthogonal. Users in the two communication 
modes will not cause interference, but the resource utilization of this resource allocation 
method is low. The other is the underlying method. The spectrum of D2D users and 
cellular users is non-orthogonal, and the spectrum utilization rate is high. However, the 
randomness of D2D user locations and multiplexing cellular spectrum will bring serious 
interference between D2D communication and cellular systems [Wang, Tang, Wu et al. 
(2017)]. So, interference management has become an important research direction in 
D2D communication [Sun, Shin, Zhang et al. (2017); Yang, Li, Semasinghe et al. (2017); 
Xu, Huang, Yang et al. (2017); Li and Huang (2017)]. As we all know, the intensity of 
mutual interference between D2D communication and cellular systems is closely related 
to the transmit power of D2D user pairs. Therefore, D2D users can control the inter-link 
interference by dynamically adjusting the transmit power to maximize the system 
throughput while ensuring the communication quality of cellular users using various 
mechanisms such as deep learning [Li, Cao, Chen et al. (2017); Sun, Shi, Yin et 
al. (2019); Wang, Jiang, Luo et al. (2019); Zhang, Wang, Lu et al. (2019)], CNN [Liu, 
Yang, Lv et al. (2019); Zeng, Dai, Li et al. (2019); Luo, Qin, Xiang et al. (2020); Zhang, 
Jin, Sun et al. (2018)] and resource allocations [Li, Li, Zhang et al. (2019); Jiang, Tang, 
Gu et al. (2020); Zhang, Li, Wang et al. (2018)]. It can be seen that power control is the 
key technology to solve the problem of cross-layer interference in D2D communication 
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and cellular systems and has become a research hotspot of D2D communication in recent 
years [Wang, Wang, Jin et al. (2015); Ren, Liu, Liu et al. (2015); Huang, Nasir, Durrani 
et al. (2016); Lin, Ouayang, Zhu et al. (2016)]. Because the power control problem is a 
non-linear objective optimization problem, more and more researchers apply 
mathematical models such as game theory [Chen, Li, Jiang et al. (2015)], stochastic 
optimization [Sakr and Hossain (2015)], graph theory [Ni, Collings, Lipman et al. (2015)], 
mixed integer programming [Alfa, Maharaj, Lall et al. (2016)], etc. to research on power 
control issues. For example, the authors in Chen et al. [Chen, Yu, Shan et al. (2016)] 
proposed a distributed D2D communication power control algorithm and compared it 
with the traditional centralized open-loop power control. The authors in Zhang et al. 
[Zhang, Zhang, Yan et al. (2015)] summarized the power control problem in a hybrid 
D2D and cellular network as a Stackelberg game model, with the cellular user as a leader 
and the D2D user as a follower. A price-based distributed power control method is 
proposed in Ji et al. [Ji, Caire, Molisch et al. (2016)] based on graph theory, has two types 
of centralized and distributed power control and channel allocation joint optimization 
schemes. The authors in Maghsudi et al. [Maghsudi and Stanczak (2015)] modeled the 
spectrum and power allocation problem as a convex optimization problem. Based on the 
random geometry theory, a joint channel selection and power allocation optimization 
algorithm was proposed. In these studies, much prior knowledge (such as channel state 
information) is assumed to be known to D2D users. But, because the traditional pilot 
signal (in the cellular link) is implemented in D2D communication, it is difficult to know 
the precise interference characteristics information between the D2D terminal and the 
base station, especially when the number of D2D users increases, the algorithm 
complexity also rises sharply. Therefore, the open-loop power control and resource 
optimization algorithms based on the a priori assumption that D2D users and BS have no 
information exchange, and no channel state information for D2D users have research 
significance and application prospects. Some of the recent research hotspots on key 
issues of D2D communication based on prior knowledge such as no channel state 
information (CSI) are: i) how to predict the network load status, b) select the optimal 
channel access, c) dynamically control the power of D2D communication users, d) reduce 
the interference between D2D users and cellular users, e) obtain maximum system 
throughput. In Asheralieva et al. [Asheralieva and Miyanaga (2016)], the authors 
proposed an autonomous Q-learning algorithm for channel selection by D2D pairs which 
do not require any information of all D2D pairs. The minimum SINR constraints are 
utilized and the stochastic non-cooperative game mechanism is used to represent this 
optimization problem. However, this algorithm requires an optimal value of Boltzmann 
temperature and optimized locally-observed throughput and state. In Yuan et al. [Yuan, 
Yuang, Feng et al. (2019)], the authors proposed a cooperative algorithm in which the 
D2D transmitters acts as relays to assist the cellular users for utilization of the licensed 
spectrum and aimed to consider a realistic scenario with incomplete CSI and perform the 
one-to-one matching game. However, this scheme requires conversion from cooperative 
to non-cooperative game and requires synchronized time slots for each one-to-one pair 
for obtaining the payoff and feedback. The convergence of this scheme is also degraded 
by an increasing number of cellular and D2D users. Moreover, the learning process is 
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very slow because there is no sub-grouping of the cellular and D2D pairs and also the 
convergence rate is slower. 
Machine learning is an important core of artificial intelligence. The main idea is to 
simulate human learning behavior through computers. After participants are stimulated 
by the environment, they continuously change their behavior based on experience 
accumulation to better adapt to the environment and achieve their interests. In recent 
years, more and more researchers have applied machine learning methods to solve key 
problems of wireless communication systems [Ge, Song, Wu et al. (2019); Peng, Li, 
Abboud et al. (2017)]. Q-learning is a branch of machine learning (Reinforcement 
Learning, RL), and its main elements include the environment, reward, action, and state 
[Maghsudi and Stanczak (2015)]. The learner interacts with the environment through the 
historical state, and through the learning algorithm, calculates and optimizes a certain 
target decision value of the system. The specific process of Q-learning is to establish a Q 
value list. By learning what action each state takes to maximize the Q value, the action 
with the highest Q value is selected as the final action. The learner repeatedly interacts 
with the control environment and uses the reward value to evaluate its performance, 
thereby achieving an optimal decision.  
This paper introduces Q-learning ideas into the study of dynamic resource allocation 
strategies for D2D communication. In a hybrid D2D and cellular network, a mathematical 
model for power control and resource optimization is constructed based on Q-learning. 
Multiple D2D user pairs in a cellular network are considered as a symmetric multi-agent 
system. The D2D user action interacts with the environment, and the final target Q value 
function converges to the maximum value, and the user action in this state is the optimal 
resource allocation strategy. During the Q learning process, the D2D terminal and the 
base station do not need to obtain accurate channel state information and mutual 
interference. The user learns the distributed optimal power allocation strategy through 
historical throughput and power values to optimize the overall system throughput. 
The rest of the paper is organized as follows. In Section 2, the system model is described. 
In Section 3, the proposed Algorithms and their principle are analyzed. Section 4 
provides the simulation results, while Section 5 concludes the paper. 

