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ABSTRACT 

YOUSEF, ASEEL, A., Masters : June : [2023], Material Science and Technology 

Title: Construction of Fe2O3/Transition Metal Dichalcogenides Heterostructures for 

Dyes Photodegradation 

Supervisor of Thesis: Talal, Altahtamouni. 

Photocatalysis has been widely implemented in water purification due to its 

sustainability, high efficiency in degrading pollutants with low energy consumption, 

and it is economically and environmentally friendly. Hematite, also known as α-Fe2O3, 

is a promising photocatalyst due to its outstanding stability compared to other states of 

Fe2O3, non-toxicity, low cost, excellent antiferromagnetic properties, abundance in 

nature, corrosion resistance in acidic and alkaline media, recyclability, and the ability 

to harvest up to 40% of the solar spectrum. On the other hand, α-Fe2O3 shows several 

limitations including high electron-hole recombination rates, low conductivity, and 

small hole diffusion length. Forming heterostructures with Transition metal 

dichalcogenides (TMDs) helps in enhancing the performance of Fe2O3 by reducing the 

recombination rate and altering the transport rout.  

In the past few decades, a plenty of research work was done on hematite to 

enhance its photocatalytic activity against water pollutants through several strategies 

including morphology control, doping and heterojunction formation. Indeed, 

constructing semiconductor heterojunctions has been considered to be one of the most 

effective methods as it provides the distinct properties of the combined elements and 

overcomes the limitations of each component. However, research work achieved on 

combining hematite with TMDs is still narrow. Thus, this study aims to accomplish an 

enhancement in the photocatalytic performance of Fe2O3 by constructing a 

heterostructure with a TMD material (WS2). To the best of our knowledge, this is the 

first research work to prepare hematite nanorods heterostructured with a TMD material 
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synthesized via chemical vapor deposition (CVD) method. Furthermore, this hybrid 

system is optimized in this research in order to achieve an improved photodegradation 

activity against synthetic dyes such as Methylene Blue.  

In this thesis, two reaction conditions of hematite synthesis were studied, which 

are precursors’ ratio and annealing temperature, and they were found to affect the 

morphology of the hematite nanorods. Also, the distance between the tungsten source 

and the α-Fe2O3 sample (height) was found to influence the growth of WS2 and the 

evolved photocatalytic activity of the obtained heterostructure which was examined 

against Methylene Blue dye solution under solar simulator irradiation. The best 

photodegradation performance was obtained by the heterostructure synthesized at a 

height of 6 mm with a degradation percentage of 64.9%, that is 3.4 and 2.8 times better 

than bare Fe2O3 and WS2, respectively.  
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CHAPTER 1: INTRODUCTION  

Nowadays, the shortage of drinkable water supply has become one of the 

greatest concerns globally due to the continuous massive industrial development. 

Supplying access to valid and clean drinking water is a must-achieved goal for the long-

term economic circumstances. There are serious environmental and human health 

threats that contribute to water pollution such as chemical discharges including 

synthetic dyes, pharmaceuticals, and pesticides, in addition to heavy metal depositions 

and pathogenic microorganisms. Consequently, the scientific society focuses on 

studying and investigating powerful technologies for water purification (1–3). 

Synthetic dyes are widely used in coloring and printing industries, and they are usually 

degradation-resistant but known to be carcinogenic, which affects human’s health 

negatively (4). Advanced oxidation processes (AOP) are employed in different 

technologies for water treatment including ozonation, photo-Fenton, and photocatalysis 

(5,6). Among these technologies, photocatalysis, especially heterogeneous 

photocatalysis, is considered promising as it is economic, environmentally friendly, and 

effective for degrading different water contaminants (7,8). The recent advancement in 

photocatalytic systems has brought a new era in environmental remediation as they 

provide highly promising potential for contaminants degradation (9).  

1.1. Principle of Photocatalysis in Semiconductors  

Photocatalysis is a process in which a catalyst takes in photons to initiate 

chemical reactions. The mechanism of photocatalysis starts with a photocatalyst 

absorbing a photon having an energy greater or equal to the bandgap energy of the 

exposed semiconductor, which excites the electrons (eCB
−) at the conduction band (CB) 

and generates holes (hVB
+) at the valence band (VB) (eq.1). Consequently, redox 

reactions will be initiated by these electrons and positive holes, respectively (eq. 2) 

where A and C are molecules present on the material’s surface (10–12). After that, the 
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generated redox species are capable of degrading persistent pollutants in water (13).  

Photocatalyst + hv ➔ photocatalyst*(eCB
− + hVB

+) (1) 

Photocatalyst*(eCB
− + hVB

+) + A + C ➔ photocatalyst + A− + C+ (2) 

Recently, semiconductors-based photocatalytic process has been known as a 

convenient approach to overcome environmental contamination problems resulting 

from discharging organic pollutants (14). This technology mainly involves 5 stages as 

shown in figure 1: i) photon absorption by the semiconducting material, ii) production 

of electron-hole pairs, iii) migration and recombination of the generated charge carriers, 

iv) reactants will be adsorbed and products will be desorbed, and v) redox reactions are 

conducted on the semiconductor’s surface (15–17). Transition metal oxides (TMOs) 

show a promising potential for water treatment applications as they are chemically 

stable and show high photocatalytic activity (18).  

 

 

 

Figure 1. Schematic clarification of the photocatalytic process on a semiconductor 

(19). 

1.2. Photocatalytic Dyes Degradation  

Organic dyes contained wastewater is a consequence of major industries like 

textiles, food, cosmetics, and plastics (19). Usually, synthetic dyes are the main 
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contaminants discharged from industries and they do not biodegrade as they have 

increased molecular weight and degree of aromaticity, complex structure, and long-

lasting stability (20,21). These dyes disturb the metabolism of the aquatic creatures by 

altering the biochemistry of aquatic life (22). Moreover, synthetic dyes have led to 

dangerous disorders and respiratory diseases in human bodies such as lung cancer and 

skin irritation (23,24). Low-cost techniques are required to degrade these hazardous 

wastes from water (25). Various techniques were developed to treat the hazardous 

organic dyes including adsorption, chemicals coagulation, membrane filtration, and 

photocatalysis. It was proved that photocatalysis is one of the most effective operations 

as it is simple, non-destructive, and highly efficient. Photocatalytic degradation is 

considered a promising degradation method that reduces the risk corelated with the 

existence of organic dyes in environment (26–28). Typically, dye photodegradation 

takes place under sunlight irradiation (29–31). It was proved that photocatalysis can 

fully mineralize organic contaminants and produce harmless products utilizing 

atmospheric oxygen alone (32,33). This powerful technology depends on the reaction 

conducted between organic substances and strong oxidizing and reducing agents 

(photogenerated e- and h+) (34).  

