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Abstract: Background: Diabetic peripheral neuropathy (DSPN), a major form of diabetic neuropathy,
is a complication that arises in long-term diabetic patients. Even though the application of machine
learning (ML) in disease diagnosis is a very common and well-established field of research, its appli-
cation in diabetic peripheral neuropathy (DSPN) diagnosis using composite scoring techniques like
Michigan Neuropathy Screening Instrumentation (MNSI), is very limited in the existing literature.
Method: In this study, the MNSI data were collected from the Epidemiology of Diabetes Interven-
tions and Complications (EDIC) clinical trials. Two different datasets with different MNSI variable
combinations based on the results from the eXtreme Gradient Boosting feature ranking technique
were used to analyze the performance of eight different conventional ML algorithms. Results: The
random forest (RF) classifier outperformed other ML models for both datasets. However, all ML
models showed almost perfect reliability based on Kappa statistics and a high correlation between the
predicted output and actual class of the EDIC patients when all six MNSI variables were considered
as inputs. Conclusions: This study suggests that the RF algorithm-based classifier using all MNSI
variables can help to predict the DSPN severity which will help to enhance the medical facilities for
diabetic patients.

Keywords: DSPN; ML; severity classification; machine learning; diabetic neuropathy; MNSI

1. Introduction

Diabetes mellitus (DM), one of the fastest rising health concerns of the 21st century. The
number of patients affected with DM worldwide has increased from 151 million in 2000 to
463 million in 2019; over just 20 years [1]. International Diabetic Federation (IFD) estimated
that globally by 2045, approximately 700 million people will be affected by diabetes [1].
DM is a common yet costly metabolic disease, which leads to serious damage to different
organs of the body with the long-term uncontrolled blood glucose level [2–5]. Among all
the complications that arise due to DM, diabetic sensorimotor polyneuropathy (DSPN) a
very common form of neuropathy caused by diabetes. It affects limb nerves, especially in
the lower limb. Globally, 40 to 60 million people with diabetes are suffering from lower
limb complications due to DSPN [1]. Long-term DSPN leads to ulceration and amputations,
significantly increasing the chance of early death and reducing the quality of life. Globally,
every 30 s, one lower limb amputation is happening due to DSPN [6]. Henceforth, early
identification of DSPN to provide proper treatment to prevent the life-threatening condition
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is inevitable. According to the study [7], less than one-third of health physicians would
be able to identify the signs of DSPN, resulting in misleading diagnoses, contributing to
high rates of morbidity and mortality. Although a variety of screening and diagnosing
methods are accessible for DSPN, most of them require expensive equipment and specialized
personnel to analyze the results from these tests; some of the methods are invasive and
painful; some are not reproducible, and some have contradictory outcomes due to lack of
standardization in diagnosis measures. Moreover, among the health professionals, there is a
gap in understanding regarding the thorough diagnosis, controlling, and medication process
for DSPN [8]. Therefore, for early identification and satisfaction of the DSPN severity, a
simple, cost-effective, reproducible, accurate diagnosis method is necessary, which can
be globally applicable to solve the lack of understanding among the health professionals
regarding DSPN.

According to the 19th annual Diabetic Neuropathy Study Group of the European
Association for the Study of Diabetes (NEURODIAB) and the 8th International Symposium
on Diabetic Neuropathy in Toronto, Canada, 2009, DSPN has been categorized as ‘possible
DSPN’ when the presence of either symptoms or signs of neuropathy establishes; ‘probable
DSPN’ is diagnosed only in the presence of symptoms and signs of neuropathy; ‘confirmed
DSPN’ was considered when symptoms or signs of neuropathy were present with abnormal
nerve conduction studies (NCS); and, finally, ‘subclinical DSPN’ was diagnosed with the
presence of abnormal NCS without symptoms or signs. NCS is considered as the benchmark
for the identification and stratification of DSPN [9]. Based on NCS, signs, and symptoms
severity grading are performed for DSPN [10]. However, NCS is an expensive procedure,
requires expertise and specialized equipment that might not be available in all of the
regular healthcare centers. Therefore, patients are screened for signs and symptoms of
DSPN and based on the results patients are classified as different levels of DSPN severity
and sent for NCS if the patients exhibit severe symptoms and signs of neuropathy.