2 System model and problem description 
2.1 System model 
The network structure used in this paper is shown in Fig. 1. D2D users and cellular users 
use the underlying method to multiplex the spectrum. Within a single cell, there is a 
macro base station BS. The cell comprises of 𝑁𝑁 number of cellular users and 𝑀𝑀 D2D user 
pairs. The sets 𝑚𝑚 ∈ {1,2, … ,𝑀𝑀} and 𝑘𝑘 ∈ {1,2, … ,𝐾𝐾} denote the index set of cellular users 
and D2D pairs, respectively. 
Assume that users are randomly distributed in the cell. There is no signal exchange 
between the D2D user and the BS, that is, the D2D user does not know the channel state 
information, and both the transmitting user and the receiving user are single antennas. 
Suppose there are 𝑁𝑁 orthogonal wireless channels in a BS, where the channels for cellular 
users are represented as the set 𝐿𝐿𝑗𝑗 ∈ 𝐿𝐿, 𝑗𝑗 ∈ {1,2, … ,𝑁𝑁} and the channels used for D2D 
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users are represented as the set 𝐾𝐾𝑗𝑗 ∈ 𝜅𝜅. The average transmit power of each cellular user 
is a fixed value 𝑝𝑝𝑐𝑐, and the power value of the D2D user pair is 𝑝𝑝𝑑𝑑𝑘𝑘 ∈ �𝑝𝑝𝑑𝑑1 ,𝑝𝑝𝑑𝑑2, … ,𝑝𝑝𝑑𝑑𝐾𝐾�, 
𝑝𝑝𝑑𝑑𝑘𝑘 ≪ 𝑝𝑝𝑐𝑐, (𝑘𝑘 ∈ {1,2, … ,𝐾𝐾}). The channel of any user is represented by 𝑐𝑐𝑗𝑗𝑚𝑚 for �𝑈𝑈𝑗𝑗  ,𝑈𝑈𝑗𝑗′�, 
and 𝑗𝑗 ∈ {1,2, … ,𝑁𝑁} . The binary channel selection vector space is N-dimensional and 
𝑐𝑐𝑚𝑚 = [𝑐𝑐1𝑚𝑚, 𝑐𝑐2𝑚𝑚, … , 𝑐𝑐𝑁𝑁𝑚𝑚]𝑇𝑇, (𝑚𝑚 ∈ {1,2, … ,𝑀𝑀}). 
 

 

  
Figure 1: Proposed system model 

When the user selects the 𝑗𝑗th channel for (𝑈𝑈𝑚𝑚  ,𝑈𝑈𝑚𝑚′) at time 𝑡𝑡, 𝑐𝑐𝑗𝑗𝑚𝑚 = 1, otherwise 𝑐𝑐𝑗𝑗𝑚𝑚 = 0. 
That is, each user selects at most one channel. 
∑ 𝑐𝑐𝑗𝑗𝑚𝑚 ≤𝑗𝑗∈𝑁𝑁 1,∀ 𝑚𝑚 ∈ 𝑀𝑀                                                                                                                    (1) 
For a cellular user 𝑈𝑈𝑚𝑚  (𝑚𝑚 ∈ {1,2, … ,𝑀𝑀}), given the transmit power and occupying the 
channel 𝑐𝑐𝑗𝑗𝑚𝑚, the rate 𝑅𝑅𝑗𝑗,𝑚𝑚 of the cellular link can be expressed as 

𝑅𝑅𝑗𝑗,𝑚𝑚
𝑐𝑐 = log2 �1 +

𝑝𝑝𝑐𝑐𝑚𝑚𝑐𝑐𝑗𝑗
𝑚𝑚𝐺𝐺𝑚𝑚

𝑗𝑗

∑ 𝑝𝑝𝑑𝑑
𝑛𝑛𝑐𝑐𝑗𝑗

𝑛𝑛𝐺𝐺𝑘𝑘
𝑗𝑗+𝛿𝛿2𝑘𝑘∈𝜅𝜅

� ,∀ 𝑚𝑚 ∈ 𝑀𝑀, 𝑗𝑗 ∈ {1,2, … ,𝑁𝑁}                                                        (2) 

where 𝑝𝑝𝑐𝑐𝑚𝑚 is the power of the cellular user, 𝑝𝑝𝑑𝑑𝑛𝑛 is the power of the D2D user, 𝛿𝛿2 is the 
variance of the white Gaussian noise power, 𝐺𝐺𝑚𝑚

𝑗𝑗  is the channel gain of the cellular user 
𝑈𝑈𝑚𝑚 on the channel 𝑐𝑐𝑗𝑗𝑚𝑚 at any time 𝑡𝑡 and 𝐺𝐺𝑘𝑘

