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Abstract
The generalized linear mixed model (GLMM) becomes very popular in profile
monitoring, especially when the production processes follow nonnormal distri-
bution. In most of the real-life applications in industry, medicine, biology… and
so on researchers assume that the response variable follows a Bernoulli or Bino-
mial distribution. The majority of previous studies in profile monitoring focused
on parametric modeling using the logistic regression model, with both fixed
or random effects, under the assumption of correct model specification. This
research considers those cases where the parametric logistic regression model
for the family of profiles is unknown or at least uncertain. Consequently, we
propose two mixed model methods to monitor profiles from the exponential
family: a nonparametric (NP) regression method based on the penalized spline
regression technique and a semiparametric method (model robust profile mon-
itoring for the generalized linear mixed model) which combines the advantages
of both the parametric and NP methods. Several Hotelling T2 charts that have
been studied for a binary response variable with replicates for Phase I profile
monitoring. The performance of the proposed method is evaluated by using
mean squares of errors and probability of signals criteria. The results showed
satisfactory performance of the proposed control charts.
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1 INTRODUCTION

Until recently, univariate and multivariate characteristics were commonly used in statistical process control. However,
in some applications detecting the changes in the relationship between the response variable and explanatory variable
(s) may be the most important consideration rather than detecting the changes in univariate or multivariate qual-
ity characteristics. This relationship between the response variable and one or more explanatory variables is called a
profile.1 The act of using various techniques to statistically monitor the process or product profiles is known as profile
monitoring.2,3

Different methods have been proposed to monitor different types of profiles. Kang and Albin,1 Kim et al,4
Mahmoud and Woodall,5 Mahmoud et al,6 Zou et al,7 Mahmoud,8 Khedmati and Niaki,9,10 Noorossana et al,11
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F I G U R E 1 Estimated curve for the
dataset of Nottingham and Birch42 using
generalized linear model (GLM)

Chiang et al,12 Kalaei et al,13 Mahmood et al,14 Moheghi et al,15 Touqeer et al16 proposed methods to monitor linear
profiles. Noorossana et al,17 Eyvazian et al,18 Soleimani et al,19 Amiri et al,20 Ayoubi et al,21 Paynabar et al,22

Bahrami et al23 have studied multivariate profile monitoring. Methods for monitoring nonlinear profiles have been
suggested by Vaghefi et al,24 Williams et al,25 Steiner et al,26 Guevara and Vargas,27 Chen et al,28 Awad et al,29 Pan et al,30

Li et al.31 Jensen et al32 proposed a method to monitor the profiles with autocorrelated data using the linear mixed model
(LMM). Jensen and Birch33 have proposed a method to monitor the nonlinear autocorrelated profile using the nonlinear
mixed model.

In each of the above-mentioned articles, the response variable is assumed to be normally distributed. However, one
can find many examples from almost every subject area where this assumption does not hold. For example, when the
response variable is binary, the true distribution is Bernoulli and when the response variable is a count, the underline
distribution may be Poisson. In such situations, it is unreasonable to assume a normal distribution for this kind of response
variables. Yeh et al34 proposed five T2 control charts to monitor the profiles with binary response variables. Amiri et al35

evaluated two T2 statistics proposed by Yeh et al34 for the Poisson response profiles. Koosha and Amiri36 studied the effect
of various link functions on the performances of the T2 control chart in monitoring the parameters of a logistic profile.
Koosha and Amiri37 studied the effect of the autocorrelation in binary responses on the performances of the T2 control
charts suggested by Yeh et al.34 Methods for monitoring generalized linear model (GLM) regression profiles have been
proposed by Amiri et al.20 Izadbakhsh et al38 suggested profile monitoring methods for multinomial responses. Bayer
et al,39 Canterle and Bayer,40 Lima-Filho et al41 introduced control charts for monitoring fraction, rate and/or proportion
datasets based on beta regression. In each of the above-mentioned articles, one of the assumptions is the response variable
can be correctly modeled using the GLM. However, the GLM may be unable to adequately model all the population
characteristics contained within the profiles. For example, Figure 1. shows the observations and estimated curve using
GLM for dose-response dataset in Nottingham and Birch,42 where the fitted logistic curve representing the probability of
death as a function of drug dosage, consistently underestimates and overestimates the probability of response at low and
high doses, respectively.

Thus, the GLM model for profile monitoring can likely be improved by incorporating nonparametric (NP) and semi-
parametric (SP) regression methods specifically tailored to distributions contained in the exponential family. Very few
studies have been conducted using NP methods for profile monitoring of nonnormal data from the exponential family.
Shang et al43 proposed a profile monitoring method for binary data using NP regression. Piri et al44 proposed a NP method
for profile monitoring of Poisson data using a wavelet approach.

We propose two mixed model methods to monitor profiles from the exponential family; the first one is a NP regression
method based on the penalized spline regression technique. The second one is a SP method (model robust profile moni-
toring for the generalized linear mixed model [MRGLMM]), which combines the advantages of both the parametric and
NP methods. A correctly specified parametric (P) model will have the most power in detecting the profile shift,45 while
a NP method can give an improved performance for any type of profile. Splines are recommended for handling sparse
data, while polynomial smoothers are preferred for handling dense designs.44 Our approach is completely general and
can be applied to data from any distribution in the exponential family though we used a binary response variable for illus-
tration. Further parametric, NP, and MRGLMM methods will be illustrated using only one regressor, X. However, each
method can easily be extended to multiple regressor situation. We introduced versions of the Hotelling’s T2 statistics to
determine outlying profiles in the Phase I analysis. The remainder of this article is organized as follows. We first review
for the parametric profile monitoring for nonnormal data using the generalized linear mixed model (GLMM) approach.
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BANDARA et al. 1039

Then we introduce a NP profile monitoring method for the GLMM using the penalized spline method and a SP profile
monitoring method (MRGLMM). The performances of parametric, NP, and MRGLMM methods are compared through
a simulation study using binary data.

2 PARAMETRIC PROFILE MONITORING FOR NONNORMAL DATA
USING THE GLMM

The GLMMs extends the GLM by incorporation of random effects into the linear predictor 𝜂 and can be used to model
clustered data when the response has distribution in the exponential family. In general, the expected value of the response
variable is modeled when the true response comes from members in this family of distributions.

The expected value of the jth response from the ith cluster (i = 1, … , m; j = 1, … , ni) having any distribution in the
exponential family can be modeled using GLMM as

g(E[Yij]) = 𝜂ij = xT
ij𝜷 + zT

ij bi, (1)

where g(⋅) is the link function, E[Y ij] is the jth expected value from the ith cluster, 𝜂ij is the linear predictor for the jth
observation from the ith cluster, 𝜷 is a ( p× 1) vector of fixed effect parameters, xij is a ( p× 1) vector of predictor variables
associated with fixed effects, zij is a ( q× 1) vector of predictor variables associated with random effects, bi is a ( q× 1)
vector of random effects with bi ∼ MN(0, D), D is a ( q× q) variance-covariance matrix. Then the parameters of (1) can be
estimated by using the pseudo-likelihood method of Wolfinger and O’Connell46 and the estimated parameter vector and
the predicted random effect for the ith cluster can be given as

𝜷GLMM =

( m∑
i=1

XT
i V−1

i Xi

)−1 ( m∑
i=1

XT
i V−1

i 𝝂i

)
, (2)

b̂i = DZT
i V−1

i (𝝂i − Xi𝜷GLMM), (3)

where X i is a ( ni × p) matrix of predictor variables associated with fixed effect, Zi is a ( ni × q) matrix of predictor vari-
ables associated with random effects, Vi = ZiDZT

i + 𝚫−1
i A

1∕2
i Ci A

1∕2
i 𝚫−1

i and 𝝂i ≡ 𝚫−1{yi − g−1(�̂�i) } + X𝜷 + Zib̂i is the
pseudo-responses vector of ith cluster, Ai is a diagonal matrix containing the variance functions of the conditional dis-
tribution and Ci is a correlation matrix for the ith cluster, yi = [yi1, … , yini

]T , b̂is are the estimated best linear unbiased
predictors (eblups) and 𝚫i is a diagonal matrix of the first derivatives of the conditional mean evaluated at the fixed effects
estimate, 𝜷 and the random effects estimate, b̂i. Combining pseudo-responses, 𝝂i from all profiles to a ( n× 1) vector,
𝝂, X is to a ( n× p) matrix, X , Zis to a ( n× q) matrix, Z and defining V = diag (V i), it can be shown that 𝜷GLMM can also
be expressed as

𝜷GLMM = (XTV−1X)−1(XTV−1𝝂). (4)

The blups of GLMM in stacked form can be written as

b̂GLMM = BZTV−1(𝝂 − X𝜷GLMM), (5)

where V = var (𝝂) = ZBZT +𝚫−1A1/2RA1/2𝚫−1, with R = diag (Ci) and B = diag (D). Usually, V is unknown and can be
estimated by either the maximum likelihood (ML) or the restricted maximum likelihood (REML) method. Then substi-
tuting the estimated matrices V̂ and B̂ into (4) and (5) the parameter estimates and the estimated best linear unbiased
predictors (eblups) are obtained and the estimated parameter vector for the ith profile, 𝜷 i can be given by

𝜷 i = 𝜷GLMM + b̂
∗
i i = 1, 2, … ,m, (6)

where 𝜷GLMM represent the profile average (PA) coefficients for all the profiles and b̂
∗
i is a ( p x 1) vector con-

taining the elements of b̂i = D̂ZT
i V̂

−1
i (𝝂i − Xi𝜷GLMM) for the columns of Zi that are equal to those of X i and zeros
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1040 BANDARA et al.

otherwise. Consequently, b̂
∗
i = b̂i when Zi = X i. Then g[ŷ] = X𝜷GLMM is the PA fit which is the estimated PA

curve, and g[ŷcs,i] = X𝜷GLMM + Zib̂i is the fit for the ith profile which is the estimated profile-specific curve for the
ith profile.