According to American Diabetic Association (ADA), for accurate identification of
DSPN, the diagnosis should be combined with clinical history, a physical examination for
signs, and electrophysiological screening such as nerve conduction studies (NCS) [11–13].
There are a variety of diagnostic methods are available for DSPN [11,12]. Some of the
popular clinical diagnostic methods for DSPN include vibration sensation test using a 128
Hz tuning fork [11], monofilament test [11], quantitative sensory testing (QST) [14], skin
biopsy [15], nerve conduction studies (NCS) [16], corneal confocal microscopy (CCM) [17],
electromyography (EMG) [18], etc. Several verified composite scores are available for the
identification and stratification of DSPN severity [19]. The composite scoring systems are
used to diagnose the different levels of DSPN among DM patients regularly as they are
mostly based on tests on signs and symptoms using simple clinical tests. The most com-
monly used composite soring methods in both epidemiologic studies and clinical research:
Michigan Neuropathy Screening Instrument (MNSI), Diabetic Neuropathy Symptom Score
(DNS), Neuropathy Deficit Score (NDS) of Boulton, Toronto Clinical neuropathy Score
(TCNS), and Neuropathy Impairment Score (NIS) [20]. In the Toronto consensus 2009, the
use of composite neuropathy score is recommended for DSPN severity identification [9].
Even though a variety of composite scoring methods and clinical tests are available for
identification and stratification of DSPN, there is still lacking uniformity and agreement
in clinical research for DSPN severity classification [11] and is highly dependent on spe-
cialized personals. Moreover, due to the lack of standard methods, different countries use
different composite scores. Therefore, a validated and standard screening tool is required
for DSPN severity classification which can be used globally.

Recently, due to the enormous development in machine learning (ML) methods, their
application in solving different disease classification problems are expanding [21–24]. Alike
other diseases, development of an intelligent diagnosis system for DSPN have caught the
interests of researchers because of the long term and severe complication arises due to
DSPN. Currently, much attention is being received by CCM, which is a relatively new,
non-invasive, and regenerative technique for DSPN diagnosis by using images of hu-
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man corneal in-vivo. Much research is being conducted, emphasizing the automation
of the CCM system using ML for a more accurate, reliable, and regenerable diagnosis of
DSPN [25–27]. However, as CCM uses corneal images for identifying DSPN, it requires
specialized personal and equipment which made it difficult to be available in regular
healthcare facilities. In the initial stage, composite scores (NDS, MNSI, etc.) are widely
used for screening DSPN signs and symptoms [12]. Intelligent systems using these DSPN
scoring techniques can be a potential solution to solve the uniformity agreement problem
with the DSPN severity grading due to their ability of reliable, accurate, reproducible diag-
nosis. In literature, few intelligent systems—such as fuzzy inference system (FIS) [28–30],
multicategory support vector machine (SVM) [31], and adaptive fuzzy inference system
(ANFIS) [32]—are being reported to use composite scoring methods for stratification of
DSPN severity. The studies reported DSPN classifiers using fuzzy systems are not reliable
because the FIS works relaying on the if–then rule base set by the experts or research based
on human experience, Kazemi et al. [31], developed a multiclass SVM based DSPN severity
classifier using NDS; however, their reported accuracy was only 76%. Fahmida et al. [32]
have developed an ANFIS system for DSPN severity classification using MNSI with an
accuracy of 91%, however, they have only considered three MNSI variables (questionnaire,
vibration perception, and tactical sensitivity) to design their model. MNSI has been recom-
mended on the position statement by ADA for the clinical diagnosis of DSPN [11]. The
MNSI is very simple, inexpensive, and can be managed by any healthcare professional
treating diabetic patients. The reliability and accuracy of the MNSI have been discussed
elsewhere [10,33]. Therefore, this research proposes an ML-based DSPN severity classifier
using MNSI.