𝑗𝑗 is the channel gain from the interfering D2D 
users to the cellular users. similarly, for each D2D user pair �𝑈𝑈𝑗𝑗  ,𝑈𝑈𝑗𝑗′�, (𝑗𝑗 ∈ {1,2, , … ,𝑁𝑁}), 
given the transmission power, the channel 𝑐𝑐𝑗𝑗𝑚𝑚 is occupied, and the D2D link rate 𝑅𝑅𝑗𝑗,𝑘𝑘

𝐷𝐷  can 
be expressed as 

𝑅𝑅𝑗𝑗,𝑘𝑘
𝐷𝐷 = log2 �1 +

𝑝𝑝𝑑𝑑
k𝑐𝑐𝑗𝑗

𝑚𝑚𝐺𝐺
𝑘𝑘,𝑘𝑘′
𝑗𝑗

∑ 𝑝𝑝𝑑𝑑
𝑛𝑛𝑐𝑐𝑗𝑗

𝑚𝑚𝐺𝐺
𝑚𝑚,𝑚𝑚′
𝑗𝑗 +𝛿𝛿2𝑘𝑘∈𝜅𝜅 +𝑝𝑝𝑐𝑐𝑚𝑚𝑐𝑐𝑗𝑗

𝑚𝑚� ,∀ 𝑚𝑚 ∈ 𝑀𝑀, 𝑗𝑗 ∈ {1,2, , … ,𝑁𝑁}                                       (3) 
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where 𝐺𝐺𝑘𝑘,𝑘𝑘′
𝑗𝑗  is the channel gain of the D2D user pair on the channel 𝑐𝑐𝑗𝑗𝑚𝑚 at any time 𝑡𝑡. 

Since D2D users do not know the precise channel state information, the values of 𝐺𝐺𝑘𝑘,𝑘𝑘′
𝑗𝑗  

are unknown. 

2.2 Problem description 
In heterogeneous networks, users tend to choose the network that can always get the best 
service. There is no information exchange between cellular users and D2D users, and 
D2D users are unknown about channel availability and channel quality. Therefore, it is 
more difficult to achieve fair and efficient cross-network resource allocation. For users, 
whether to communicate through D2D or cellular base stations, the principle of choice is 
to obtain the best system performance. For users of D2D and cellular heterogeneous 
networks, the maximum throughput is obtained with the smallest power consumption, so 
the resource allocation and power control problems are modeled as utility problems, and 
select the overall rate (i.e., throughput), channel allocation, and power control as the 
utility functions. The goal is to maximize the system user rate (throughput). Therefore, 
channel allocation and power control problems can be modeled as 

max
𝐿𝐿𝑗𝑗∈𝐿𝐿,𝐾𝐾𝑗𝑗∈𝜅𝜅,𝑝𝑝𝑑𝑑

𝑚𝑚,𝑝𝑝𝑐𝑐
��𝑅𝑅𝑗𝑗,𝑚𝑚

𝑐𝑐 + 𝑅𝑅𝑗𝑗,𝑘𝑘
𝐷𝐷 �

𝑗𝑗=1

 

Subject to                         
𝑝𝑝𝑘𝑘 ≤ 𝑝𝑝𝑑𝑑𝑀𝑀 ,∀ 𝑘𝑘 ∈ 𝜅𝜅 
𝑝𝑝𝑑𝑑𝑚𝑚 ≪ 𝑝𝑝𝑐𝑐, 𝑚𝑚 ∈ {1,2, … ,𝑀𝑀}                                  (4) 
among them, the channel of the cellular user is represented as the set 𝐿𝐿𝑗𝑗 ∈ 𝐿𝐿 and the 
channel of the D2D user is represented as the set 𝐾𝐾𝑗𝑗 ∈ 𝜅𝜅, 𝑗𝑗 ∈ {1,2, … ,𝑁𝑁}, the power value 
of the D2D user pair is 𝑝𝑝𝑑𝑑𝑚𝑚 ∈ {𝑝𝑝𝑑𝑑1 , 𝑝𝑝𝑑𝑑2, … , 𝑝𝑝𝑑𝑑𝑀𝑀}, and the power of the cellular network users is 
𝑝𝑝𝑐𝑐. In the D2D system, Eq. (4) is difficult or even impossible to solve. The reason is: first, 
D2D users do not know the precise channel state information, which means that the 
values of 𝐺𝐺𝑘𝑘,𝑘𝑘′

𝑗𝑗  are unknown, and the objective function (4) cannot be solved; second, Eq. 
(4) does not take into account the higher priority (QoS) of cellular users; third, the 
solution of the maximum value of Eq. (4) depends on the set 𝐿𝐿𝑗𝑗 ∈ 𝐿𝐿 and the set 𝐾𝐾𝑗𝑗 ∈ 𝜅𝜅, 
that is, the channel selection and power allocation of the cellular users and D2D users are 
related. Due to 𝑝𝑝𝑘𝑘 ≤ 𝑝𝑝𝑑𝑑𝑀𝑀 ,∀ 𝑘𝑘 ∈ 𝜅𝜅: 

� � log2 �
𝑝𝑝𝑗𝑗𝑚𝑚𝑐𝑐𝑗𝑗𝑚𝑚𝐺𝐺𝑘𝑘,𝑘𝑘′

𝑗𝑗

1 + ∑ 𝑝𝑝𝑑𝑑𝑛𝑛𝑐𝑐𝑑𝑑𝑛𝑛𝑛𝑛∈𝜅𝜅 𝐺𝐺𝑚𝑚,𝑚𝑚′
𝑗𝑗 + 𝛿𝛿2 + 𝑝𝑝𝑐𝑐𝑚𝑚𝑐𝑐𝑖𝑖𝑚𝑚𝐺𝐺𝑚𝑚,𝑚𝑚′

𝑗𝑗 �
𝑚𝑚∈𝑀𝑀

𝑁𝑁

𝑗𝑗=1

 