Methylene Blue (MB) is classified under cationic dyes that is commonly 

implemented in numerous industries and a plenty of fields including chemistry and 

medical science. It was medically reported that the exposure to MB dye can lead several 

health complications in humans including nausea, corneal injury, tachycardia, and 

mental problems (35).  

1.3. Fe2O3 as a Photocatalyst 

1.3.1. Structure  

Iron oxides are very abundant naturally and also could be readily prepared in 

the laboratories (36). Fe2O3 is known as an n-type semiconductor and its conduction 

band is composed of unoccupied Fe3+ d orbitals, whereas the valence band consists of 
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full 2 t2g orbitals (37). The recent research classifies Fe2O3 photocatalysts into different 

types in terms of crystal forms including: i) hematite (α-Fe2O3), ii) maghemite (γ-

Fe2O3), and iii) ε-Fe2O3 (38–40). Table 1 illustrates the mentioned iron oxides and their 

crystal structures (38). Accordingly, each form shows distinguished properties, and the 

most commonly investigated are α-Fe2O3 and γ-Fe2O3 as other forms cannot be 

prepared as single phase materials easily (41,42).  

Firstly, α-Fe2O3, with its rhombohedral-hexagonal structure, is non-toxic, cost-

effective, highly stable, and has a proper bandgap to be used in heterogeneous catalysis, 

solar cells’ photoelectric electrodes, gas sensors, etc. (43,44). Also, α-Fe2O3 shows a 

corundum structure oxide having rhombohedral unit cell dimensions as a = 5.43 Å, α = 

55.28° and the lattice has space group R3c (45). Hematite is the easiest form of Fe2O3 

to synthesize because it is the final product of the thermal decay of various iron (II)- 

and iron (III)-containing complexes (46). Maghemite is the second most abundant 

Fe2O3 polymorph naturally in both bulk and nanosized structures. It shows a counter 

spinel-type structure, in which the ions are put in a ccp arrangement with a = 8.351 Å, 

and iron ions can be found in both octahedral and tetrahedral sites. Nanosized γ-Fe2O3 

has magnetic and surface characteristics which makes it a useful specie for 

nanotechnological fields (42,47). Third, ε-Fe2O3 is a rarely formed Fe2O3 polymorph in 

nature. It shows an orthorhombic crystal structure with a value of a equals to 5.095 Å 

(48). The magnetic activity of ε-Fe2O3 is not completely understood. It exhibits 

millimetre-wave ferromagnetic resonance and magnetoelectric which makes it 

beneficial in an extensive spectrum of applications like in tunable devices where 

electric and magnetic fields are used. However, limitations of ε-Fe2O3 could be the 

difficulty to synthesize a fully pure nanomaterial of it, with the least traces of other iron 

oxide forms. Also, synthesis challenges include low yield and thermal instability, that 

it instantly converts to hematite upon heating (49).  
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Table 1. Crystal structures of three types of Fe2O3 (α-Fe2O3, γ-Fe2O3, and ε-Fe2O3) 

(39). 

Fe2O3 type Crystal structure 

α-Fe2O3 

 

γ-Fe2O3  

 

ε-Fe2O3 

 

 

1.3.2. Properties 

Hematite (α-Fe2O3) have drawn research efforts in the past few decades because 

of its exceptional ability in obtaining up to 40% of the solar spectrum, outstanding 

photocatalytic stability at a wide range of pH, excellent light harvesting properties as it 

shows convenient energy bandgap (1.9 - 2.2 eV), which makes it a promising 

photocatalyst for various applications. Also, it is highly abundant in nature, stable, non-

toxic, and economically and environmentally friendly. However, α-Fe2O3 exhibits 
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several limitations including high rates of charge recombination, low electrical 

conductivity, small hole diffusion length, and poor charge transfer kinetics (50–52). Up 

to now, α-Fe2O3 different nanostructures have been synthesized by various techniques 

including chemical precipitation, sol-gel processing, forced hydrolysis, hydrothermal 

synthesis, and microemulsion. Particularly, hydrothermal synthesis was found to be 

highly effective in controlling the  size and shape of the synthesized nanostructure at 

relatively feasible conditions of time and temperature, in addition to producing highly 

homogenous and well-crystallized products (53–56). Hematite nanorods have been 

established as the most suitable nanostructure of hematite as they show relatively high 

surface area and increased tunability of electronic states (57). Several factors affect the 

photocatalytic activity of a photocatalyst including specific surface area, crystalline 

form, porous structure, and morphology (58,59). Previous research work reported that 

changing morphology may lead to changing specific area and dispersion density. As a 

result, photocatalytic properties are created such as charge carriers migration (60,61). 

Until now, a wide range of morphologies of Fe2O3 were obtained and studied like cubic, 

nanorods, nanowires, nanotubes, etc. (62). Lately, constructing heterojunctions 

consisting of α-Fe2O3 with other semiconductors is known to be an effective strategy to 

intensify sunlight utilization by boosting the separation of the photoproduced charge 

carriers, which improves the photocatalytic properties of hematite significantly (63). 

However, constructing photocatalysts with increased photocatalytic efficiency and 

recyclability is of serious challenge (64).  

1.3.3. Synthesis 

Various techniques have been used to synthesize nanocrystalline Fe2O3 

including spray pyrolysis, hydrothermal methods (65), thermal decomposition (66), 

solvothermal (67), precipitation, and chemical vapor deposition (CVD) (68), etc. 

Particularly, hydrothermal synthesis was found to be highly effective in controlling the  
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size and shape of the synthesized nanostructure at relatively feasible conditions of time 

and temperature, in addition to producing highly homogenous and well-crystallized 

products (53–56). Hematite nanorods have been established as the most suitable 

nanostructure of hematite as they show relatively high surface area and increased 

tunability of electronic states (57).  

1.4. WS2 as a Photocatalyst 

1.4.1.  Structure 

Transition metal dichalcogenides (TMDs) show a sort of sandwich 

configuration where are the hexagonal layers of transition metal atoms (M) are inserted 

between a chalcogen placed in two layers as a sandwich configuration and produce the 

stoichiometry MX2 (69). Mainly, MoS2 and WS2 can exist in two special phases, which 

are octahedral 1T phase and prismatic trigonal 2H phase (figure 2), and every phase 

shows distinguished properties. where 2H-WS2 acts as a semiconductor, and 1T-WS2 

shows metallic properties. It is worth mentioning that these two phases can be converted 

into one another under specific conditions. For instance, 2H-MoS2 is a semiconductor 

whereas 1T-MoS2 is a conductor (70–72). The bulk hexagonal WS2 (2H-WS2) 

possesses an indirect band gap, but when it is a monolayer, it shows an indirect-to-

direct transition in band gap. The lattice parameters for 2H-WS2 are a= 3.155 Å and 

c=12.349 Å. The value of internal coordinate z of bulk 2H-WS2 is 1.573 Å which 

governs the interlayer sulfur plane distance (73,74). 
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Figure 2. 2H-MX2 and 1T-MX2 unit cell structures (70). 