In literature, conventional ML algorithms such as support vector machines (SVM) [34],
k-nearest neighbor (KNN) [35], random forest (RF) [36], and artificial neural network
(ANN) [37] are being used in different diseases diagnosis problems. Although the applica-
tion of ML in disease diagnosis is a very common and well-established field of research, the
application of ML in DSPN diagnosis using composite scoring techniques like MNSI is very
limited in the existing literature. More studies are required to understand the performance
of different ML techniques in DSPN diagnosis and stratification. In this research, we aim to
observe the performance of eight different conventional ML algorithms: support vector
machine (SVM), k-nearest neighbor (KNN), random forest (RF), discriminant analysis
classifier (DAC), ensemble classifier (EA), naive Bayes (NB), linear regression (LR), and
artificial neural network (ANN) for severity classification of DSPN using MNSI. A descrip-
tive statistical analysis will be performed to evaluate the performance of these algorithms
in DSPN severity classification. We aim to classify the DSPN patients into four severity
classes: absent, mild, moderate, and severe classes with a good classification accuracy
using different conventional ML.

The novelty of this research work is the implementation and performance analysis of
different conventional ML-based intelligent classifiers that will be able to classify DSPN
severity levels using MNSI scores. This study will benefit DSPN patients as well as diabetic
patients with accurate, reliable, and early identification and stratification of DSPN and
will help to received early treatments to prevent severe complications like ulceration and
amputation. As the classifiers will be using the MNSI, it can be used with regular checkups
in normal healthcare centers. This study will also investigate the effect of MNSI variables
on DSPN severity classification using feature ranking. This study will investigate the best
performing ML algorithms with different MNSI variable combinations in the stratification
of DSPN. Still now, the identification and stratification of DSPN are based on offline analysis
by the experts. This study can support health professionals in accurate, reliable, and real-
time decision-making. Also, the problems due to lack of uniformity and agreements in the
severity grading by different experts can be solved using an ML-based intelligent DSPN
severity classifier. Therefore, this research aims to analyze the performance of different
conventional ML-based intelligent classifiers for screening and stratification of DSPN
severity and find the best performing classifier and MNSI variables.
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2. Materials and Methods
2.1. Data Acquisition

In this research data was collected from the Epidemiology of Diabetes Interventions
and Complications (EDIC) clinical trials which are conducted by the National Institute of
Diabetes, Digestive and Kidney Diseases (Bethesda, Maryland, USA) to annually assess
DSPN among type 1 diabetic patients since 1994 [38,39]. This clinical trial is still under
continuous process which initially started with 1375 patients. Eight EDIC years of MNSI
data were collected with 10,543 samples in total. MNSI is used to annually screen DSPN
among the enrolled participants in EDIC trials.

2.2. Data Imputation

The MNSI dataset had a total of 10,543 samples, with 363 blank entries. After removing
the blank entries, 10,180 samples were retrieved after removing the blank entries with
missing values for MNSI variables. The k-nearest neighbor [35] data imputation technique
had been used to fill the missing data.

2.3. Data Augmentation

The imputed EDIC dataset with 10,180 samples was imbalanced. Duplicate data
were removed from the dataset keeping the first combinations only. Synthetic Minority
Oversampling Technique (SMOTE) technique [40] had been used to balance the dataset
with no overfitted data. Python 3.7 in-house written code was used for data imputation
and augmentation.

2.4. DSPN Severity Scoring for MNSI

There are two parts to the MNSI [10] scoring system. The first part is a questionnaire
consists of 15 yes/no questions related to the patient’s symptoms. The second part consists of
five clinical examinations: the appearance of the foot (AF), ulceration (Ulc), ankle reflection
(AR), vibration perception (VP), and tactile sensitivity (TS) are included in the clinical tests.
The detailed scoring mechanism is described in [10]. In this study, a total of six MNSI variables
(Questionnaire, AF, Ulc, AR, VP, and TS) were used. The preprocessed MNSI dataset was
graded using the scoring technique proposed by Watari et al. [30]. The scoring was ranged
from 0 to 10 and the severity classes are divided as follows:

(i). x ≤ 2.5: absent neuropathy
(ii). 2.5 < x < 5.0: mild neuropathy
(iii). 5.0 ≤ x < 8.0: moderate neuropathy
(iv). x ≥ 8.0: severe neuropathy

2.5. Feature Ranking

The eXtreme Gradient Boosting (XGBoost) [41] algorithm-based feature ranking model
was developed to observe the effects of MNSI variables for DSPN diagnosis. XGBoost is a
decision-tree-based ensemble Machine Learning algorithm that is capable of finding the
effectiveness of different features from a prediction model. The preprocessed dataset was
used to rank the MNSI features according to their impact on DSPN identification. The
design of the XGBoost model has been discussed in our previous study [32].