≥ ∑ ∑ log2 �
𝑝𝑝𝑐𝑐𝑚𝑚𝑐𝑐𝑗𝑗

𝑚𝑚𝐺𝐺
𝑘𝑘,𝑘𝑘′
𝑗𝑗

1+∑ 𝑝𝑝𝑘𝑘𝑐𝑐𝑗𝑗
𝑛𝑛

𝑛𝑛∈𝜅𝜅 𝐺𝐺
𝑚𝑚,𝑚𝑚′
𝑗𝑗 +𝛿𝛿2

�𝑙𝑙∈𝑀𝑀
𝑁𝑁
𝑗𝑗=1                                                                                        (5) 

based on the basic logarithmic properties, Eq. (5) can be written as 

� � log2 �𝑝𝑝𝑗𝑗𝑚𝑚𝑐𝑐𝑗𝑗𝑚𝑚𝐺𝐺𝑘𝑘,𝑘𝑘′
𝑗𝑗 � −� � log2 �1 + �𝑝𝑝𝑑𝑑𝑛𝑛𝑐𝑐𝑑𝑑𝑛𝑛

𝑛𝑛∈𝜅𝜅

𝐺𝐺𝑚𝑚,𝑚𝑚′
𝑗𝑗 + 𝛿𝛿2 + 𝑝𝑝𝑐𝑐𝑚𝑚𝑐𝑐𝑖𝑖𝑚𝑚𝐺𝐺𝑚𝑚,𝑚𝑚′

𝑗𝑗 �
𝑚𝑚∈𝑀𝑀

𝑁𝑁

𝑗𝑗=1𝑚𝑚∈𝑀𝑀

𝑁𝑁

𝑗𝑗=1

 

≥ ∑ ∑ log2 �𝑝𝑝𝑐𝑐𝑚𝑚𝑐𝑐𝑗𝑗𝑚𝑚𝐺𝐺𝑚𝑚,𝑚𝑚′
𝑗𝑗 � − ∑ ∑ log2 �1 + ∑ 𝑝𝑝𝑘𝑘𝑐𝑐𝑗𝑗𝑛𝑛𝑛𝑛∈𝜅𝜅 𝐺𝐺𝑚𝑚,𝑚𝑚′

𝑗𝑗 + 𝛿𝛿2�𝑚𝑚∈𝑀𝑀
𝑁𝑁
𝑗𝑗=1𝑚𝑚∈𝑀𝑀

𝑁𝑁
𝑗𝑗=1                   (6) 
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when above Eq. (6) takes the lower limit, it is the worst scenario of the network 
environment, that is, all D2D users send signals with the maximum available power, 
causing the largest mutual interference. Therefore, for power control, the lower limit of 
the Eq. (6) is maximized. That is 
max � ∑ ∑ log2 �𝑝𝑝𝑑𝑑𝑘𝑘𝑐𝑐𝑗𝑗𝑚𝑚𝐺𝐺𝑘𝑘,𝑘𝑘′

𝑗𝑗 � − ∑ ∑ log2 �1 + ∑ 𝑝𝑝𝑘𝑘𝑛𝑛𝑐𝑐𝑗𝑗𝑛𝑛𝑛𝑛∈𝑀𝑀 𝐺𝐺𝑚𝑚,𝑚𝑚′
𝑗𝑗 + 𝛿𝛿2�𝑚𝑚∈𝑀𝑀

𝑁𝑁
𝑗𝑗=1𝑚𝑚∈𝑀𝑀

𝑁𝑁
𝑗𝑗=1 �             (7) 

where 𝑝𝑝𝑑𝑑𝑘𝑘 ∈ {𝑝𝑝𝑑𝑑1 , 𝑝𝑝𝑑𝑑2, … , 𝑝𝑝𝑑𝑑𝐾𝐾}, 𝑝𝑝𝑑𝑑𝑘𝑘 ≪ 𝑝𝑝𝑐𝑐, (𝑘𝑘 ∈ {1,2, … ,𝐾𝐾}). Eq. (7) is an NP-hard problem, and 
it is difficult to solve it directly. There are many methods for solving NP difficult 
problems, such as branch and bound algorithm, genetic algorithm, etc., but these methods 
need to consider all D2D users and base stations at the same time, all are centralized 
optimization algorithms. When the number of users increases, the complexity of the 
algorithm also rises sharply, and for the non-linear objective function Eq. (7), it is 
necessary to know the characteristics of interference between D2D terminals and base 
stations, but this information is difficult to know. To solve this problem, joint resource 
allocation and power control algorithm based on Q-learning is proposed. D2D terminals 
and base stations do not need to obtain accurate channel state information and mutual 
interference. Users learn the best power allocation strategy to optimize the overall system 
throughput through historical characteristics and power values. That is, multiple D2D 
user pairs in a cellular network are considered as multi-agent systems, and a joint 
optimization algorithm for distributed channel selection and power control based on Q-
learning is designed. The advantage of this distributed algorithm is that it reduces the 
complexity of the algorithm, and only needs its information to perform power control, 
avoiding the complexity of the above calculation. 