The key feature of profile monitoring is to detect those profiles that may be “different” from the other profiles. Such
differences are indicative of a process that maybe, perhaps temporarily, out-of-control when compared with those profiles
representing the in-control situation. The T2 statistic can be used to detect profiles from an out-of-control process. The 𝜷 i
in (6) can be used to calculate the T2 statistic for the ith profile (T2

i ) as

T2
P0,i = (𝜷 i −

̄̂
𝜷 i)TŜ

−1
(𝜷 i −

̄̂
𝜷 i), (7)

where ̄̂
𝜷 i =

1
m

m∑
i=1
𝜷 i, and Ŝ = 1

2(m−1)

m−1∑
i=1

(𝜷 i+1 − 𝜷 i)(𝜷 i+1 − 𝜷 i)T is the estimator of variance-covariance matrix, Ŝ based on the

successive difference.32 Since the
m∑

i=1
b̂i = 0, T2

i value for GLMM can be given as a function of the eblups by

T2
P0,i = (b̂i)TŜ

−1
(b̂i), (8)

where Ŝ = 1
2(m−1)

m−1∑
i=1

(b̂i+1 − b̂i)(b̂i+1 − b̂i)T is the successive difference estimator of S.32

Abdel-Salam et al45 introduced a new version of the Hotelling T2 statistic based on the fitted values from the LMM
to measure the departures of the ith estimated PS curve from the estimated PA curve. Similar statistics can be used for
GLMM also and can be computed using the fitted values in the link scale as follows.

T2
P1,i = (g[ŷcs,i] − g[ŷ])TŜ

−1
(g[ŷcs,i] − g[ŷ]), (9)

where g[ŷcs,i] is a n′ × 1 vector representing the parametrically estimated expected value (fitted value) curve in the link
scale for the ith profile at l = 1, 2, … , n′ using GLMM, g[ŷ] is a n′ × 1 vector representing the parametrically estimated
expected value curve in the link scale for the PA curve and Ŝ is an (n′ ×n′) appropriately estimated variance-covariance
matrix for g[(ycs, i) in the link scale, such as either the methods of moments or the successive difference estimator. The n′

is the number of distinct locations for xT
i , the vector of covariates for the fixed-effects portion of the model. In this work,

only one covariate is used.
Then outlying profile(s) can be determined by comparing T2

Pr∗,i(r
* = 0, 1) with values from the 𝜒2 distribution where

the profile will be declared as outlying if T2
Pr∗,i ≥ 𝜒2

df,𝛼 i = 1, 2, …m, where 𝛼 represents the significance level, df represents
the degrees of freedom,32,33,45 computed as the number of random effects in the estimated P model. Similarly T2 statistic
based on the fitted values in the inverse link scale can be computed as follows:

T2
P2,i = [ŷcs,i − ŷ]TŜ

−1
[ŷcs,i − ŷ], (10)

where ŷcs,i = g−1(𝜂ij) is a n′ × 1 vector representing the parametrically estimated expected value (fitted value) curve in the
inverse link scale (the raw data scale) for the ith profile at l = 1, 2, … , n′ using GLMM, ŷ is a n′ × 1 vector representing the
parametrically estimated expected value curve in the inverse link scale for the PA curve and Ŝ is an (n′ ×n′) appropriately
estimated variance-covariance matrix for ŷcs,i in the inverse link scale. Then outlying profile(s) can be determined by
comparing T2

P2,i with simulated cut off values from a simulation study and the profile will be declared as outlying if
T2

P2,i ≥simulated cutoff value, 𝛼 i = 1, 2, …m, where 𝛼 represents the significance level.

3 NP PROFILE MONITORING FOR THE GLMM USING THE PENALIZED
SPLINE METHOD

The main idea of p-spline regression is to fit the function f (xi) parametrically using a sufficiently flexible spline basis
with a penalty on the spline coefficients to achieve a smooth fit. P-spline coefficients can be considered as the best linear
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BANDARA et al. 1041

unbiased prediction (blups) in the mixed model framework47 and thus the method used for monitoring out-of-control
profiles by parametric methods using GLMM can also be extended to the NP framework.

The expected value at the jth regressor value of the ith profile can be modeled nonparametrically using mixed
models as

g[E(Yij)] = f (xij) + 𝜉i(xij) i = 1, 2, … ,m j = 1, 2, … ,ni, (11)

where g(⋅) is the link function, E[Y ij] is the jth expected value from the ith profile, f (xij) is an unknown smooth function,
representing the overall PA curve and 𝜉i(xij) is the ith profile smooth function, representing the random difference between
the ith PS curve and the PA curve. Both f (xij) and 𝜉i(xij) can be approximated using a p-spline regression consisting of a
parametric component and a spline component as follows.

f (xij) ≈ 𝛽0 +
p∑

l=1
𝛽lxl

ij +
K1∑

K=1
uiK(xij − 𝜅K)p

+ i = 1, 2, … ,m j = 1, 2, … ,ni, (12)

𝜉i(xij) ≈ bi0 +
p∑

l=1
bilxl

ij +
K2∑

K=1
tiK(xij − 𝜅K)p

+i = 1, 2, … ,m j = 1, 2, … ,ni, (13)

where 𝛽0 +
p∑

l=1
𝛽lxl

ij is the parametric component and
K1∑

K=1
uK(xij − 𝜅K)p

+ is the spline component for the PA curve, and bi0 +

p∑
l=1

bilxl
ij is the random parametric component and

K2∑
K=1

tiK(xij − 𝜅K)p
+ is the random spline component for the ith profile.

Then (11) can be rewritten using the matrix notation as

g[E(ycs,i)] = Xi𝜷 + Ziu + Xibi + Eitii = 1, 2, … ,m, (14)

where 𝜷 = (𝛽0, 𝛽1, … , 𝛽p )T , u = (u1,u2, … ,uK1 )
T , bi = (bi0, bi1, … , bip )T ,

ti = (ti1, ti2, … , tiK2 )
T , K1 is the number of knots for the PA curve and K2 is the number of knots for the PS curve. The

matrices X i, Zi, and Ei are specified as follows.

Xi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 xi1 … … … xp
i1

1 xi2 … … … xp
i2

.

.

.

… … …
.

.

.

1 xini … … … xp
ini

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Zi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(xi1 − 𝜅1)p
+ … (xi1 − 𝜅K1)

p
+

.

.

.

… … …
.

.

.

(xini − 𝜅1)p
+ … (xij − 𝜅K1)

p
+

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Ei =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(xi1 − 𝜅1)p
+ … (xi1 − 𝜅K2)

p
+

.

.

.

… … …
.

.

.

(xini − 𝜅1)p
+ … (xij − 𝜅K2)

p
+

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and (14) can be written in stacked matrix notation as

g[E(y)] = X𝜷 + ZB, (15)

where Z =
⎡⎢⎢⎢⎣

Z1 X1 0
Z2 0 X2

· · ·
· · ·

0
0

⋮ ⋮ ⋮ ⋱ ⋮
Zm 0 0 · · · Xm

E1 0
0 E2

· · ·
· · ·

0
0

⋮ ⋮ ⋱ ⋮
0 0 · · · Em

⎤⎥⎥⎥⎦, B =

[u
b
t

]
,

 15264025, 2020, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asm

b.2587 by Q
atar U

niversitaet, W
iley O

nline L
ibrary on [29/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1042 BANDARA et al.

with

u =

⎡⎢⎢⎢⎢⎢⎣

u1

u2

⋮

uK1

⎤⎥⎥⎥⎥⎥⎦
,b =

⎡⎢⎢⎢⎢⎢⎣

b1

b2

⋮

bm

⎤⎥⎥⎥⎥⎥⎦
, t =

⎡⎢⎢⎢⎢⎢⎣

t1

t2

⋮

tm

⎤⎥⎥⎥⎥⎥⎦
, and Cov(B) ≡ G =

⎡⎢⎢⎢⎣
𝜎2

uI 0 0
0 block diag1≤i≤m𝚺b 0
0 0 𝜎2

t I

⎤⎥⎥⎥⎦ ,

where 𝜎2
u controls the amount of smoothing to the estimate of f (xij), 𝜎2

b measures the between profiles variation and 𝜎2
t

controls the amount of smoothing to the estimate 𝜉i(xij). Then using either the ML or REML method, the estimated
parameters (𝜷) and the predictions (B̂) can be obtained as

𝜷 = (XTV−1X)−1XTV−1𝝂, (17)

B̂ =
⎡⎢⎢⎢⎣
û
b̂
t̂

⎤⎥⎥⎥⎦ = GZTV−1(𝝂 − X𝜷)

with V = ZGZT +𝚫−1A1/2RA1/2𝚫−1 where 𝚫 is a block diagonal matrix of the first derivatives of the conditional mean
evaluated at the fixed effects estimate, 𝜷 and the random effects estimate, B̂, A is a block diagonal matrix containing
the variance functions in the diagonal blocks, R is a correlation matrix and 𝝂 ≡ 𝚫−1{y|B − g−1(�̂�) } + X𝜷 + ZB̂ is the
pseudo-responses vector representing pseudo responses from all clusters.

