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Background. Diabetic sensorimotor polyneuropathy (DSPN) is a major form of complication that arises in long-term diabetic
patients. Even though the application of machine learning (ML) in disease diagnosis is very common and well-established in the
�eld of research, its application in DSPN diagnosis using nerve conduction studies (NCS), is very limited in the existing literature.
Method. In this study, the NCS data were collected from the Diabetes Control and Complications Trial (DCCT) and its follow-up
Epidemiology of Diabetes Interventions and Complications (EDIC) clinical trials. �e NCS variables are median motor velocity
(m/sec), median motor amplitude (mV), median motor F-wave (msec), median sensory velocity (m/sec), median sensory
amplitude (μV), Peroneal Motor Velocity (m/sec), peroneal motor amplitude (mv), peroneal motor F-wave (msec), sural sensory
velocity (m/sec), and sural sensory amplitude (μV). �ree di�erent feature ranking techniques were used to analyze the per-
formance of eight di�erent conventional classi�ers. Results. �e ensemble classi�er outperformed other classi�ers for the NCS
data ranked when all the NCS features were used and provided an accuracy of 93.40%, sensitivity of 91.77%, and speci�city of
98.44%. �e random forest model exhibited the second-best performance using all the ten features with an accuracy of 93.26%,
sensitivity of 91.95%, and speci�city of 98.95%. Both ensemble and random forest showed the kappa value 0.82, which indicates
that the models are in good agreement with the data and the variables used and are accurate to identify DSPN using these ML
models. Conclusion. �is study suggests that the ensemble classi�er using all the ten NCS variables can predict the DSPN severity
which can enhance the management of DSPN patients.

1. Introduction

Diabetic sensorimotor polyneuropathy (DSPN) is one of the
major complications with a prevalence of 50% that arise in
patients with long-term Diabetes mellitus (DM) [1–3].
DSPN is a type of nerve damage, which can lead to many
lower limb complications such as numbness, burning,

pinprick sensation, and pain. In the worst case for long term
DSPN, it can lead to ulceration, and amputation, sugges-
tively increasing the chance of early death and reducing the
quality of life of DM patients [4–7]. About 40 to 60 million
DM patients are a�ected with lower limb complications
because of DSPN and in every 30 seconds, one lower limb is
being amputated due to DSPN [8]. Understanding the
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severity of this complication, early and accurate detection of
DSPN is inevitable for proper treatment and to avoid severe
consequences. However, diagnosis methods for the identi-
fication of DSPN patients are controversial. One study has
shown that almost two-thirds of the health physicians were
failed to identify the signs of DSPN, leading to misdiagnosis
[9]. Even though a large number of screening and diagnosis
techniques have been practiced in clinical trials and research,
there is still no standardized diagnosis systems that can be
globally adopted for DSPN [7, 10–12]. .is is because of the
variability in patterns of signs and symptoms in DSPN
patients. Diagnosis of DSPN is still relied on offline inter-
pretation by healthcare professionals. Due to the different
techniques are applied in different regions of the world, this
offline diagnosis is variable to the healthcare professionals,
which can lead to miss leading diagnoses.

To avoid such conflict, American Diabetic Association
(ADA), had issued a position statement and stated that, the
diagnosis of DSPN should be based on the results from
patient’s clinical history and physical examination for signs
and symptoms of DSPN along with nerve conduction studies
(NCS) [13]. NCS has been considered as the benchmark for
the identification and stratification of DSPN in clinical trials
and research [1, 14]. However, it does not provide any
standardized severity grading. Severity stratification of
DSPN is performed using different composite scoring
techniques such as neuropathy disability score (NDS),
neuropathy symptom score (NSS), Toronto clinical neu-
ropathy score (TCNS), and Michigan diabetic neuropathy
score (MDNS) [15]. Even though these composite scoring
techniques are easy to implement, these techniques do not
provide the full diagnosis to understand the severity of the
nerve damage. Henceforth, ADA recommends electro-
physiological testing for accurate diagnosis of DSPN [13].

As DSPN involves the damage of the peripheral nerve, it
can only be examined from the skin biopsy and sural nerve
biopsy [12, 16]. However, both of these techniques are in-
vasive and not suitable for larger clinical trials. .e most
studied electrophysiological examinations such as NCS, and
the ophthalmic imaging tool, corneal confocal microscopy
(CCM) had shown promising reliability in identifying DSPN
[17–20]. CCM has shown promising performance in iden-
tifying early small fiber neuropathy and is being studied on a
wide scale [21–23]. However, this technique is quite ex-
pensive as it requires expensive instruments. Moreover, it is
still an under observational study for the severity classifi-
cation of DSPN. NCS has long been known as the gold
standard test for DSPN diagnosis [24, 25] and has been
proven effective to evaluate dysfunctions of large nerve fibers
[24–26]. Even though this technique has been used as a gold
standard for a few decades, no severity grading system was
proposed solely based on NCS. In 1994, Feldman [27],
proposed a four-class severity grading system with a two-
step diagnosis technique, MDNS including Michigan neu-
ropathy screening instrument (MNSI) and NCS, however, it
has not been widely used. NDS has been widely used in
diabetic neuropathy-related research and is one of the most
commonly used severity grading systems, however, it used
only four clinical examinations of neuropathy symptoms

which are not always reliable, and severe graded patients in
NDS, are always referred toward NCS for better under-
standing [28–32]. In such a scenario, if NCS based grading
system can be available, it will help the healthcare profes-
sionals to better identify and stratify DSPN patients.

