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Editorial on the Research Topic

Advances in Rowing Physiology

INTRODUCTION

Almost 100 years ago, it was considered that “the rowing of a crew in a racing shell with sliding seats is
a form of exercise in which a greater total energy expenditure is attainable, for periods of five to 20 min,
than under any other conditions. No other exertion comes so near to bringing the entire muscle mass of
the body into maximal extension and contraction” (Henderson and Haggard, 1925). Since then many
studies confirmed this notion and showcased rowing as “the ultimate challenge to the human body”
(Volianitis and Secher, 2009). The articles in this Research Topic address a range of questions
relevant not only to Olympic rowing performance, but also to the recently increasingly popular
indoor rowing.

FEATURED PUBLICATIONS

The usual pacing pattern of elite competitive rowers, regardless of finishing position or sex (Garland,
2005), has been to row the first 500 m at a significantly faster pace than subsequent sections of a
2000 m race (Secher et al., 1982). Although there are notable tactical and psychological reasons for
starting fast, at least for on-water rowing where the leader has visual control of the competition, it is
not easy to identify physiological reasons why this has been the adopted strategy, as the power
relationship between energy demand and speed of the boat should favor a more even pacing. Boillet
et al. evaluated physiological and psychological responses to a rowing ergometer race using different
pacing strategies (i.e., the “positive-split” compared to a “negative-split” or a “constant-split”). The
race distance used in the study (1,500 m) is both a limitation and a strength, as the shortened distance
has been selected for the Los Angeles 2028 Olympic Games. The “positive-split” strategy is associated
with high blood lactate and high exertion levels and is the least appreciated by rowers. One
speculative explanation why rowers are using the seemingly more “painful” pacing pattern could be
offered by the association of rowing performance with the total amount of oxygen consumed during
the race. An initial spurt allows for larger total volume of oxygen consumed and power produced,
compared to a more even pacing (Volianitis et al., 2020).

However, the study of Mentzoni and Losnegard that analyses the pacing patterns of rowers in
A-finals of recent World and European championships reveals that medalists currently adopt a more
even pacing profile compared to that of the fourth–sixth place finishers, confirming the theoretical
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expectation that such pacing profile would be advantageous in
rowing. Furthermore, considering that such even pacing
discriminates competitors in World class rowing, it also
suggests that the capability to cope with the possible mental
challenges (e.g., maintaining confidence when not leading) maybe
a trait of successful rowing performance.

The energy expenditure of elite open-class male rowers is
extraordinarily high and it is predominantly supported by
carbohydrate oxidation, as estimated by Winkert et al. Thus, a
single training session may potentially precipitate glycogen
depletion, indicating that availability and replenishment of
glycogen stores may be a key factor for successful rowing
training. Additionally, and perhaps more importantly, such
high energy expenditure approaches the suggested maximum
alimentary sustainable energy supply (~3 times the resting
metabolic rate, Thurber et al., 2019), supporting the notion
that there may be an upper energetic limit to rowing training
volume (Mader andHollmann, 1977). In this context, the study of
Turner et al. suggests that inclusion of high intensity training can
improve 2,000 m rowing performance (Ní Chéilleachair et al.,
2017). Considering that high intensity training can reduce
glycogen utilization during exercise of similar intensity
(Burgomaster et al., 2006), it could provide a feasible training
alternative when the energy demands of extensive low intensity
training volume approach the biological alimentary ceiling.

The energy cost of rowing (ECR) has been described for on-
water rowing, albeit by modeling the metabolic demand, from the
estimated mechanical power required to maintain a given speed
against estimated resistance, instead of measuring it (di Prampero
et al., 1971). The study by Blervaque et al. is the first to evaluate
the ECR for ergometer rowing, taking into account both the
measured oxidative and the estimated glycolytic non-oxidative
components. The findings demonstrate that ECR is negatively
correlated with rowing performance but positively correlated
with contribution of fat oxidation to energy supply in
moderate-intensity exercises. These associations support the
notion of metabolic flexibility (i.e., the ability to switch back
and forth between lipid and carbohydrate oxidation, depending
on energy demand and substrate availability at higher absolute
workloads, Storlien et al., 2004) that has been shown across
individuals of widely different metabolic capabilities (San-
Millán and Brooks, 2018) and showcase its presence in elite
rowers.

The power relationship between VO2 and boat velocity (Secher
1983) would predict an ergogenic effect of oxygen supplementation
on rowing performance, albeit not obligatory (Volianitis et al.). Due
to the synchronous movement pattern of the limbs during rowing, it
seems that there is a central constraint preventing recruitment of the
leg muscles during the two-legged exercise inherent to rowing (the
leg “strength paradox,” Secher 1975), whilst the armmuscles are not
constrained by such central activation. Considering that the largest
amount of work during rowing is performed by the large legmuscles,
this unique neuromuscular constrain likely explains why an increase
in VO2max does not necessarily increase the amount of work
performed during rowing.