Hence the estimated expected value of the observation vector for the PA curve using the mixed-effect model can be
obtained as

g[(ŷNGLMM
PA )] = X𝜷 + Zû (19)

and the estimated expected value of the observation vector for the ith profile can be obtained as

g[(ŷNGLMM
cs,i )] = Xi𝜷 + Ziû + Xib̂i + Eîti i = 1, 2, … ,m, (20)

where g[(ŷNGLMM
PA )] is the p-spline estimation for the expected values of the PA curve in the link scale using the mixed

effect model and g[(ŷNGLMM
cs,i )] is the p-spline estimator of the expected values for the ith profile in the link scale. These

estimated expected value vectors can be used to calculate the T2 statistic for the ith profile as

T2
NP0,i = (g[ŷNGLMM

cs,i ] − g[ŷNGLMM
PA ] )TŜ

−1
(g[ŷNGLMM

cs,i ] − g[ŷNGLMM
PA ] ) i = 1, 2, … ,m, (21)

where g[ŷNGLMM
cs,i ] is the fitted expected value curve for the ith profile at l = 1, 2, … , n′ in the link scale, and Ŝ is an (n′ ×n′)

appropriately estimated variance-covariance matrix for g[ŷNGLMM
cs,i ] and g[ŷNGLMM

PA ] is the fitted expected value curve for
the PA in the link scale.

It is also possible to calculate T2 statistic for the ith profile using the estimated predicted random effect vector, �̂�i where

�̂�i =

[
b̂i

t̂i

]
i = 1, 2, … ,m

with b̂i =
⎛⎜⎜⎝bi0, … , bip

⎞⎟⎟⎠
T

and ti = (ti1, ti2, … , tiK2 )
T . Assuming the locations of the regressor values and the number of

observations at each location is the same across all m profiles, the T2 statistic for the ith profile can be calculated as

T2
NP1,i = (�̂�i − 𝝓)TŜ

−1
(�̂�i − 𝝓), (23)
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BANDARA et al. 1043

where T2
NP1,i is the T2 statistic for the ith profile and Ŝ is an (n′ ×n′) appropriately estimated variance-covariance matrix.

For example, using the sample covariance matrix based on the successive difference estimator,45 Ŝ would be calculated
as

∑m−1
i=1 (�̂�i+1−�̂�i)(�̂�i+1−�̂�i)T

2(m−1)
.

Then outlying profile(s) can be determined by comparing T2
NPr∗,i (r* = 0,1), with values from 𝜒2 distribution where the

profile will be declared as outlying if T2
NPr∗,i ≥ 𝜒2

df1,𝛼 i = 1, 2, …m, where 𝛼 represents the significance level, df 1 represents
the degrees of freedom which is equal to the number of random effects plus the number of knots in the estimated NP
model.45

Similarly, the estimated expected value of the observation vector for the PA curve in the link scale is g[(ŷNGLMM
PA )] =

X𝜷 + Zû and it can be given in inverse link scale as

ŷNGLMM
PA = g−1(X𝜷 + Zû). (24)

The estimated expected value of the observation vector for the ith profile in the inverse link scale can be given as

ŷNGLMM
cs,i = g−1(Xi𝜷 + Ziû + Xib̂i + Eîti) i = 1, 2, … ,m, (25)

where ŷNGLMM
PA is the p-spline estimation for the expected values of the PA curve in the inverse link scale using the mixed

effect model and ŷNGLMM
cs,i is the p-spline estimation of expected values for the ith profile in the inverse link scale. Thus, a

new T2 statistic for the ith profile based on the nonparamatrically fitted values in the inverse link scale can be given as

T2
NP3,i = [ŷNGLMM

cs,i − ŷNGLMM
PA ]TŜ

−1
[ŷNGLMM

cs,i − ŷNGLMM
PA ] i = 1, 2, … ,m, (26)

where ŷNGLMM
cs,i is a n′ × 1 vector representing the nonparametrically estimated expected value (fitted value) curve in the

inverse link scale for the ith profile at l = 1, 2, … , n′ using p-spline regression, ŷNGLMM
PA is a n′ × 1 vector representing

the nonparametrically estimated expected value curve in the inverse link scale for the PA curve and Ŝ is an (n′ ×n′)
appropriately estimated variance-covariance matrix for ŷNGLMM

cs,i in the inverse link scale.
Then outlying profile(s) can be determined by comparing T2

NP3,i with simulated cut off values from a simulation study
and the profile will be declared as outlying if T2

NP3,i ≥ simulated cut off value 𝛼 i = 1, 2, …m, where 𝛼 represents the
significance level.

4 MODEL ROBUST PROFILE MONITORING FOR THE GENERALIZED
LINEAR MIXED MODEL

MRGLMM can be considered as an extension of mixed model robust regression to the area of profile monitoring. In this
method, estimates are obtained by incorporating a mixed model fit obtained by both the parametric and the NP methods
via a convex combination.

The MRGLMM fit in the link scale for the ith profile is given as

g[(ŷMRGLMM
cs,i )] = (1 − 𝜆)g[(ŷPGLMM

cs,i )] + 𝜆 g[(ŷNGLMM
cs,i )]i = 1, 2, … ,m, (27)

where g[(ŷMRGLMM
cs,i )], g[(ŷPGLMM

cs,i )], and g[(ŷNGLMM
cs,i )] represents the MRGLMM fit, parametric fit, and NP mixed model fit

for the ith profile in the link scale, respectively. The 𝜆 is the mixing parameter such that 0 ≤ 𝜆≤ 1. Following Mays et al,48

the mixing parameter 𝜆 can be estimated as

𝜆 =
[g(ŷNPGLMM

i,−i ) − g(ŷPGLMM
i,−i )]T − [g(y) − g(ŷPGLMM

PA )]

[g(ŷNPGLMM
PA ) − g(ŷPGLMM

PA )]T[g(ŷNPGLMM
PA ) − g(ŷPGLMM

PA )]
, (28)

where (ŷNPGLMM
i,−i ) and (ŷPGLMM

i,−i ), respectively, represent the nonparametrically and parametrically estimated expected val-
ues for the ith profile without using the observations from the ith profile, (ŷNPGLMM

PA ) and (ŷPGLMM
PA ), respectively, represent

the nonparametrically and parametrically estimated PA curve, and (y) represents the observation vector. Then to detect
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1044 BANDARA et al.

the presence of possible profiles from an out-of-control process, several versions of the MRGLMM T2 statistics are pro-
posed. One version is the MRGLMM T2 statistic for the ith profile based on the fitted value in the link scale can be given
as

T2
MRGLMM0,i = (g[(ŷMRGLMM

cs,i )] − g[(ŷMRGLMM
PA )])TŜ

−1
(g[(ŷMRGLMM

cs,i )] − g[(ŷMRGLMM
PA )]) i = 1, 2, … ,m, (29)

where Ŝ is an appropriate estimate of the variance-covariance matrix and g[(ŷMRGLMM
PA )] =

∑m
i=1 g[(ŷMRGLMM

cs,i )]
m

. Here either the
pooled sample variance-covariance matrix (ŜP) or sample covariance matrix based on the successive difference estimator
(ŜD) based on the PS fits can be used. Then the unusual profile(s) can be determined by comparing T2

MRGLMM0,i with
values from 𝜒2 distribution where the profile will be declared as outlying if T2

MRGLMM0,i ≥ 𝜒2
df2,𝛼

i = 1, 2, …m, where df 2

represents the SP degrees of freedom, computed as (1 − 𝜆)dfP + 𝜆.dfNP. The df Pis df of parametric model and df NP is df
of NP model, and 𝜆 is the estimated mixing parameter. It is also possible to express the MRGLMM T2 statistic for the ith
profile using a convex combination of the estimated random effects. Defining a new vector, �̂� i where

�̂� i =

[
(1 − 𝜆)b̂i

𝜆�̂�i

]
i = 1, 2, … ,m

with b̂i is the parametrically estimated random effects as in (3) and �̂�i is the vector of estimated random coefficients
(random parametric coefficients and random spline coefficients (knots) from mixed p-spline regression as given in (12).
Then the MRGLMM T2 statistic for the ith profile can be given by

T2
MRGLMM1,i = (�̂� i − 𝝍)T

[∑m−1
i=1 (�̂� i+1 − �̂�)(�̂� i+1 − �̂�)T

2(m − 1)

]−1

(�̂� i − 𝝍) i = 1, 2, … ,m, (31)

where 𝝍 =
∑m

i �̂� i

m
.