.e involvement of machine learning (ML) techniques
in diseases diagnosis, stratification, and smart health care
system are being enormously expanding due to its various
advantages over traditional techniques [33–39]. Recently
ML-based research for DSPN is also being focused on by the
researchers. .e application of ML in DSPN diagnosis using
CCM has received much attention, emphasizing the auto-
mation of the CCM system for a more accurate, reliable, and
reproducible diagnosis of DSPN [21, 40–42]. In literature,
few works have been proposed the application of ML-based
DSPN diagnosis using different composite scoring tech-
niques like MNSI, NDS, and electrophysiological exami-
nation [2, 3, 43–45]. Barthakur et al. [46] developed artificial
neural network (ANN) based DSPN diagnosis techniques
using NCS with an accuracy of 99.8%. However, the result of
this work could not be generalized as it has been trained on a
small dataset without cross-validation. .e trained ANN
model is overfitted and biased, which is the reason behind
the higher accuracy, and it has also only considered the
median nerve for NCS. According to ADA, to diagnose
patients with DSPN, at least two NCS measures should be
considered abnormal. So, the NCS protocol they followed is
not in compliance with ADA. Liu et al. [47] have studied the
performance of ML-based facial motor NCS and found that
the random forest algorithm has shown an optimal per-
formance in differentiating normal and abnormal facial
motor NCS. From this perspective, in this research, we
wanted to develop different ML models, for DSPN severity
classification using NCS and find out the best performing
ML model for reliable severity identification of DSPN using
NCS data.

In the present paper, we have investigated the perfor-
mance of eight different conventional ML algorithms such as
ensemble classifier (EC), random forest (RF), K-nearest
neighbour (KNN), decision trees (DT), support vector
machine (SVM), Naive Bayes (NB), logistic regression (LR),
and discriminant analysis classifier (DAC) for severity
classification of DSPN using NCS. .e choice of algorithms
studied in this study was based on the commonly used
conventional ML algorithms in disease classification prob-
lems based on literature [3, 36, 38, 47, 48]. Ten nerve at-
tributes have been considered for DSPN severity grading in
this study. Patients were classified into four severity classes
as absent, mild, moderate, and severe based on the severity
grading proposed by Feldman et al. [27] using NCS. .e
dataset was imputed using ML techniques to deal with the
missing values and different feature ranking techniques were
used to rank NCS attributes. Furthermore, detailed com-
parisons were done to evaluate the performance of eight
different algorithms and the effect of different feature
ranking techniques on the performance of different ML
models were also evaluated.

.e novelty of this research work is the implementation
and performance analysis of different conventional ML-
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based intelligent classifiers that will be able to classify DSPN
severity levels using NCS. .is study will benefit DSPN
patients as well as diabetic patients with accurate, reliable,
and early identification and stratification of DSPN and will
help to receive early treatments to prevent severe compli-
cations like ulceration and amputation. .is study investi-
gates the effect of NCS attributes from different nerves on
DSPN severity classification using feature ranking. .is
study can support healthcare professionals in accurate, re-
liable, and real-time decision making. Also, the problems
due to lack of uniformity and agreements in the severity
grading by different experts can be solved by using an ML-
based intelligent DSPN severity classifier. As per our
knowledge, this is the first study, where conventional ML
learning-based models were studied for DSPN stratification
using NCS variables. As NCS is considered the gold standard
for DSPN diagnosis, an ML-based severity grading system
will add more value to the identification and classification of
DSPN. It will help the health professionals and researchers,
not to depend on other secondary scoring techniques such as
NDS for severity grading.

2. Materials and Methods

2.1. Data Acquisition. In this research, NCS data were
collected from the Diabetes Control and Complications Trial
(DCCT) and its follow up Epidemiology of Diabetes In-
terventions and Complications (EDIC) clinical trials which
are conducted by the National Institute of Diabetes, Di-
gestive and Kidney Diseases. DCCT enrolled 1,441 patients
with type 1 diabetes in 1983 and at DCCT closeout, started
EDIC with the remaining 1,375 patients from DCCT in 1994
[49–54]. .e details about DCCT and EDIC patients, study
protocol, inclusion and exclusion criteria, NCS criteria, NCS
thresholds have been discussed by the research published by
the research group [54, 55]. .e NCS dataset was collected
from DCCT baseline, first, second, fifth, tenth (closeout),
and EDIC year thirteenth and fourteenth. Nerve conduction
studies were performed by trained and certified electro-
myographers on the dominant side median (motor and
sensory), peroneal (motor), and sural (sensory) nerves using
percutaneous nerve stimulation and surface recording as
done in the DCCT [54, 55]. .e total dataset was consisting
of 5,938 samples. .e NCS variables are median motor
velocity (m/sec), median motor amplitude (mV), Median
Motor F-Wave (msec), Median Sensory Velocity (m/sec),
Median Sensory Amplitude (μV), Peroneal Motor Velocity
(m/sec), Peroneal Motor Amplitude (mv), Peroneal Motor
F-Wave (msec), Sural Sensory Velocity (m/sec), and Sural
Sensory Amplitude (μV).

