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A B S T R A C T   

Road traffic crashes pose a significant challenge worldwide, necessitating increased efforts to reduce them and 
promote sustainable transport systems. This study aimed to investigate spatiotemporal road traffic crashes and 
their causes in the State of Qatar by identifying hot spots of crashs and exploring whether they were primiarly 
attributed to behavioural practices and/or the geometrical design of roads and intersections. The study employed 
various methods, including Time-Space Cube analysis, Geographically Weighted Regression (GWR), Emerging 
Hot Spot analysis, and Spatial Autocorrelation analysis, with historical traffic crash data from 2015 and 2019. 
The findings indicated that crashes were mainly concentrated in the central-eastern region of Qatar and are 
related to driver behaviour. The analysis also revealed that crashes during the weekdays in 2019 were more 
strongly clustered than in 2015, suggesting a probable systematic cause of crashes. The results provide valuable 
information for policymakers to target high-incidence locations, prioritize interventions and develop more 
effective measures and policies to reduce crashs and promote a sustainable transportation system in Qatar. 
Overall, this study highlights the importance of continued research and policy development in this area and 
could potentially be applicable and transferable to similar regions.   

1. Introduction 

Road crashes are significant global issue, leading to thousands of 
human fatalities and injuriesand incurring substantial human and ma-
terial costs. In order to reduce the number of road traffic crashes and 
resulting human fatalities and injuries, many countries implemented 
different traffic and road safety practices (Abdel-Aty et al.; Abulibdeh, 
2022). Road crashes injuries cost many countries huge economic losses – 
estimated at 1% − 5% of their Gross Domestic Product (GDP) annually. 
According to the World Health Organization (WHO), road crashes are 
the leading cause of death among children and young people worldwide 
(Chen et al., 2019). 

The United Nations (UN) has included road safety in its Sustainable 
Development Goals with two targets: 1) to halve global deaths and in-
juries from road traffic crashes by 2030, and 2) to provide access to safe, 
affordable, and sustainable transport systems for all. The Second Decade 
of Action for Road Safety 2021–2030 aims to reduce road traffic deaths 

and injuries by at least 50% through a Safe Systems framework based on 
the Vision Zero approach. Although human error is inevitable, the Safe 
Systems framework provides multiple levels of protection to create a 
“forgiving” system and prevent severe outcomes (Rossi et al., 2019). 

Qatar formulated its National Road Safety Strategy 2013–2022 based 
on the UN Global Plan for the Decade of Action. The strategy aimed to 
provide “a safe and sustainable road transport system that protects all 
road users from death and serious injury”. It set a target of reducing its 
annual number of road crash fatalities and serious injuries by half to 130 
and 300 respectively by 2022 (Chen et al., 2019). To achieve the road 
safety targets, Qatar’s Road Safety Action Plan provides set of initiatives 
or projects to be implemented by stakeholders over five years (Consunji 
et al., 2018). 

In accordance with the recommendations of the UN Decade of Ac-
tion, Qatar established a National Traffic Safety Committee to coordi-
nate and monitor the road safety-related activities of all the 
stakeholders. However, the implementation of road safety interventions 
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by various stakeholders may be affected by competing and short-term 
focused objectives. In addition, there is limited understanding of the 
full transport-related risks and harms, particularly at larger spatial and 
temporal scales, which exacerbates the situation. 

Road crashes vary spatially and temporally (Ziakopoulos and Yannis, 
2020); (Loo and Anderson,). Therefore, it is important to consider 
spatial dependence and heterogeneity in investigating the effects of road 
safety and suatainable transporation systems variables and attributes on 

Table 1 
Transport Mode Share (Source: MoTC).   

Nationality & Day 
of Week 

Mode of Travel 

Car 
Driver 

Car 
Passenger 

School 
Bus 

Company 
Bus 

Taxi Public 
Bus 

Walk Other 

Citizen Weekday  49.9%  41.8%  4.6%  0.2%  0.2%  0.0%  2.8%  0.5% 
Citizen Weekend  45.9%  46.2%  0.2%  0.0%  0.1%  0.0%  7.3%  0.3% 
Resident Weekday  49.0%  24.5%  9.8%  5.4%  2.5%  0.3%  7.1%  1.4% 
Resident Weekend  43.2%  39.0%  1.5%  2.3%  2.8%  0.4%  9.8%  1.0%  

Fig. 1. Municipal zonal boundaries of the country.  

Table 2 
Road crash frequency 2015–2019 and the percentage change during the period.  

Police-Reported Motor Vehicle Traffic Crashes  

2015 2016 2017 2018 2019 % Change (2015, 2019) 
Fatal 194 155 159 154 134 − 31% 
Serious 548 666 579 530 608 11% 
Slight 5,129 5,284 5,319 5,474 5,805 13% 
Total 5,871 6,105 6,057 6,158 6,547 12% 
Police-Reported Motor Vehicle Traffic Crashes Casualties 
Fatality 227 178 177 168 154 –32% 
Serious Injury 693 871 742 683 778 12% 
Slight Injury 7,488 8,028 7,962 8,116 8396 12% 
Total 8,408 9,077 8,881 8,967 9,328 11% 
Other National Statistics 
Vehicle Kilometers Traveled (VKT) (in millions) 30,936 33,097 34,818 36,306 43,593 41% 
Resident Population 2,335,068 2,520,621 2,614,626 2,662,845 2,712,959 16% 
Registered Vehicles 1,352,979 1,447,478 1,522,733 1,587,815 1,655,676 22% 
Licensed Drivers 1,234,350 1,340,271 1,441,594 1,538,407 1,625,339 32%  
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specific areas and how neighboring areas may influence them. Addi-
tionally, understanding the evolution of traffic crashes and identifying 
hotspots is crucial for achieving traffic safety and informing trans-
portation planning, resource allocation, decision making, and policy 
implications. However, road safety interventions are often limited to 
technical specialists who may be shaped by their cultural and institu-
tional contexts. This may result in the prioritization of conventional 
practices, such as road network expansion, over effective measures to 
reduce crash risk, such as travel demand management. To address this 
issue, it is important to foster a multidisciplinary and collaborative 
approach to road safety that takes into account the social, economic, and 
environmental factors that influence road use and traffic crashes. This 
can help ensure that interventions are evidence-based, context-sensitive, 

and effective in achieving their intended goals. 
Properly designed and constructed road infrastructure is critical to 

the safe and efficient transportation of goods and people. Properly 
designed and constructed roads can significantly reduce the number of 
accidents and fatalities on the roads (Alarifi et al., 2018; Alharbi et al., 
2022). Well-designed and constructed road infrastructure is essential for 
ensuring road safety (Mannering and Bhat, 2014). It can significantly 
reduce the risk of accidents, injuries, and fatalities on the road, and 
provide safe and accessible facilities for all road users. For example, 
well-designed roadways can reduce driver confusion, provide clear 
guidance to drivers, and prevent accidents caused by inadequate or 

Fig. 2. Research methodology outline.  

Table 3 
Variable used for spatiotemporal analysis of crashes.  