1.4.2. Properties 

Among two-dimensional materials, transition metal dichalcogenides (TMDs) 

are being studied widely because they absorb up to 10% of the visible range. 

Specifically speaking, MoS2 and WS2 show excellent photocatalytic activities, as well 

as an increased thermal and chemical stability. This could be accredited to the existence 

of many active sites such as covalent sites (S) and active metal sites (Mo or W) (75,76). 

TMDs can play crucial roles in photocatalytic environmental remediation, especially 

when coupling with another semiconducting material as they preserve activity and 

stability of the produced photocatalyst by offering more active sites and reducing 

mobility of the other component (77,78). Tungsten disulfide (WS2) is a TMD material 

that has an indirect-to-direct bandgap, and is considered one of the newest generation 

of  photocatalysts (79). It contains three S-W-S atomic planes bonded via Van der 

Waals forces, which makes it proper for efficient conductivity by interior to surface in 

electron transmission (80). WS2 performs a transition from 1.4 eV (indirect) to 2.1 eV 

(direct) bandgap when the size changes from bulk into few layers causing a decrease in 

conduction band (CBM vs. NHE=-3.84 to -3.93 eV) and increased valence band (VBM 

vs. NHE=-5.82 to -5.48eV) (81–84). It shows a relatively high in-plane carrier mobility 

with modest Gibbs’ free energy and good light matter interaction among the earth-
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abundant metal composites photocatalysts (85,86). Among two-dimensional materials, 

WS2 is among the most abundant naturally in Earth crust, and it is less toxic and cheaper 

than other TMDs. Furthermore, it is known for its remarkable properties such as high 

carrier mobility, increased surface area, tunable bandgap, outstanding photocatalytic 

and electronic properties, and biocompatibility. Also, it possesses broad absorption 

spectrum that makes it a light-absorbing material and hence an efficient photocatalyst. 

In spite of that, WS2 has several limitations for a plenty of photocatalytic applications 

such as photocatalytic water splitting. This is because the band edge potential value of 

its conduction band minimum does not meet the requirement of that application (87). 

WS2 possesses a relatively small indirect band gap that is smaller than 1.5 eV, and a 

high value of direct band gap that is bigger than 2 eV based on the preparation technique 

used (88,89). As a result, this relativity small band gap boosts up the light absorption 

range to 910 nm and hence allows the material to conduct redox reactions to degrade 

organic contaminants (90).  

1.4.3. Synthesis 

Several techniques have been used to synthesize WS2, and common examples 

are mechanical activation technology, liquid-phase exfoliation method, hydrothermal 

technique, chemical deposition routs, sol-gel method, and thermal evaporation. 

Moreover, WS2 can be prepared with various morphologies such as nanosheets, 

nanofibers, and nanorods (91).  
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Extensive research works have been concentrates on how to overcome the 

limitations and enhance the photocatalytic properties of Fe2O3 and WS2, and among the 

most effective methods is constructing heterostructures (63). Taking a thorough look 

into the literature, limited research has been conducted in constructing Fe2O3 with 

TMDs, in general, and WS2, in specific, to produce an efficient photocatalyst for 

environmental remediation applications.    

Masoumi, Tayebi and Lee succeeded in constructing a heterojunction of 

hematite photoanode and molybdenum sulfide (MoS2) nanosheets. They started by 

growing a thin film of α-Fe2O3 on FTO substrates via a simple hydrothermal process, 

followed by synthesizing 2D MoS2 nanosheets through an ultrasonication-assisted 

liquid-phase exfoliation method. It was found that MoS2, a TMD material, helped in 

improving the photoelectrochemical performance of α-Fe2O3 by lowering the rate of 

charge of recombination and enhancing the charge carriers separation (92). Likewise, 

Lejbini and Sangpour prepared MoS2 nanosheets with α-Fe2O3 nanoparticles by a 

hydrothermal process. The photocatalytic properties of this nanocomposite was tested 

towards Rhodamine Blue dye, and it showed an excellent performance compared to 

bare α-Fe2O3 nanoparticle and MoS2 nanosheets (93). Also, Zhang and his team 

synthesized a 3D flower-like structured Fe2O3/MoS2 nanocomposite using a one-step 

hydrothermal rout. The researchers tested the photocatalytic properties of the produced 

photocatalyst against Cr(VI) under visible light irradiation (94). Similar morphology 

was obtained later by Alrobei, Kumar and Ram but using sol-gel method to produce 

MoS2/α-Fe2O3 nanocomposite. It showed a good photoelectrochemical activity for 

water splitting application (95).  

In another study, Jia-nan, Shu, and Yong-xin used a two-step hydrothermal 

method to prepare Fe2O3/WS2 heterostructure, which showed a drastically enhanced 

photocatalytic activity in comparison with the bare constituents. They combined Fe2O3 
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nanoparticles with WS2 nanosheets to form a 3D flower-like morphology which caused 

an enhancement in separating the photogenerated charge carriers. Therefore, the 

obtained photocatalyst performed an efficient degradation of Methylene Blue solution, 

which is 5 times better than pure Fe2O3 and 3 times of WS2 nanosheets alone. In 

addition, it showed a superior photocatalytic reduction performance on Cr (VI), which 

is also much better than bare Fe2O3 and WS2. Figure 3 represents the proposed 

mechanism of the photocatalytic processes accomplished by this heterostructure (96), 

which is similar to the principle utilized in our study.  

 

 

 

Figure 3. Schematic of the proposed photocatalytic mechanism of the photocatalyst 

Fe2O3/WS2 (97). 

Similarly, Behera and his team reported the synthesis of a heterojunction 

composed of vertically aligned nanorods of Fe2O3 by chemical bath deposition on FTO 

substrates, and WS2 nanosheets prepared by hydrothermal technique. This produced 

heterojunction exhibited an improved photoelectrochemical activity for water splitting 

(97). Another study reported core-shell constructed α-Fe2O3/WS2/WOx nanorods by 

growing WS2 nanosheets on α-Fe2O3 photoanodes. The WS2 nanostructures were 
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synthesized via liquid-phase exfoliation method (LPE), whereas hematite NRs were 

prepared hydrothermally. This core-shell photoanodes showed an outstanding 

separation, reduced recombination rate of the photo-produced charge carriers, and 

improved electron transport activity. These advantages contributed effectivity to the 

photoelectrochemical (PEC) performance. The most efficient prepared photoanode was 

α-Fe2O3/#4-WS2/WOx achieved up to 30-fold better than that of bare α-Fe2O3 (98).  

