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A Generative Model to Synthesize EEG Data
for Epileptic Seizure Prediction

Khansa Rasheed , Junaid Qadir , Senior Member, IEEE, Terence J. O’Brien,
Levin Kuhlmann , and Adeel Razi , Member, IEEE

Abstract— Objective: Scarcity of good quality electroen-
cephalography (EEG) data is one of the roadblocks for
accurate seizure prediction. This work proposes a deep con-
volutional generative adversarial network (DCGAN) to gen-
erate synthetic EEG data. Another objective of our study is
to use transfer-learning (TL) for evaluating the performance
of four well-known deep-learning (DL) models to predict
epileptic seizure. Methods: We proposed an algorithm that
generate synthetic data using DCGAN trained on real EEG
data in a patient-specific manner. We validate quality of
generated data using one-class SVM and a new proposal
namely convolutional epileptic seizure predictor (CESP).
We evaluate performance of VGG16, VGG19, ResNet50, and
Inceptionv3 trained on augmented data using TL with aver-
age time of 10 min between true predictionand seizure onset
samples. Results: The CESP model achieves sensitivity
of 78.11% and 88.21%, and false prediction rate of 0.27/h
and 0.14/h for training on synthesized and testing on real
Epilepsyecosystem and CHB-MIT datasets, respectively.
Using TL and augmented data, Inceptionv3 achieved high-
est accuracy with sensitivity of 90.03% and 0.03 FPR/h.
With the proposed data augmentation method prediction
results of CESP model and Inceptionv3 increased by 4-5%
as compared to state-of-the-art augmentation techniques.
Conclusion: The performance of CESP shows that synthetic
data acquired association between features and labels very
well and by using the augmented data CESP predicted
better than chance level for both datasets. Significance: The
proposed DCGAN can be used to generate synthetic data to
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increase the prediction performance and to overcome good
quality data scarcity issue.

Index Terms— Epileptic seizure, EEG, machine learning,
deep learning, transfer learning, adversarial networks.

I. INTRODUCTION

A SUDDEN abnormal, self sustaining electrical discharge
in the cerebral networks of the brain is a cause of epilep-

tic seizures (ES). The attack may occur at any time on any
day. The unpredictability of duration, seriousness, and time of
attack makes it very difficult for patients to perform everyday
chores and on occasions can be life-threatening. According
to the World Health Organization (WHO), 70 million people
around the globe suffer from epilepsy with around one-third
of these patients resistant to anti-epileptic medication [1]. The
early prediction of these attacks before they occur will be
helpful for the patients to take precautionary measures and
potentially allow the implementation of preventative therapies.

Electroencephalography (EEG) is used for measuring and
monitoring brain activity before, during, and after ES and is
widely used to predict seizures. Machine Learning (ML) based
prediction algorithm uses the hand-crafted features of EEG
from the time-domain, frequency-domain, or time-frequency
domain to make predictions. Previously, researchers have
evaluated various features—such as Kolmogorov entropy [2],
largest Lyapunov exponent (LLE) [3], phase synchronization
of different EEG channels [4], and correlation density—to
perform seizure prediction [5]. In 2014 and 2016, contests
of (epileptic) seizure prediction were held by the American
Epilepsy Society and Melbourne University. These competi-
tions were open to the EEG feature (for seizure prediction)
computing algorithm or ML models trained on the extracted
features. However, the preferable performance of submitted
algorithms was based on the extraction of various features
and combinations of classifiers. The best combination of
features and classifiers are still not known for each patient.
These algorithms were also not generalizable and required
significant changes for every new patient and new data in
practical application [6]. Because of these shortcomings of
feature engineering methods, more generalized methods for
seizure prediction are required.

Deep learning (DL) algorithms are beneficial in the sense
of automatic feature extraction from the data [7]. Over the
past few years, researchers have applied several DL methods
to predict epileptic seizures [8]–[10]. However, these DL
algorithms require an extensive amount of labeled data to
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Fig. 1. Pipeline of the methodology used in the paper.

produce effective results. Researchers typically use scalp EEG,
where signals are collected from the wearable sensors placed
on the scalp, or intracranial EEG (iEEG), signals collected
by placing the electrode on the exposed surface of the brain
through surgery, for the ES prediction. iEEG data gives the
high temporal resolution and frequency information of brain
activity with a high signal-to-noise ratio as compared to scalp
EEG. However, the acquisition of iEEG data is challenging due
to surgery and implantation risks. Moreover, the characteristics
of seizures may change over time, not only for each patient
but also for an individual. To achieve good performance, the
seizure dataset must contain all the possible characteristics for
which we required long-term continuous recordings of EEG
signals.