Variables Description (Values) 

Year Year of crash 
CrashSeverity Severity of the crash; Fatal, Serious, Minor 
Date Date of the crash in the Gregorian Calendar 
DayofWeek Day of the week; Sun, Mon, Tue, Wed, Thu, Fri, Sat 
CauseCrash Police reported the cause of the crash 
Municipality Municipality where the crash occurred 
Zone Zone number of where the crash occurred 
Driver_Fatality Total number of driver fatalities during the crash 
Passenger_Fatality Total number of passenger fatalities during the crash 
Pedestrian_Fatality Total number of pedestrian fatalities during the crash 
Driver_SeriousInjury Total number of driver seriously injured during the crash 
Passenger_SeriousInjury Total number of passenger seriously injured during the 

crash 
Pedestrian_Serious Injury Total number of pedestrian seriously injured during the 

crash  
Fig. 3. Diagram of Space-time cubes. (ESRI, 2023) https://pro.arcgis.com/en/ 
pro-app/latest/tool-reference/space-time-pattern-mining/learnmor-
ecreatecube.htm#ESRI_SECTION2_4518F0A12E194690AA986118D508E9F7. 
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unclear road markings and signs. 
Addressing road safety is a complex and multi-faceted policy issue 

that requires more attention Despite previous studies on road traffic 
crashes in Qatar, there has been a lack of emphasis on the spatial 
dimension of the phenomenon. Therefore, this study aims to analyze the 
spatial and temporal evolution of road traffic crashs in order to identify 
the emerging, intensifying, diminishing, consecutive, sporadic, and 
persistent hot spots over time and space. The study also seeks to inves-
tigate geographical patterns of these crashes at a zonal level as well as 
their causes. By taking into account the spatial and temporal variation of 
road traffic crashes, the study intends to inform the prioritization of 
interventions for more effective allocation of resources and to facilitate 
the integration of road safety measures with other urban transport 
policies. The results of this study will be useful for the National Traffic 
Safety Committee and other similar agencies with multiple stakeholders, 
as they can use them to formulate well-targeted action plans, and 
monitor and evaluate their effectiveness in tackiling road safety issues. 
All the crashes considered in this study are presented in absolute 
numbers rather than rates, in line with Qatar’s targets. 

2. Literature review 

Traffic crashes and road safety have the potential to severely restrict 
the economic and social development of many countries. Several studies 
have been conducted to explore the risk factors associated with road 
safety and road crashes (Al-Kindi et al., 2020; Al-Mistarehi et al., 2022; 
Amoh-Gyimah et al.; Atubi, 2012; Balakrishnan et al., 2023) and road 
safety measures (Bao et al., 2017; Benlagha and Charfeddine, 2020; Bina 
et al., 2021; Brunsdon et al., 1996). Furthermore, these studies have 
employed or developed a variety of spatial and mathematical method-
ologies to examine crash analysis and predict the causes of crash, miti-
gation, and road safety site prioritization problems (Bu et al., 2018; Cai 
et al., 2019; Cai et al., 2019). The spatial analysis of traffic crashes en-
compasses a wide range of topics such as identifying clustering patterns 

of traffic collisions, mapping, and visualization of crash counts, inves-
tigating the effects of risk factors, and recommending targeted coun-
termeasures. Factors, such as the local environment, the road segment 
environment (urban and rural segments), and road infrastructure (Wang 
et al., 2016); (Flahaut, 2004) are critical contributores to the occurrence 
of traffic crashes. 

2.1. Spatial units of analyzing crashs 

Studies on traffic crashes and road safety have explored various 
spatial units of analysis, ranging from community size (Chen et al., 
2019a; Cheng et al., 2019b; Daniels et al., 2019) to state level (Atubi, 
2012), with studies investigating different road safety indicators such as 
crash counts, crash rates, and injury severity rates. Spatial units used in 
such studies include road segments, road intersections, zonal units, and 
regional areas such as counties (El-Basyouny and Sayed, 2009; Elvik, 
2021; Erdogan, 2009), cities (Moeinaddini et al., 2014), and metropol-
itan areas (Bu et al., 2018). Early approaches to spatial analysis in 
investigating traffic crashes and road safety focused on straight road 
segments and intersections with researchers seeking to understand vi-
sual patterns of heightened concentration or investigate the impact of 
segments on crash counts and density (Page and Meyer, 1996; Thomas, 
1996). Intersections are significant contributers to the number of traffic 
crashes, with intersection location, size, geometry, and traffic parame-
ters all playing significant roles (Ghofrani et al., 2022; Gilardi et al., 
2020; Gomes et al., 2017; Guo et al., 2010). 

Zonal units, including census-based, traffic-based, or administrative- 
based boundaries (Ziakopoulos and Yannis, 2020; Huang et al., 2010; 
Huang et al., 2020; Jonathan et al., 2016; Kang et al., 2018; Kang et al., 
2020); have also been used as spatial units in investigating traffic 
crashes and road safety. Traffic Analysis Zones (TAZs) are traffic-related 
zone systems that have been created in the US and used in many 
countries to collect trip and traffic statistics and data. Zonal factors, such 
as Vehicle Miles Traveled (VMT), can be shared by both segments and 

Fig. 4. The study area shows traffic crashes distribution in Qatar in 2015 and 2019.  
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intersections within the same zone (Ziakopoulos and Yannis, 2020; Guo 
et al., 2010; Xie et al., 2013). At the zonal level, both observed and 
unobserved heterogeneity can influence crash frequency at intersections 
and segments within these zones (Lee et al., 2017; Kim et al., 2017; 
Lascala et al., 2001; LaScala et al., 2004; Lee and Abdel-Aty, 2018). 

Some studies have integrated different spatial units in investigating 
traffic crashes and road safety, while others (Lee et al., 2017) have used 
a more rigid ruleset of spatial units, such as fixed-distance grid structures 
and multiple grid sizes (Cai et al., 2018; Cai et al., 2019). However, 
relying on a single spatial unit might be improper for certain areas 
depending on the spatial distributions of safety-related parameters 
(Zeng and Huang, 2014; Alarifi et al., 2018). It is crucial to understand 
the strength and limitation of each spatial unit in conducting effective 
analysese and developing targeted interventions to improve raod safety 
(Kim et al., 2006; Ossenbruggen et al., 2009). The choice of spatial unit 

in investigating traffic crashes and road safety varies, with different 
units offering different insights. 

2.2. Geospatial statistical models to investigate crashs 

Various spatial modeling approaches have been utilized to investi-
gate spatial traffic crashes and road safety. Furthermore, several tools 
have been developed and applied to predict spatial traffic crashes and 
road safety indicators (Mannering and Bhat, 2014; Mansour et al., 2022; 
Martínez-Ruiz et al., 2013; Miaou and Lord, 2003). These models and 
tools investigate spatial correlation and unobserved heterogeneity. 
Different geospatial statistical models have been used to examine the 
spatial autocorrelation or heterogeneity of the factors that contribute to 
traffic crashes and road safety. These models include Getis-Ord-Gi*, 
Generalized Linear Models (GLMs), Moran’s I, and Geographically 

Fig. 5. Distribution of crashes at zone level.  

Table 4 
Overview of the number of crashes, fatalities, and serious injuries, in the zones with the highest crashes numbers in 2015 and 2019.  