Taking a general review on the photocatalytic applications of hematite in the 

literature, certainly for water treatment, a variety of research work was done to 

understand and employ hematite in this field. It can be noticed that constructing 

heterostructures of hematite with other nanomaterials with photocatalytic properties 

makes a significant improvement in the activity of the obtained photocatalyst.  

For example, Sun, Jia, Wang, and others constructed a Z-scheme α-Fe2O3/g-

C3N4 composite via ultrasonic and calcination processes. The highly active hollow α-

Fe2O3 (S3) sample was prepared using H2PO4
¯ and Cu2+

 ions by hydrothermal 

technique. It is worth mentioning that the obtained hollow S3 has a large surface area 

and high Ov concentration which results in an improved photocatalytic degradation 

activity. The researchers synthesized S3/ g-C3N4 composites in different mass ratios of 

S3 and g-C3N4 of 0.1:1, 0.2:1, 0.3:1, and 0.4:1, then labeled them as 0.1-1FCN, 0.2-

1FCN, 0.3-1FCN, and 0.4-1FCN, respectively. The prepared heterojunctions showed 

an outstanding visible-light photocatalytic performance by intensifying the separation 

ability of the photogenerated charge carriers as well as the production of active species. 

The study tested the photocatalytic degradation efficiency of the composite against p-

Nitrophenol which is a highly toxic organic contaminant in water and non-

biodegradable (99). Another example is heterostructuring α-Fe2O3 with ZnO, another 

TMO, which was achieved by Harijan et al. via a facile and simple route which is the 

thermal decomposition of Fe (II) oxalic acid complex at 500°C followed by 
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precipitation of ZnO nanoparticles at 90°C with different ratios (α-Fe2O3: ZnO = 1:1, 

2:1, and 1:2. α-Fe2O3 – ZnO composite exhibited an outstanding photodegradation 

efficiency of methylene blue under UV light compared to pure α-Fe2O3 and ZnO, where 

the ratio 1:2 represented the highest efficiency among all samples. Moreover, Alhabradi 

et al. succeeded in fabricating CdO decorated α-Fe2O3 thin film nanorods arrays via 

throughput radio frequency (RF) sputtering. Hematite thin films were synthesized in 

different thicknesses of Fe ranging from 10 to 150 nm, where 70 nm exhibited the 

highest photocurrent density. The composite exhibited an enhanced MB dye 

degradation performance (98% in 40 minutes), which is higher than bare α-Fe2O3 which 

showed 60% in 40 minutes (100).  

For pharmaceuticals degradation using hematite heterostructures, many work 

also was achieved. For instance, a study done by dela Rosa et al., amoxicillin (AMX) 

was degraded phototactically using TiO2/Fe2O3 sandwich-type composites synthesized 

in different configurations. These composites were fabricated via spin coating. The 

photocatalytic activity of prepared heterojunctions was studied under simulated solar 

irradiation in the presence and absence of persulfate (PS). This research approved that 

TiO2@α-Fe2O3 sandwich-type composite achieved the best photodegradation 

performance of AMX with enhanced performance in the presence of PS. This superior 

performance was attributed to the excellent charge separation achieved via TiO2@α-

Fe2O3 heterojunction compared to the other tested photocatalysts. SEM imaging 

illustrated the thickness of the prepared layers that was within (1.06±0.20 μm). The 

recorded results were normalized to the degradation extent obtained by TiO2-P25 which 

was considered the benchmark photocatalysts. Moreover, the biodegradability of AMX 

solution was enhanced significantly due to mineralization by the hydroxylation 

pathway, which adds precious value to this study (101).  

In a similar aspect, Qiu et al. synthesized Fe2O3/Co3O4 nanosheet arrays on 
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nickel foams using a facile approach. The surface morphology of the prepared 

nanomaterial was demonstrated using SEM. The heterojunction Fe2O3/Co3O4@NF 

showed several benefits including narrow bandgap energy and an increased separation 

rate of the photo-produced charge carriers. It was found that this photocatalyst 

photodegrades sulfamethoxazole (SMZ) with the highest catalytic efficiency compared 

to each component alone. This outstanding activity was attributed to the unique Z-

scheme heterostructure that facilitated the visible light absorption and the transfer of 

photo-generated charge carriers resulting from the staggered energy band structures of 

Co3O4 and Fe2O3. In addition, nickel foam worked as an excellent electron mediator 

and supported to improve the performance and stability of Fe2O3/Co3O4 

nanocomposite. For future work, this study introduced a reference in constructing a Z-

scheme heterojunction to produce efficient and stable semiconductor photocatalysts 

(64).  

Looking at the research work achieved on degrading methylene blue (MB) dye 

from aqueous solutions, several technologies have been employed like chemical 

coagulation, membrane filtration, and using adsorbents. Table 2 summarizes some of 

the recent studies done on MB dye degradation in wastewater, including this study, in 

order to compare between the different technologies used in terms of efficiency.  

Table 2. Different techniques for MB dye degradation from wastewater in recent 

studies.  

Treatment technique Material Performances Ref. 

Photo-Fenton-like 
reactions 

α-Fe2O3 catalyst 
60% discoloration efficiency at 120 

min 
(102) 

Electrocoagulation 
Anode: iron rod electrode 

Cathode: graphite rod 
electrode 

Decolorization rate is 63.24% at pH= 
9 

(103) 

Ultrafiltration membrane 
in a photoelectrocatalytic 

cell 
Ti/TiO2  Colour removal efficiency 64.19% (104) 
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Photocatalysis WS2/Fe2O3 
Photodegradation efficiency 69.4% 

in 125 min 
This study 

  

 It is worth noting that ultrafiltration technique requires additional chemical 

agents to aggregate MB dye molecules. Also, using Fenton’s reagent could generate 

sludge that results in sludge disposal issue and requiring a strict pH control. On the 

other hand, photocatalysis is rapid, cost-effective, and does not produce secondary 

waste (105).   