Despite decades of research on ES prediction, the field still
lacks the availability of long-term continuous good quality
patient EEG data. The collection of data for the first-in-man
study of Cook et al. [11] and the EPILEPSIAE dataset [12]
are steps towards solving this problem but the latter dataset
is not free. The former dataset consists of almost one-year-
long iEEG recordings of patients (the dataset of 3 most critical
patients from this collection is available as Epilepsyecosystem
dataset, which we used in our study). There are additional
practical challenges related to data collection such as inducing
headache, surgical infection, discomfort in neck and head
due to implanted device, and accumulation of fluid around
implantation area of the brain. Data collection procedures are
very costly because medical experts are required to avoid the
aforementioned medical situations.

Apart from these challenges related to the acquisition of
long-term continuous EEG/iEEG signals, another challenge is
the imbalanced nature of the dataset due to the low frequency
of seizure occurrence with a preponderance of interictal (non-
seizure) samples. The scarcity of good quality epilepsy data
recordings arises due to these challenges and motivates our
work. We propose the generation of artificial synthetic data as
a solution to this problem. In this paper, we will examine that
how a DL algorithm can be used as a generalized model for
artificial EEG data generation? We will also verify how much
effective the artificial EEG data is for seizure prediction? Our
major contributions in this paper are as follows:

1) We propose a deep convolutional generative adversarial
network (DCGAN) to resolve the EEG data scarcity

problem. As a proof of principle, we generate synthetic
scalp EEG and iEEG data of each patient by training
the DCGAN model on the Epilepsyecosystem iEEG data
and CHB-MIT scalp EEG data separately in a patient-
specific way.

2) To evaluate the effectiveness of simulated data, we then
use two methods: classical ML method of one-class
SVM, and secondly a CNN classifier—which we refer
to as convolutional epileptic seizure predictor (CESP)—
for seizure prediction in the last block of Figure 1).
We train CESP on the real data and test on synthesized
data (iEEG data generated from DCGAN). The idea
of augmenting the real data with generated data also
improved the performance of CESP.

3) We also evaluate data augmentation with the well-
known technique of transfer learning (TL). We trained
the popular DL models ResNet50, Inceptionv3, VGG16,
and VGG19 on the large amount of already generated
synthesized data. After the training, we fine-tuned these
pre-trained models on the real data to develop the
patient-specific prediction algorithm.

To the best of our knowledge, this is the first study on the
generation of synthetic scalp EEG and iEEG data and the use
of TL with data augmentation performed by generative meth-
ods for seizure prediction. Figure 1 summarizes the method
we have developed.

The remaining paper is organized as follows: Section II
covers the review of previously used methods. Section III
provides face validation, i.e., the detailed methodology we
propose along with the used dataset. Section IV provides
construct validation, which comprises the results obtained
from the proposed methods and comparison of the results with
previous works. The paper is concluded in Section VI.

II. RELATED WORK

EEG is a complex and challenging functional brain mapping
modality to handle due to the presence of noise and vari-
ous measurement and physiological artifacts. Pre-processing
of EEG data for noise and artifact removal is an involved
and time-consuming exercise that greatly compromises the
utility of online development of EEG based ES prediction
solutions [13]. Furthermore, the imbalance EEG data leads
to overfitting and wrong predictions.
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To overcome the problem of imbalanced dataset,
Troung et al. generated pre-ictal samples by sliding a
30sec window over the pre-ictal samples along the time
axis [8]. They trained a three-layered convolutional neural
network (CNN) on the spectrograms generated from the
short-time Fourier transform (STFT) of the Freiburg hospital
iEEG database and the CHBMIT scalp EEG database. They
achieved 89.8% sensitivity with 0.17 false prediction rate
(FPR/h) for 5 min of Seizure Prediction Horizon (SPH). SPH
is defined as the time interval between the alarm raised in
the anticipation of impending seizure onset and the actual
start of the ictal state [14]. To deal with the imbalance
dataset, Khan et al. [9] down-sampled the inter-ictal class by
randomly picking the samples from the data. They achieved
87.8% sensitivity and 0.142 FPR for 10 min SPH with the
CHBMIT and MSSM databases. They transformed the EEG
data into wavelet tensors before training the CNN classifier.
Daoud and Bayoumi [15] also used this down-sampling
method of inter-ictal samples to overcome the problem of
imbalanced data.

Another work, in which Troung et al. [10] proposed the
solution to the unavailability of unlabelled EEG data,
they again used the overlapping sampling method to gen-
erate pre-ictal samples (they used this method in their
previous work [8]). They trained a generative adversarial
network (GAN) to perform unsupervised training on the spec-
trogram of STFT of EEG. Then, they used the features learned
from the discriminator to predict seizures. They measured the
area under the receiver operator characteristic (ROC) curve
as a performance measure with 5 min SPH and seizure
occurrence period (SOP), the time interval during which
seizure occurrence is expected, of 30 min. They achieved
77.68% AUC for the CHBMIT scalp EEG data, 75.47% AUC
on the Freiburg hospital data, and 65.05% AUC with the
EPILEPSIAE database.