2.6. ML Model Development Using MNSI Data

This study focus on performance analysis of different conventional ML algorithm based
DSPN severity classifier using MNSI variables. Here we have considered eight conventional
and supervised ML algorithms: support vector machine (SVM), k-nearest neighbor (KNN),
random forest (RF), discriminant analysis classifier (DAC), ensemble classifier (EA), naive
Bayes (NB), linear regression (LR), and artificial neural network (ANN). All the ML models
were designed using MATLAB ver. R2020a, (The MathWorks, Inc., Natick, Massachusetts,
MA, USA) with two different input combinations from the MNSI variables and DSPN
severity level as output. Stratified 10-fold cross-validation was used to train and test the
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designed ML models. The performance of the designed ML models was evaluated using
confusion matrices and the calculation of different performance parameters. A multiclass
SVM model had been considered in this work. KNN model was designed for 20 nearest
neighbors. RF model was designed with a 100 bagged decision tree. ANN was designed
with 100 hidden layers and trained for 100 epochs for each fold.

2.7. Statistical Analysis

For Statistical analysis SPSS software (version 21.0; SPSS Inc., Chicago, Illinois, IL, USA)
was used. All the statistical analyses for baseline characteristics of the EDIC patients were
performed based on the DSPN and Non-DSPN groups and expressed as mean ± standard
deviation (SD). Analysis of variance (ANOVA) was used to find out the statistical signif-
icance of the variables. An independent t-test was used to find out the 95% confidence
intervals (95% CI). Pearson’s correlation coefficient was used to find out the correlation
between different variables with DSPN classes. For the performance analysis of the ML
models, ANOVA was used to find the statistical significance, Cohen’s kappa statistic [42]
was used to find the reliability of the performance of the ML models, and Matthews Corre-
lation Coefficient [43] was used to find the correlations between the observed and predicted
classifications. Statistical significance was considered at p < 0.05.

3. Results
3.1. MNSI Dataset

EDIC patients’ baseline demographic variables have been observed to understand
the characteristics of the patients and been shown in Table 1. The EDIC patients’ average
age in the first year was 35.93 ± 6.945 years (657 male, 598 female), and the mean diabetic
duration was 14.56 ± 4.906 years. Initially, we could have retrieved 957 non-neuropathic
patients and 298 neuropathic patients, a total of 1255 patients’ data from the first year of the
EDIC trials. 8 year of EIDC dataset there was 8819 absent, 1075 mild, 245 moderate, and
40 severe samples. After processing the EDIC dataset by data imputation and augmentation
techniques, the final data set was prepared with 1200 samples per class. As per our previous
study [32], we have observed the importance index of all MNSI variables using the XGBoost
model. From Figure 1 we can observe that the questionnaire has an important index of
0.35 whereas clinical tests are ranked as VP, TS, AR, and AF based on the importance index
in between 0.10 to 0.20 and Ulc has the lowest index of 0.5 [32].

Table 1. Baseline characteristics of the EDIC patients.

N = 1255 Mean Std. Error Mean Min Max
95% Confidence Interval

r p f
Lower Limit Upper Limit

Age (years) 35.95 ± 6.93 0.20 20.42 50.99 35.57 36.34 0.18 <0.05 43.96

Diabetic duration
(years) 14.51 ± 4.92 0.14 7.08 26.92 14.24 14.78 0.12 <0.05 18.40

Hba1c (%) 8.22 ± 1.39 0.04 0.00 14.00 8.14 8.30 0.10 0.95 12.54

HDL Cholesterol
(mg/dL) 52.559 ± 15.98 0.45 0.00 103.0 51.67 53.44 0.002 <0.05 0.01

LDL Cholesterol
(mg/dL) 110.68 ± 36.48 1.03 0.00 235.0 108.7 112.7 0.07 0.21 5.62

BMI (kg/m2) 26.17 ± 4.05 0.11 16.63 39.48 25.94 26.39 0.04 <0.05 1.56

Hypertension (%) 0.23 ± 0.42 0.01 1.00 0.16 0.20 0.25 0.16 <0.05 31.75
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Figure 1. Relative importance of the MNSI variables using the XGBoost feature ranking technique [32].