2.2. Data Imputation. .e collected NCS dataset consists of
5,938 samples, with missing values for different NCS attributes.
Among the 5,938 NCS data samples, the missing number of
data for each NCS attribute are as follows: median motor
velocity (m/sec) 15 data, medianmotor amplitude (mV) 2 data,
medianmotor F-Wave (msec) 54 data, median sensory velocity
(m/sec) 128 data, median sensory amplitude (μv) 12 data,

peroneal motor velocity (m/sec) 48 data, peroneal motor
amplitude (mv) 14 data, peroneal motor F-Wave (msec) 749
data, sural sensory velocity (m/sec) 563 data, and sural sensory
amplitude (μv) 33 data. .e missing data were imputed with
the Random forest [56] data imputation technique. Kokla et al.
[56] have shown that the random forest (RF) data imputation
technique outperforms other imputation techniques for
medical data. .erefore, in this study, the RF technique was
used for the data imputation.

2.3. Data Augmentation. Among the 5,938 data samples, no
duplicate samples were found..e imputed NCS dataset was
unbalanced. .e synthetic Minority Oversampling Tech-
nique (SMOTE) technique [57] had been used to balance the
training dataset to avoid data overfitting. Unlike random
oversampling that only duplicates some random examples
from the minority class, SMOTE generates examples based
on the distance of each data (usually using Euclidean dis-
tance) and the minority class nearest neighbours, so the
generated examples are different from the original minority
class [58]. Python 3.7 in-house written code was used for
data imputation and augmentation. In the dataset among
5,938 data samples, 2610, 1034, 1092, and 1202 samples were
in absent, mild, moderate, and severe classes, respectively.
70% of the original data, 4157 (1827, 723, 764, and 841 were
in the absent, mild, moderate, and severe training set) data
samples were used for training while absent, mild and severe
classes were augmented make the number of samples equal
to absent class sample number so that all classes become
equal. .e remaining 30% of the original dataset, 1782
samples were used as a test set. Figure 1 shows the number of
samples in each class among the original, train, and test sets.

2.4. DSPN Severity Scoring for NCS. For NCS, if two or more
nerve attributes are in the abnormal range, then the patients are
identified as DSPN. In this study, a total of 10 NCS attributes
were considered. .e preprocessed NCS dataset was graded
using the electrophysiological (NCS) scoring technique pro-
posed by Feldman et al. [37]. If x is the number of NCS at-
tributes, then the severity classes are divided as follows:

(i) Absent neuropathy: 0≥ x≥ 1
(ii) Mild neuropathy: x� 2
(iii) Moderate neuropathy: 3≥ x≥ 4
(iv) Severe neuropathy: x≥ 5

2.5. Feature Ranking. A large number of attributes may
confuse the model and over-fit. Feature selections allow
further dimensionality reduction. In this study, the forward
feature selection approach is followed by adding 1 feature at
a time and then checking the performance. To ensure using
the best feature, the feature set is reordered according to
feature importance. In this study, we have used three feature
selection algorithms: minimum redundant maximum rele-
vant (MRMR) [59], Feature selection using neighbourhood
component analysis (fscnca) [60], and Relieff [61]
algorithms.
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2.6. Statistical Analysis. For Statistical analysis, SPSS soft-
ware (version 21.0; SPSS Inc., Chicago, IL, USA) was used.
All the statistical analyses for baseline characteristics of the
EDIC patients were performed based on the DSPN andNon-
DSPN groups and expressed as mean± standard deviation
(SD). Analysis of variance (ANOVA) was used to find out
the statistical significance of the variables. An independent t-
test was used to find out the 95% confidence intervals (95%
CI). Statistical significance was considered at p< 0.05.
Pearson’s correlation coefficient was used to find out the
correlation between different variables with DSPN classes.
For the performance analysis of the ML models, Cohen’s
kappa statistic [62] was used to find the reliability of the
performance of the ML models, and Matthews Correlation
Coefficient (MCC) [63] was used to find the correlations
between the observed and predicted classifications.