Then the unusual profile(s) can be determined by comparing T2
MMRPM1,i with values from 𝜒2 distribution where the

profile will be declared as outlying if T2
MMRPM1,i ≥ 𝜒2

df2,𝛼
i = 1, 2, …m.

Another way to calculate the MRGLMM T2 statistic for the ith profile is using a random effects vector, �̂�i where

�̂�i =
⎡⎢⎢⎢⎣

(1 − 𝜆)b̂0,p,i

(1 − 𝜆)b̂1,p,i + 𝜆b̂1,np,i

𝜆ti

⎤⎥⎥⎥⎦ i = 1, 2, … ,m,

where b̂0,P,i is the vector containing estimated random effects that appear in the parametric method and do not appear in
the NP method, b̂1,P,i and b̂1,NP,i are vectors containing the estimated random effects which are common to both parametric
and NP methods, t̂i is the vector containing specific random effects for NP method (ie, knots coefficients). Then the new
MRGLMM T2 statistic for the ith profile can be given by

T2
MRGLMM2,i = (�̂�i − 𝝎)T

[∑m−1
i=1 (�̂�i+1 − �̂�)(�̂�i+1 − �̂�)T

2(m − 1)

]−1

(�̂�i − 𝝎) i = 1, 2, … ,m, (33)

where𝝎 =
∑m

i �̂�i

m
. Then the unusual profile(s) can be determined by comparing T2

MMRPM2,i with values from 𝜒2 distribution
where the profile will be declared as outlying if T2

MMRPM2,i ≥ 𝜒2
df2,𝛼

i = 1, 2, …m. Similarly as in the cases of parametric
profile monitoring using GLMM and NP profile monitoring for the GLMM using the penalized spline methods, T2 statistic
for MRGLMM method also can be computed using the fitted values in the inverse link scale, the raw data scale, and can
be given as

T2
MRGLMM3,i = [ŷMRGLMM

cs,i − ŷMRGLMM
PA ]TŜ

−1
[ŷMRGLMM

cs,i − ŷMRGLMM
PA ] i = 1, 2, … ,m, (34)
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BANDARA et al. 1045

where ŷMRGLMM
cs,i = (1 − 𝜆)ŷPGLMM

cs,i + 𝜆 ŷNGLMM
cs,i represent the MRGLMM fit for the ith profile in the inverse link scale,

ŷPGLMM
cs,i represent the parametric fit for ith profile in the inverse link scale, ŷNGLMM

cs,i represent the NP mixed model fits

for the ith profile in the inverse link scale, 𝜆 represent the mixing parameter, ŷMRGLMM
PA =

∑m
i=1 ŷMRGLMM

cs,i

m
and Ŝ is an appro-

priate estimate of the variance-covariance matrix such as pooled sample variance-covariance matrix (ŜP) or sample
covariance matrix based on the successive difference estimator (ŜD). Then outlying profile(s) can be determined by com-
paring T2

MRGLMM3,i with simulated cut off values from a simulation study and the profile will be declared as outlying if
T2

MRGLMM3,i ≥ simulated cut off value at 𝛼, i = 1, 2, …m, where 𝛼 represents the significance level.

5 A MONTE- CARLO STUDY

Of the many distributions in the exponential family, we choose to illustrate our methods using the 0/1 response variable,
a common response variable in many industrial applications. We consider a variety of replications (r) of the response at
each design point, a single covariate (xj), ranging from r = 1 to r = 10. We let m equal the total number of profiles and q
represent the number of in-control profiles that were generated with the probability of success equal to the pdf,

Gij(xij) = (1 − 𝛾)(A) + 𝛾(B), (35)

where Gij(xij) is the probability of success for observations generated for the ith profile at the jth level of covariate (xij), 𝛾
represents the misspecification parameter and satisfies 0≤𝛾≤1, A is a logistic pdf defined as A =

[
1

1+e−((−5)+(10+bi1)xij)

]
and B is a

mixture of two logistics pdfs defined as B =
[
0.5

(
1

1+e−((−5)+(20+bi2)xij )

)
+ 0.5

(
1

1+e−((−15)+(20+bi3)xij )

)]
, and bi1, bi2, bi3 are independent

random effects generated from the normal distribution and i is the profile number, i = 1,… ,q, j = 1,… ,k. To represent
the out-of-control profiles we consider profiles subject to a sustained shift. Consequently, the observations for the m-q
out-of-control profiles were generated by shifting the intercepts of each components of (35) by the amount d0. Thus, the
mean function used to generate observations for shifted profile can be given as

Gij(xij) = (1 − 𝛾)(A) + 𝛾(B), (36)

where A and B are defined as

A =
[

1
1 + e—5+d0 + (10 + bi1)xij

,

and

B =
[

0.5
(

1
1 + e−((−5+d0)+(20+bi2)xij)

)
+ 0.5

(
1

1 + e−((−15+d0)+(20+bi3)xij)

)]
.

Three settings for k (k = 10, 20, 30) the number of distinct locations of the single regressor “X,” were used with the
values for X determined as equally spaced design points on the interval from zero to one. The number of binary replications
(r) at each value of X was set at five different values (r = 1, 2, 3, 5, and 10). The random effects bi1, bi2, bi3 were generated
independently from the normal distribution with mean zero and variances 5, 20, 20, respectively.

We considered five different misspecification levels (𝛾) ranging from zero to one (𝛾 = 0, 0.25, 0.5, 0.75, 1) and the users
model equals the true model at 𝛾 = 0 where there is no misspecification and the true profile is simply the logistic curve.
The degree of profile misspecification increases with 𝛾 and the highest level of misspecification occurs at 𝛾 = 1. Figure 2
shows the effect of 𝛾 , the misspecification parameter, on the true PA curves generated from the above model (5.3) at 𝛾 = 0,
0.25, 0.5, 0.75, and 1. We used 1000 replicates for each setting (m, k, r, 𝛾 , and different value of shifts) in order to obtain
results with acceptable precision. The short version for SAS code is given in the Appendix.

The parametric and NP fits for these simulated profiles were obtained using the GLIMMIX procedure of SAS software
with the logit link function. The MRGLMM fits were obtained by using a SAS macro written by the author and is available
upon request. The parametric fits were calculated based on two random effects (random slope and random intercept).
The NP fits were obtained using a random slope and a number of knots sufficient, determined by simulation, to fit the
profiles at each misspecification level.
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1046 BANDARA et al.

F I G U R E 2 Plots of profile average
curves at different misspecification levels

5.1 Metrics of interest

The performance of the parametric, NP, and MRGLMM methods were compared using the simulated integrated mean
square error (SIMSE) and the simulated probability of signal (POS). The SIMSE was used as a measure of the goodness of
fit. It was calculated using the differences between the estimates for the ith profile and the true values at 50 equally spaced
design points between 0 and 1, assuming that these 50 points would properly represent the features in entire curve. The
SIMSE was computed as

SIMSE = 1
m

m∑
i=1

(ŷcs,i − 𝝁cs,i)T(ŷcs,i − 𝝁cs,i), (37)

where SIMSE is the simulated integrated mean square error occurring in estimating m profiles, m is
the number of profiles, ŷcs,i is a vector of estimated values for the ith profile using either the paramet-
ric, NP, or MRGLMM methods, 𝝁cs, i represents the vector of true probabilities generated from (35) for the
ith profile.

The simulated POS is the probability of at least one of m calculated T2statistics exceeds the control limits in a
simulation study. Ten T2

i statistics, two each for parametric, NP, and MRGLMM methods based on fitted values in
link scale and fitted values in inverse link scale, and four T2

i statistics, one each for the parametric and NP methods,
and two for the MRGLMM method based on estimated random-effects were computed for each Monte Carlo replica-
tion. Since these T2

i statistics (i = 1, 2, … , m) computed from each method are based on the same estimated mean
and variance-covariance matrix, the m T2

i statistics obtained for each method are correlated; hence it is very difficult
to determine their joint distribution. Hence the upper control limit (UCL) of the computed T2

i statistics was calcu-
lated assuming the T2

i statistics are independent.5,25,32,45 Then the approximate overall probability of false alarm for a
sample of m independent statistics is 𝛼overalll = 1− (1− 𝛼)m, where the probability of a false alarm for any individual
T2

i statistic for a given overall probability of a false alarm, 𝛼, is 𝛼 = 1 − (1 − 𝛼overalll)
1
m . Thus, the UCL using the asymp-

totic chi-squared distribution of each T2
i is given by UCL𝜒2 = 𝜒2

(1−𝛼,df) where 𝜒2
(1−𝛼,df) is the (1− 𝛼) quantile of a 𝜒2

(df)
distribution.

In this study, the nominal 𝛼 value, the probability of signal (POS) for in-control dataset, was set at 0.05. The actual
simulated POS was calculated as the proportion of simulated datasets that exceed the 95th percentile of computed T2

i
statistics using in-control model with no misspecification.