Data augmentation is a traditional solution to the intricacy
of a small dataset. Zhang et al. addressed the problem of
an imbalanced dataset by generating pre-ictal samples by
randomly combining the segments of original pre-ictal samples
and augmented the real data with the generated samples [16].
They extracted the time and frequency domain features using
wavelet packet decomposition and common spatial patterns
(CSP). Then they fed the extracted features to the shal-
low CNN classifier to predict the seizure. They achieved
a sensitivity of 92.2% and 0.12 FPR/h on the 23 patients
of the CHB-MIT dataset. Synthetic monitoring oversam-
pling (SMOTE) is another technique used in literature as a
solution to the imbalance dataset. This method generates the
samples of minority class by focusing on the feature space
of samples. Stojanović et al. used the SMOTE method to
generate pre-ictal samples of EPILEPSIAE and Epilepsye-
cosystem datasets [17]. They achieved a sensitivity of 69%
and 95% for the Epilepsyecosystem dataset and EPILEPSIAE
dataset respectively. They achieved these results by extract-
ing 12 non-negative matrix features and training support vector
machines (SVM) on these features.

Random selection of data samples is not a recommended
solution because one may lose the useful information present

TABLE I
SUMMARY OF THE DATASETS USED IN THE PAPER

in the samples which is discarded during random selection.
On the other hand, oversampling of pre-ictal data is a better
solution compared to the imbalanced dataset. However, tech-
niques used in literature, i.e., SOMTE, data-segmentation, and
sliding window generate samples with no new information.
The sliding window method is not useful if we have to generate
a large number of samples because the overlapping windows
may lead to redundant samples with repeated information.
SMOTE generates the samples by translating, rotating, and
adding noise to the original samples. So, the samples generated
using SMOTE can be misleading due to the presence of
noise. In contrast to these techniques, we used a DL-based
method for the artificial generation of pre-ictal data. Using
our method, we can generate samples similar to the original
samples without any added noise. Our method eliminates the
requirement of availability of original data to generate new
samples once the model is trained. In this manner, we can
generate as many samples as we want without the dependency
on real data.

III. METHODOLOGY

In this section, we describe the datasets used in the study,
pre-processing of these datasets, and then we present the face
validation of our proposed methodology.

A. Dataset

We are using two datasets for this work: the CHB-MIT
dataset [18] and the Epilepsyecosystem dataset [11] (summa-
rized in Table I). We trained the DCGAN on both datasets
separately to generate the samples of scalp EEG and iEEG
signals. After the generation of synthetic data, we augmented
the real data of both datasets with the synthetic samples.
We then employed the idea of transfer learning (TL) on var-
ious DL models using augmented Epilepsyecosystem dataset.
We also evaluated the performance of the CESP model on
both augmented datasets.

The Epilepsyecosystem dataset recorded at St Vincent’s
Hospital in Melbourne, Australia is used for the experiments.
The dataset contains the intracranial EEG (iEEG) signals of
three patients (all female). Data of each patient contains sig-
nals from 16 electrodes sampled at 400Hz sampling frequency.
Data is segmented in 10 min long pre-ictal and interictal
intervals. Pre-ictal intervals are selected from the one hour
earlier recordings of every seizure with a five-minute seizure
horizon while interictal intervals are segmented from randomly
selected one-hour recording blocks at least four hours away
from any seizure.

The CHB-MIT dataset consists of the 844h long continuous
scalp EEG data of 23 patients with 163 episodes of seizure.
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Scalp EEG data were collected using 22 electrodes at a
sampling rate of 256 Hz. We segmented the interictal periods
that are at least 4 hours away before a seizure onset and after
a seizure ends. We are interested in anticipating the leading
seizures, therefore for two or more consecutive seizures that
are less than 30 min apart from each other, we considered these
as only one seizure. Moreover, we only considered patients
with no more than 10 seizures per day for the ES prediction
because it is not very crucial to predict ES for patients that
have a seizure every 2 hours on average. With the preceding
criteria, there are 13 patients with an adequate amount of data,
i.e., have at least 3 leading seizures and 3h of the interictal
period.

B. Data Preparation

As we are using a CNN model for predicting a seizure,
we need to convert the time-series data into a matrix (image-
like format). We have applied the short-time Fourier trans-
form (STFT) to transform EEG signals into spectrograms
containing the time and frequency axes. We applied STFT
on each electrode of the EEG signals of both datasets with
a 1 min window length with no overlaps. Some patients of
CHB-MIT data have less than 22 channels, i.e., Pat9 and Pat13
have 21 and 17 channels respectively. To keep our synthetic
samples independent of such data specifications, spectrograms
of all electrodes were concatenated vertically to obtain the
final spectrogram of shape (X × Y × 3), where X and Y
are time and frequency dimensions. To get all samples of
the same size, we resized all spectrograms by setting the
values of X and Y equal to 256. EEG data was contaminated
by the power line noise at 60Hz for the CHB-MIT dataset
and 50Hz for the Epilepsyecosystem dataset. We can remove
this by eliminating the frequency components in the range
of 47–53 Hz and 97–103 Hz for 50 Hz power frequency
and frequency components in the range of 57–63 Hz and
117–123 Hz for 60 Hz power frequency. We removed the line
noise in both datasets using the Butterworth infinite impulse
response.