2.7.DSPNSeverityClassifierUsingNCSVariables. .is study
focuses on the performance analysis of different conven-
tional ML algorithm based DSPN severity classifiers using
NCS variables. Here, we trained 8 different algorithms:
ensemble classifier (EC), random forest (RF), K-nearest
neighbour (KNN), Decision Trees (DT), support vector
machine (SVM), naive Bayes (NB), logistic regression (LR),
and discriminant analysis classifier (DAC) [3, 36, 38, 47, 48].
Fitcauto function from MATLAB 2020b (.e MathWorks,
Inc., Natick, Massachusetts, United States) was used for
training and hyperparameters’ tuning of the models. We
have optimized all the algorithms by using Bayesian opti-
mization. For each algorithm, the function optimized all
possible hyperparameters using Bayesian optimization [63].
After the optimization of all the algorithms, the best-per-
forming algorithms were selected for further investigation
[64]. Stratified 10-fold cross-validation was used to train and
test differentMLmodels, where the train and test dataset was
divided into 70% and 30%, respectively. .e training dataset
was augmented to make the classes balance, while the test set
was not augmented. .e performance of different ML
models was evaluated using a confusion matrix and different
performance metrics. In this study, we use an evaluation
matrix to test the ML model performance, by calculating

Accuracy, Sensitivity, Specificity, F-1 Score, error rate. Re-
ceiver operating characteristic curve (ROC) and corre-
sponding area under the curve (AUC) was generated for the
best two performing models for all severity class and macro
and microaverage ROC and AUCwas calculated for all class.
Figure 2 illustrates the flow chart of the data processing and
ML model performance analysis.

2.8. Validation of the Severity Grading Model with Binary
DCCT/EDIC Ground Truth. In the NCS dataset, binary
ground truth (Non-DSPN/Absent and DSPN) was available
for the DCCT/EDIC dataset. .ere were 2,837 non-DSPN
and 3,101 DSPN patients. Based on the severity classifica-
tion, we can organize the dataset into binary classes (non-
DSPN vs DSPN) and cross-validate with the DCCT/EDIC
ground truth. Fisher’s exact test was performed on the
dataset, to find out the validity of the grading model with the
ground truth by DCCT/EDIC.

3. Results

3.1. Baseline Characteristics. EDIC patients’ baseline de-
mographic variables have been observed to understand the
characteristics of the patients and are shown in Table 1. .e
EDIC patients ages range from 20 to 50 years with an average
of 35.95± 6.93 years, diabetic duration 14.51± 4.92 years.
From Table 1, it can be visible that, Hemoglobin A1C
(HbA1c) and low-density lipoproteins (LDL) cholesterol are
not statistically significant between the DSPN and Non-
DSPN classes.

3.2. Performance Evaluation of ML Models. NCS features
were ranked based on their importance in identifying DSPN.
.ree different feature selection techniques were studied. In
Figure 3, the results from different feature ranking tech-
niques for NCS have been shown. .e dataset was prepared
based on the results from different ranking techniques and
different ML models were trained using top feature com-
binations starting from top 1 feature, top 2 features until top
10 features. .e optimized hyperparameters for ML models
used in this study are listed in Table 2. Tables 3–5 summarize
the best performance by different ML models for three
different feature ranking techniques.

From Tables 3–5, it can be observed that the ensemble
model with all NCS features (10) using the relief feature
ranking technique is exhibiting better performance with an
accuracy of 93.40%, sensitivity of 91.77%, and specificity of
98.44% in comparison to other models. Figure 4 shows the
confusion matrix of the entire test set for the ensemble
model classifier using all 10 features by relief feature ranking
technique.

.e random forest (RF) model exhibits the second-best
performance using all 10 features with an accuracy of
93.26%, sensitivity of 91.95%, and specificity of 98.95%.
From theMCC, it can be observed that EC, RF, and DTshow
a strong correlation (range 0.87–0.90) between the predicted
and the true class for all feature ranking techniques.
However, for the rest of the models, the MCC values are in
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Table 1: Baseline characteristics of the EDIC patients.

N� 1255 Mean Std. error mean Min Max
95% confidence interval

r p f
Lower limit Upper limit

Age (years) 35.95± 6.93 0.20 20.42 50.99 35.57 36.34 0.18 <0.05 43.96
Diabetic duration (years) 14.51± 4.92 0.14 7.08 26.92 14.24 14.78 0.12 <0.05 18.40
Hba1c (%) 8.22± 1.39 0.04 0.00 14.00 8.14 8.30 0.10 0.95 12.54
HDL Cholesterol (mg/dl) 52.559± 15.98 0.45 0.00 103.0 51.67 53.44 0.002 <0.05 0.01
LDL Cholesterol (mg/dl) 110.68± 36.48 1.03 0.00 235.0 108.7 112.7 0.07 0.21 5.62
BMI (kg/m2) 26.17± 4.05 0.11 16.63 39.48 25.94 26.39 0.04 <0.05 1.56
Hypertension (%) 0.23± 0.42 0.01 1.00 0.16 0.20 0.25 0.16 <0.05 31.75
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Figure 3: Ranking of the NCS features using (a) mrmr (b) relief (c) fscnca feature ranking techniques.
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the range of 0.58–0.69 indicating that the predicted and the
true classes are weakly correlated. Figures 5 and 6 depict the
ROC for the best performing two algorithms. From Figure 5,
it can be observed that the microaverage and macroaverage
AUCs are 0.96 and 0.95, respectively, and the AUC for each
class for the best performing model has been shown.

.e impact of individual features on DSPN severity
has also been studied. .e best-performing model was
trained for individual NCS features. EC model was trained
for all 10 NCS variables and the performance metrics for
all the features can be found in Table 6. It can be observed
that individual features are unable to contribute to

Table 2: Optimized Hyperparameters of the studied ML algorithms.