  

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3: EXPERIMENTAL METHODOLOGY 

3.1. Materials Synthesis Methods  

3.1.1. Hydrothermal Technique  

 Hydrothermal method is among the most common routes for synthesizing 

nanomaterials. It is used extensively to synthesize a plenty of metal oxide 

nanostructures. It is known as one of the most convenient, simple, and a solution 
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reaction-based approach. Particle size, morphology, and chemistry of the prepared 

nanomaterials can be adjusted by modifying different reaction parameters including the 

concentration of precursors, growth time, and reaction temperature. This type of 

techniques can take place in wide range of temperatures ranging from room temperature 

to very high temperature (106,107). This method involves placing precursors such as 

metal salts in water inside a closed reaction autoclave and then exposing it to high 

temperature and pressure (108). Typically, an outer jacket and a Teflon tube is used as 

a container for the reactors (109). The set up of a hydrothermal experiment is shown in 

figure 4. 

 

 

 

Figure 4. The setup used for hydrothermal method. 

3.1.2. Chemical Vapor Deposition (CVD)  

Among the most useful techniques for preparing high-quality large scale mono- and 

few-layered TMDs is chemical vapor deposition (CVD) technique, which is classified 

as a “bottom-up” method (110). In this technique, TMD precursors react and deposit 

on the exposed substrate at high temperature as mono- or few-layer film. Previous 

research works obtained TMDs nanostructures that achieved outstanding photocatalytic 

properties with tunable thickness, high crystal quality, and scalable size (111,112). 

CVD can be used to grow a TMD material via various routs. The rout followed in this 
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work involved vapor phase reaction of two precursors: the chalcogen and the transition 

metal oxide precursors under a certain gas flow (113). The morphologies of the 

constructed TMDs layers depend on several growth conditions such as the substrate’s 

nature, gas flow rate, precursors ratio and concentrations, and temperature. In addition, 

the distance between the TMD source and substrate was found to play a significant role 

in morphology control (114–116). Figure 5 shows the CVD system used which consists 

of a Lindberg Blue M tubular furnace, quartz tube with a diameter of 2-inch, gas 

cylinders, pumping system that are all controlled by Flow Vision software.   

 

 

 

Figure 5. The used CVD system. 

3.2. Materials Characterization Techniques  

Several methods were implemented to characterize and investigate the 

properties of the prepared nanomaterials including morphology and structure.  

3.2.1. X-Ray Diffraction  

X-Ray Diffraction (XRD) is characterization method that provides information on the 

structural parameters such as crystal defects, grain size and crystallinity without 

destructing the sample. Also, it gives information about the preferred crystal 

orientations. XRD applies incident X-ray on the material and then measures the 

intensities and the angles of the leaving scattering X-ray (117). The angle lies between 

the incoming and leaving X-ray irradiation is called 2θ, and the distance between the 
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sheets of charge is d as shown in figure 6 (118). Therefore, Bragg’s Law can be applied 

when a constructive interference is observed: 

n λ = 2 d sin θ  (1) 

Where n is an integer (1, 2, 3,..), λ is the X-ray beam’s wavelength, and θ is the half of 

the scattering angle as illustrated in figure 6 (119).  

 

 

 

Figure 6. Schematic explanation of Bragg’s Law (114). 

Instrument   

The used XRD instrument was PANalytical by EMPYREAN X-Ray diffraction, 40 

KV/30 mA, uses the Cu-Kα radiation (λ = 1.54056 Å) having the scan rate of 2°/min.   

3.2.2. Raman Spectroscopy  

Raman spectroscopy is a major spectral analysis technology for investigating chemical 

bonds, chemical composition, and structural information of material (120). Raman 

effect takes place when the specimen is irritated by an intense monochromatic 

irradiation.  Photon-molecule interactions causes what is called Raman scattering, 

which is a two-photon process (121). In this case, the photon could evoke molecule 

excitation from the ground state to a virtual energy state. Then a photon will be released 

from the relaxed molecule, and it goes back to a different vibrational or rotational state. 

Eventually, if the energy state is higher than the starting state, the released photon of a 
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less frequency creates a Stokes line. However, if the molecule loses energy, the emitted 

photon of a lower frequency creates an anti-Stokes line. Figure 7 spotlights the possible 

scattering styles in Raman spectroscopy. Generally, Raman (wavenumber) shifts reflect 

analytical characteristics on variations between the quantum levels of each substance 

and hence play a crucial role in substance identification. Generally, Raman spectrum 

correlates the intensity of the scattered light (in arbitrary units) with wavelength or 

Raman frequency shift in cm-1 (122).  

 

 

Figure 7. Schematic illustration of the scattering types in the Raman spectroscopy 

(118). 

Instrument   

Thermo fisher scientific DXR Raman Microscope having the wavelength of 532nm, 40 

times scanning, with a laser power of 10, 50x.  

3.2.3. Scanning Electron Microscopy (SEM)  

SEM technique can yield information on the specimen’s surface topography, crystalline 

structure, chemical identity, and electrical properties of about 1 μm of the specimen’s 

upper part. This technique can achieve up to 1,000,000x magnification. Typically, an 

electron gun is used to generate electron beam with energies 2-40 keV towards the 
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sample, and several interactions will be produced that includes secondary electrons, 

backscattered electrons, Auger electrons, and x-ray irradiation as seen in figure 8. The 

different types of obtained electrons can be detected using various detectors to produce 

images and give a certain piece of information about the specimen. Firstly, secondary 

electrons (SE) are those that leaves the specimen with energies lower than 50 eV, 

mainly left their orbits because of the incident electron. This type of electrons produces 

topographic information. Backscattered electrons (BSE) are the same incident electrons 

that were able to approach the nucleus of an atom and then be scattered and re-emerge 

from the specimen’s surface with much higher energy than SE. Mainly, BSE provide 

information on the chemical composition depending on the atomic mass of the element. 

Also, they can provide crystallographic information of the desired material (123).  

 

 

 

Figure 8. Schematic of various primary electron beam interactions with the specimen 

(120).  

Instrument   

SEM instrument by FEI NOVA NANOSEM 450, working at 0.5-30 kV of acceleration 

voltage.  
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3.2.4. X-ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is a highly useful technology that produces 

information on the surface composition of the specimen. The elemental and chemical 

composition of the sample can be detected by using X-ray radiation to provide enough 

energy to accommodate the binding energy (BE) of the core electrons and excite them. 

Sensitive detector will calculate the kinetic energy of the produced electrons, which is 

a characteristic property for each element. The binding energies can be determined from 

the peak position, and the elemental composition and oxidation states possessed by the 

sample can be identified (124).  

 

 

CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Synthesis of Fe2O3 

4.1.1. Materials  

Iron (III) chloride hexahydrate FeCl3.6H2O (VWR International bvba 

Geldenaaksebaan), Sodium nitrate NaNO3 (VWR International bvba Geldenaaksebaan) 

and Hydrochloric acid HCl (37%, Analar NORMAPUR), were used as sources for the 

hydrothermal synthesis. Before the growing the desired material, acetone, ethanol, and 

deionized water were used to clean FTO substrates which were put in ultrasonic bath 

for 15 min each. After that, nitrogen gas was used to dry the substrates.  