C. Synthetic Data Generation

We use a DCGAN to generate synthetic iEEG and scalp
EEG data. Here we only describe it for the Epilepsyecosys-
tem dataset. The same description is implemented for the
CHB-MIT dataset. The Generator takes a 100 dimensional
randomly generated samples from the standard Gaussian dis-
tribution of zero mean and standard deviation of one as an
input. The input layer is a dense hidden layer. The output
dimension of the first hidden layer is 4096 which is reshaped to
4×4×256. The dense layer is succeeded by 6 de-convolutional
layers with a stride size of 2 × 2, filter size 5 × 5 , and
the same padding. Number of filters in first de-convolutional
layer are 256 and 128 in all other de-convolutional layers.
The output of the generator is the same as the spectrograms
generated by the STFT (256 × 256 × 3).

We configured the discriminator to distinguish the synthetic
iEEG data from the real data. The discriminator consists
of 4 convolutional layers with 256, 128, 64, and 32 number of

filters. The filter size in the convolutional layers is 5 x 5, with
a stride of 2 × 2, and the same padding. While training, the
task of the discriminator is to detect whether the spectrograms
generated by the Generator are real or fake. The Generator
updates its parameters to generate the spectrograms that are
not distinctive from real spectrograms [19].

The equations of discriminator loss Dloss and the Generator
loss Gloss are defined as [19]:

Dloss = 1

n

n∑
j=1

[
log D(x ( j )) + log(1 − D(G(z( j ))))

]
(1)

Gloss = 1

n

n∑
j=1

log(D(x ( j ))) (2)

where n is our batch size (32), x is the real EEG spectrograms
generated from the STFT, and z is a random sample generator
from the distribution N (0, 1).

To overcome the problems of overfitting and convergence
of discriminator, we configured an early-stopping function
to have a check on Dloss and Gloss . The early-stopping
monitoring stops the training of DCGAN if, over subsequent k
training batches, the Dloss keeps getting larger than the Gloss .
We used a batch size of 32, k = 15, Adam as an optimizer for
gradient learning with 0.5 value of β1, and 1e−3 learning rate.
The value of Gloss and Dloss achieved the equilibrium point
in around 3000 epochs with the early-stopping monitoring.

We trained the DCGAN on the Epilepsyecosystem iEEG
data and the CHB-MIT scalp EEG data separately to obtain
the synthetic iEEG and scalp EEG data. To achieve the best
results, we trained the DCGAN with three different dataset
settings: (i) training on all patients of the Epilepsyecosystem
dataset; (ii) training on all patients of the CHB-MIT dataset;
and (iii) training of DCGAN only on the pre-ictal class of data
of all patients to generate the pre-ictal synthetic samples for
data augmentation.

D. One-Class SVM for Data Validation

Schölkopf et al. [20] proposed the idea of one-class SVM,
which is an extension of a two-class SVM algorithm. One-
class SVM is widely utilized to identify the outliers and
anomalies in the dataset. A one-class SVM algorithm separates
the data from the origin point by a wide margin in the higher
dimensional feature space. Then the algorithm computes the
surface of a hyperplane, which encloses the anomaly free data
(+ve class). The data samples which are out of the hyperplane
are outliers/anomalies. The radius of the hyperplane and the
number of outliers/anomalies are hyperparameters to select
through multiple experiments.

Let X be the samples of the positive class of dataset such
that {xi ∈ Rn, i = 1 . . . l}, the optimization equation of the
algorithm is as follows:

minimize
ξ,ρ,z,b

1

2
zT z − ρ + 1

νl

l∑
i=1

ξi

subject to zT φ(xi ) ≥ ρ − ξi , ξi ≥ 0. (3)

In the optimization problem above, ρ is the distance of
hyperplane from the origin, ξi are the hyperparameters, and
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Fig. 2. Architecture of convolutional epileptic seizure predictor (CESP).

ν ∈ (0, 1] selects the fraction of outliers/anomalies outside
the hyperplane. The decision function is:

sgn(

l∑
i

βi K (xi , x) − ρ) (4)

Here βi are the Lagrange multipliers. We used the Radial
Basis Function (RBF) as a kernel function in our experiments:

K (xi , x j ) = e−γ‖xi−x j‖2
(5)

In the above kernel function
∥∥xi − x j

∥∥2 is the Euclidean
distance between two data points and γ is a hyperparameter.