Two datasets were prepared based on the feature ranking results. The first dataset
(dataset-1) consists of the top three MNSI variables from feature ranking—i.e., question-
naire, VP, and TS—were considered as input variables to training the ML models. Also,
one study by Watari et al. [30] used these three variables to classify DSPN patients’ severity
using a fuzzy system. In the second dataset (dataset-2), all six MNSI variables were con-
sidered as inputs (questionnaire, AF, Ulc., AR, VP, TS) to train the ML models. Therefore,
dataset-1 consisted of three inputs: VP and TS scores with a range from 0 to 2, questionnaire
score with a range from 0 to 13, and one output: DSPN severity levels, 0: absent, 1: mild, 2:
moderate, 3: severe neuropathic and dataset-2: consists of six variables: vibration percep-
tion, tactile sensitivity, ankle reflection, the appearance of feet and ulceration, ranging from
0 to 2 for each test and questionnaire with range 0 to 13, and one output: DSPN severity
levels (0,1,2,3).

3.2. Performance Evaluation of ML Models

Two datasets were used for training eight conventional ML models—i.e., RF, SVM,
EA, KNN, DAC, NB, LR, ANN, for DSPN severity classifiers—in total 16 models were
trained. In the classification models, 10-fold stratified cross-validation was used and
in case, 9-fold was used as train data, and 1-fold with 120 samples per class as test
data. Tables 2 and 3 are showing the performance evaluation of ML-based DSPN sever-
ity classifiers for 10-fold cross-validation using dataset-1 and dataset-2, respectively.
Figures S1 and S2 (Supplementary Materials) are showing the confusion matrix for all the
ML classifiers using dataset-1 (Table 2) and dataset-2 (Table 3). For dataset-1, RF has better
accuracy (91.87 ± 1.42), sensitivity (91.8 ± 1.66), specificity (97.23 ± 0.55) compared with
other ML algorithms, afterward, ANN, and SVM showed second-best performance for the
dataset-1. All these three exhibit high correlation coefficients and substantial reliability
based on kappa value. All the ML classifiers outputs showed a statistically significant
relationship with test sets results.
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Table 2. Performance analysis of different ML classifiers for DSPN severity classification using Dataset-1.

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Score (%) False Positive Rate Fold Error (%) Matthews Correlation
Coefficient Kappa p *

RF 91.87 ± 1.42 91.8 ± 1.66 97.23 ± 0.55 91.98 ± 1.54 91.8 ± 1.65 2.75 ± 0.55 8.25 ± 1.66 0.89 0.78 <0.001

ANN 90.00 ± 1.53 89.76 ± 1.21 96.59 ± 0.41 89.76 ± 1.19 89.67 ± 1.21 3.43 ± 0.41 10.26 ± 1.21 0.9 0.7 <0.001

SVM 89.69 ± 1.75 89.72 ± 1.32 96.56 ± 0.44 89.96 ± 1.21 89.74 ± 1.3 3.45 ± 0.44 10. 37 ± 1.32 0.9 0.7 <0.001

EA 89.98 ± 1.83 90.02 ± 1.45 96.67 ± 0.48 90.0471 ± 1.47 89.95 ± 1.45 3.33 ± 0.48 9.99 ± 1.45 0.87 0.73 <0.001

KNN 87.81 ± 2.14 88.07 ± 0.86 96.03 ± 0.28 88.42 ± 0.92 87.85 ± 0.88 3.99 ± 0.28 11.95 ± 0.87 0.84 0.68 <0.001

DAC 87.21 ± 1.53 87.22 ± 1.31 95.75 ± 0.44 87.24 ± 1.36 87.06 ± 1.34 4.25 ± 0.44 12.8 ± 1.31 0.83 0.66 <0.001

NB 87.81 ± 1.17 87.82 ± 1.17 95.95 ± 0.39 87.94 ± 1.23 87.671 ± 1.18 4.07 ± 0.39 12.2 ± 1.17 0.84 0.68 <0.001

LR 87.21 ± 1.17 94.17 ± 2.32 94.47 ± 0.73 87.81 ± 1.17 87.87 ± 1.20 4.06 ± 0.39 0.12 ± 0.01 0.84 0.68 <0.002

* p values were calculated using ANOVA tests in between the actual and predicted outcome and the cut-off was set as p < 0.05.