Variable Number crashes Number of fatalities Number of serious injuries 

2015 Zone 55 391 34 35 
Zone 56 478 28 48 
Zone 57 452 19 77 
Zone 71 234 17 43 
Zone 70 215 21 37 

2019 Zone 55 524 11 37 
Zone 56 470 10 49 
Zone 57 334 4 56 
Zone 71 319 10 51 
Zone 70 332 13 69  
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Weighted Regression (GWR), conditional autoregressive priors (CAR) 
models Local and Global Moran’s I statistics (Moeinaddini et al., 2014; 
Mollalo et al., 2020; Noland and Quddus, 2004), autoregressive priors 
(SAR) models (Quddus, 2008; Zeng and Huang, 2014; Gilardi et al., 
2020) among others. GLMs models, for example, were used because they 
assume that crashes are random, independent, and sporadic countable 
events (El-Basyouny and Sayed, 2009). GWR was used to investigate 
traffic crashes because this method considers spatial variations of 
explanatory variables on traffic crashes, adding descriptive and 
explanatory power to the spatial analysis and providing intuitive results 
(Pirdavani et al., 2014). 

2.3. Crash hotspots analysis 

The spatial analysis of road traffic crashes is crucial in identifying 
hotspots and informing road safety interventions. Studies in different 
countries, such as Germany, China, USA, and Colombia have investi-
gated the spatial distribution of traffic crash risk and hotspots using 
various methods, including time–space cubes, spatial autocorrelation, 
and Bayesian maximum entropy. Scheiner and Holz-Rau (Scheiner and 
Holz-Rau, 2011) found that the risk of being killed or seriously injured in 
a traffic crash was higher in suburban and rural areas compared to high- 
density cores in Germany. Cheng et al. (Cheng et al., 2019b) identified a 
hotspot for road traffic crashes in the Northeast part of Wujiang’s major 
urban area in China, while Dezman et al. (Dezman et al., 2016) found 
that crashes mainly occurred in the high-density center of Baltimore in 
the USA. Saha (Saha et al., 2018) investigated bicycle crashes in Florida, 
USA and found that they were spatially dependent and clustered, and 
not randomly distributed. Fox et al. (Fox et al., 2015) used Bayesian 
maximum entropy methods to identify pedestrian mortality hotspots in 
Cali, Colombia and distinguish between persistent and transient hot-
spots. Kang et al. (Kang et al., 2018) investigated the spatiotemporal 

characteristics of elderly people’s traffic crashes in Seoul, finding that 
the hotspots varied depending on whether the elderly people were 
drivers or victims. Soltaniand and Askari (Soltani and Askari, 2017) 
analyzed the spatiotemporal patterns, hotspot distribution, and auto-
correlation of traffic crashes at the TAZ level using different geo- 
information approaches in an unspecified location. These studies show 
that spatial analysis can inform targeted interventions and improve the 
allocation of resources to tackle road safety issues effectively. 

After conducting an intensive literature review on road safety and 
traffic crashes, it has been found that studies in this field have utilized 
various spatial units of analysis, such as road segments, intersections, 
and Traffic Analysis Zones (TAZs). Understanding the strengths and 
limitations of each spatial unit is essential for developing effective tar-
geted interventions. Geospatial statistical models, including Getis-Ord- 
Gi*, GLMs, Moran’s I, GWR, and CAR models, have been employed to 
investigate spatial traffic crashes and road safety. These models account 
for spatial autocorrelation and heterogeneity of factors that contribute 
to traffic crashes and road safety. The findings of different studies from 
different countries using different methods reveal that traffic crash risk 
varies across areas, and spatial analysis can effectively identify hotspots 
and inform targeted interventions to tackle road safety issues. 

3. Materials and methods 

3.1. Study area 

The study focuses on road safety and traffic crashes in Qatar, a small 
Gulf country with an area of11,571 km2located in the Arabian Gulf Sea 
(Abulibdeh, 2021c). Qatar has a booming economy and massive infra-
structural mega-projects due to its large natural gas reserve and its 
National Vision 2030, as well as hosting the Fifa World Cup in 2022 
(Soltani and Askari, 2017; Tamakloe and Park, 2022; Theofilatos and 

Fig. 6. Distribution of severity of crashes in 2015 and 2019.  
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Yannis, 2014; Zaidan and Abulibdeh, 2020). The country has a large 
population of foreign workers and a low-density urban fabric with 
mostly single-use developments (Saha et al., 2018; Al-Awadhi et al., 
2022). Developments in Qatar have attracted a large number of foreign 
workforce influx or ex-pats, making up more than 80% of the total 
population (Kang et al., 2018; Abulibdeh, 2022). Moreover, throughout 
the State of Qatar, residents are forced to drive to reach their destina-
tions due to several reasons. As a wealthy nation, its people are more 
willing to own their vehicles rather than use public transport, thus, in 
general, private cars are the dominant transport choice as shown in 
Table 1. The capital city, Doha, is the most populated with 40% of the 
total population, and has seen major residential developments in the 
past few years in areas such as Al Daayen, Umm Salal, Al Rayyan, and Al 
Wakra (Thomas, 1996; Timmermans et al., 2019; Abulibdeh, 2019). The 
study’s geographical scope is limited to Qatar, and Fig. 1 shows the 
municipal boundaries on the zonal level of the country. 

The road network in Qatar is more concentrated in the capital city of 
Doha and less so further away. To provide an overview of the state of 
road crashes at a national level, Table 2 below summarizes the frequency 
of road crashes in 2015 and 2019, along with the percentage change 
during the period. 

The data presented in Table 2, which shows the road crash frequency 
2015–2019, and the percentage change during the period, indicates that 
despite the spatial VKT and demographic (population, the number of 
vehicles, and licensed drivers) variables increasing between the two 

years, fatal crashes and fatalities decreased over the same period while 
other injury crashes increased as expected. Typically, crashes are ex-
pected to increase with the increase of these variables. Furthermore, it is 
noteworthy that when taking into account the underlying distributions 
(populations and VKT), all types of crash rates have decreased between 
2015 and 2019. The decrease in the fatal crashes and fatalities could be 
attributed to the effectiveness of the Qatar National Traffic Safety 
Strategy and the Action Plans by its stakeholders that commenced in 
2013 (Charlton and Fotheringham, 2009). 

3.2. Methodology 

This study employs a range of advanced spatiotemporal analytical 
techniques to examine road safety and traffic crashes in the State of 
Qatar. These techniques include Time-Space cube analysis, GWR, and 
spatial autocorrelation analysis. The study uses historical traffic crash 
data reported from 2015 to 2019 to identify high incidence locations of 
road traffic crashes, and to present the spatial pattern changes between 
these two years. Additionally, the study assesses the statistical signifi-
cance of the crash locations. Fig. 2 provides a flowchart outlining the 
research methodology employed in this articleThis study uses compre-
hensive spatiotemporal analytical methods to investigate traffic crashes 
and road safety in the State of Qatar. These methods namely are; Time- 
Space cube analysis, GWR, and spatial autocorrelation analysis. His-
torical traffic crash data reported from 2015 and 2019 were used in to 

Fig. 7. Crash casualty type by zone in 2015 and 2019.  
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identify the high incidence locations of road traffic crashes and present 
the spatial pattern changes between these two years, and identify the 
statistical significance of the crash locations. Fig. 2 outlines the flow-
chart of research methodology implemented in this study. 