3 Proposed algorithm 
3.1 Q-learning 
This article uses one of the most widely used algorithms in reinforcement learning, Q 
Learning [Wang, Wang, Jin et al. (2015); Ren, Liu, Liu et al. (2015)]. The basic principle 
of Q-learning is that the agent, that is, the initiator of the action, causes a change in the 
state of the environment after taking an action. The impact of this change can be 
quantified as a reward. The value or magnitude of the reward value can reflect the reward 
or punishment for evaluating the learner's actions. The learner then chooses the next 
action based on the reward value and the current state of the environment. The selection 
principle is to increase the probability of receiving a positive reward value (award) until 
convergence. Therefore, the action chosen depends not only on the immediate return 
value, but also on the historical environmental status, and has an impact on the 
environmental status and final return value at the next moment.  
Therefore, suppose action set 𝐴𝐴 and state set 𝑆𝑆. The learner chooses an action 𝛼𝛼 ∈ 𝐴𝐴. After 
the environment accepts the action, the state changes and generates an instantaneous 
return value 𝑅𝑅𝑅𝑅(𝑠𝑠). Assuming the current state 𝑠𝑠 ∈ 𝑆𝑆, the next action 𝛼𝛼′ ∈ 𝐴𝐴, 𝛼𝛼′ is related 
to the state 𝑠𝑠′ at the next moment and the cumulative return value 𝑅𝑅𝑅𝑅𝑐𝑐(𝑠𝑠). The learning 
goal of Q-Learning is to dynamically adjust the next action 𝛼𝛼′ ∈ 𝐴𝐴 so that 𝑅𝑅𝑅𝑅𝑐𝑐(𝑠𝑠) takes the 
maximum value. 𝑅𝑅𝑅𝑅𝑐𝑐(𝑠𝑠) can be expressed as follows [Wang, Wang, Jin et al. (2015)]: 
𝑅𝑅𝑅𝑅𝑐𝑐(𝑠𝑠) = 𝑅𝑅𝑅𝑅(𝑠𝑠,𝛼𝛼) + 𝜀𝜀 ∑ 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝛼𝛼)𝑠𝑠∈𝑆𝑆 𝑅𝑅𝑅𝑅𝑐𝑐(𝑠𝑠′)                                                                                 (8)   
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where 0 < 𝜀𝜀 < 1 is the return factor and 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝛼𝛼) is the state transition probability from 
state 𝑠𝑠 to state 𝑠𝑠′ when the learner performs the action 𝛼𝛼′. According to Bellman theory 
[Kiumarsi; Vamvoudakis; Modares et al. (2018)], the maximum value of the cumulative 
reward value 𝑅𝑅𝑅𝑅𝑐𝑐(𝑠𝑠) is expressed as 
𝑅𝑅𝑅𝑅𝑐𝑐

opt(𝑠𝑠) = max{𝑅𝑅𝑅𝑅(𝑠𝑠,𝛼𝛼) + 𝜀𝜀 ∑ 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝛼𝛼)𝑠𝑠∈𝑆𝑆 𝑅𝑅𝑅𝑅𝑐𝑐(𝑠𝑠′)}                                                                  (9) 
that is, Q-Learning is used to learn 𝑅𝑅𝑅𝑅(𝑠𝑠,𝛼𝛼) and 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝛼𝛼) values. The Q function can be 
expressed as 
𝑄𝑄(𝑠𝑠,𝛼𝛼) = 𝑅𝑅𝑅𝑅(𝑠𝑠,𝛼𝛼) + 𝜀𝜀 ∑ 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝛼𝛼)𝑠𝑠∈𝑆𝑆 𝑅𝑅𝑅𝑅𝑐𝑐(𝑠𝑠′)                                                                              (10) 

3.2 Problem mapping 
This article introduces the idea of Q-Learning into the power control algorithm. The 
three major elements of Q-learning are: learner agent, state 𝑠𝑠, action 𝛼𝛼 ∈ 𝐴𝐴, and reward 
signals are mapped into the actual power control model. The specific mapping process 
is described below. 
D2D users are mapped as learners. Suppose there are 𝐾𝐾 D2D users in a cell. For D2D users 
𝑈𝑈𝑖𝑖, the state set is as follows 
𝑠𝑠𝑡𝑡 = �𝑑𝑑𝑖𝑖 , 𝑖𝑖 ∈ {𝑖𝑖, 2, … ,𝐾𝐾},𝐺𝐺𝑘𝑘,𝑘𝑘′

𝑗𝑗 �                                                                                               (11) 
where 𝑑𝑑𝑖𝑖 is the straight-line distance between the user and the base station, and 𝐺𝐺𝑘𝑘,𝑘𝑘′

𝑗𝑗  is the 
direct link gain of the user pair �𝑈𝑈𝑗𝑗 ,𝑈𝑈𝑗𝑗′�. In D2D communication, at time 𝑡𝑡, it is assumed 
that the return function 𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡𝑝𝑝 represents the instantaneous return value if the user accesses 
the cellular network base station for communication; 𝑅𝑅𝑅𝑅𝑑𝑑𝑡𝑡 represents the instantaneous 
return value of users communicating through D2D. For each unit time slot 𝑡𝑡, the mobile 
user has an action 𝛼𝛼𝑝𝑝 in the state 𝑠𝑠𝑡𝑡, resulting in an instantaneous return value 𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡𝑝𝑝 and 
𝑅𝑅𝑅𝑅𝑑𝑑𝑡𝑡. The user learns to derive the best strategy for each 𝑠𝑠𝑡𝑡 by interacting based on the 
user's location and environment. The return value 𝑄𝑄(𝑠𝑠,𝛼𝛼) is the largest. For the network 
scenario in this paper, the rate is used as a return function, and the instantaneous change of 
the rate can intuitively and accurately reflect the network congestion, thereby deriving the 
throughput. Based on the rate of state 𝑠𝑠𝑡𝑡, by calculating the cumulative return value of the 
rate, find the best power control to maximize the system throughput and QoS. Therefore, 
the instantaneous return function 𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡𝑝𝑝 can be expressed as 

𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡𝑝𝑝 = 𝑅𝑅𝑗𝑗,𝑚𝑚
𝑐𝑐 = log2 �

𝑝𝑝𝑐𝑐𝑚𝑚𝑐𝑐𝑗𝑗
𝑚𝑚𝐺𝐺𝑚𝑚

𝑗𝑗

1+∑ 𝑝𝑝𝑑𝑑
𝑛𝑛𝑐𝑐𝑗𝑗

𝑛𝑛
𝑛𝑛∈𝜅𝜅 𝐺𝐺𝑛𝑛

𝑗𝑗+𝛿𝛿2
� ,∀ 𝑚𝑚 ∈ 𝑀𝑀, 𝑗𝑗 ∈ 𝐿𝐿                                            (12) 