Table 3. Performance analysis of different ML classifiers for DSPN severity classification using Dataset-2.

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Score (%) False Positive Rate Fold Error (%) Matthews Correlation
Coefficient Kappa p *

RF 98.50 ± 0.74 98.58 ± 1.67 99.50 ± 0.24 98.52 ± 0.73 98.50 ± 0.74 0.50 ± 0.24 1.50 ± 0.74 0.98 0.98 <0.001

SVM 97.38 ± 0.91 98.33 ± 0.56 99.13 ± 0.31 97.40 ± 0.91 97.37 ± 0.91 0.87 ± 0.31 2.63 ± 0.91 0.97 0.97 <0.001

EA 96.04 ± 0.79 97.58 ± 1.33 98.68 ± 0.26 96.09 ± 0.75 96.04 ± 0.79 1.32 ± 0.26 3.96 ± 0.79 0.96 0.95 <0.001

KNN 95.46 ± 0.93 94.58 ± 1.97 98.49 ± 0.31 95.48 ± 0.94 95.42 ± 0.95 1.52 ± 0.31 4.54 ± 0.93 0.95 0.94 <0.001

DAC 93.23 ± 1.39 95.42 ± 1.06 97.74 ± 0.46 93.42 ± 1.33 93.21 ± 1.40 2.26 ± 0.46 6.77 ± 1.39 0.93 0.91 <0.001

NB 91.67 ± 1.56 97.00 ± 1.93 97.22 ± 0.52 91.76 ± 1.49 91.64 ± 1.55 2.78 ± 0.52 8.33 ± 1.56 0.92 0.89 <0.001

LR 91.66 ± 1.51 95.50 ± 1.04 99.19 ± 0.65 91.67 ± 1.56 91.71 ± 1.52 2.78 ± 0.52 8.23 ± 1.67 0.89 0.78 <0.001

ANN 90.06 ± 13.0 90.06 ± 13.0 96.69 ± 4.34 90.79 ± 11.0 88.86 ± 16.6 3.31 ± 4.34 9.94 ± 13.02 0.89 0.87 <0.001

* p-values were calculated using ANOVA tests in between the actual and predicted outcome and the cut-off was set as p < 0.05.
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For dataset-2, RF has better accuracy (98.50 ± 0.74), sensitivity (98.58 ± 1.67), speci-
ficity (99.50 ± 0.24) compare with other ML algorithms, afterward, SVM and EA showed
second-best performance for the dataset-2. However, ANN showed poor performance
for dataset-2 with 10-fold cross-validation and having a high standard deviation in per-
formance parameters. All these three ML (RF, SVM, and EA) exhibits high correlation
coefficients and near-perfect reliability based on kappa values. All the ML classifiers out-
puts showed a statistically significant relationship with test sets results for dataset-2. From
Tables 2 and 3, it is visible that all the ML classifiers’ performance enhanced with dataset-2
in comparison with dataset-1.

4. Discussion

Diabetic peripheral neuropathy (DSPN) is one of the major length-dependent compli-
cations of diabetic mellitus (DM). Since the 1900s, researchers are going on to establish a
standardized diagnosis method for DSPN. To date, diagnosis, and severity stratification
of DSPN requires manual grading by specialized expertise which are always subjective
and vary depending on different screening methods. According to the study [7], less than
one-third of health physicians would be able to identify the signs of DSPN, resulting in
misleading diagnoses, contributing to high rates of morbidity and mortality. Although
a variety of screening and diagnosing methods are accessible for DSPN, most of them
require expensive equipment and specialized personnel to analyze the results from these
tests; some of the methods are invasive and painful; some are not reproducible, and
some have contradictory outcomes due to lack of standardization in diagnosis measures.
Moreover, among the health professionals, there is a lack of understanding regarding the
thorough diagnosis, controlling, and treatment process for DSPN [8]. Therefore, for early
identification and satisfaction of the DSPN severity, a simple, cost-effective, reproducible,
accurate diagnosis method is necessary, which can be globally applicable to solve the lack
of understanding among the health professionals regarding DSPN.