Another intervention that potentially has ergogenic effect on
rowing performance is bicarbonate supplementation by means of

enhanced blood buffer capacity and attenuation of fatigue
(Nielsen et al., 2002). The study by Nielsen et al. estimates
rowing-induced changes in plasma volume, induced by the
rapid fluid-shift out of the blood into the tissues during even
short-termmaximal exercise (Kaltreider and Meneely, 1940), and
suggests that administration of sodium bicarbonate is associated
with attenuated decrease in plasma volume. The implication of
these estimates is that studies evaluating the effect of sodium
bicarbonate on performance should account also for plasma
volume changes.

Overtraining and the associated symptoms of prolonged
fatigue, trainability loss, decreased levels of recovery and
unexplained strength declines often appears in elite
competitors (Koutedakis and Sharp, 1998), including Olympic
rowers (Koutedakis et al., 1995). Bizjak et al. assessed
inflammatory and immunological markers to monitor
cumulated training stress in highly trained rowers during
competition vs preparation (i.e., high vs low metabolic stress)
phases. The authors suggested that assessment of damage-
associated molecular patterns, cytokines and cell surface
expression of cellular immune markers are sensitive to the
metabolic overload of the competition phase and can
complement conventional clinical indicators in the prevention/
management of overtraining. In the same context, Jürimäe et al.
examined selected myokine responses to an endurance rowing
training session in national level female rowers. The study
concludes that the acute negative energy balance, induced by a
single endurance rowing training session, elicits significant
increases in plasma irisin, fibroplast-growth-factor-21, and
follistatin levels and suggests that these biological markers are
useful for the assessment of acute exercise stress in female rowers.

The Concept 2 (C2) rowing ergometer is widely used for off-
water training and performance assessment, and its popularity
has grown even outside the sport of rowing, as it can be found in
most health clubs. However, despite the wide use of the C2 there
are relatively limited data on its validity and accuracy. The
method of generating resistance in the C2, by air-dampening,
implies that the targeted mechanical output is critically
influenced by the rower’s effort and associated high variability
(4–5% even in elite rowers, Treff et al., 2018) and, thus precludes
any acceptable variability calculation due to lack of controlled
rowing stroke parameters. However, Treff et al. controlled the
inherent biological variability, by using a mechanical test rig
(Mentz et al., 2020), and demonstrate that the accuracy of the C2
for a given mechanical power output is improved when the
fluctuations in the rowing pace during the initial strokes of a
rowing race are removed. Nevertheless, the significant
underestimation of the first five strokes should be taken into
account when conducting tests of short duration (e.g., 20s all-out
effort) that are relevant not only when planning anaerobic
training sessions, or as predictor of 2000 m rowing ergometer
performances (Cerasola et al.), but also to the shortened race
distance for the 2028 Olympic Games. The underestimation
(~10%) of the mean power output, as well as the first five
strokes, compared to that performed by the rower, is
confirmed by Holt et al. who investigated the concurrent
validity and reliability of three commercially available on-
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water rowing instrumentation systems and the C2 in comparison
to bespoke instrumentation.

Finally, Alfőldi et al. present anthropometric and physiological
characteristics of Hungarian successful rowers and confirm the
importance of body mass for rowing performance as previously
shown (Secher and Vaage, 1983). It might be noteworthy that the
reduction of racing distance planned for the 2028 Olympic
Games would most likely exacerbate the influence of body
dimensions on rowing performance and further make rowing
a sport for tall rather than for all, with implications for the
universality of the sport (Koshla 1983).

In conclusion, this Research Topic presents the resent
developments in various aspects of rowing and elucidates
enquiries concerning race pace, energy cost and requirements,
immune responses, ergometer validity and performance
limitations that can shape future training methodologies.
Future enquiries should address the implication of potential
metabolic limitation in training volume (Winkert et al.) and

the suggested shift to higher proportion of high intensity training,
especially with consideration for the danger of overtraining. Such
considerations will become more relevant if the race distance is
reduced to 1,500 m at the Olympic Games in Los Angeles in 2028
that will dramatically alter the metabolic profile of the sport.
Additionally, aspects of CBF and oxygen metabolism during
maximal rowing remain unresolved (Volianitis et al., 2020)
due to technical limitations of evaluating methodologies.
Future technological developments are expected to provide
real-time measures of cerebral perfusion and metabolism
during high-intensity and maximal rowing.
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