E. CESP Model

CNNs models have been widely used for predicting the
seizures successfully in literature [9], [21], due to their ability
to learn local dependences of input and the fewer number of
trainable parameters due to weight sharing. Based on the state-
of-the-art performance of CNN in seizure prediction, we are
using the CNN classifier here to evaluate the effectiveness of
synthetic data generated from the above-mentioned architec-
ture of DCGAN. The detailed architecture of the proposed
model is described in Figure 2.

In this work, we used a CNN network that consists of 3 con-
volutional blocks followed by one fully connected (FC) layer.
Each block contains a convolutional layer, a rectified linear
unit (ReLu), and a max-pooling layer. The max-pooling tech-
nique enables the CNN model to learn temporal or spatially
invariant features. The convolutional layers have the filter
size of 3 × 3, stride 1 × 1, 2 × 2 size of max-pooling
with 126, 64, and 64 number of filters respectively. The FC
layers have a sigmoid activation function with output sizes

of 32 and 2. We designed this particular architecture to achieve
good performance with a simple model. We experimented
with a different number of layers of the model and chose
the described model of 3 convolutional layers providing good
prediction results. To avoid the overfitting for the simple
model, we evaluated the training process on the k-fold cross-
validation. We used k = 10 to split the training data into
90% for training and 10% for validation. We trained the CESP
model for the binary-cross entropy loss on the Adam optimizer
with a 1e−4 learning rate.

F. Transfer Learning

With the rapidly growing applications of supervised learning
in ML, a problem arises when we do not have a sufficient
amount of labeled data for training. Transfer learning (TL)
deals with this problem by leveraging the already available
labeled data of relevant or similar tasks. Since 1993, TL has
been used in discriminability-based transfer (DBT) algo-
rithm [22], multi-tasking learning [23], cognitive science [24],
detection of cancer subtypes [25], text classification [26],
and spam filtration [27]. In another recent work, Bird et al.
used TL between EEG signal classification and Electromyo-
graphic (EMG) signals [28].

We trained four well-known DL models: VGG16, VGG19,
Inceptionv3, and ResNet50 on augmented EEG data. These
are well-designed DL models intended to resolve problems
of convolutional networks, i.e., vanishing gradient, degrada-
tion, long training time, and the large number of trainable
parameters. We used the weights of these models trained on
the ImageNet dataset as initial weights instead of training
from random weights with learning rate of 1e−4. ImageNet
dataset consists of more than 14 million images of almost
20,000 categories [29]. The dataset is one of the most widely
used image repository and is freely available for training large
neural network models.

G. System Evaluation

Before evaluating the performance of the prediction algo-
rithm, the SPH, and the Seizure Occurrence Period (SOP)
need to be defined. For our work, we are using the definitions
established in [14]. To make a correct prediction, a seizure
must transpire after the SPH and within the SOP. A false
alarm will be raised if the prediction algorithm gives a positive
signal (seizure is going to occur) but there is no seizure during
the SOP. For the best clinical use, the SPH must be long
enough to give a patient sufficient time to take precautionary
measures after the alarm is raised. We use sensitivity, FPR/h,
specificity, and accuracy with SPH of 10 min and SOP
of 30 min. For the Epilepsyecosystem the value of SPH is
fixed only for the training dataset. As no information about
the segmentation timing relative to seizures is provided for
the test set, we cannot determine the exact value of SPH,
we only have the information that we are 65 to 5 minutes
away from the seizure.

We also compared the performance of CESP model trained
on the augmented data with a random predictor. Using the
method proposed by Schelter et al. [30], we computed the
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TABLE II
VALIDATION OF SYNTHESIZED PRE-ICTAL SAMPLES OF SCALP EEG DATA USING DIFFERENT COMBINATIONS OF SYNTHESIZED AND REAL DATA

FOR TRAINING AND TESTING ON CESP. SYNTHESIZED DATA GENERATED FROM THE DCGAN TRAINED ON THE CHB-MIT DATASET. THE

COMPARISON OF RESULTS OF I) TEST & TRAIN ON REAL DATA (TRTR) AND II) TRAIN ON SYNTHETIC DATA & TEST ON REAL DATA

(TSTR), SHOWS THAT THE SYNTHETIC DATA HAS FULLY CAPTURED THE CORRELATION BETWEEN THE FEATURES OF DATA

AND THE LABELS. LEGENDS: TRTR = TRAIN & TEST ON REAL DATA, TSTR = TRAIN ON SYNTHESIZED DATA & TEST ON

REAL DATA, TRTS = TRAIN ON REAL DATA & TEST ON SYNTHESIZED DATA, TSTS = TRAIN & TEST ON SYNTHESIZED

DATA, SEN = SENSITIVITY, SPEC = SPECIFICITY, ACC = ACCURACY

probability of alarm generation in the duration of SOP for
a given value of FPR:

P ≈ 1 − e−F P R×S O P . (6)

Then the probability to predict at least n out of N inde-
pendent seizure events at random can be calculated using the
following equation:

p =
∑
k≥n

(
N

k

)
Pk(1 − P)N−k . (7)

Using the FPR value of each patient and the number of true
predictions using CESP (n), We computed the p-value for each
patient. The null hypothesis is that our algorithm cannot detect
a pre-ictal state with a performance above chance level. With
the results discussed in next section (Sec IV) we show that for
the significance level of α = 0.05, our approach performed
better than a chance level predictor.