Nowadays machine learning approaches are being researched in different aspects of
healthcare systems due to their advantage of flexibility, cost-effectiveness, self-learning
capacity, and being able to work as a second helping system for health professionals with
accurate and reliable performance. Intelligent healthcare systems are capable of providing
better patient satisfaction, helps health professionals with accurate, reliable, and real-time
diagnosis, thus improving the healthcare facilities for DM patients. Intelligent systems
using ML algorithms have now been widely researched for different biomedical systems
and special importance is given to its application for disease diagnosis and minimization
of health risks [21–24,44–48]. Alike other life-threatening diseases, DSPN has also caught
the researchers’ attention for the development of an artificial intelligence-based diagnosing
system for DSPN [25–32,48].

In literature, detection and stratification of DSPN severity have been reported using the
FIS, ANFIS, SVM, and ANN algorithms [28–32,48]. DSPN exhibits non-linear characteristics
and progresses differently in every patient. As FIS is developed using the if–then rule base,
there is a chance of having human error and reliance on expert knowledge in characterizing the
non-linear DSPN characteristics, thus the performance can be biased. Duckstein et al. [28] used
electrophysiological examination for diabetic neuropathy classification using a fuzzy inference
system. Picon et al. [29] have used four input variables including symptom assessment, sign
examination from MNSI and diabetic duration, and HbAc1. They proposed a fuzzy inference
system that was based on expert knowledge. Watari et al. [30] also have used the same
fuzzy model to classify DSPN into four classes and have considered only 3 MNSI parameters
including system assessment, vibration perception, and tactile sensitivity as the model input.
However, as fuzzy works with if–then rules, it requires professionals training to set the rules
for the fuzzy system, which can vary as to its subjective to healthcare professionals evaluation
thus have a chance of having human errors. Kazemi et al. [31] developed a multicategory-
based SVM model for DSPN severity classification based on NDS; however, the performance
of the model is not reliable and reported an accuracy of 76%. In the study [32], an ANFIS
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based DSPN severity classifier was designed using the same three MNSI variables that have
been proposed in [30]. This study has reported an accuracy of 91% using the three MNSI
variables, whereas, in our study, we have observed that, the results got improved significantly
when all the MNSI variables were considered to design ML models. In a study [48], the ANN
model was developed for the diagnosis of DSPN using NCS, but no severity classification
had been studied.

This research aims to develop different conventional ML-based DSPN severity clas-
sifiers for accurate and reliable stratification of DSPN severity. Here eight conventional
ML models—i.e., SVM, KNN, RF, EA, NB, DAC, ANN, and LR—were trained for the
classification of DSPN patients into four severity groups: absent, mild, moderate, and
severe. In this study, we only have considered the conventional machine learning models
for developing the severity classifiers. Deep learning models have not been studies here as
they are being widely used in complex classifications and regression problems where the
data have high dimensions and complex features [49]. As we intend to develop a simple
and cost-effective DSPN severity classifier, using deep models can introduce higher costs
due to its complex computational models [50].

As DSPN exhibits non-linear characteristics, the data to train the model plays a crucial
role. The performance of the ML models will depend on how well the data is showcasing
the real situation. Therefore, for better accuracy of the models, we have considered a
database from the EDIC trial, which is a large and continuous clinical trial, uses MNSI
to follow-up the enrolled patients’ DSPN condition annually [10,38,39]. As models were
trained with a real dataset, it can accurately learn the non-linear characteristics of DSPN.
As the MNSI variables are semi quantitation or non-quantitative tests, it can be easily
deployed in any regular healthcare facility. As the EDIC trials consist of a wide range of
demographic variables from 29 different clinical centers, this dataset is realistic in observing
different classes of DSPN severity with a variety of populations.