Algorithm Tuned Hyperparameters

Discriminant analysis classifier (DAC) Discriminate type� quadratic
FillCoeffs�Off

Ensemble classification model (EC)

Method�AdaBoostM2
Number of learning cycles� 477

Learning rate� 0.9845217666852848
Maximum number splits� 311,

Number of variables to sample� all

K-nearest neighbour (KNN) model

Distance�Euclidean,
Number of neighbors� 1,
Distance weight� inverse

Standardized� false

Naive Bayes classifier (NB)
Distribution names�mvmn (multivariate multinomial distribution)

Kernel� normal
Support� unbounded

Support vector machine classifier (SVM)

Learners� SVM
Categorical predictors� all
Split criterion� deviance

Maximum number splits� 960
Surrogate� off

Decision Tree (DT)
Split criterion� deviance

Maximum number splits� 960
Surrogate� off

Random Forest (RF)
Number of trees� 100

Compute OOB prediction (flag to compute out-of-bag predictions)� on
Method� classification

Logistic Regression (LR) lambda (regularization parameter)� 1e-4

Table 3: Performance evaluation of different ML models using mrmr feature selection technique for NCS.

Features Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Error rate MCC Kappa AUC
EC Top 10 93.25± 0.95 91.69± 1.03 98.44± 0.61 91.77± 1.02 0.07± 0.01 0.90 0.82 1.00
RF Top 10 93.06± 0.63 91.61± 0.69 98.92± 0.59 91.52± 0.76 0.07± 0.01 0.89 0.81 1.00
DT Top 10 91.34± 1.60 89.86± 1.88 99.37± 0.46 89.46± 1.99 0.09± 0.02 0.87 0.77 0.98
KNN Top 10 79.47± 0.94 75.71± 0.89 91.95± 1.05 75.89± 1.01 0.21± 0.01 0.69 0.45 0.91
SVM Top 8 75.98± 1.59 69.29± 1.92 75.18± 2.06 72.54± 1.84 0.24± 0.02 0.64 0.36 0.96
NB Top 10 73.90± 2.02 72.35± 2.16 95.31± 1.01 72.43± 2.02 0.26± 0.02 0.64 0.30 0.95
LR Top 9 71.76± 1.89 69.45± 1.85 93.42± 1.22 69.19± 1.82 0.28± 0.02 0.60 0.25 0.95
DAC Top 9 70.73± 2.44 68.66± 2.43 94.11± 1.24 68.52± 2.24 0.29± 0.02 0.59 0.22 0.94

Table 4: Performance evaluation of different ML models using relief feature selection technique for NCS.

Features Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Error rate MCC Kappa AUC
EC Top 10 93.40± 0.97 91.77± 1.15 98.44± 0.73 91.90± 1.11 0.07± 0.01 0.90 0.82 1.00
RF Top 10 93.25± 0.80 91.92± 1.04 99.10± 0.53 91.78± 1.04 0.07± 0.01 0.90 0.82 1.00
DT Top 10 91.43± 1.66 89.99± 1.96 99.40± 0.47 89.57± 2.05 0.09± 0.02 0.87 0.77 0.98
KNN Top 10 79.47± 0.94 75.71± 0.89 91.95± 1.05 75.89± 1.01 0.21± 0.01 0.69 0.45 0.91
SVM Top 8 75.98± 1.59 69.29± 1.92 75.18± 2.06 72.54± 1.84 0.24± 0.02 0.64 0.36 0.96
NB Top 10 73.90± 2.02 72.35± 2.16 95.31± 1.01 72.43± 2.02 0.26± 0.02 0.64 0.30 0.95
LR Top 9 71.76± 1.89 69.45± 1.85 93.42± 1.22 69.19± 1.82 0.28± 0.02 0.60 0.25 0.95
DAC Top 9 70.73± 2.44 68.66± 2.43 94.11± 1.24 68.52± 2.24 0.29± 0.02 0.59 0.22 0.94
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identifying DSPN severity with better performance. .is
also indicates that all the NCS features are contributing to
DSPN severity identification in combination. So, with the
available features, it becomes possible to the best possible
stratification performance using the best ML model.

3.3. Validation of the Severity Grading Model with Binary
DCCT/EDIC Ground Truth. Considering the reasonable
performance of the proposed 4-class classification problem, it is
important to evaluate themodel performance with any existing
ground truth as the class labels of the 4-class NCS dataset is not

Predicted Class No of Samples

Absent Mild Moderate Severe

Ac
tu

al
 C

la
ss

Absent 2568 42 0 0 2610

Mild 52 942 0 40 1034

Moderate 0 1 981 110 1092

Severe 0 113 34 1055 1202

Total 2620 1098 1015 1205 5938

Figure 4: Confusion matrix of the test set for ensemble classifier using Top 10 ranked features by relief feature ranking technique.

Table 5: Performance evaluation of different ML models using fscnca feature selection technique for NCS.