5.2 Simulation results for profile estimation

Table 1 gives the estimated average mixing parameter ( ̄̂𝜆) and the SIMSE values at different misspecification levels for
various combinations of k and r. The bolded values represent the smallest SIMSE values among the three methods
and the values in brackets are Monte-Carlo standard errors from 1000 replications. All of the results in Table 1 are as
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BANDARA et al. 1047

T A B L E 1 SIMSE and average 𝜆 across k, r, and γ k r 𝜸
̄̂
𝝀 P NP MRGLMM

10 1 0.00 0.08 0.0103 (0.00273) 0.0174 (0.00406) 0.0100 (0.00263)

0.25 0.11 0.0097 (0.00260) 0.0168 (0.00440) 0.0095 (0.00248)

0.50 0.14 0.0095 (0.00209) 0.0174 (0.00430) 0.0092 (0.00199)

0.75 0.25 0.0116 (0.00206) 0.0171 (0.00367) 0.0108 (0.00195)

1.00 0.35 0.0166 (0.00236) 0.0204 (0.00362) 0.0150 (0.00223)

5 0.00 0.08 0.0029 (0.00075) 0.0041 (0.00094) 0.0029 (0.00074)

0.25 0.24 0.0040 (0.00085) 0.0054 (0.00100) 0.0039 (0.00080)

0.50 0.42 0.0055 (0.00087) 0.0062 (0.00104) 0.0048 (0.00078)

0.75 0.66 0.0080 (0.00092) 0.0065 (0.00097) 0.0058 (0.00080)

1.00 0.84 0.0120 (0.00118) 0.0077 (0.00118) 0.0075 (0.00104)

10 0.00 0.06 0.0016 (0.00041) 0.0023 (0.00051) 0.0016 (0.00040)

0.25 0.37 0.0028 (0.00058) 0.0032 (0.00054) 0.0025 (0.00049)

0.50 0.57 0.0045 (0.00063) 0.0040 (0.00061) 0.0034 (0.00050)

0.75 0.83 0.0070 (0.00074) 0.0041 (0.00059) 0.0040 (0.00054)

1.00 0.97 0.0101 (0.00099) 0.0048 (0.00069) 0.0048 (0.00068)

20 1 0.00 0.07 0.0063 (0.00170) 0.0103 (0.00230) 0.0062 (0.00167)

0.25 0.14 0.0067 (0.00158) 0.0102 (0.00226) 0.0065 (0.00151)

0.50 0.25 0.0075 (0.00136) 0.0109 (0.00219) 0.0071 (0.00128)

0.75 0.41 0.0098 (0.00133) 0.0112 (0.00204) 0.0086 (0.00127)

1.00 0.56 0.0143 (0.00166) 0.0136 (0.00223) 0.0117 (0.00160)

5 0.00 0.06 0.0016 (0.00040) 0.0023 (0.00049) 0.0016 (0.00040)

0.25 0.37 0.0027 (0.00055) 0.0032 (0.00054) 0.0024 (0.00048)

0.50 0.58 0.0045 (0.00066) 0.0040 (0.00060) 0.0033 (0.00052)

0.75 0.84 0.0070 (0.00068) 0.0041 (0.00056) 0.0039 (0.00051)

1.00 0.97 0.0103 (0.00099) 0.0047 (0.00069) 0.0047 (0.00067)

10 0.00 0.05 0.0008 (0.00022) 0.0012 (0.00027) 0.0008 (0.00022)

0.25 0.52 0.0019 (0.00036) 0.0019 (0.00029) 0.0016 (0.00027)

0.50 0.69 0.0036 (0.00050) 0.0026 (0.00037) 0.0023 (0.00033)

0.75 0.92 0.0056 (0.00056) 0.0026 (0.00034) 0.0026 (0.00033)

1.00 0.99 0.0084 (0.00070) 0.0029 (0.00040) 0.0029 (0.00040)

30 1 0.00 0.07 0.0045 (0.00111) 0.0074 (0.00153) 0.0045 (0.00110)

0.25 0.17 0.0054 (0.00122) 0.0078 (0.00155) 0.0053 (0.00117)

0.50 0.31 0.0065 (0.00110) 0.0086 (0.00154) 0.0060 (0.00102)

0.75 0.53 0.0089 (0.00110) 0.0087 (0.00147) 0.0073 (0.00104)

1.00 0.7 0.0132 (0.00137) 0.0105 (0.00164) 0.0097 (0.00129)

(Continues)
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1048 BANDARA et al.

k r 𝜸
̄̂
𝝀 P NP MRGLMM

5 0.00 0.06 0.0011 (0.00028) 0.0016 (0.00034) 0.0011 (0.00028)

0.25 0.46 0.0022 (0.00042) 0.0023 (0.00039) 0.0019 (0.00035)

0.50 0.65 0.0040 (0.00056) 0.0031 (0.00045) 0.0027 (0.00039)

0.75 0.89 0.0063 (0.00065) 0.0031 (0.00042) 0.0031 (0.00040)

1.00 0.99 0.0091 (0.00081) 0.0035 (0.00049) 0.0035 (0.00049)

10 0.00 0.04 0.0006 (0.00014) 0.0008 (0.00017) 0.0006 (0.00014)

0.25 0.61 0.0016 (0.00030) 0.0014 (0.00021) 0.0012 (0.00020)

0.50 0.73 0.0031 (0.00042) 0.0020 (0.00032) 0.0018 (0.00025)

0.75 0.94 0.0050 (0.00047) 0.0020 (0.00026) 0.0020 (0.00025)

1.00 1 0.0079 (0.00065) 0.0022 (0.00030) 0.0022 (0.00030)

Note: Monti-Carlo standard errors are in parenthesis. Best values in Bold.
Abbreviations: MRGLMM, model robust profile monitoring for the generalized linear mixed model; NP,
nonparametric; SIMSE, simulated integrated mean square error.

T A B L E 1 (Continued)

expected. That is, as the number of observations per profile (r or k) increases, the SIMSE of each method decreases, as
more observations will result in more precise estimates. The average value of the estimated mixing parameter ( ̄̂𝜆) for
the correctly specified model (𝛾 = 0) varies from 0.03 to 0.08 and these values are close to the true value of 0, especially
that when there are a higher number of observations per profile, ̄̂𝜆 is very close to zero. Thus, when 𝛾 = 0, MRGLMM
results are identical to the parametric results (or nearly so) since the MRGLMM fit is mostly or all composed of the
parametric fit.

For the highest level of model misspecification (𝛾 = 1), the average value of the estimated mixing parameter
( ̄̂𝜆) ranges from 0.35 to 1 and is somewhat different from the ideal value of one, especially when the number of
replications per profile is small, as in the k = 10 and r = 1 case. But ̄̂

𝜆 is very close to the ideal value when
there is an adequate number of replications per profile. Thus, MRGLMM results are identical to the NP results (or
nearly so), since MRGLMM fit is mostly or all composed of the NP fit when the estimated mixing parameter is
close to one.

A similar observation can be made for other levels of model misspecification also. That is, when there are a small
number of observations per profile, the average value of the estimated mixing parameter ( ̄̂𝜆) varies between 0 and 1,
as one would expect. For intermediate values of 𝛾 , the mild model misspecification case, the MRGLMM method per-
forms better than either the parametric or NP methods. Hence the main advantage of the MRGLMM method over
either the parametric or the NP methods in fitting a curve to the data occurs when the user’s model is partially
correct.

Thus, these simulation results support our claim that the MRGLMM method is robust to model misspecification.
All these results are similar to the findings of other researchers when evaluating the performance of the MRR method
compared with the parametric or NP methods for many different and diverse statistical situations, see for example, Mays
et al,49 Robinson et al,50 Pickle et al,51 Wan and Birch,52 and Abdel-Salam et al.45

5.3 Simulation results for control limits

Table 2 gives the simulated control limits for each T2 statistic with a different number of design points (k) and
a different number of replications (r) for the m = 30 profile scenario. The control limits computed from the T2

i
statistics based on the eblups and fitted value in the link scale for the parametric method as well as NP methods
give identical results, and the control limits computed from the second T2

i (T2
MRGLMM2) based on eblups and fit-

ted value in link scale (T2
MRGLMM0) for MRGLMM also identical numerically confirming the theoretical result

of Bandara.53
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BANDARA et al. 1049

T A B L E 2 Simulated control limits (95% cut off values) and 𝝌2
df control limits for each T2statistics with different

number of design points (k) 86 and different number of replications (r) for m = 30 profile scenario

T2 statistic based on eblups T2 statistic based on fitted value in link scale

k r T2
P0 T2

NP2 T2
MRGLMM1 T2

MRGLMM2 T2
P1 T2

NP0 T2
MRGLMM0

𝝌2
df 12.8 15.1 19.3 17.3 12.8 15.1 17.3

30 10 11.15018 14.56320 22.25727 15.25522 11.15018 14.56320 15.25522

5 11.46921 14.36956 23.24260 15.63807 11.46921 14.36956 15.63807

3 11.82638 15.16028 23.01403 16.61421 11.82638 16.16028 16.61421

2 12.55043 15.83710 23.68356 17.41661 12.55043 15.83710 17.41661

1 13.09435 15.03447 23.80980 19.51177 13.09435 15.03447 19.51177

20 10 11.24573 14.09540 21.77913 14.86252 11.24573 14.09540 14.86252

5 11.77257 14.98102 24.14715 17.00617 11.77257 14.98102 17.00617

3 12.08321 14.91906 22.82393 17.07817 12.08321 14.91906 17.07817

2 12.20828 14.47795 24.20207 18.75467 12.20828 14.47795 18.75467

1 14.13219 16.63540 26.57542 21.22500 14.13219 16.63540 21.22500

10 10 11.35678 14.91077 23.88632 17.24173 11.35678 14.91077 17.24173

5 12.49234 16.09698 25.48290 19.80107 12.49234 16.09698 19.80107

3 13.25530 14.88940 24.37941 19.16707 13.25530 14.88940 19.16707

2 13.97497 15.76509 25.74915 20.40299 13.97497 15.76509 20.40299

1 15.07575 22.10641 28.64565 25.00528 15.07575 22.10641 25.00528

Abbreviations: MRGLMM, model robust profile monitoring for the generalized linear mixed model; NP, nonparametric.