3.3. Data description 

This study utilizes crash data pertaining to traffic crashes that 
occurred across the entire state of Qatar, and were exclusively reported 
to the General Directorate of Traffic (GDT). In this context, a crash is 
defined as an event involving the movement of at least one road vehicle 
on a road, which results in death, injury to a person, or property damage. 
The crash data used in this research was sourced from the GDT database, 
as well as publicly available sources such as the Planning and Statistics 
Authority. It is important to note that the crash data considered in this 
study is limited to those resulting in fatality or injury, with property- 
damage only crashes excluded. The crash database includes a total of 
12,418 crashes reported for both 2015 (47%) and 2019 (53%), with 328 
(3%) resulting in fatality, 1156 (9%) resulting in serious injury, and the 
remaining 10,934 (88%) resulting in slight injury. Table 3 provides a list 
and description of the variables used for the analysis. 

In line with the National Road Safety Strategy’s goal, the approach to 
finding hotspots is based on the aggregation of fatal and serious injury 
crash frequency. It thus emphasizes maximizing the system-wide 

benefits of safety intervention targeted to the hotspots rather than from 
an individual road user’s equity perspective. 

3.4. Analysis methods 

This study includes a general descriptive analysis to provide an 
overview of the spatial and temporal variations in crash frequency 
across the study area. The space–time cube analysis was then used in this 
study to visualize the distributions of traffic crashes over time and space 
on the zonal level. Furthermore, the GWR, global Moran’s I, and the 
Getis-Ord Gi* were used to characterize the intrinsic spatial pattern of 
traffic crashes in the State of Qatar. These methods are well-known and 
well-established geospatial statistics tools in the GIS literature for un-
derstanding the spatial patterns of any geographical phenomenon 
(Abulibdeh, 2021b). These models are used to investigate the statistical 
significance and the spatial aggregation characteristics of these crashes. 
The spatiotemporal crash hotspot location is identified by the location 
that has a high crash frequency and is surrounded by other locations 
with a high frequency of crash rates. The spatial autocorrelation analysis 
is employed to identify consistent groups of traffic crashes according to 
their attributes. These methods are essential in understanding the spatial 
patterns of any geographical phenomenon and are widely used in geo-
spatial statistics. 

Fig. 8. Road Traffic Crash distribution in 2015 and 2019 by month.  
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3.4.1. The space–time cube model 
The space–time cube model was used in this study to show the 

spatiotemporal distribution of traffic crashes at Qatar’s road network. 
This method is a 3D geo-visualization technique that map the spatio-
temporal traffic crash data in a cub, where the x-axis and the y-axis 
represent the two-dimensional spatial range while the z-axis denotes 
time. A bin time series is obtained through spatial positioning and the 
bin time sequence will consist of a unit cube (column) and will be a 
longitudinal column (Cheng et al., 2019b) (Fig. 3). We used ArcGIS 
10.8.2 Space Time Pattern Mining Tools toolset (ESRI, 2022) to first 
create space time cube by aggregating points. The resultant netCDF cube 
was then used in the emerging hot spot analysis tool to identify trends in 
the clustering of point densities in the cube. The spatial time-seriese 
trend analysis is performed to see if the events increased or desreased 
through time. This trend analysis is performed using Mann-Kendall 
trend test on each location with data as an independent bin. The 
Mann-Kendall test is calculated using the following equation: 

S =
∑n− 1

i=1

∑n

j=i+1
sgn

(
xj − xi

)
(1) 

Where n is the number of data points, xi and xj are the data values in 
time series I and j (j > i), respectively. sgn(xj − xi) is the sign function as 

sgn
(
xj − xi

)
=

⎧
⎨

⎩

+1, if
(
xj − xi

)
> 0

0, if
(
xj − xi

)
= 0

− 1, if
(
xj − xi

)
< 0

(2) 

The variance is composed as 

V(S) =
n(n − 1)(2n + 5) −

∑m
k=1tk (tk − 1)(2tk+5)

18
(3) 

The time step in the z-axis bin is one month and hence the bin in-
cludes twelve-time steps January to December. Each column contains a 
number of points that represents the geographic traffic crashes that 

occur within the unit time step. Therefore, the changes in geographical 
traffic crash over time can be visualized in the bin time series. This 
model was used to detect the changes in the geographical location of the 
crash to identify the emerging, intensifying, diminishing, consecutive, 
sporadic, and persistent hot spots over time and space. The time–space 
cube analysis quantitatively and qualitatively characterizes the traffic 
crash situation of each zone from a spatiotemporal perspective. 

3.4.2. The local Moran’s I 
The local Moran’s I is a measure of the spatial autocorrelation 

analysis method used in this study to investigate the spatial distribution 
and clustering of the traffic crashes and determine whether these crashes 
have spatial agglomeration characteristics. Spatial data are described as 
highly correlated if patterns for the configuration of these data can be 
identified and if likely values are spatially close to each other, and 
conversely, they are defined as random or independent if no patterns can 
be identified (Huang et al., 2020); (Kang et al., 2020). This method 
depends on the covariance relationship of the statistical correlation 
coefficient. The mathematical formulation of the local Moran’s I method 
is as the following (Cheng et al., 2019b); (Abulibdeh, 2021b): 

Ii =
xi − X

S2
i

∑n

j=1,j∕=i

wi,j
(
xj − X

)
(4) 

Where xi is attribute for feature I, X is the mean of the corresponding 
attribute, wi,j is the spatial weight between feature I and j, and: 

S2
i =

∑n
j=1,j∕=i

(
xj − X

)2

n − 1
(5) 

Where n equating to the total number of features. 
The value of the Moran’s I test must be between − 1 and 1. The value 

greater than 0 represents a positive relationship at spatial distribution 
and more clustering of the traffic crashes, while the value of 0 represents 
a random distribution at the spatial aspect (complete spatial 

Fig. 9. Temporal variation of crashes in 2015 and 2019 – Weekends vs Weekdays.  

S. Mohammed et al.                                                                                                                                                                                                                            



Transportation Research Interdisciplinary Perspectives 20 (2023) 100836

10

randomness) (Abulibdeh, 2021b). The value less than 0 represents a 
negative relationship and denotes that the same area has a large dif-
ference in attributes (random pattern). Moran’s I index is also associated 
with a Z-score and p-value. The z-score quantifies the degree of devia-
tion (i.e., the dispersion or clustering around Moran’s I value). The z- 
score value can be positive or negative, where a positive value denotes 
that the adjacent features have similar values while the opposite applies 
to the negative value of the Z-score. The P-value gives indications of the 
statistical significance of clustering outputs. The significant relationship 
denotes that the value of the variable at a specific location depends on 
the values at the neighboring locations and vice versa (Al-Kindi et al., 
2020); (Prasannakumar et al., 2011). 