Features Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Error rate MCC Kappa AUC
RF Top 10 93.26± 0.91 91.95± 1.03 98.95± 0.62 91.80± 1.07 0.07± 0.01 0.90 0.82 1.00
EC Top 10 93.16± 0.89 91.49± 1.00 98.38± 0.78 91.62± 0.96 0.07± 0.01 0.89 0.82 1.00
DT Top 10 91.60± 1.95 90.19± 2.36 99.40± 0.47 89.78± 2.44 0.08± 0.02 0.87 0.78 0.98
KNN Top 10 79.47± 0.94 75.71± 0.89 91.95± 1.05 75.89± 1.01 0.21± 0.01 0.69 0.45 0.91
SVM Top 8 75.03± 1.42 68.17± 1.76 72.69± 2.70 71.95± 1.65 0.25± 0.01 0.63 0.33 0.95
NB Top 10 73.90± 2.02 72.35± 2.16 95.31± 1.01 72.43± 2.02 0.26± 0.02 0.64 0.30 0.95
LR Top 10 71.57± 1.92 69.15± 1.88 93.33± 1.27 68.91± 1.84 0.28± 0.02 0.59 0.24 0.95
DAC Top 10 70.33± 2.09 68.15± 2.04 93.96± 1.42 68.05± 1.95 0.30± 0.02 0.58 0.21 0.93

MultiClass ROC Plot with Respective AUC

ROC curve of Absent class (AUC = 0.99)
ROC curve of Mild class (AUC = 0.93)
ROC curve of Moderate class (AUC = 0.95)
ROC curve of Severe class (AUC = 0.92)
micro-average ROC curve (AUC = 0.96)
micro-average ROC curve (AUC = 0.95)
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Figure 5: ROC curve for all 10 features using relief feature ranking
using ensemble classifier.

MultiClass ROC Plot with Respective AUC

ROC curve of Absent class (AUC = 0.97)
ROC curve of Mild class (AUC = 0.91)
ROC curve of Moderate class (AUC = 0.95)
ROC curve of Severe class (AUC = 0.91)
micro-average ROC curve (AUC = 0.94)
micro-average ROC curve (AUC = 0.94)
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Figure 6: ROC curve for all 10 features using fscnca feature ranking
using random forest classifier.

Computational Intelligence and Neuroscience 7



widely adopted classification scheme and are not used in any
machine learning paradigm. .erefore, our proposed model
could be more reliable than Feldman’s classification. However,
this has to be validated. In the NCS dataset, a binary ground
truth (non-DSPN vs DSPN) was available for the DCCT/EDIC
dataset, which is reliable ground truth labels. We, therefore,
tested the performance of our model for two-class (DSPN
(mild, moderate and severe) vs non-DSPN (absent) classifi-
cation. Fisher’s exact test was performed on the dataset, to find
out the validity of the grading model with the ground truth by
DCCT/EDIC. Table 7 shows the number of samples in different
classes graded by the model proposed by Feldman et al. [27] in
comparison to DCCT/EDIC ground truth. It was found that all
the absent patients were accurately identified by the grading
model proposed by Feldman et al. [27].

However, among the 2837 non-DSPN, 219 and 8 patients
were classified in Mild and Severe classes, respectively
(Table 7). On the contrary, using our proposed stratification
model, only 42 non-DSPN patients were miss-classified to
DSPN and 52 Mild DSPN patients were miss-classified to
non-DSPN. Overall, 3.8% miss-classification of Feldman
et al. [27] model is reduced to 1.6% using our model.

4. Discussion

Diabetic sensorimotor polyneuropathy (DSPN) is a length-
dependent impediment for diabetes patients. Over the past
decades, research is being conducted to establish DSPN

definitions, diagnosis criteria, standardized diagnosis
method, and treatment protocol [1, 4, 13, 65]. However, to
date, DSPN diagnosis and severity stratification rely on
subjective analysis of the diagnosis results by specialized
expertise. As there are controversies among health profes-
sionals regarding the DSPN screening criteria and variation
in screening techniques in different countries, subjective
diagnosis can be misleading.

American Diabetic Association (ADA) had issued a po-
sition statement in 2017 and stated that diagnosis of DSPN
should be based on the results from patient’s clinical history
and physical examination for signs and symptoms of DSPN
along with nerve conduction studies (NCS) [13]. NCS has been
considered as the benchmark for the identification and
stratification of DSPN [1, 14]. However, it does not provide any
severity grading. In practice, severity stratification of DSPN is
performed using different composite scoring techniques. Even
though these composite scoring techniques are widely studied,
their reliability to understand the severity of the nerve damages
is questionable. Henceforth, ADA recommends NCS testing
for accurate diagnosis of DSPN [13] and it has long been
known as the gold standard test for DSPN diagnosis [66].
Nerve conduction study has been proven effective to evaluate
dysfunctions of large nerve fibers [66]. Even though this
technique has been used as a gold standard for a few decades, a
standardized severity grading system for NCS is not available.
In 1988, Dyck et al. [66] proposed a 4 stages, severity grading
system for DSPN, where they considered NCS, neurological

Table 6: Performance evaluation of individual NCS features using the EC model.