The instantaneous return function 𝑅𝑅𝑅𝑅𝑑𝑑𝑡𝑡 can be expressed as 

𝑅𝑅𝑅𝑅𝑑𝑑𝑡𝑡 = 𝑅𝑅𝑗𝑗,𝑚𝑚
𝐷𝐷 = log2 �

𝑝𝑝𝑗𝑗
𝑚𝑚𝑐𝑐𝑗𝑗

𝑚𝑚𝐺𝐺
𝑚𝑚,𝑚𝑚′
𝑗𝑗

1+∑ 𝑝𝑝𝑑𝑑
𝑛𝑛𝑐𝑐𝑗𝑗

𝑛𝑛
𝑛𝑛∈𝜅𝜅 𝐺𝐺

𝑛𝑛,𝑚𝑚′
𝑗𝑗 +𝛿𝛿2+𝑝𝑝𝑐𝑐𝑚𝑚𝑐𝑐𝑖𝑖

𝑚𝑚𝐺𝐺
𝑚𝑚,𝑚𝑚′
𝑗𝑗 � ,∀ 𝑚𝑚 ∈ 𝑀𝑀, 𝑗𝑗 ∈ 𝐿𝐿                                    (13) 

then the total return function is 
𝑅𝑅𝑅𝑅(𝑠𝑠, 𝑎𝑎) = max �𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡𝑝𝑝 + 𝑅𝑅𝑅𝑅𝑑𝑑𝑡𝑡� 

= max � ∑ ∑ log2 �𝑝𝑝𝑑𝑑𝑘𝑘𝑐𝑐𝑗𝑗𝑚𝑚𝐺𝐺𝑘𝑘,𝑘𝑘′
𝑗𝑗 � − ∑ ∑ log2 �1 + ∑ 𝑝𝑝𝑘𝑘𝑐𝑐𝑗𝑗𝑛𝑛𝑛𝑛∈𝑀𝑀 𝐺𝐺𝑚𝑚,𝑚𝑚′

𝑗𝑗 + 𝛿𝛿2�𝑗𝑗∈𝐿𝐿
𝑀𝑀
𝑐𝑐𝑗𝑗=1𝑗𝑗∈𝐿𝐿

𝑀𝑀
𝑐𝑐𝑗𝑗=1 �         (14) 

where 𝑝𝑝𝑑𝑑𝑘𝑘 ∈ {𝑝𝑝𝑑𝑑1 , 𝑝𝑝𝑑𝑑2, … , 𝑝𝑝𝑑𝑑𝐾𝐾}, 𝑝𝑝𝑑𝑑𝑘𝑘 ≪ 𝑝𝑝𝑐𝑐, (𝑘𝑘 ∈ {1,2, … ,𝐾𝐾}).  



 
 
 
A Robust Resource Allocation Scheme for Device-to-Device Communications         1495 

The action set is denoted as 𝛼𝛼𝑖𝑖 ∈ {0,1,2, … .𝑁𝑁}. When 𝛼𝛼𝑖𝑖 = 0, it means that the user pair 
(𝑈𝑈𝑚𝑚,𝑈𝑈𝑚𝑚′) will be connected to the macro base station, and 𝛼𝛼𝑖𝑖 = 𝑗𝑗 (𝑗𝑗 ∈ {1,2, …𝑁𝑁}), which 
means that the user pair (𝑈𝑈𝑚𝑚,𝑈𝑈𝑚𝑚′) will communicate through D2D. The probability of 
defining a cellular link is 𝑃𝑃𝑃𝑃𝑐𝑐, and the probability of selecting D2D communication is 𝑃𝑃𝑃𝑃𝑑𝑑  
[Kiumarsi, Vamvoudakis, Modares et al. (2018)], can be expressed as 

𝑃𝑃𝑃𝑃𝑑𝑑 =
𝑒𝑒𝑅𝑅𝑒𝑒𝑑𝑑𝑡𝑡𝑝𝑝

𝜏𝜏

∑
𝑒𝑒𝑅𝑅𝑒𝑒𝑐𝑐𝑡𝑡𝑝𝑝

𝜏𝜏
𝐿𝐿
𝑙𝑙𝑖𝑖=1

+∑
𝑒𝑒𝑅𝑅𝑒𝑒𝑑𝑑𝑡𝑡

𝜏𝜏
𝐾𝐾
𝑘𝑘𝑖𝑖=1

                            (15) 

𝑃𝑃𝑃𝑃𝑐𝑐 =
𝑒𝑒𝑅𝑅𝑒𝑒𝑐𝑐𝑡𝑡𝑝𝑝

𝜏𝜏

∑
𝑒𝑒𝑅𝑅𝑒𝑒𝑐𝑐𝑡𝑡𝑝𝑝

𝜏𝜏
𝐿𝐿
𝑙𝑙𝑖𝑖=1

+∑
𝑒𝑒𝑅𝑅𝑒𝑒𝑑𝑑𝑡𝑡

𝜏𝜏
𝐾𝐾
𝑘𝑘𝑖𝑖=1

                                                                                                               (16) 

where τ is Boltzmann temperature parameter [Maghsudi and Stanczak (2015)] which is 
expressed as 
𝜏𝜏 = 𝜏𝜏0

log2(1+𝑡𝑡)
                                                                                                                                         (17) 

among them, 𝜏𝜏0 is the initial temperature and 𝑡𝑡 is the channel selection duration. When the 
value of 𝜏𝜏 is high, the probability distribution of channel selection is the same. When the 
value of 𝜏𝜏  is low, the user's probability distribution of the cellular network and D2D 
channel selection is different. Therefore, Eqs. (15) and (16) can be used as channel 
selection measures. The larger the probability value, the easier it is for the user to choose. 