3.4.3. The Getis-Ord G*
i 

The Getis-Ord G*
i is used to statistically test the spatial distribution 

pattern of the traffic crashes at the zonal level. We use this method to 
identify the hot spots (high values clustered in an area) and the cold 
spots (low attribute values clustered in an area) of these crashes and 
hence to determine whether these crashes tend to be spatially clustered 
(dependent) or random. Getis-Ord G*

i consider that if any geographical 
area is identified as a hot spot for traffic crashes, then other areas 
adjacent areas should exhibit high traffic crashes as well. Therefore, this 
method can be considered as an index of local spatial autocorrelation 

analysis. The Getis-Ord G*
i is associated with a Z-score and p-value as 

well for each geographical zone. The large Z-score values denote that the 
clustering of the traffic crashes value is more intense in this zone (hot 
spot). These values indicate if zones with either low or high crash rates 
tend to be clustered over space. Mathematically, the Getis-Ord G*

i is 
computed according to the following formula (Abulibdeh, 2021b): 

G*
i =

∑n
j=1wi.jxj − X

∑n
j=1wi.j

s

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[

n
∑n

j=1
w2

i.j

(∑n

j=1
wi.j

)2
]

n− 1

√
√
√
√

(6) 

where n is the traffic crash rate value, xj is the property value for 
feature jth element, wij is the spatial weight between zone i and zone j 

and X =

∑n
j=1

xj

n is the mean of the variable. This distance-based weight 
matrix is based on the inverse distance between locations i and j (i.e., 1/ 
dij). 

3.3.4.4. The GWR. The GWR model was used in this study to further 
assess the spatial association between traffic crashes and the contrib-
uting variables in each geographical zone and to solve the spatial het-
erogeneity. This method is a type of linear regression for investigating 
spatially varying relationships. Furthermore, it assumes non-stationary 

Fig. 10. The main cause of crashes as indicated in crash reports in 2015 and 2019.  
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correlation and the regression parameters vary over space (Xu et al., 
2017; Yan et al., 2015; Yoon and Lee, 2021). Mathematically, the model 
is represented as the following (Mollalo et al., 2020); (Fotheringham and 
Oshan, 2016): 

yi = βi0 +
∑m

j=1
βijXij + εi, i = 1, 2,⋯, n (7)  

where at zone i, yi is the value of traffic crashes rate, βi0 is the intercept, 
βij is the jth regression parameter, Xij is the value of the jth explanatory 
parameter and εi is a random error term. In a matrix form, parameter 
estimates for each explanatory variable and at each zone is given as 
follows (Mollalo et al., 2020; Fotheringham and Oshan, 2016): 

β̂(i) = (X ′W(i)X)− 1X ′W(i)Y (8)  

where β̂ denotes the vector of parameter estimate (m × 1), X demon-
strates the matrix of selected explanatory variables, W(i) is a diagonal 
matrix of spatial weights (n × n) and is constructed from the weights of 
each observation depending on its distance from the location i and is 
calibrated based on a locally weighted regression, and y represents the 
vector observations of traffic crashes rates (m × 1). 

6. Results and findings 

4.1. Descriptive analysis 

Fig. 4 depicts the distribution of road traffic crashes in Qatar in 2015 
and 2019. The data reveals a concentration of crashes in Doha and its 
surrounding areas, which is not unexpected given that this region is the 
most populous and has an extensive road network.Conversely, the 
crashs beyond Doha and its vicinity are infrequent (less than60 crashes/ 
year) and are typically confined to roads that connect these areas to 
Doha. As a result in this study zonal level analysis will focus on zones 
within Doha and its surrounding zones. 

Upon zooming into the area of interest, Fig. 5 highlights that the 
crash frequency in the zones located north and west of Doha has 
increased in 2019 compared to 2015. These zones have experienced 
substantial growth during this period with new residential and 

commercial areas popping up continuously over the years. These areas 
also witnessed extensive road network expansions such as the main 
Doha expressway that runs from north to south. Table 4 provides an 
overview of the zone with the highest occurrence of crashes, fatalities, 
and serious injuries from 2015 to 2019. 

Conversely, the zones situated to the south of Doha experienced a 
decrease in the frequency of crashes in 2019. This inclinecan be attrib-
uted to the land transport blockade by Saudi Arabia in 2017. Qatar 
shares its only land border crossing with Saudi Arabia and prior to the 
blockade, there was a significant amount of trade between the two 
countries. However, with the border closed, freight transport shifted to 
mainly, air and sea transport. 

Looking deeper into the type of crashes at a zonal level, it is clear 
from Fig. 6 that the number of fatal crashes in 2019 decreased 
dramatically (-31%) from those in 2015. Zones in the immediate north 
and west of Doha especially saw fewer fatal crashes as these areas 
become more developed over the years. Fatal crashes are generally 
linked to high-speed crashes which are alleviated as population density 
increases and demand for travel increases forcing lower speed on the 
road (congestion) (Ziakopoulos and Yannis, 2020). Further explanation 
of the decrease in fatal crashes in 2019 could be the advancement in 
emergency response services since 2015. Indeed this is plausible espe-
cially since the overall number of crashes increased over the period from 
2015 to 2019 but fatal crashes particularly decreased over the same 
period. The potential fatal crashes thus shifted to serious crashes as 
emergency response services address the situation more swiftly. 

Fig. 7 and Fig. 8 illustrate the distribution of crashes by type of ca-
sualties and per month, respectively. The fatalities involving drivers and 
passengers are concentrated in the northern areas, while pedestrian fa-
talities occur more frequently in the southwestern part of Doha.. As 
explained above the fatality crashes have decreased and thus fatalities. 
Pedestrian crash casualties make up more than 20% of all victims 
consistently over the years. Pedestrian crashes tend to be concentrated 
in the southwest area of Doha which is characterized by low-income 
residences for labor workers. Loukaitou-Sideris et al (Loukaitou-Side-
ris et al., 2007) observed a similar pattern: high pedestrian crashes in 
regions with lower income levels when other risk factors are controlled. 
The majority of the other crash victims are located in the northern zones 

Fig. 11. Time-Space cube analysis showing the traffic crashes emerging hot spot in 2019 compared with 2015.  
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Fig. 11. (continued). 
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of Doha that underwent significant expansion between 2015 and 2019. 
Timmermans et al (Timmermans et al., 2019) examined the time 

series trend for crashes in Qatar and identified a clear pattern of varia-
tion over different months and seasons. In Qatar, the weather conditions 
vary from mild and pleasant winter in December – February to humid 
and extreme heat reaching above 45 ◦C during summer (June – August) 

(Abulibdeh, 2021a). Such variation in weather makes a big difference in 
the volume of pedestrians on the road. The autumn (September- 
November) and winter seasons are characterized by foggy and misty 
weather, and while rainfall is rare, autumn is the season when it is most 
likely to occur. These weather conditions are conducive to pedestrian 
movement, which peaks during the winter months. 

Fig. 12. Moran’s index.  
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Fig. 13. The Getis-Ord G* of traffic crashes on weekdays and weekends of 2015 and 2019.  