Another important observation is that the simulated control limits increase when the number of replications
per design point is decreased for all T2 statistics. However, this is not prominent for the control limits for the
T2 statistics based on the fitted value in inverse link scale for k = 10 case. Furthermore, there is an inverse
relationship between simulated control limits and the number of design points. These simulated control limits for T2

based on the fitted value in the link scale are very similar to those in Abdel-Salam et al,45 especially when k and
r are large.

The comparison of simulated control limits from each method with corresponding critical values from 𝜒2 distribution
shows that these values are comparable for T2 based on either the eblups or the fitted values in the link scale except for
the control limits for T2

MRGLMM1, especially when there are a moderate number of replications per design point (k = 30,
r = 2, 3; k = 20, r = 3, 5, and k = 10, r = 10). But those critical values are far away for the T2 based on the fitted val-
ues in the inverse link scale. Thus, it is clear from this study that some adjustment for the number of design points and
number replications per design point is needed to obtain proper control limits from 𝜒2 distribution. Hence further stud-
ies are needed to determine these proper critical values. Perhaps this is a moot point, however, since the T2 based on
the fitted values in the inverse link scale is not competitive with the other methods in detecting the presence of true
out-of-control profiles. Consequently, additional results for the T2 based on the fitted values in inverse link scale is not
presented.

Table 3 shows the proportion of the 1000 datasets that had a signal on the control charts for various T2statistics from
the correctly specified model (𝛾 = 0) without a shift in model parameters (in-control scenario). The UCL were calculated
from the 𝜒2 distribution with corresponding df chosen as described above. Results reveal that POSs for each T2

i based on
the fitted values in inverse link scale are always one (and thus not given here) but those computed from the T2

i based on
the eblups and the fitted values in link scale are closer to 𝛼 level except for the POS of T2

MRGLMM1, especially when there is
a moderate number of replications per design point. As we suggested earlier, this also reveals that adjustment is needed
in order to obtain better cut off values for the T2 statistics. Since the estimated POS based on 𝜒2 distribution is not always
0.05 for in-control data due to the simulated random errors, the study of control charts considered in this work is based
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1050 BANDARA et al.

T A B L E 3 POS for in-control scenario using the Chi-squared distribution based on df and the nominal value is
0.05

T2 statistic based on eblups T2 statistic based on fitted value in link scale

k r T2
P0 T2

NP2 T2
MRGLMM1 T2

MRGLMM2 T2
P1 T2

NP0 T2
MRGLMM0

30 10 0.021 0.042 0.101 0.016 0.021 0.042 0.016

5 0.028 0.035 0.123 0.025 0.028 0.035 0.025

3 0.033 0.083 0.088 0.042 0.033 0.083 0.042

2 0.041 0.064 0.128 0.053 0.041 0.064 0.053

1 0.056 0.050 0.167 0.086 0.056 0.050 0.086

20 10 0.021 0.031 0.091 0.018 0.021 0.031 0.018

5 0.029 0.050 0.154 0.043 0.029 0.050 0.043

3 0.035 0.045 0.106 0.048 0.035 0.045 0.048

2 0.034 0.035 0.163 0.073 0.034 0.035 0.073

1 0.088 0.091 0.210 0.127 0.088 0.091 0.127

10 10 0.022 0.047 0.144 0.049 0.022 0.047 0.049

5 0.045 0.077 0.181 0.084 0.045 0.077 0.084

3 0.064 0.048 0.171 0.080 0.064 0.048 0.080

2 0.077 0.075 0.210 0.121 0.077 0.075 0.121

1 0.109 0.311 0.312 0.248 0.109 0.311 0.248

Abbreviations: MRGLMM, model robust profile monitoring for the generalized linear mixed model; NP, nonparametric; POS,
probability of signal.

on the simulated control limits to ensure that the POS for in-control data will be the same for all charts and equal to the
nominal 0.05 level.

5.4 Simulation results for detecting shift

A power study was conducted to evaluate the performances of each T2 statistic on detecting an out-of-control situation
by introducing a step change, drift shift and transient shift in the mean vector, 𝛽.

5.4.1 Detecting step shift

Here, we studied the effect of the size of shift (d0) in the mean vector, 𝛽 degree of misspecification, number of design
points (k) per profile and number of replications (r) per design point on the simulated POS. In step shift the first
20 profiles of 30 profiles (m) were generated from the in-control distribution using the model (35) and last 10 pro-
files were generated from the out-of-control model (36) in which intercepts have been shifted by d0 amount (d0 = 1,
2, 3, and 4) where d0 = 1 referring to small (20%) shift and d0 = 4 representing the large (80%) shift. Table 4 gives
the simulated POS computed using our seven T2 statistics at different degrees of misspecification (𝛾) and different
amounts of shift (d0) for m = 30, k = 30, and r = 10 setting. In order to obtain a proper comparison of the meth-
ods, the in-control POS (POS at d0 = 0) was controlled at 𝛼 = 0.05 by using the simulated 0.95 cutoff values seen
in Table 2.

Table 4 indicates that the simulated POS of all seven T2 statistics increase as size of the shift increases for all degree of
misspecification (𝛾), indicating that all these T2 statistics are sensitive to step shift at this experimental settings (m = 30,
k = 30, r = 10). The performances of each parametric T2 statistics at 𝛾 = 0 (the properly specified model) is superior to
corresponding NP and MRGLMM T2 statistics.
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BANDARA et al. 1051

T A B L E 4 POS for out-of-control scenario using T2 statistics based on eblups, fitted value in link scale and fitted value in
inverse link scale with different degree of misspecification (γ) and different sizes of step shifts for m = 30, k = 30, r = 10, and
q = 20

T2 statistic based on eblups T2 statistic based on fitted value in link scale

𝜸 shift T2
P0 T2

NP2 T2
MRGLMM1 T2

MRGLMM2 T2
P1 T2

NP0 T2
MRGLMM0

0.00 0 0.050 0.050 0.050 0.050 0.050 0.050 0.050

1 0.368 0.148 0.205 0.304 0.368 0.148 0.304

2 0.864 0.622 0.380 0.691 0.864 0.622 0.691

3 0.983 0.894 0.587 0.896 0.983 0.894 0.896

4 1.000 0.974 0.753 0.975 1.000 0.974 0.975

0.25 1 0.321 0.588 0.505 0.794 0.321 0.588 0.794

2 0.754 0.837 0.795 0.952 0.754 0.837 0.952

3 0.968 0.959 0.955 0.999 0.968 0.959 0.999

4 0.997 0.988 0.991 0.999 0.997 0.988 0.999

0.50 1 0.309 0.597 0.494 0.809 0.309 0.597 0.809

2 0.718 0.829 0.771 0.943 0.718 0.829 0.943

3 0.951 0.931 0.947 0.991 0.951 0.931 0.991

4 0.988 0.976 0.990 1.000 0.988 0.976 1.000

0.75 1 0.270 0.743 0.567 0.862 0.270 0.743 0.862

2 0.670 0.890 0.841 0.969 0.670 0.890 0.969

3 0.903 0.969 0.974 1.000 0.903 0.969 1.000

4 0.982 0.995 0.997 1.000 0.982 0.995 1.000

1.00 1 0.238 0.749 0.261 0.709 0.238 0.749 0.709

2 0.527 0.902 0.418 0.882 0.527 0.902 0.882

3 0.758 0.959 0.643 0.964 0.758 0.959 0.964

4 0.882 0.988 0.907 0.994 0.882 0.988 0.994

Note: Best value in bold.
Abbreviations: MRGLMM, model robust profile monitoring for the generalized linear mixed model; NP, nonparametric; POS, probability of
signal.

T2 statistics based on eblups shows that T2
MRGLMM2 often gives a higher POS than T2

MRGLMM1 and is better for
detecting step shift. The performances of MRGLMM methods (T2

MRGLMM2, T2
MRGLMM0, and T2

MRGLMM3) are superior to
corresponding parametric and NP methods for partially misspecified models. The performances of NP T2 statistics
based on eblups and fitted value in the link scale are better than corresponding parametric and MRGLMM methods
for small shifts in the totally misspecified model (𝛾 = 1) but for large shifts those MRGLMM methods are better. Fur-
thermore, we observe that the performance of those T2 statistics based on the eblups and the fitted values in link scale
are equal.