Two datasets were used to train the ML models. For both of the datasets, the RF model
was working better in comparison with other ML models used in this study. For models
training dataset-1—i.e., top three MNSI variables from feature ranking—the performance of
the ML models can be ranked as RF > EA > ANN > SVM > KNN > NB > DAC > LR. All
the ML models using dataset-1 showed substantial reliability with kappa values between
0.66 to 0.78 [42] states that, the inputs used in dataset-1 are moderately accurate to identify
DSPN severity. From the performance analysis for different ML models, it can be seen that
only three variables are not enough to accurately identifying DSPN severity even though
these variables got high importance index based on feature ranking. From dataset-2, where
we have considered all the MNSI variables exhibit that, all the ML models exhibited very
good performance except ANN. ANN performance has not been improved much after using
all the MNSI variables and has a higher standard deviation in performance, indicating that,
in some of the folds from the cross-validation process where ANN was not able to train
properly and had poor performance. For dataset-2, ML models performance can be ranked
as RF > SVM > EA > KNN > NB > DAC > LR > ANN. Also using all six MNSI variables to
train ML models, the kappa values for the models were between 0.89 to 0.98 which indicates
that the models are in perfect agreement [42] with the data and the variables used in dataset-2
are perfectly accurate to identify DSPN using ML models. Predicted classes by ML models
and the true classes using dataset-2 have a higher correlation in comparison with dataset-1.
From this study, we can recommend that all the six MNSI variables need to be considered
while DSPN severity grading for higher accuracy of the model’s performance.

According to the International Diabetic Federation [1] in 2019 almost 463 million people
are affected with diabetes and 50% of the total prevalence is suffering from DSPN. USD
760 million is spent on diabetics and the health expenditure for diabetic patients increases
with severity [1,51]. By enhancing the awareness among patients about DSPN as well as
the performance of the diagnosis methods will help to improve the healthcare facilities for
diabetic patients. As almost 50% of the DM patients are affected by DSPN at some point
of DM duration, the global expenditure can be significantly reduced if an improved, cost-
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effective, accurate, reliable diagnosis method can be deployed which will be able to help with
real-time DSPN severity identification and will allow early detection and treatment of diabetic
neuropathy as well as prevent from severe complications like foot ulceration and amputation.
ML algorithms based on DSPN severity classifiers are capable of providing all these benefits
to DM patients. It will also be beneficial in overcoming the shortcomings in the available
conventional diagnosis methods which relied on offline analysis by healthcare professionals,
leading to a delayed and sometimes biased diagnosis for DSPN. The analysis results showed
that RL models outperforming the other ML models with all MNSI variables for DSPN severity
classification. This RF based DSPN severity classifier can be used as a support system for the
healthcare professionals in more accurate, reliable, and faster identification and stratification
of DSPN. A limitation of this study is that it had been conducted using the EDIC dataset,
which only recruited type-1 diabetic patients. The effect of DSPN in type-2 patients and
their severity classification using MNSI still need to be studied. Nerve conduction studies
(NCS) have been considered the gold standard for DSPN identification and stratification.
In the future, we aim to use NCS and other risk factors for DSPN with MNSI for severity
identification and stratification using ML models. In the future, a prediction system can
be incorporated with an RF-based DSPN classifier so that health professionals will be able
to predict patients’ future conditions using patients’ previous and present conditions. This
will help to identify the high-risk individuals ahead of time so that proper treatment can be
provided to the patients to avoid extreme situations.

5. Conclusions

DSPN is one of the most common forms of diabetic neuropathy (DN) and almost 90%
of the DN patients suffer from it. Diagnosis of DSPN is complicated because of contradictory
and subjective diagnosis techniques.

Although many diagnoses and composite scoring techniques have been reported and
many studies are being conducted to validate these systems, yet it lacks consistency and
is sensitive to population size. To overcome this issue, machine learning techniques can
be a good solution. The application of ML in different aspects of the biomedical sector
has shown a promising impact in improving the performance from the usual methods. In
this research, we have studied the performance of different conventional ML techniques
(RF, SVM, KNN, EA, NB, DAC, ANN, LR) in the diagnosis and stratification of DSPN.
We have using the MNSI composite scoring technique for DSPN diagnosis and observed
the importance of the MNSI variables on DSPN identification and stratification. From
this analysis, we have found that the random forest algorithm with all MNSI variable
model works better in DSPN stratification. Therefore, a random forest based MNSI scoring
technique can help health care professionals to identify DSPN patients and grade their
severity. This type of system can overcome the problem of inconsistency and lack of
agreement between professionals with diagnostic criteria for DSPN.
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for classification of DSPN severity classes using dataset-2 (0: absent or non-neuropathic, 1: mild
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