4.1.2. Fe2O3 NRs synthesis method   

The synthesis of Fe2O3 NRs was achieved by hydrothermal technique as 

suggested by Masoumi et al, (92,98). First, a 30 ml aqueous solution of the mixture Iron 

(III) chloride hexahydrate and sodium nitrate in the ratio 0.15:1 respectively was freshly 

prepared. Then 2 drops of HCl were added to the homogenous solution so the pH value 

of the mixture is equal to 1.5. After that, the clean FTO substrates were placed in a 100 

mL Teflon-lined stainless-steel autoclave, with placing the conductive side of FTO 



 

22 

substrate facing the walls of the Teflon beaker, and the produced solution was then 

poured into it. The hydrothermal preparation took place inside an oven at 1000C for 6 

hrs. At this stage, FeOOH is formed. To grow Fe2O3 NRs, the as-prepared samples were 

annealed under air inside a furnace at 5500C for 4 hrs. The effect of two factors on the 

NRs’ morphology was investigated which are precursors’ ratio and annealing 

temperature. Precursors’ ratio (NaNO3: FeCl3) varied as following: 0.15:1, 0.15:0.6, 

0.15:0.8, 0.15:1.2, and 0.15:1.4. Furthermore, annealing temperature was also 

investigated as follows: 500, 600, 6500C in addition to the original temperature 5500C.  

The synthesis of Fe2O3 on FTO substrates was confirmed by several 

characterization techniques including SEM images (figure 9) that show the presence of 

the nanorods with an average length of 0.375 μm. The nanorods surfaces are covered 

with pores which are believed to be resulting from the dehydration during the thermal 

treatment as stated by the following chemical equation: 

2FeOOH ➔ Fe2O3 + H2O   (3) 

 

 

 

Figure 9. SEM images of top view (a) and cross section (b) of as-prepared α-Fe2O3 

NRs. 

Moreover, the Raman and XRD were employed to confirm the presence of 

Fe2O3. Raman spectrum in figure 10a exhibits several peaks for Fe2O3 at 223 (A1g), 247 
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(Eg), 290 (Eg), 408 (Eg), 609 (Eg), and 658 (LO Eu) cm-1 (125). On the other hand, XRD 

pattern in figure 10b shows four diffraction peaks at 33.8°, 35.4°, 42.8°, 54.7°, 61.7°, 

64.0°, and 78.4° corresponding to hematite crystal planes of (104), (110), (113), (116), 

(214), (300), and (1010) respectively (JCPDS file no.33-0664) (126). 

 

Figure 10. Raman spectrum (a) and XRD pattern (b) of Fe2O3 NRs. 

4.1.2.1. Precursors’ Ratio Effect 

The precursors ratio (NaNO3: FeCl3) was investigated as an influencing factor 

on the synthesis of Fe2O3 NRs. It was confirmed that this factor affects the morphology 

of the NRs as SEM images suggested in figure 11. The amount of NaNO3 seem to 

influence the morphology of the NRs. By the amount of NaNO3 increases, the NRs get 

more uniform in shape, and the holes appearance decreases. This change is expected to 

decrease the photocatalytic activity of the NRs because it is believed that the abundance 

of through-holes contributes to the enhancement of photocatalytic properties of the 

hematite nanorods as stated by Liu et al (127).  
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Figure 11. Surface SEM images of different precursors ratios of NaNO3: FeCl3. 

4.1.2.2. Annealing Temperature  

Annealing is a crucial process in hematite synthesis as it undergoes the 

transformation from FeOOH formed in the hydrothermal process into α-Fe2O3 NRs. 

This study proves that annealing temperature contributes significantly to the NRs 

formation, and this can be seen in the change in morphology. The thermal treatment 

dehydrates the NRs and hence forms holes covering each nanorod (127). Annealing at 

5000C did not provide sufficient heat to create the holes as can be observed in figure 

11a. On the other hand, annealing at 6000C and 6500C started to cause a deformation 

of the nanorods as illustrated in figure 11 (c, d). The reference recipe in this study uses 

5500C as annealing temperature that allows creating holes in NRs without resulting in 

deformation as represented previously by figure 9.  



 

25 

 

 

Figure 12. Surface SEM images of hematite NRs annealed at three different 

temperatures. 

4.1.3. Photodegradation of Methylene Blue  

The photocatalytic degradation performance of the prepared Fe2O3 NRs was 

tested against MB dye by tracking photo-assisted degradation. Xe arc solar simulator 

of 150 W was used to perform the photodegradation examination as the irradiation 

source, where each sample was placed in 50 ml of 10 ppm of MB dye solution with 

continuous stirring. Before exposing the sample to the radiation, the sample was placed 

in dark for 25 minutes. After that, the solution was subjected to a simulated solar 

radiation 11 cm above the solution surface as shown in figure 13. Every 25 min for 125 

min, 3 ml of this dye solution was taken to measure its absorption spectra at the lambda 

max of the MB dye which is located at 664 nm. The instrument used to track the 
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photocatalytic performance of the samples was UV-visible spectrophotometer by 

JASCO: V-570, Japan.  

 

 

 

Figure 13. The used experimental setup for the photodegradation of MB by the 

prepared photocatalysts. 

4.2. Construction of WS2/Fe2O3 Heterostructures   

Chemical vapor deposition (CVD) is among the most useful and common 

techniques for two-dimensional transition metal dichalcogenides (TMDCs) synthesis 

with different morphology, size, and crystal quality, which can be employed in a 

plenty of research fields and applications. However, coupling 2D tungsten disulfide 

(WS2) with a TMO like Fe2O3 considering a controlled orientation and size is still a 

challenging issue. In this section, we illustrate a controllable synthesis of WS2 flakes 

on Fe2O3 nanostructures by optimizing the CVD growth conditions.  

4.2.1. Materials  

The precursors used were high-purity tungsten trioxide (WO3) powder (99.97%, 

Sigma Aldrich), and sulfur (S) powder (99.5%, Sigma Aldrich). The substrates utilized 
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were Fluorine doped tin oxide (FTO) glass. Prior to the growth, FTO substrates were 

cleaned using a 15-min sonication in acetone, ethanol then deionized water using 

ultrasonic bath. After that, drying the substrate took place using nitrogen flow. Argon 

gas (99.99%) and mixed gas (H2: Ar) were used as the carrier gases.   