Figure 3 shows the simulated POS of T2 statistics based on eblups, with different sizes of shifts, different degrees of
misspecification and different numbers of binary observations (r) for k = 10 and 30 scenarios. Results indicate that the
simulated POSs of all T2 statistics based on eblups increase with an increasing number of replications (r) per design
point for all values of design points used (k) in this study. These plots show a similar pattern to those plots given in
Abdel-Salam et al45 for normal data cases, especially when there is an adequate number of observations per profile
(k = 30 and r = 10).

The T2 statistics based on the fitted value in probability scale also indicates that the POS of all T2 statistics
increase with an increasing number of replications (r) per design point for k = 20 and 30, but for k = 10, there
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1052 BANDARA et al.

F I G U R E 3 Colored: probability of signal of T2 statistics based on eblups, with shifts, degree of misspecification (𝛾 = g) and number of
binary replications (r) for m = 30, k = 10 and 30 [Colour figure can be viewed at wileyonlinelibrary.com]

is a small increase in the simulated POSs of parametric method and no significant increase in NP and MRGLMM
methods.

Furthermore, it was noticed that the T2 statistics based on the fitted value in probability scale are highly sensitive to
the number of design points (k) than those T2 statistics based on ebulps and perform well with a large number of design
points.

5.4.2 Detecting drift shift

To study the performances of T2 statistics under drift shift in the mean vector, 𝛽, was shifted introducing a constantly
increasing rate from the second profile up to the last profile by multiplying the shift (d0 = 1, 2, 3, and 4) in the out of control
model (36) by

(
q−1
m−1

)
amount. Table 5 shows a variation of the simulated POS computed using different T2 statistics at

different degrees of misspecification (𝛾) and different amounts of shift (d0) for m = 30, k = 30, and r = 10 setting. In order
to obtain a proper comparison of the methods, the in-control POS (POS at d0 = 0) was controlled at 𝛼 = 0.05 by using the
simulated 0.95 cutoff values seen in Table 2. The results reveal that the performances of each T2 statistics in detecting
drift shift are similar to step shift. The performances of each parametric T2 statistics at 𝛾 = 0 is superior to corresponding
NP and MRGLMM T2 statistics; and the performances of MRGLMM methods (T2

MRGLMM2 and T2
MRGLMM0) are superior

to corresponding parametric and NP methods for partially misspecified models, whereas NP T2 are better for a totally
misspecified model.

5.4.3 Detecting transient shift

To evaluate the performances of different T2 statistics under the transient shift, the first and last 10 profiles of 30 pro-
files (m) were generated from the in-control distribution using the model (35) and the middle 10 profiles were generated
from the out-of-control model (36) in which intercepts have been shifted by d0 amount (d0 = 1, 2, 3, and 4) where
d0 = 1 referring to small (20%) shift and d0 = 4 representing the large (80%) shift. Table 6 shows the variation of the
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BANDARA et al. 1053

T A B L E 5 POS for out-of-control scenario using T2 statistics based on eblups, fitted value in link scale, and fitted
value in inverse link scale with different degree of misspecification (γ) and different sizes of drift shifts for m = 30,
k = 30, and r = 10

T2 statistic based on eblups T2 statistic based on fitted value in link scale

𝜸 shift T2
P0 T2

NP2 T2
MRGLMM1 T2

MRGLMM2 T2
P1 T2

NP0 T2
MRGLMM0

0.00 0 0.050 0.050 0.050 0.050 0.050 0.050 0.050

1 0.405 0.181 0.189 0.312 0.405 0.181 0.312

2 0.781 0.489 0.287 0.583 0.781 0.489 0.583

3 0.929 0.713 0.362 0.707 0.929 0.713 0.707

4 0.972 0.788 0.421 0.750 0.972 0.788 0.750

0.25 1 0.250 0.170 0.187 0.394 0.250 0.170 0.394

2 0.599 0.417 0.441 0.715 0.599 0.417 0.715

3 0.841 0.624 0.568 0.858 0.841 0.624 0.858

4 0.905 0.668 0.639 0.896 0.905 0.668 0.896

0.50 1 0.145 0.155 0.112 0.265 0.145 0.155 0.265

2 0.508 0.505 0.346 0.626 0.508 0.505 0.626

3 0.888 0.873 0.787 0.947 0.888 0.873 0.947

4 0.995 0.995 0.981 0.998 0.995 0.995 0.998

0.75 1 0.222 0.205 0.048 0.242 0.222 0.205 0.242

2 0.477 0.478 0.203 0.528 0.477 0.478 0.528

3 0.831 0.821 0.543 0.853 0.831 0.821 0.853

4 0.981 0.980 0.889 0.989 0.981 0.980 0.989

1.00 1 0.263 0.266 0.048 0.254 0.263 0.266 0.254

2 0.402 0.422 0.103 0.366 0.402 0.422 0.366

3 0.613 0.675 0.267 0.652 0.613 0.675 0.652

4 0.846 0.884 0.578 0.876 0.846 0.884 0.876

Note: Best value in bold.
Abbreviations: MRGLMM, model robust profile monitoring for the generalized linear mixed model; NP, nonparametric; POS,
probability of signal.

simulated POS computed using different T2 statistics at different degrees of misspecification (𝛾) and different amounts
of shift (d0) for m = 30, k = 30, and r = 10 case. The performances parametric T2 statistics, MRGLMM T2 and NP
T2 statistics are similar to step and drift shifts for correctly specified (𝛾 =0) model to moderately misspecified mod-
els (𝛾 = 0.25,0.5). However, with highly misspecified models (𝛾 = 0.75, 1), the performances of parametric T2 statistics
is better.

6 A REAL CASE

In this section, we compare the performance of the proposed method using the warranty claim dataset given in
Reference 43. Figure 4 illustrates changes in the probability of warranty claim with the month in service for 10 lots
(profiles) of automotives manufactured during 10 months of production (MOP).

We first removed the data of 10th MOP since it looks unusual and deviate from other nine profiles. Then
GLMM was fitted to data of remaining nine profile using model in (1) with binomial link function. The model
estimated mean vector, 𝜷 (fixed effect parameters) as (−5.331, 0.1603)‘ and random effects vector, b as (0.008211,
0.000012)‘. Then 30 profiles were generated using these estimate to represent in control profiles and control
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1054 BANDARA et al.

T A B L E 6 POS for out-of-control scenario using T2 statistics based on eblups, fitted value in link scale and fitted
value in inverse link scale with different degree of misspecification (γ) and different sizes of transient shifts for m = 30,
k = 30, and r = 10

T2 statistic based on eblups T2 statistic based on fitted value in link scale

𝜸 shift T2
P0 T2

NP2 T2
MRGLMM1 T2

MRGLMM2 T2
P1 T2

NP0 T2
MRGLMM0

0.00 0 0.050 0.050 0.050 0.050 0.050 0.050 0.050

1 0.405 0.181 0.189 0.312 0.405 0.181 0.312

2 0.781 0.489 0.287 0.583 0.781 0.489 0.583

3 0.929 0.713 0.362 0.707 0.929 0.713 0.707

4 0.972 0.788 0.421 0.750 0.972 0.788 0.750

0.25 1 0.250 0.170 0.187 0.394 0.250 0.170 0.394

2 0.599 0.417 0.441 0.715 0.599 0.417 0.715

3 0.821 0.589 0.547 0.839 0.821 0.589 0.839

4 0.905 0.668 0.639 0.896 0.905 0.668 0.896

0.50 1 0.202 0.173 0.118 0.297 0.202 0.173 0.297

2 0.569 0.435 0.332 0.669 0.569 0.435 0.669

3 0.789 0.565 0.527 0.849 0.789 0.565 0.849

4 0.905 0.686 0.630 0.942 0.905 0.686 0.942

0.75 1 0.253 0.217 0.072 0.281 0.253 0.217 0.281

2 0.550 0.449 0.193 0.527 0.550 0.449 0.527

3 0.792 0.606 0.417 0.769 0.792 0.606 0.769

4 0.862 0.686 0.554 0.875 0.862 0.686 0.875

1.00 1 0.305 0.286 0.043 0.266 0.305 0.286 0.266

2 0.451 0.409 0.084 0.393 0.451 0.409 0.393

3 0.655 0.534 0.172 0.561 0.655 0.534 0.561

4 0.759 0.590 0.264 0.650 0.759 0.590 0.650

Note: Best value in bold.
Abbreviations: MRGLMM, model robust profile monitoring for the generalized linear mixed model; NP, nonparametric; POS,
probability of signal.

limits for each of T2 statistics described above were calculated from 1000 replications of these 30 in control
profiles.

To study the practical performances of each T2 statistics under the step shift the first 20 profiles of 30 profiles were
generated as above and treated as in-control profiles and last 10 profiles were generated by shifting the intercept of the
estimated mean vector, 𝜷 by d0 amount (d0 = 1, 2, 3, and 4) and treated as out-of-control profiles. The POS of each method
was computed using 1000 replication and results for m = 30, k = 12, and r = 100 is presented in Figure 5.

The results indicate that parametric T2 statistics is superior in detecting the step shift in this practical scenario and
MRGLMM2 T2 is comparatively better than MRGLMM1 T2 and NP T2.