Fig. 14. The Getis-Ord G* of crash causality between 2015 and 2019.  
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The occurance of road traffic crashes is generally higher on weekdays 
as the number of days is more than double of weekends. Weekday trips 
are mostly related to commuting between home and workplace/schools. 
As shown in Fig. 9 in 2015, the crashes were mainly to the southwest of 
Doha city but expanded to include the newly developed areas to the 
north. A similar pattern is shown in 2019 except it has intensified. On 
weekends, however, trips are fewer and mainly made for shopping and 
recreational purposes. The distribution of crashes remains similar to that 
of the weekdays but less intense. 

The most common causes of crashes in Qatar, as reported by the 
traffic police, are related to the failure of drivers to make an appropriate 
judgment on the road or practice risky behaviors. They make up more 
than half of all road traffic crashes. Due to the difficulty in addressing 
such a behavioral problem, the pattern in 2015 remained the same in 
2019 except with the addition of areas that saw major developments in 
the later years. In 2016, Qatar increased its traffic violations fine for all 
categories in order to deter unsafe maneuvers on the road. This may 
have had a greater impact on the low-income areas in the south more 
than anywhere else in the country as shown in Fig. 10. 

4.2. Spatiotemporal distribution of traffic crashes 

Fig. 11 displays the spatial and temporal distributions of road traffic 
crashes in Qatar’s zones, utilizing the time–space cube model in ArcGIS 
with a time step value of one month. In 2015, the eastern strip of zones 
displayed potential persistent hot spots (high crash frequency) as shown 
in Fig. 11a, while the extreme northern, western, and southern areas 
were potential cold spots (low crash frequency) (Fig. 11a). The areas 
surrounding the capital city, however, showed no particular pattern of 
crashes. Considering the crash spatiotemporal distribution and their 
significance, only a small zone in central Doha (Fig. 11c) requires further 
investigation. 

In contrast, the crash pattern distribution in 2019 showed significant 
changes compared to 2015. Those same areas that showed no crash 
pattern in 2015 now indicate emerging patterns varying from sporadic 

to persistent crash frequency distribution (Fig. 11b and Fig. 11d). It 
should be noted that zones with high crash frequency do not necessarily 
indicate crash hot spots. Further analysis of the spatiotemporal features, 
and trends of the crash frequency in the area and its neighboring zones is 
necessary to establish statistically backed crash hotspots. 

4.3. Spatial autocorrelation and clustering of crashes 

The Time-Cube analysis provided an overview of the spatiotemporal 
characteristics of the crashes but did not consider other factors, such as 
the nature of crashes in the proximity of the zones that could affect the 
selection of the zones as true crash hotspots. Therefore, further analysis 
was conducted to address this issue. The spatial autocorrelation (Local 
Moran’s I) tool is a powerful tool for spatial analysis that measures 
spatial autocorrelation based on both feature locations and feature 
values simultaneously. The tool evaluates whether the pattern expressed 
is clustered, dispersed, or random. It calculates Moran’s I Index value 
and both a z-score and p-value to evaluate the significance of that Index. 
Its value ranges from − 1 to 1 with a value greater than 0 denoting a 
positive correlation at spatial distribution, i.e, clustered distribution, 
and a value less than 0 indicating an area with dispersed distribution of 
attributes (crash frequency in this case). A value that approaches 0 (from 
either side, positive or negative) represents a random distribution. 
Fig. 12 shows that all the attributes included in our study have a Moran’s 
I value greater than 0 and Z value above 2.58 suggesting that all of them 
have a statistically significant positive correlation spatial distribution 
(clustered). 

In 2015, the spatial distribution of crashes that occurred on week-
days showed random distribution but tend to be more clustered in 2019. 
The reverse is observed during weekends, where in 2019 the crashes 
have increasingly shown random distribution. While fatal and serious 
crashes showed more clustered distribution in 2019 compared to 2015, 
the distribution of the victims of these crashes tends to be more 
randomly distributed in 2019 than in 2015, especially for pedestrian 
fatalities. Crashes caused to failure to maintain safe distance showed 

Fig. 15. The Getis-Ord G* of crash severity between 2015 and 2019.  
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more clustered distribution in both 2015 and 2019. Crashes due to 
failure to check while crossing has shown an increased tendency to be 
randomly distributed in 2019 compared to 2015. 

4.4. Traffic crash pattern recognition 

Moran’s Index analysis above showed that the traffic crashes in the 
study area are aggregated from the spatial aspect with statistical sig-
nificance and that this aggregation changed between 2015 and 2019. 
However, Moran’s Index analysis does not indicate exactly where the 
crashes gathered (i.e., the specific aggregated locations). The Getis-Ord 
G* analysis method can provide the specific aggregation ranges of the 
crashes and preliminarily identify the hotspots. Regarding the days of 
the week, the results of Getis-Ord G* analysis (Fig. 13) show that the 
northwest to the southwest zones of the area of interest remains to 
exhibit clustered distribution of crashes but are more pronounced during 
weekdays than weekends. 

Similarly, the same analysis of the distribution of crashes by crash 
severity and victim type Fig. 14 and Fig. 15 show the aggregation of 
minor crashes is clustered northwest to the southwest of the area of 
interest. The statistically significant clustered distribution of crashes 
with driver and passenger injury is in the northern zones with those in 
the southern zones tending to be more randomized and less significant in 

2019 compared to 2015. However, crashes that result in pedestrian fa-
tality and injury remain clearly clustered in the southwestern zones in 
both years. 

Crashes that were caused due to failure to maintain safe distance 
showed statistically significant clustered distribution in both 2015 and 
2019 (Fig. 16). In the latter year, however, the aggregation of this type 
of crash expanded to include those zones in the north as well as those in 
the southwest. A similar distribution is shown to those due to reckless 
driving and failure to check before crossing although the latter is 
approaching a more random distribution. 

4.5. Emerging hot spot analysis 

The above Getis-Ord G* analysis has identified the crash hot spots. 
Turning to the emerging hot spot analysis, a more detailed interpreta-
tion and classification of the crash hot spots and how they change can be 
made using the emerging spatiotemporal hotspot analysis toolbox in 
ArcGIS 10.7. It classifies the hot and cold spot areas as shown in a 
snapshot in Fig. 17. The visualization results snapshot of crash hot spots 
over time for the year 2019 (from January to December) is shown 
inFigure 17. The area of interest in our study is the intensifying hot spot 
which presents an increasing trend of crashes over time. The opposite of 
such a trend is the diminishing cold spot whose crash frequency is 

Fig. 16. The Getis-Ord G*of traffic crashes causalities between 2015 and 2019.  
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decreasing over time. 
By zooming into the intensifying hot spot area, we can conduct a 

more in-depth investigation to better understand the increasing trend in 
crash frequency in the area. Looking at the satellite images from 2015 
and 2019, an overview of any dramatic changes to the land use or road 
design that may influence road crashes can be carried out. 

As shown in Fig. 18 in the case of intensifying hot spots, the area in 
Doha that shows intensifying hot spots for crashes is a highly mixed 
commercial and residential area with a major arterial road. It accom-
modates a significant volume of traffic generated from such land use. On 
the other hand, as Fig. 19 depicts the area with diminishing hot spots is a 
mainly residential area with also a major arterial road that passes 
through on one edge. Interestingly, both areas accommodate metro 
stations. The metro stations were however operational from mid-2019 
which could have influenced the crash frequency in that year. 