NCS Features Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Error rate MCC kappa
Peroneal motor velocity (m/sec) 57.09± 1.30 57.00± 1.29 55.49± 1.16 56.24± 1.22 0.43± 0.01 0.42 0.13
Median sensory velocity (m/sec) 48.54± 1.22 48.44± 1.21 46.46± 1.39 47.43± 1.29 0.51± 0.01 0.30 0.27
Median motor F-wave (msec) 55.92± 1.62 55.84± 1.62 55.14± 1.65 55.48± 1.63 0.44± 0.02 0.41 0.15
Peroneal motor amplitude (mV) 50.27± 1.57 50.17± 1.56 47.74± 1.65 48.92± 1.60 0.50± 0.02 0.33 0.25
Sural sensory velocity (m/sec) 51.11± 1.25 51.00± 1.25 48.26± 1.55 49.59± 1.40 0.49± 0.01 0.34 0.23
Median motor velocity (m/sec) 53.53± 1.39 53.44± 1.38 51.40± 1.44 52.40± 1.41 0.46± 0.01 0.37 0.19
Median sensory amplitude (μV) 49.84± 1.65 49.72± 1.64 46.29± 2.00 47.94± 1.83 0.50± 0.02 0.32 0.25
Peroneal motor F-wave (msec) 52.92± 0.90 52.84± 0.91 51.37± 1.09 52.09± 0.98 0.47± 0.01 0.37 0.20
Sural sensory amplitude (μV) 50.15± 1.07 50.03± 1.06 47.30± 1.25 48.63± 1.15 0.50± 0.01 0.32 0.25
Median motor amplitude (mV) 42.73± 1.92 42.65± 1.93 39.93± 2.11 41.25± 2.03 0.57± 0.02 0.22 0.34

Table 7: Validation of the grading model proposed by Feldman et al. [27] and this work with DCCT/EDIC ground truth using Fisher exact
test.

DCCT/EDIC ground truth
Total no of samples in the dataset

Non-DSPN DSPN
Severity grading by Feldman et al. [27]
Absent 2610 (100%) 0 (0%) 2610
Mild 219 (21%) 815 (79%) 1034
Moderate 0 (0%) 1092 (100%) 1092
Severe 8 (0.67%) 1194 (99.33%) 1202
Total 2837 3101 5939
Severity grading by this work
Absent 2568 (98.4%) 42 (1.61%) 2610
Mild 52 (5.03%) 982 (94.97%) 1034
Moderate 0 (0%) 1092 (100%) 1092
Severe 0 (0%) 1202 (100%) 1202
Total 2837 3101 5939
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examination, and quantitative nerve test. In 1994, Feldman
et al. [27], proposed a four-class severity grading system with a
two-step diagnosis technique [67], MDNS including Michigan
neuropathy screening instrument (MNSI) and NCS. In 1997,
Dyck et al. [68] proposed a composite scoring technique in-
cluding 4 stage severity grading which combines the Neu-
ropathy Impairment Score–Lower Limb (NIS-LL) with seven
tests (NIS(LL)+7). Among the seven tests, vibration detection
threshold, peroneal nerve compound muscle action potential
amplitude,motor conduction velocity and distal motor latency,
tibial distal motor latency, and sural sensory nerve action
potential amplitude were included. In 2015, a Japanese group
led by Baba et al. [69] proposed a new NCS based 5 class
severity grading system using the attributes from the tibial
motor and sural sensory nerves. However, this grading model
has been validated on the Japanese population, and for type 2
diabetes patients. England et al. [65] suggested observing sural
sensory and peroneal motor nerve attributes as these nerves are
the most sensitive for DSPN diagnosis. Besides, if any of the
attributes from these two nerves are abnormal, other nerve
attributes are recommended to be studied, which includes the
tibial nerve. In the grading system by Baba et al. [69], however,
the peroneal nerve was not considered, hence its performance
in diagnosing DSPN is debatable.

In 2020, Weng et al. [70] used a 4-class severity grading
based on 5 nerve conduction studies for DSPN stratification,
where if patients have 2 abnormal NCS among 5, it is graded
as mild, 3-4 abnormal NCS is graded as moderate and
greater than equal to 5 abnormal NCS is considered as
severe. .is is proposed as electrophysiological severity
definition by Feldman et al. [27]. .is grading system has
been used in our study for comparing the performance of the
ML models with NCS data for DSPN severity classification.
In the NCS dataset, binary ground truth (non-DSPN/absent
andDSPN) was available for DCCT/EDIC. Fisher’s exact test
was performed on the dataset, to find out the validity of the
grading model with the ground truth by DCCT/EDIC.

We found that there is a grey area between the absent
class and mild class by the ground truth and the grading
model proposed by Feldman et al. [27]. 21% of the original
Absent class patients were identified as Mild class. As these
two are adjacent classes, having a grey area is quite common
in clinical work as these adjacent classes share almost similar
or slightly different NCS values. ML can be a potential
solution to distinguish these minor characteristic changes in
adjacent classes and accurately identify the classes. However,
in this research, we used the grading model proposed by
Feldman et al. [27] for comparison, as apart from the grey
zone for mild class, it is in agreement with the DCCT/EDIC
ground truth for the other three classes.