H. Implementation Details

We performed all our experiments on a core i3 proces-
sor with 16 GB RAM having Quadro M5000 8GB GPU
card. It took almost two days to train our DCGAN model
for 3000 iterations. Once the DCGAN is trained, we can
generate a synthetic sample (spectrogram of 10 min long
iEEG/EEG sample having size of 256×256×3) in less than a
second. Our CESP model took four hours for training on five
times the augmented data of Epilepsyecosystem dataset and
two hours for the CHB-MIT dataset. For predicting a seizure,
our CESP model took only 0.4 msec.

IV. RESULTS

To generate the synthetic data, we trained the DCGAN on
the iEEG data of Epilepsyecosystem and the scalp EEG data of
CHB-MIT datasets. In this section, we test the effectiveness

of synthetic data using the one-class SVM and CESP. The
selection of samples of generated data is based on the results of
one-class SVM and CESP model. These selected samples were
then used for data augmentation for ES prediction. For the
CESP we applied different combinations of real and synthetic
data while testing and training. Detailed results are described
in Table II, III.

For the selection of correct generated samples, we trained
the one-class SVM algorithm on the datasets of real EEG
signals separately. We considered that the real data is a positive
class and the anomalous data is a negative class. The algorithm
learns the distribution of real EEG data and classifies the
generated data sample in a positive class or negative class.
After training one-class SVM on real data, we tested it for the
synthesized samples. We selected those synthesized samples
which belonged to the positive class and discarded the samples
that belonged to the negative class (see Figure 1).

To further validate the selected samples, we performed
testing and training of the CESP model for four data com-
binations. We train and test the model on real data (TRTR)
to check and compare the performance of the model with
generated data. Then, we test the model trained on real data
for samples of synthetic data (TRTS). We also trained the
model on synthetic data and evaluated the performance on
the real data (TSTR) to validate the selected samples of
synthetic data. For all experiments, we selected test samples
from the period that is not used in training, i.e., the training
and testing samples are from totally different time sections.
We selected 25% of the data as test data for all the evaluations
and experiments. These samples are randomly selected from
any time period while ensuring that the time period is not
used in training samples. The results of these experiments for
the Epilepsyecosystem and CHB-MIT datasets are provided
in Table II and III respectively. Figure 3 depicts the AUC of
ES prediction results for multiple scenarios of testing and
training. For the Epilepsyecosystem data, we achieved an
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TABLE III
VALIDATION OF SYNTHESIZED PRE-ICTAL SAMPLES OF IEEG DATA USING DIFFERENT COMBINATIONS OF SYNTHESIZED AND REAL DATA FOR

TRAINING AND TESTING ON CESP. SYNTHESIZED DATA GENERATED FROM THE DCGAN TRAINED ON EPILEPSYECOSYSTEM DATASET. THE

COMPARISON OF RESULTS OF: I) TEST & TRAIN ON REAL DATA (TRTR) AND II) TRAIN ON SYNTHETIC DATA & TEST ON REAL DATA

(TSTR), SHOWS THAT THE SYNTHETIC DATA HAS FULLY CAPTURED THE CORRELATION

BETWEEN THE FEATURES OF DATA AND THE LABELS

Fig. 3. Seizure prediction performance (AUC) of CESP using different
combinations of real (iEEG data of Epilepsyecosystem, scalp EEG data
of CHB-MIT) and synthetic (generated iEEG data from DCGAN trained
on Epilepsyecosystem dataset, generated scalp EEG data from DCGAN
trained on the CHB-MIT dataset) for testing and training. Legends:
TRTR = train & test on real data, TSTR = train on synthesized data
& test on real data, TRTS = train on real data & test on synthesized
data, TSTS = train & test on synthesized data.

average sensitivity of 78.39% for TRTR and 77.56% for TSTR.
It shows that the generated samples selected from the one-class
SVM are correct. Similar is the case for the CHB-MIT dataset,
we achieved an average of 89.02% sensitivity for TRTR and
88.21% sensitivity for TSTR.