4.2.2. Preparation of WS2/ Fe2O3 Heterostructures  

For the synthesis of WS2/Fe2O3 heterostructures, the as-synthesized Fe2O3 NRs 

samples were used as substrates for the growth of vertical WS2 nanoflakes via CVD on 

the Fe2O3 NRs. The growth of WS2 nanoflakes was achieved using Lindberg Blue M 

CVD system that includes a quartz furnace tube with a diameter of 2 inches. For a 

typical growth, the FTO substrate covered with Fe2O3 NRs was placed with its 

conductive side facing downwards to a 10-cm long alumina ceramic boats that contains 

70 mg of WO3 powder. This boat of WO3 with the mounted substrate was placed at the 

center of the furnace, while a ceramic crucible holding 700 mg of the powder of sulfur 

was placed upstream at 15-cm distance of from the WO3 source. After 30 min of 

evacuating the system, the reactor was purged with 100-sccm high-pure argon gas for 

15 minutes. Then the temperature of the furnace was raised up to 675°C with a ramping 

rate of 15°C/min. At that temperature, the growth of WS2 took place under the flow of 

100 sccm Argon and mixed gas (60 Ar: 40 mixed gas) for 40 minutes. Meanwhile, the 

temperature of sulfur crucible, which was monitored by separate thermocouple, reached 

180°C. When growth time was over, the reactor was cooled down under the flow of 

100 sccm Argon flow. Several runs were conducted where the WO3 powder was placed 

in different heights inside the boat in order to study the effect of changing the distance 

between the substrate and the precursors. Figure 14 illustrates the experimental setup 

configuration.  
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Figure 14. Schematic of the used experimental setup in CVD. 

To improve the photocatalytic activity of Fe2O3, a heterostructure of WS2/Fe2O3 

was constructed via CVD growth of WS2 flakes on previously grown Fe2O3 NRs film. 

The effect of the distance between Fe2O3 sample and the tungsten precursor was 

investigated to obtain an optimized growth of WS2 nanoflakes in the heterostructure. 

Figure 15 illustrates the SEM surface images of the constructed WS2/Fe2O3 at three 

different vertical distances (heights). A significant effect on the growth of WS2 

nanoflakes was observed. SEM images revealed that the size and density of WS2 

nanoflakes decreases with increasing the distance between the Fe2O3 sample and the 

tungsten precursor. In figure 15a, the lowest distance showed the biggest size and the 

highest density of the vertically aligned WS2 flakes that fully covered the grown Fe2O3 

nanostructures, whereas the flakes are less dense in figure 15b when the height is 

higher. This allowed the observer to barely see the Fe2O3 nanorods underneath. 

However, both nanostructures can be observed and distinguished clearly in figure 15c 

where the height is the highest as the WS2 flakes show the lowest size and density. In 

figure 15d, WS2 nanoflakes are not clearly observed and this is an indication of an 

incomplete growth of the material on Fe2O3, which is expected to negatively affect the 

photocatalytic activity of the sample. It is worth mentioning that Fe2O3 NRs 

deformation was noticed in figure 15c, which suggests that the CVD conditions could 
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affect the morphology of hematite during the synthesis of WS2 and constructing the 

heterostructure due to additional thermal treatment in CVD reactor.  To sum up, SEM 

images suggest that optimizing the height produces a controllable growth over the size 

of WS2 nanoflakes constructed on Fe2O3 NRs.   

 

 

 

Figure 15. SEM surface images of WS2/Fe2O3 heterostructures constructed at 4 

different heights. 

Raman spectra sand XRD patterns were used to prove the formation of the 

heterostructure grown using 6 mm height. Figure 16a shows the Raman spectra where 

the three peaks can be observed at around 319, 345 and 414 cm-1, that correspond to 

LA(M) + ZA(M), E1
2g(Γ) and A1g(Γ) modes for WS2, respectively. Moreover, the 

spectrum exhibits two main peaks for Fe2O3 active modes at 227 cm-1, and 291 cm-1, 

correlating with A1g and E1g, respectively. XRD pattern is demonstrated in figure 16b 
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for the as-synthesized WS2/Fe2O3 heterostructure. The diffraction peaks at 14.2°, 33.7°, 

61.6°, and 80.6° can be attributed to (002), (101), (008) and (0010) planes of WS2 

(JCPDS file no. 08-0237). Also, the pattern shows four diffraction peaks at 35.4°, 42.8°, 

54.6°, and 75.4° corresponding to Fe2O3 crystal planes of (110), (113), (214), and 

(1010) respectively (JCPDS file no.33-0664). Subsequently, the constructed 

heterostructure sample shows Raman and XRD characteristics of both WS2 and Fe2O3, 

which is an indication of the successful growth of WS2 nanoflakes on Fe2O3 

nanostructures.   

Figure 16. Raman spectrum (a) and XRD pattern (b) of WS2/Fe2O3 heterostructure.  

 For further examination of the chemical states and the surface composition of 

the prepared heterostructure WS2/Fe2O3, XPS technique was implemented as 

illustrated in the XPS spectra in figure 17. The full spectrum is shown in figure 17a. 

Figure 17b shows the high-resolution spectrum of W 4f where three peaks can be 

observed at 34.4 and 36.6 eV, which represent W 4f7/2 and W 4f5/2 corresponding to 

W4+ oxidation state, as well as a peak at 38.3 eV which correlates to W6+ indicating 

the presence of a trace amount of WO3 that did not react (128). The high-resolution 

spectrum of sulfur is shown in figure 17c where two peaks are identified at 168.2 and 

168.8 eV which emerged from the existence of S2- valence state in the heterojunction 
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sample (129). In figure 17d, the binding energy values at 709.0 and 711.6 eV 

correspond to Fe 2p3/2 for Fe3+ and Fe2+ respectively, whereas the peaks at 722.6 and 

732.5 eV correspond to Fe 2p1/2 (130). The peaks shown in figure 17e belong to O1s 

at 528.9 and 530.9 eV that indicate the presence of the lattice oxygen in Fe-O and as 

chemisorbed oxygen participating as a hydroxyl group (131). 
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Figure 17. XPS spectra of the heterostructure WS2/Fe2O3 (a), W 4f (b), S 2p (c), Fe 2p 

(d), and O 1s (e).  

The photocatalytic properties of the as-synthesized heterostructures were tested 

against MB dye and the photodegradation activity was studied under solar simulator 

irradiation. For the sake of comparison, figure 18a shows the absorption spectra of the 

MB dye degradation using an Fe2O3 sample, whereas figure 18b is absorption spectra 

under WS2 photocatalyst. Figure 18c shows the absorption spectra of the MB dye 

degradation using a 6 mm height WS2/Fe2O3 sample as a photocatalyst. It can be seen 
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clearly that a significant enhancement was achieved by coupling Fe2O3 with WS2 in an 

active heterostructure over each component alone.  