4.6. Spatial association between crashes and analysis variables 

The GWR was employed to investigate the local spatial variation of 
traffic crash attributes. The spatial differences are shown in Fig. 20-24. 
The maps show variations in crashes amongst Qatar Municipalities. For 
example, as appeared in Fig. 20 during weekdays the northern and 
middle municipalities have a lower deviation in crash frequency than on 
weekends, while in the southern municipality Al Rayyan Municipality 
has a big deviation between weekdays and weekends in 2015. Yet, the 
situation improved a little bit in 2019. 

5. Discussions and policy implications 

The goal of this study was to provide policymakers with an approach 
to incorporate spatial and temporal variation in road traffic crashes. The 
study used Time-Space Cube Analysis, Moran’s I, and Getis-Ord Gi* to 

analyze crash data from 2015 and 2019, including crash frequency by 
severity, victim type, weekday/weekend, month, and causes. By 
comparing changes in these factors at the zonal level, the study identi-
fied which factors significantly influenced crash frequency in specific 
areas and how the trend changed over time. This information can be 
used to formulate customized interventions that are supported by 
stakeholders. By using these tools over time, policymakers can also 
evaluate the effectiveness of interventions in resolving local problems. 

The results of this study show that road traffic crashes are mainly in 
the central-eastern section of the country which is where the majority of 
the population resides. While in 2015 the area with higher crash fre-
quency was closer to the center of the capital city Doha, in 2019, this 
area expanded to include major zones in the north and west of the city. 
This can be attributed to the significant infrastructure network expan-
sion that Qatar underwent between 2015 and 2019, particularly in the 
north and west of Doha, as part of the country’s economic development 
plan - the Qatar National Vision 2030. As a society that heavily relies on 
cars, such expansion of the road network increased exposure to risk and 
subsequently, led to an increase in the number of crashes as found in 
(Timmermans et al., 2019). 

Moran’s Index analysis of the crashes near the identified zones 
revealed a stronger clustered distribution during weekdays in 2019 
compared to 2015, indicating a probable systematic cause for the 
crashes. Additionally, crashes reported by police as resulting from a 
failure to maintain safe driving distance showed a clustered distribution 
in both 2015 and 2019. The results of the Getis-Ord Gi* analysis were 
statistically significant and pointed towards the north and west zones of 
Doha as the areas requiring greater attention. This approach of consid-
ering the spatial and temporal variations of road crash frequency facil-
itates the unification of efforts by road safety stakeholders and enables 
the development of an effective road safety plan at a zone level. 

The emerging hot spot analysis is a useful tool for monitoring and 

Fig. 17. Snapshot of Emerging Hot Spot Analysis.  
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evaluating the effectiveness of interventions implemented according to a 
road safety plan. Policymakers can use this analysis to identify and 
target persistent and intensifying hot spot areas with specific measures. 
By adopting the established Safe Systems framework at the zonal level, 
policymakers can readily identify strategies that target significant pre-
dictors of crash frequency in a particular zone. Using this approach, 
policymakers can implement the Safe Systems framework to prevent all 
fatalities and severe injuries through Road Safety Management, Safe 
Roads, Safe Vehicles, Safe Road Users, and Post-Crash Response. This 
approach can thus effectively target the most easily achievable measures 
that have the potential to reduce the frequency of crashes in specific 
locations. 

The proposed approach of implementing the Safe Systems frame-
work at the zonal level and targeting the low-hanging fruits aligns with 
previous studies on road safety management. For instance, a study by 
Elvik (Elvik, 2021) found that a multi-faceted approach focusing on a 
combination of road safety measures is the most effective way to reduce 
the number of traffic fatalities and severe injuries. Therefore, the 
approach of utilizing emerging hot spot analysis and the Safe Systems 
framework at the zonal level can effectively address the specific factors 
contributing to crashes in identified hot spot areas and reduce their 
occurrence. 

Fig. 18. Intensifying Hot Spot.  
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6. Conclusion 

The current study utilized Time-Space Cube Analysis, Moran’s Index, 
and Getis-Ord Gi* to identify and compare crash hotspots in 2015 and 
2019, providing policymakers with a comprehensive understanding of 
the road crash situation and enabling them to develop timely solutions 
at the zonal level. The results indicate that road traffic crashes are most 
prevalent in the central-eastern section of the country, which has the 
highest population density, suggesting that current traffic management 
approaches in urban areas are inadequate in preventing or mitigating 
the negative effects of crashes. Furthermore, the severity of injuries 
sustained by different types of road users has been increasing over time. 
The study’s findings point to several areas for further research and ways 
to improve existing systems for transportation safety and sustainability 

while avoiding negative environmental impacts such as increased air 
pollution levels due to longer travel times caused by increased traffic 
congestion. 

The study highlights several areas where further research could be 
conducted to improve transportation safety and sustainability in Qatar, 
and the findings of this study provide valuable insights that can guide 
this future research. Specifically, the study identified the areas of the 
country with the highest density of population as the locations with the 
most frequent crashes, suggesting that current traffic management ap-
proaches in urban areas need improvement. The study also found that 
different types of road users experienced varying degrees of severity of 
injuries sustained in crashes and that these differences had been 
increasing over time. To improve safety for all road users, future 
research could analyze data on crash rates, causes, and consequences, as 

Fig. 19. Diminishing Hot Spot.  
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Fig. 20. Impact of the time of the week on traffic crashes on a zonal level during 2019.  

Fig. 21. Impact of the time of the year on traffic crashes on a zonal level during 2015 and 2019.  
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Fig. 22. Impact of the causality on traffic crashes on a zonal level during 2015 and 2019.  

Fig. 23. Impact of fatalities and injuries on traffic crashes on a zonal level during 2015 and 2019.  
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well as vehicle speeds and other factors that contribute to the severity of 
injuries sustained by different road users. Overall, the findings of this 
study can inform the development of more effective methods for pre-
venting crashes and improving safety on Qatar’s roads while also 
ensuring that these methods do not cause negative environmental 
impacts. 
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health benefits associated with a speed limit reduction to thirty kilometres per hour: 
A health impact assessment of noise and road traffic crashes for the Swiss city of 
Lausanne. Environ. Int. 145 (October), 2020. https://doi.org/10.1016/j. 
envint.2020.106126. 

Saha, D., Alluri, P., Gan, A., Wu, W., Sep. 2018. Spatial analysis of macro-level bicycle 
crashes using the class of conditional autoregressive models. Accid. Anal. Prev. 118, 
166–177. https://doi.org/10.1016/J.AAP.2018.02.014. 

Scheiner, J., Holz-Rau, C., Jan. 2011. A residential location approach to traffic safety: 
Two case studies from Germany. Accid. Anal. Prev. 43 (1), 307–322. https://doi.org/ 
10.1016/J.AAP.2010.08.029. 

Soltani, A., Askari, S., Mar. 2017. Exploring spatial autocorrelation of traffic crashes 
based on severity. Injury 48 (3), 637–647. https://doi.org/10.1016/J. 
INJURY.2017.01.032. 