We experimented with the training of the CESP model
on the 5× and 3× augmented Epilepsyecosystem and the
CHB-MIT dataset respectively. Compared to the results
achieved by using unaugmented data, data augmentation using
DCGAN increased the sensitivity ∼ 15% and AUC ∼ 10%
for Epilepsyecosystem dataset. For the CHB-MIT dataset,
AUC increased ∼ 6% for augmented data. Figure 4 demon-
strates the overall ES prediction performance for two datasets
with and without augmentation. Table IV shows the statistical
comparison of CESP model trained on the augmented data
using the proposed approach of data generation with the
chance level predictor. Results indicate that the performance
of CESP model for both datasets is better than the chance
level predictor. We also compared the results of our data

TABLE IV
FOR EPILEPSYECOSYSTEM DATASET

augmentation approach with the previous works in Table V.
The comparison shows a significant increase in the prediction
results by augmenting the data with synthetic samples for both
datasets.

With the availability of augmented data, we evaluated
the performance of four widely used DL models: VGG16,
VGG19, Inceptionv3, and ResNet50. These models are used
for image classification and weights of these models trained
on the ImageNet dataset are available in Keras. We twice
trained these models on augmented iEEG data with the pre-
trained weights as initial weights. First we trained all models
on the augmented data of all patients and then we fine-tuned
the models in a patient-specific manner. Figure 5 depicts the
results of seizure prediction with the models trained on Epilep-
syecosystem augmented data. The performance of Inceptionv3
and ResNet50 is considerable as compared to the VGG16 and
VGG19. VGG16 and VGG19 have more trainable parameters
and required more training time. VGG16 and VGG19 overfit
to the training data after some time of training which leads
to the poor testing performance. However, the performance
of other two models is good enough to use and explore the
idea of training these models on adequate amount of data for
seizure prediction in future.

Table VI shows the comparison of AUCs of TL models with
the CESP. p-values for the VGG16, VGG19, and ResNet50
indicate a significant difference between the performance and
AUC curves of prediction models. The performance of Incep-
tionv3 is best among the TL algorithms and approximately
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Fig. 4. Receiver operating characteristics (ROC) curves of ES prediction performance testing for two datasets with and without augmentation:
(a) without augmenting the datasets (b) with data augmentation using the synthetic samples from DCGAN. In these curves, each line represents a
patient. Above the black dash line: good prediction performance; above the red dash line; very good prediction performance (adapted from [31]).

TABLE V
COMPARISON OF OUR WORK WITH PREVIOUS WORKS

equal to the performance of the CESP model. However, the
advantage of the CESP model is the low computational cost
and complexity.

V. DISCUSSION

This work aimed to address the scarcity problem of good
quality EEG data for ES prediction. With the advancement of
DL techniques, high-quality artificial data generation is now

possible. Deep generative models trained in an adversarial
manner can simulate complex data distributions. In this paper,
we presented a DL based generated model (DCGAN) that
can generate the artificial EEG samples of patients. After
measuring the quality of data using a traditional one-class
SVM model and four different tests and training experiments,
we augmented the real data with synthetic pre-ictal samples.
We then trained CESP model on the augmented data and
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Fig. 5. Comparison of performance of DL models trained on augmented
Epilepsyecosystem dataset using transfer learning.

TABLE VI
STATISTICAL COMPARISON (p-VALUES) OF PREDICTION MODELS.

p-VALUES ARE DERIVED FROM THE SINGLE-TAILED

HANLEY-MCNEIL TEST FOR COMPARING AUCS

compared the performance of the model for ES prediction with
previous works that used traditional augmentation techniques,
i.e., SMOTE, moving windows, and data sampling. The com-
parison shows that the prediction performance using synthetic
pre-ictal samples increased for both datasets. Figure 4 demon-
strated that the ES prediction performance for all patients of

both datasets increased than a chance level predictor by using
the augmented data.

In contrary to previously used augmentation techniques, our
technique generates artificial samples of data, which is also
a solution to medical data sharing problems. Besides data
acquisition difficulties, medical data sharing comes with the
privacy-preserving issues. Researchers and hospitals cannot
use the data without the permission of patients and ethical
approval [33]. The synthetic data is not only used to augment
the real data for performance improvement but also can be
shared with researchers without privacy issues.

Previous works [17], [32] using SMOTE and data division
into smaller segments techniques for augmentation achieved
the sensitivity of 69% and 89.52% for the Epilepsyecosystem
dataset. Authors in [17] achieved the results by extract-
ing 12 non-negative matrix features and used 692 original pre-
ictal samples while we trained DCGAN on the 1362 original
samples without any feature extraction. The generalization of
the prediction technique is a major pitfall for the majority of
previous works. Moreover, these studies are based only on
a single dataset which may raise the problem of generalized
algorithms for practical use. The generalization of the model
requires the prediction performance using different datasets.
To overcome this problem, we validated our results on two
datasets which shows the robustness of our proposal for
generalized results. The work in [16] divided the original
pre-ictal samples into 3 smaller samples and concatenated
these samples with random selection to generate new data
samples that belonged to the distribution of real data. Their
augmentation technique provided significant results. However,
they tested the augmentation method for only one dataset
which had a small number of seizures per patient. They
also employed feature engineering techniques on the data
before feeding the data to CNN. Our data generation is more
generalized and applicable to both iEEG and scalp EEG data.