7 CONCLUSION

The study showed that, the SIMSE of the SP (MRGLMM) method is less than or equal to that of the parametric method
for correctly specified model and it is always less than that of the parametric and NP method for moderately misspeci-
fied models. For severe misspecification’s levels, the SIMSE of the NP method and MRGLMM are identical. Thus, we can
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BANDARA et al. 1055

F I G U R E 4 The profile samples
for automotive warranty claims data
[Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 5 Probability of signal of T2 statistics with step
shifts generated using profile samples for automotive warranty
claims data

conclude that MRGLMM fit is robust to the degree of model misspecification and it combines the advantage of both para-
metric and NP methods. Furthermore, we observed that SIMSE of all methods decreases as the number of observations
per profile increases (r or k). Thus, the model fitting ability by the parametric and NP methods can be improved by using
more observations per profile (k or/and r). Thus, we advise to increase the k and/or r whenever possible.

The power study’s results show that, the T2statistics based on eblups (fitted value in link scale) are superior to the
corresponding T2statistic based on the fitted value in the probability scale in detecting out-of-control profiles. In addition,
a comparison of two SP T2 statistics based on eblups shows that T2

MRGLMM2,i often gives higher POS than T2
MRGLMM1,i and

is thus better for detecting out-of-control situation. Thus, we conclude that, the user, when dealing with a 0/1 response
variable, needs to transform the observed probabilities into the link scale and use the T2control chart based on the fitted
value in the link scale or that based on eblups rather than using a control chart based on observed probabilities. This
recommendation may or may not be true for other distributions within the exponential family of distributions. It is our
observation that the poor performance of the T2method based on the probability scale is due to numerical inaccuracies
involved in the computation of T2. We speculate that such inaccuracies may not be an issue when dealing with responses
from other distributions in the exponential family of distribution such as the Poisson or the Gamma distributions. Further
work is needed to address this concern.

Furthermore, the probability of out-of-control signal of MRGLMM for the correctly specified model case is greater
than that of NP method and closer to POS of parametric method. For totally misspecified model, the POS of MRGLMM
is greater than that of parametric method and closer to POS of NP method. For moderate misspecification levels, the
MRGLMM method results in higher POS values than either the parametric and NP methods. These results suggest that
the MRGLMM method is robust to the level of model misspecification in detecting out-of-control conditions. Thus, we
recommended using the MRGLMM method for Phase I profile monitoring when the response variable is a 0/1 variable
and no parametric model can be found that provides an adequate fit to the data over the entire range of the explanatory
variables.
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APPENDIX: SAS CODE A

*Following is the main macro, here r is the number of binary observations at particular point
m is the number of profiles, k is the number of design points for x variable,
s1, s2, s3 are variance used to generate random effects b1, b2 and b3 respectively
q is the last in-control profile
nr is the number of simulation per sample*/
%macro mse (r=10, m=30, k=30, s1=5, s2=20, s3=20, nr=1000, q=20, g=0, nk=3);
%do kt=1 %to 1 %by 1;
%do dd0=%SysEvalF(0) %to %SysEvalF(40) %by %SysEvalF(10);
%let d0= %SysEvalF( &dd0 / 10 );
%let outpa=1;
%let tot=1;
%let notest=0;
%let notcon_p=0;
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%let notcon_np=0;
%do %until (&outpa > &nr);
proc iml;
dm ’clear out’;dm ’clear log’;
d1=0;
xk = j(&k,1,1)||(t(1:&k)*(.0333333));
run;
xr = xk @ j(&r,1,1);
x = repeat (xr[,2],&m,1);
run;
y1= j(&m*&k*&r,1,0);* print y1;
PA= j(&m,&k,0);*print PA;
CS= j(&m,&k,0);*print CS;
b11 = root(&s1) * normal (j(&m,1,&tot));
run;
b1 = t(b11)@(j(&k,1,1));*contribution of random effect b1 to each obs;
run;
b22 = root(&s2) * normal (j(&m,1,&tot+10##6));
run;
b2 = t(b22)@(j(&k,1,1));
run;
b33 = root(&s3) * normal (j(&m,1,&tot+10##7));
run;
b3 = t(b33)@(j(&k,1,1));
run;
%let tot=%eval(&tot+1);
do repm = 1 to &q by 1;

do repn = 1 to &k by 1; *——-5 in following equation is beta0
PA[repm,repn] =(1-&g)*(1/(1+exp(-((-5)+(10)*xk[repn,2]))))+

&g*(.5*(1/(1+exp(-((-5)+(20)*xk[repn,2]))))
+.5*(1/(1+exp(-((-15)+(20)*xk[repn,2])))));

CS[repm,repn] =(1-&g)*(1/(1+exp(-((-5)+(10+b1[repn,repm])*xk[repn,2]))))+
&g*(.5*(1/(1+exp(-((-5)+(20+b2[repn,repm])*xk[repn,2]))))

+.5*(1/(1+exp(-((-15)+(20+b3[repn,repm])*xk[repn,2]))))); end; end; run; prpa= colvec(pa); Genpa= prpa
@ j(&r,1,1); pcs= rowvec(cs);L = j(&r,&k*&m,0);
do i = 1 to &k*&m by 1;
do j = 1 to &r;
L[j,i]=rand(’BERN’,pcs[1,i]);
end; end;
data cs; set cs; rename col1=prof; rename col2=x; rename col3=cs;rename col4=PA;rename col5=y;rename col6=obsp;
run;
ods listing;
proc glimmix data = cs outdesign = z;
ods output SolutionR=parcs ParameterEstimates = parp;
class prof;
model y(event=’1’)=x / solution link=logit dist=binary s;
random int/subject=prof s;
random x/subject=prof s;
output out = gmxpara pred(blup ilink)=predpcs pred(blup)=predpcsL pred(noblup ilink)=predparapa;
nloptions tech = newrap; run; quit;
data _null_; slept= sleep(6,.1); run;
%let exist_p=%sysfunc(exist(work.parp)); %if &exist_p=0 %then %do;
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%put dataset P does not exist; %let notcon_p=%eval(&notcon_p+1); proc datasets; delete cs;run; %end;
%else %if &exist_p=1 %then %do;
%put dataset p exist;
ods listing;
proc glimmix data = cs outdesign = z;
ods output SolutionR =concs ParameterEstimates = parnp knotInfo = knotcs;
title ’Estimated CS profiles using Rsmoother’;
class prof;
model y(event=’1’)=x / solution link=logit dist=binary s;
random x/ type = rsmooth subject = prof knotmethod=data(knotdata&kt) knotinfo g s;
random x/ subject = prof s; random _RESIDUAL_;
output out = gmxnpara pred(blup ilink) = prednpcs pred(blup) = prednpcsL pred(noblup ilink) = prednppa;
nloptions tech = newrap; run; quit;
%let exist_np=%sysfunc(exist(work.parnp));
%if &exist_np=0 %then %do; %put dataset NP does not exist;
%let notcon_np=%eval(&notcon_np+1); proc datasets; delete cs parp; run; %end;
%else %if &exist_Np=1 %then %do; %put dataset NP exist;
tsqP_fit = j(&m,1,0); tsqNP_fit = j(&m,1,0);tsqsP_fit = j(&m,1,0);
tsqP_fitL = j(&m,1,0); tsqNP_fitL = j(&m,1,0);tsqsP_fitL = j(&m,1,0);
do w1 = 1 to &m by 1;
tsqP_fit[w1,1] = (mtypar[w1,]-meanmtypar)*sefitp*t(mtypar[w1,]-meanmtypar);
tsqNP_fit[w1,1] = (mtynpar[w1,]-meanmtynpar)*sefitnp*t(mtynpar[w1,]-meanmtynpar); tsqSP_fit[w1,1] = (mtyspar
[w1,]-meanmtyspar)*sefitsp*t(mtyspar[w1,]-meanmtyspar);
tsqP_fitL[w1,1] = (mtyparL[w1,]-meanmtyparL)*sefitpL*t(mtyparL[w1,]-meanmtyparL);
tsqNP_fitL[w1,1] = (mtynparL[w1,]-meanmtynparL)*sefitnpL*t(mtynparL[w1,]-meanmtynparL);
tsqSP_fitL[w1,1] = (mtysparL[w1,]-meanmtysparL)*sefitspL*t(mtysparL[w1,]-meanmtysparL); end;
Htsq_fit = max(tsqP_fitL)||max(tsqNP_fitL)||max(tsqSP_fitL)||max(tsqP_fit)||max(tsqNP_fit)||max(tsqSP_fit);
tsquarecsebNP = j(&m,1,0);
do w = 1 to &m by 1;

tsquarecsebNP[w,1] = (csmteb[w,]-meancseb)*seb2*t(csmteb[w,]-meancseb); end;
HtscsebPNP = max(tsqcsebp[,1])||max(tsquarecsebNP);
do l = 1 to &m-1 by 1;

vdebsp[l,]=(csebsp[l+1,]-csebsp[l,]);
vdebsp_new[l,]=(csebsp_new[l+1,]-csebsp_new[l,]);

end;
do w = 1 to &m by 1;

tsqSP[w,1] = (csebsp[w,]-meancsebsp)*sebsp2*t(csebsp[w,]-meancsebsp);
tsqSP_new[w,1] = (csebsp_new[w,]-meancsebsp_new)*sebsp2_new*t(csebsp_new[w,]-meancsebsp_new); end;

%mend; %mse
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