Tamakloe, R., Park, D., 2022. Factors influencing fatal vehicle-involved crash 
consequence metrics at spatio-temporal hotspots in South Korea: application of GIS 
and machine learning techniques. Int. J. Urban Sci. https://doi.org/10.1080/ 
12265934.2022.2134182. 

Theofilatos, A., Yannis, G., Nov. 2014. A review of the effect of traffic and weather 
characteristics on road safety. Accid. Anal. Prev. 72, 244–256. https://doi.org/ 
10.1016/J.AAP.2014.06.017. 

Thomas, I., Mar. 1996. Spatial data aggregation: Exploratory analysis of road accidents. 
Accid. Anal. Prev. 28 (2), 251–264. https://doi.org/10.1016/0001-4575(95)00067- 
4. 

Timmermans, C., Alhajyaseen, W., Al Mamun, A., Wakjira, T., Qasem, M., Almallah, M., 
Younis, H., 2019. Analysis of road traffic crashes in the State of Qatar. Int. J. Inj. 
Contr. Saf. Promot. 26 (3), 242–250. 

Wang, Y., Veneziano, D., Russell, S., Al-Kaisy, A., 2016. Traffic Safety Along Tourist 
Routes in Rural Areas. Transp. Res. Rec. 2568 (1), 55–63. 

Xie, K., Wang, X., Huang, H., Chen, X., Jan. 2013. Corridor-level signalized intersection 
safety analysis in Shanghai, China using Bayesian hierarchical models. Accid. Anal. 
Prev. 50, 25–33. https://doi.org/10.1016/J.AAP.2012.10.003. 

Xu, C., Li, H., Zhao, J., Chen, J., Wang, W., Oct. 2017. Investigating the relationship 
between jobs-housing balance and traffic safety. Accid. Anal. Prev. 107, 126–136. 
https://doi.org/10.1016/J.AAP.2017.08.013. 

Yan, X., Zhang, Y., Ma, L., 2015. The influence of in-vehicle speech warning timing on 
drivers’ collision avoidance performance at signalized intersections. Transp. Res. 
Part C Emerg. Technol. 51, 231–242. https://doi.org/10.1016/j.trc.2014.12.003. 

Yoon, J., Lee, S., Oct. 2021. Spatio-temporal patterns in pedestrian crashes and their 
determining factors: Application of a space-time cube analysis model. Accid. Anal. 
Prev. 161, 106291 https://doi.org/10.1016/J.AAP.2021.106291. 

Zaidan, E., Abulibdeh, A., 2020. Master planning and the evolving urban model in the 
gulf cities: Principles, policies, and practices for the transition to sustainable 
urbanism. Plan. Pract. Res. https://doi.org/10.1080/02697459.2020.1829278. 

Zeng, Q., Huang, H., Jun. 2014. Bayesian spatial joint modeling of traffic crashes on an 
urban road network. Accid. Anal. Prev. 67, 105–112. https://doi.org/10.1016/J. 
AAP.2014.02.018. 

Ziakopoulos, A., Yannis, G., Feb. 2020. A review of spatial approaches in road safety. 
Accid. Anal. Prev. 135, 105323 https://doi.org/10.1016/J.AAP.2019.105323. 

S. Mohammed et al.                                                                                                                                                                                                                            

https://doi.org/10.1007/s10109-016-0239-5
https://doi.org/10.1007/s10109-016-0239-5
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0175
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0175
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0175
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0180
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0180
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0180
https://doi.org/10.48550/arxiv.2011.12595
https://doi.org/10.1016/J.AAP.2017.06.011
https://doi.org/10.1016/j.aap.2009.07.005
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0200
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0200
https://doi.org/10.3855/jidc.12585
https://doi.org/10.1016/J.AAP.2015.11.006
https://doi.org/10.1016/j.ijid.2020.03.076
https://doi.org/10.1016/j.ijid.2020.03.076
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0225
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0225
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0225
https://doi.org/10.1186/s40621-016-0098-z
https://doi.org/10.1016/S0001-4575(03)00063-0
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0245
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0245
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0245
https://doi.org/10.1016/J.AAP.2017.03.009
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0270
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0270
https://doi.org/10.1016/J.AMAR.2013.09.001
https://doi.org/10.1016/J.AAP.2012.11.023
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0290
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0290
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0290
https://doi.org/10.1016/J.SSCI.2013.08.015
https://doi.org/10.1016/j.scitotenv.2020.138884
https://doi.org/10.1016/J.AAP.2003.11.001
https://doi.org/10.1016/J.AAP.2003.11.001
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000048
https://doi.org/10.1016/0160-7383(96)00004-7
https://doi.org/10.1016/J.JTRANGEO.2014.06.021
https://doi.org/10.1016/J.JTRANGEO.2014.06.021
https://doi.org/10.1016/j.sbspro.2011.07.020
https://doi.org/10.1016/J.AAP.2008.03.009
https://doi.org/10.1016/j.envint.2020.106126
https://doi.org/10.1016/j.envint.2020.106126
https://doi.org/10.1016/J.AAP.2018.02.014
https://doi.org/10.1016/J.AAP.2010.08.029
https://doi.org/10.1016/J.AAP.2010.08.029
https://doi.org/10.1016/J.INJURY.2017.01.032
https://doi.org/10.1016/J.INJURY.2017.01.032
https://doi.org/10.1080/12265934.2022.2134182
https://doi.org/10.1080/12265934.2022.2134182
https://doi.org/10.1016/J.AAP.2014.06.017
https://doi.org/10.1016/J.AAP.2014.06.017
https://doi.org/10.1016/0001-4575(95)00067-4
https://doi.org/10.1016/0001-4575(95)00067-4
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0380
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0380
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0380
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0395
http://refhub.elsevier.com/S2590-1982(23)00083-0/h0395
https://doi.org/10.1016/J.AAP.2012.10.003
https://doi.org/10.1016/J.AAP.2017.08.013
https://doi.org/10.1016/j.trc.2014.12.003
https://doi.org/10.1016/J.AAP.2021.106291
https://doi.org/10.1080/02697459.2020.1829278
https://doi.org/10.1016/J.AAP.2014.02.018
https://doi.org/10.1016/J.AAP.2014.02.018
https://doi.org/10.1016/J.AAP.2019.105323

	GIS-based spatiotemporal analysis for road traffic crashes; in support of sustainable transportation Planning
	1 Introduction
	2 Literature review
	2.1 Spatial units of analyzing crashs
	2.2 Geospatial statistical models to investigate crashs
	2.3 Crash hotspots analysis

	3 Materials and methods
	3.1 Study area
	3.2 Methodology
	3.3 Data description
	3.4 Analysis methods
	3.4.1 The space–time cube model
	3.4.2 The local Moran’s I
	3.4.3 The Getis-Ord Gi∗
	3.3.4.4 The GWR



	6 Results and findings
	4.1 Descriptive analysis
	4.2 Spatiotemporal distribution of traffic crashes
	4.3 Spatial autocorrelation and clustering of crashes
	4.4 Traffic crash pattern recognition
	4.5 Emerging hot spot analysis
	4.6 Spatial association between crashes and analysis variables

	5 Discussions and policy implications
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