Recently, ML-based research for DSPN is being focused
on by the researchers. In literature, few works have been
proposed the application of ML-based DSPN diagnosis
using different composite scoring techniques like MNSI,
NDS, and electrophysiological examination [2, 3, 43–45]. In
the present paper, we have investigated the performance of
eight different conventional ML algorithms such as en-
semble classifier (EC), random forest (RF), K-nearest
neighbour (KNN), Decision Trees (DT), support vector

machine (SVM), naive Bayes (NB), logistic regression (LR),
and discriminant analysis classifier (DAC) for severity
classification of DSPN using NCS. Ten nerve attributes have
been considered for DSPN severity grading in this study.
Patients were classified into four severity classes as absent,
mild, moderate, and severe based on the severity grading
proposed by Feldman et al. [27].

.ree different feature ranking techniques such as relief,
mrmr, and fscnca were used to find out the best performing
NCS features in DSPN severity grading, while all the ML
models were optimized using the Bayesian optimization
technique. .e optimized ML models were trained for
different combinations of features starting from Top 1 to Top
10 features depending on different feature ranking results.
For all three feature ranking techniques, the ensemble
classification model has shown better performance in
comparison with other ML models used in this study. .e
best performance was achieved by the EC model with all 10
NCS features using the relief feature ranking technique with
an accuracy of 96.33%. It was evident from Tables 3–5 that
for all the feature ranking techniques, the EC model has
superior performance while all the NCS parameters are used.

From Cohen’s Kappa statistic for different ML models, we
have found that KNN, SVM, NB, LR, and DAC exhibited fair
agreement between the predicted and expected classes with a
kappa value range from 0.21–0.45, indicating that, the inputs
are fairly accurate to identify DSPN severity using these
models. For the EC, RF, and DT, the kappa value ranged from
0.77–0.82, which indicates that the models are in good
agreement [62] with the data and the variables used and are
perfectly accurate to identify DSPN using these ML models
[62]. Now to understand the impact of individual NCS features,
we have trained the best performing ensemble model from the
previous analysis for each NCS variable. It was observed that
none of the NCS variables was capable of identifying DSPN
severity classes with better performance individually. From this
study, we can recommend that all NCS variables (available in
this dataset) need to be considered while DSPN severity
grading for higher accuracy of the model’s performance. From
this observation, it can be said that all the NCS features
combined were contributing better to identifying DSPN.
.erefore, any other NCS datasets with more NCS parameters
can be optimized with better-ranked features to enhance the
model performance even further. As per our knowledge, this is
the first study, where conventional ML learning-based models
were studied for DSPN severity classification using NCS
variables. .e strength of our study was it has been designed
based on a large cohort of patients from 28 different medical
centers of EDIC trials, which adds value to our developed
model by having variability in the population. However, we
have considered the database consists of only type 1 diabetic
patients. In the future, both type 1 and 2 patients’ datasets can
be incorporated to have a realistic and generalized model in
DSPN severity classification using NCS. .e ML models need
to be validated on multiple datasets for classification problems
[71]. In this study, the ML models were developed and tested
on the dataset collected fromDCCTand EDIC clinical trials. In
a clinical disease classification problem, having multiple
datasets, where clinical data from patients are used are not
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always available publicly, especially for the large clinical trials
like used in this study. However, as the ML models, were
trained on larger real clinical trials data, and the ground truths
have been provided by validated clinical professionals, the
development and testing of theMLmodels performance can be
considered reliable. In future, the ML model’s performance
needed to be validated with a different dataset. As the NCS
model has been selected as a gold standard, an ML-based
severity grading system will add more value to the identifi-
cation and classification of DSPN. It will help the health
professionals and researchers, not to depend on other sec-
ondary scoring techniques such as NDS for severity grading.

5. Conclusions

DSPN is being considered to have a life-threatening impact
on diabetes patients since the 1980s. Even though much
research is being conducted, still now, DSPN diagnosis
techniques are complicated contradictory, and subjective.
Nerve conduction studies (NCS) have been used as a gold
standard for DSPN for over a few decades. Many researchers
have proposed many grading systems over the year, how-
ever, none has been adopted as a standardized severity
grading model for NCS. An ML-based grading system can
help to approximate the versatility of the available grading
methods and improve the performance in accurately and
reliably identifying DSPN severity.

We have observed the performance of different con-
ventional ML algorithms in the diagnosis and severity
stratification of DSPN using NCS. We have used different
feature ranking techniques to find out the best combination
of features for DSPN identification and stratification. From
this analysis, we have found that the optimized ensemble
classifier algorithm with all NCS variables provides the best
performance in DSPN stratification. Here we noticed that
feature ranking techniques have no impact on the feature
selection from the NCS dataset, indicating that, all the
variables are equally important and combining them will
help in identifying different DSPN classes. So, an ensemble
classifier based NCS grading technique can help healthcare
professionals to identify DSPN patients and grade their
severity. .is type of system can overcome the problem of
inconsistency and lack of agreement between professionals
with diagnostic criteria for DSPN.
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