In our proposed technique, as we are training DCGAN on
the pre-processed clean data, our generated samples are not
contaminated with artifacts and noise. So, the generation of
clean samples in a more controlled environment is possible
with the help of our proposed technique as compared to the
previous augmentation methods. In this manner, our proposed
method provides robustness against the noise present in the
real data. However, if we compromise the cleaning and pre-
processing of real data, it will affect the quality of generated
samples and robustness to noise. The quality of generated
samples and the robustness of our proposed technique also
depend on the training iteration of DCGAN. In the capacity
of our computational resources, we gained presentable results
with 3000 iterations.

To date, researchers and developers are applying traditional
ML and DL techniques for ES prediction. However, with
the availability of computational resources and an ample
amount of data, TL is an emerging technique to implement for
problem-solving. In this paper, we presented the use of famous
DL models, i.e., VGG16, VGG19, Inceptionv3, and ResNet50,
for the first time to predict seizure. With the availability of
augmented data, the experiments performed on these models
showed significant results. More precisely, the performance
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results of Inceptionv3 and ResNet50 were accurate enough to
use these pre-trained models for future works, e.g., use the
model for new patients with fine tunning, use the model for
prediction of other diseases with EEG signals, or use these
pre-trained models for extracting significant features of EEG
data and make predictions based on extracted features. Besides
the promising results of Inceptionv3 and ResNet50, due to
the computational complexities of these models, a clinically
implantable device will not be an appropriate idea for these
models. CESP model has less computational cost as compared
to these two models. So, another future direction of TL work
can be the reduction of complexities of these models while
preserving the performance efficiency, i.e., we can utilize the
features extracted from selected layers of models and predict
seizures based on these features.

For the purpose of simplicity and ease of comparison,
the research community stated the ES prediction problem
as a binary classification problem. We have performed all
the experiments with this binary classification assumption.
However, for the clinical application of these experiments,
the formulation of the problem is complex because seizures
depend greatly on the type of seizure and patient characteris-
tics such as the patient’s age and gender and the medication
that the patient was taking during data acquisition. Moreover,
we have not taken into consideration the impact of seizure
type, characteristics of patients (age and gender), circadian
profile of patients on the performance of GAN. For a more
robust evaluation, of the prediction models, we need contin-
uous seizure data because the pitfall of AUC performance
metric is that it is typically calculated for the balanced dataset
(same number of pre-ictal and inter-ictal samples). However,
the actual data contained more inter-ictal periods as compared
to pre-ictal events.

Unavailability of annotated data, privacy-preserving issues,
and the ethical problems regarding private data sharing come
with the promising results of ML and DL models. Artificial
data generation is one solution to these problems. However,
the time-series, i.e., EEG data for seizure prediction, contains
information that appears many hours ago from the seizure
event but is as useful as the information that appears one
minute before the seizure. That is why the generation of
continuous data is one of the future extension of our work.
With the significant results of synthesized data samples for
seizure prediction, the generation of artificial patient’s data is
also possible. In this way, researchers can work with an ample
amount of data of various patients to address the generalization
problem.

VI. CONCLUSION

The main aim of ES predictions research is to provide
an accurate seizure warning system to patients to take pre-
cautionary measures ahead of seizure onset. However, such
a solution is not yet available due to scarcity of suitable
amount of seizure EEG data. In this paper, we proposed a deep
convolutional generative adversarial network (DCGAN) model
to overcome the hurdle of the unavailability of an extensive
amount of EEG data. The proposed DCGAN model showed
good generalization for the generation of both iEEG and

scalp EEG data. Moreover, a convolutional epileptic seizure
predictor (CESP), was proposed to validate the synthetic data,
is also generalized to work with both types of EEG data.
To measure the quality of synthetic data, we employed one-
class SVM and training and testing of the CESP model with
four combinations of real and synthetic data. The CESP
model produced sensitivity of 78.11%, 88.21% and FPR/h
of 0.27, 0.14 for training on synthesized and testing on real
Epilepsyecosystem and CHB-MIT datasets respectively. These
results are higher than the training and testing of the CESP
model on real data. This shows that the synthetic samples fully
captured the relationship between the features of data and the
labels of pre-ictal samples. We also evaluated the performance
of CESP, VGG16, VGG19, Inceptionv3, and ResNet50 on
the augmented dataset using the concept of transfer learning
(TL). Using the TL on augmented data, we showed that the
Inceptionv3 performed very well with highest accuracy of
90.03% and 89.50% sensitivity. With these significant results,
using TL, we can further explore this novel idea of employing
TL techniques for ES prediction in the future work.
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