 

Figure 18. MB dye absorption spectra at several time intervals using Fe2O3 sample 

(a), WS2 sample (b), and the heterostructure sample WS2/Fe2O3 (c). 

 From the absorption spectra represented in figure 18, it is clear that the 

heterostructure WS2/Fe2O3 achieved the best and the most significant photocatalytic 

activity against MB dye. These results indicate that constructing a heterostructure of 

semiconducting nanomaterials is an efficient technology for enhancing the 

photocatalytic properties of a photocatalyst.  



 

34 

 The concentration C of the dye solution used was calculated using the standard 

curve method. To compute the efficiency of degradation of the implemented 

photocatalysts, the following equation was applied (132):  

Dye degradation efficiency % = 
C0−C

C0
 * 100            (4)  

Where Co is the starting concentration of the dye solution and C is the concentration of 

the dye at a certain time t of relative exposure to irradiation. On the other hand, 

Langmuir-Hinshelwood model was implemented to obtain the reaction rates of MB dye 

degradation via the equation of pseudo-first-order kinetics (132):  

ln(
𝐶0

𝐶
) = kt                                (5)  

Where k is the constant of reaction rate, which is the slope of the straight line resulting 

from the relationship between ln(
𝐶0

𝐶
) and the time t.  

 

Figure 19. Photodegradation efficiency plots (a) and the kinetics plots (b) of the as-

prepared photocatalysts.  

 Indeed, figure 19a emphasizes the enhancement performed by the 

heterostructure as the dye degradation efficiency reached as high as 64.9% whereas it 

did not exceed 18.9% and 23.1% for bare Fe2O3 and WS2 respectively. In another 

words, the prepared heterostructure accomplished 3.4 and 2.8 times better 

photodegradation efficiency than that of each component alone, respectively. In 
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addition, the first-order kinetics were plotted for the three samples and the rate constant 

k values were calculated as follows 0.00174 min-1 for Fe2O3, 0.00213 min-1 for WS2, 

and 0.00655 min-1 for WS2/Fe2O3 as represented by figure 18b.  

 

Figure 20. Dye degradation efficiency (a) and kinetic plots (b) of the as-prepared 

WS2/Fe2O3 heterostructures grown at different heights. 

Figure 20a represents the dye degradation curves obtained for the produced 

WS2/Fe2O3 heterostructures. It can be observed that as the height increases from 2 to 4 

mm, the photodegradation efficiency of the prepared samples increases, with a 

maximum photocatalytic activity of 64.9% at 6 mm height then it decreases 

significantly for the 8-mm sample. This can be accredited to the larger surface area of 

the small vertically aligned flakes of WS2 distributed on Fe2O3 film in the 6 mm sample, 

whereas the 8 mm WF sample does not show WS2 nanoflakes in the SEM images, 

which may affect the photocatalytic activity due to the incomplete growth of WS2 

nanoflakes. The photodegradation reaction was plotted as first-order linear expression 

as shown in figure 20b. All studied samples showed linear relationships between 

ln(C0/C) and time that fit the first-order kinetics. For all samples, linear relationships 

were obtained between ln(C0/C) and the irradiation time that follow the first-order 

kinetics. The values of the rate constant k for 2-, 4-, 6-, and 8-mm height samples were 

found as 0.00398, 0.00480, 0.00655, and 0.00151 min− 1
, respectively.  
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4.2.3. Proposed Photocatalytic Mechanism 

Figure 21 illustrates the proposed mechanism of the photodegradation of MB 

dye solution using 6mm- WS2/Fe2O3 heterostructure. When the heterostructure sample 

is immersed in the MB dye solution and gets exposed to solar irradiation, the 

photocatalyst absorbs this energy and the photoinduced charge carriers are generated. 

After that, the electron-hole pairs separate and migrate to the surface of the 

photocatalyst, where the MB molecules will be removed via redox reactions that 

produces free radicals including O2¯ and OH, which work as great oxidizing agents 

and decompose organic substances into H2O and CO2. In the case of this 

heterostructured photocatalysts, electrons transfer from the CB of WS2 to the CB of 

Fe2O3. In contrast, holes transfer from the VB of Fe2O3 to the VB of WS2. As a result, 

the recombination rate of the photogenerated charge carriers could be reduced prior to 

the exposure of visible light, which overcomes the challenge of the high recombination 

activity performed by bare Fe2O3. Accordingly, this heterostructure is able to generate 

more charge carriers with an improved separation and faster migration to the surface 

active sites leading to an enhanced photocatalytic performance in comparison with bare 

WS2 and Fe2O3 (133,134).  
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Figure 21. Schematic illustration of the proposed mechanism of MB dye 

photodegradation via the heterojungtion WS2/Fe2O3. 
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CHAPTER 5: CONCLUSION 

To sum up, this study aimed to achieve an enhancement in the photocatalytic 

activity of α-Fe2O3 by preparing a heterostructure with a TMD material, WS2. The 

synthesis of hematite NRs was accomplished using hydrothermal technique and two 

preparation conditions were investigated which are precursors’ ratio and annealing 

temperature and their influence on the morphology of NRs was studied. First, it was 

noticed that increasing the amount of the additive sodium nitrate leads to hematite NRs 

that are more uniform in shape with an observed reduction in the holes formation. For 

the heterostructure construction, WS2 nanoflakes was grown on the as-prepared 

hematite using CVD technique. The distance between the tungsten source and the Fe2O3 

sample was found to affect the growth of WS2 as well as the photocatalytic performance 

which was examined against MB dye solution under solar simulator irradiation. The 

best photodegradation activity was obtained by the heterostructure prepared at 6 mm 

high with a degradation percentage of 64.9%, which is 3.4 and 2.8 times better than 

bare Fe2O3 and WS2, respectively.  
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In the future, further investigation of the photocatalytic properties used in water 

treatment applications of hematite heterostructures can be accomplished, especially 

with TMDs nanostructures. For this sake, CVD could be a promising synthesis 

technique of a TMD, with studying the effect of different growth conditions such as 

quantities, pressure, and temperature, in addition to the substrate used for the 

heterostructure growth. Furthermore, some kinetic studies can be performed during the 

photodegradation experiments, as well as changing the sun light intensity with studying 

its effects. According to the fact that this photodegradation process results in producing 

carbon dioxide in the aqueous solution, the total organic carbon (TOC) test can be 

implemented to investigate the organic content of water after the dye degradation. Also, 

researchers can use other TMD material for the formation of Fe2O3 heterostructures.  
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