3.3 Algorithm description 
According to the above mapping rules, the specific implementation steps are as follows: In 
the first step, the D2D user first initializes the instantaneous return value 𝑅𝑅𝑅𝑅𝑑𝑑𝑡𝑡𝑝𝑝 and the 
cumulative return value 𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡𝑝𝑝 according to the current state 𝑠𝑠. In the second step, the action 
𝛼𝛼 is arbitrarily selected from the action set 𝜏𝜏{0,1, … ,𝑁𝑁}. By calculating Eqs. (15) and (16), 
the larger the probability value, the easier it is for the user to choose. In the third step, the 
mobile user’s next state 𝑠𝑠′ is used to calculate the total return value 𝑅𝑅𝑅𝑅(𝑠𝑠, 𝑎𝑎) according to Eq. 
(14). The fourth step is to calculate the value of the Q function and continue to perform the 
above steps until it converges to the optimal strategy to obtain the maximum cumulative 
return value. which is 
𝑄𝑄𝑡𝑡(𝑠𝑠, 𝑎𝑎) = 𝑄𝑄(𝑡𝑡−1)(𝑠𝑠, 𝑎𝑎) + 𝛿𝛿�𝑅𝑅𝑅𝑅_𝑡𝑡(𝑠𝑠, 𝑎𝑎) + 𝜀𝜀max𝑄𝑄(𝑡𝑡−1)(𝑠𝑠′, 𝑎𝑎′) − 𝑄𝑄(𝑡𝑡−1)(𝑠𝑠, 𝑎𝑎)�                            (18) 
where 0 < 𝛿𝛿 < 1 , it represents the learning rate. The specific algorithm is shown in 
Algorithm 1. Fig. 2 illustrates the flowchart of the presented algorithm to better indicates 
the stepwise process.  

Algorithm 1: Proposed algorithm 
1: Initialize: For state 𝑠𝑠 ∈ 𝑆𝑆 and action 𝛼𝛼 ∈ 𝐴𝐴  

  𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 0  
     Initialize the reward value 𝑅𝑅(𝑠𝑠, 𝑎𝑎) 

2: End 
3: Learning: 
      Generate a binary random number of rand(.) for all users 
4: if rand(. ) < 𝜀𝜀 
5:    Calculate the action 𝑎𝑎 by Eq. (15) and (16)  
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6: Choose a channel with a higher probability for access 
7: else 
8: Choose the action to make Q reach the maximum 
9: End if 
10: Perform action 𝑎𝑎 according to Eq. (14)  
11: Calculate the total return value 𝑅𝑅(𝑠𝑠, 𝑎𝑎)  
12: Observe the next state 𝑠𝑠′, according to Eq. (18) 
13: Update the Q list 
14: End 

Start

Initialize the state variable, 
action factor, Q-function and 

reward function

Generate binary random sequence for 
each user

Random sequence < 𝜀𝜀

Calculate action via Eq. (15), (16) and
assign channel with a high access
probability

Select action value for maximizing Q-
value

Determine the total reward 

Calculate the next state value via Eq. (18) 
and update the Q-table

End

No
Yes

 

Figure 2: Algorithm flowchart 
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4 Simulation results and performance analysis 
In this section, a computer simulation method is used to evaluate the Q-based power 
control and channel selection joint optimization algorithm proposed in this paper for D2D 
communication. The simulation platform used OPNET's LTE-TDD network simulation 
package [Ding, Lei, Karagiannidis et al. (2017)]. The simulation parameters are shown in 
Tab. 1. Compare the performance of our schemes with the following three schemes: The 
first type uses D2D communication with random access and is called Random; the 
second type uses macro base station communication and is called All to BS. The third 
one is the greedy algorithm for channel selection [Cao, Li, Zhao et al. (2017)], which is 
denoted as Y-greed, and the parameter Y=0.5. First, we compare the trend of the average 
utility (i.e., the average throughput of D2D user pairs) with Q-learning convergence time 
at different Boltzmann [Cao, Li, Zhao et al. (2017)] temperatures. The results are shown 
in Fig. 3. The Boltzmann temperature 𝜏𝜏  affects the convergence rate of Q-Learning. 
When the value of 𝜏𝜏 is small, that is, the Boltzmann temperature is relatively low, Q-
Learning has a fast convergence speed and a large channel selection probability. On the 
other hand, as 𝜏𝜏 increases, the probability distribution of channel selection is almost the 
same. At any value of 𝜏𝜏, the average utility is less than the maximum possible throughput 
𝑇𝑇ℎ𝑚𝑚𝑚𝑚𝑚𝑚 = 120 kbps.  

Table 1: Simulation parameters 
Parameter Value 

Packet Length 1200 byte 
BS cell radius 500 m 

BS Spectrum Bandwidth 20 MHz 
Frame structure Type 2 

Channel Bandwidth B 200 MHz 
BS power  46 dBm 

Noise power 𝛿𝛿2 -128 dBm 
Cellular user average power 𝑝𝑝𝑐𝑐 23 dBm 

BS antenna gain 16 dBi 
User antenna gains 4 dBi 

 
Fig. 4 shows the trend of the average convergence time of Q-Learning for different 
numbers of D2D users. It can be seen that when the Boltzmann temperature 𝜏𝜏 is low, the 
convergence time of the proposed algorithm is equivalent to the greedy algorithm, and 
the temperature rises and the convergence speed decreases, and it takes more time to 
achieve convergence. Fig. 5 shows the trend of total user throughput for different 
numbers of D2D users. It can be seen from Fig. 5 that our proposed Q-Learning solution 
has the largest user throughput and is a greedy algorithm that is followed, and the All to 
BS scheme has the lowest throughput. This is because All to BS does not take advantage 
of the performance gain brought by D2D communication. All users communicate through 
the base station, which will inevitably lead to an increase in network load and congestion 
and a decrease in throughput. In random mode, the performance gain is not obvious due 
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to the randomness of the user's choice of D2D communication. It can also be seen from 
Fig. 5 that our proposed Q-Learning scheme brings an increase in system throughput, 
which is close to the greedy algorithm, but the algorithm complexity is much lower than 
the greedy algorithm. Also, as the Boltzmann temperature 𝜏𝜏 decreases, the number of 
users choosing D2D links increases, so the average throughput of users also increases. 
Fig. 6 shows the trend of user throughput of different power control algorithms in 
comparison with our proposed Q-based resource optimization algorithm under different 
minimum signal-to-interference and noise ratios (SINRs) (that is, different channel states). 
When the user selects channel 𝑗𝑗 for (𝑈𝑈𝑚𝑚 ,𝑈𝑈𝑚𝑚′) at time 𝑡𝑡, if channel 𝑗𝑗 is selected, 𝑐𝑐𝑗𝑗𝑚𝑚 = 1, 
otherwise 𝑐𝑐𝑗𝑗𝑚𝑚 = 0, so the SINR can be expressed as 

𝑆𝑆𝑆𝑆𝑁𝑁𝑅𝑅min = min�𝑆𝑆𝑆𝑆𝑁𝑁𝑅𝑅𝑗𝑗,𝑚𝑚� = min �
𝑝𝑝𝑚𝑚𝑐𝑐𝑗𝑗

𝑚𝑚𝐺𝐺
𝑚𝑚,𝑚𝑚′
𝑗𝑗

∑ 𝑝𝑝𝑑𝑑
𝑛𝑛𝑐𝑐𝑗𝑗

𝑛𝑛
𝑛𝑛∈𝑀𝑀 𝐺𝐺

𝑛𝑛,𝑚𝑚′
𝑗𝑗 +𝛿𝛿2

�,∀ 𝑚𝑚 ∈ 𝑀𝑀, 𝑗𝑗 ∈ 𝜅𝜅                                    (19) 

It can be seen from Fig. 6 that user throughput is a convex function of 𝑆𝑆𝑆𝑆𝑁𝑁𝑅𝑅min. At the 
same 𝑆𝑆𝑆𝑆𝑁𝑁𝑅𝑅min, the All to BS algorithm has the lowest system throughput. The reason is 
that when the 𝑆𝑆𝑆𝑆𝑁𝑁𝑅𝑅min is low, the channel state is poor and the user throughput is small. 
However, when 𝑆𝑆𝑆𝑆𝑁𝑁𝑅𝑅min is too high, the number of channels that meet the user's quality 
of service requirements will also decrease the throughput. Therefore, under 𝑆𝑆𝑆𝑆𝑁𝑁𝑅𝑅min, the 
user throughput function is convex. 

 
Figure 3: Comparison of the average utility of the proposed algorithm versus 
convergence time under different 𝜏𝜏 

Fig. 7 is a comparison of the average transmission power of different power control 
algorithms when the number of users is different. Since different D2D links work in 
different frequency bands, they do not interfere with each other. As can be seen from Fig. 
7, the average transmission power of the proposed algorithm is significantly smaller than 
other algorithms and very close to the greedy algorithm, but the complexity is much 
lower than the greedy algorithm. 
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Figure 4: Comparison of the convergence time of the proposed algorithm and existing 
algorithm under a different number of D2D pairs 

 
Figure 5: Comparison of the average throughput vs. the number of D2D user pairs of the 
algorithms 

 
Figure 6: Comparison of the total throughput of D2D users of the algorithms versus 
different SINR levels 
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Figure 7: Comparison of the transmission power of the algorithms with an increasing 
number of D2D users 

Tab. 2 compares the computational complexity of the proposed algorithm with 
conventional algorithms. It is clear from the results that the proposed algorithm has lower 
computational complexity as compared with the conventional algorithms. It is also clear 
that the proposed algorithm has also better complexity than the genetic algorithm (GA). 

Table 2: Complexity comparison 
Algorithm Complexity 
Random 𝒪𝒪(𝑀𝑀3 + 𝑀𝑀 × 𝑁𝑁) 
All to BS 𝒪𝒪(8𝑀𝑀3 × 𝑁𝑁 + 𝑁𝑁) 

Y-greed [Cao, Li, Zhao et al. (2017)] 𝒪𝒪(𝑀𝑀2 × 𝑁𝑁) 
Genetic Algorithm 𝒪𝒪(𝑀𝑀 × 𝑁𝑁2 + 𝑀𝑀) 

Proposed  𝒪𝒪(𝑀𝑀 × 𝑁𝑁 + 𝑀𝑀) 

5 Conclusions and future recommendations 
With the continuous development of Internet technology, the number of users and 
network traffic has exploded. The era of Internet-of-things and big data is emerging. How 
to greatly increase the network capacity has become the biggest problem facing the 
development of wireless networks. D2D communication allows direct communication 
between user equipment at close distances, which can improve the throughput of the 
system, obtain high spectral efficiency and energy efficiency, and achieve a multiple of 
the wireless network capacity. It is regarded as one of the most promising new 
technologies for future wireless communication systems. This paper introduces the idea 
of reinforcement learning into D2D communication power control research and proposes 
a joint resource allocation and power control algorithm based on Q-learning in D2D and 
cellular heterogeneous networks. The proposed algorithm maps the power control 
problem into a Q-Learning problem in rate as a return function, the instantaneous change 
of rate can intuitively and accurately reflect the instantaneous change of throughput and 
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the occupation of the cellular network. Through continuous learning, adjust the power of 
D2D users, get the Q value table of system throughput, and choose the action with the 
highest Q value as the final act, and finally obtain the joint optimal strategy of channel 
selection and power control. Under the premise of ensuring the quality of service for 
cellular users, the maximum system throughput is obtained through D2D power control. 
Simulation results show that the proposed algorithm can maximize the system throughput 
and ensure the overall performance of the network. Future directions as an extension to 
the proposed study are to consider the interference analysis and integration of mmWave 
communications and evaluate the performance under different usage scenarios. 
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