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Given a compact connected set E in the unit disk B2, we give a new upper bound for 
the conformal capacity of the condenser (B2, E) in terms of the hyperbolic diameter 
t of E. Moreover, for t > 0, we construct a set of hyperbolic diameter t and apply 
novel numerical methods to show that it has larger capacity than a hyperbolic 
disk with the same diameter. The set we construct is called a Reuleaux triangle in 
hyperbolic geometry and it has constant hyperbolic width equal to t.
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1. Introduction

One of the famous problems of geometry is the problem of maximizing the volume of a geometric body 
given its surface area. This isoperimetric problem is a constrained extremal problem connecting two domain 
functionals, the volume and the surface area of the domain in question. Other than this specific question, 
there are several kinds of constrained extremal problems motivated by geometry and mathematical physics 
that can be referred to as isometric problems.

Already seventy years ago, G. Pólya and G. Szegö studied isoperimetric problems in their famous book 
[20], which inspired numerous later authors. They specifically devoted a lot of attention to isoperimetric 
problems involving condenser capacity. Condenser capacities are important tools in the study of par-
tial differential equations, Sobolev spaces, integral inequalities, potential theory, see V. Maz´ya [15] and 
J. Heinonen, T. Kilpeläinen, and O. Martio [10]. Since the extremal situations for the isoperimetric prob-
lems often reflect symmetry, various symmetrization procedures can be used as a method for analyzing
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isoperimetric problems, see A. Baernstein [1]. Furthermore, in his pioneering work [5], V.N. Dubinin sys-
tematically developed capacity related methods and gave numerous applications of condenser capacities 
and symmetrization methods to classical function theory. Capacity is also one of the key techniques in the 
theory of quasiconformal and quasiregular maps in the plane and space [7,9,21,22].

An open, connected and non-empty set G is called a domain and if E ⊂ G is a compact non-empty set, 
then the pair (G, E) is a condenser. The capacity of this condenser is defined by

cap(G,E) = inf
u

∫
G

|∇u|ndm, (1.1)

where the infimum is taken over the set of all C∞
0 (G) functions u : G → [0, ∞) with u(x) ≥ 1 for all x ∈ E

and dm is the n-dimensional Lebesgue measure. Below, we often choose n = 2 and focus on the special case 
where G � R2 is simply connected and E is a continuum.

By classical results the capacity decreases under a geometric transformation called symmetrization [1, 
Ch. 6, p. 215], [5], [7, Thm 5.3.11],

cap(G,E) ≥ cap(Gs, Es), (1.2)

where (Gs, Es) is the condenser obtained by one of the well-known symmetrization procedures, such as 
the spherical symmetrization or the Steiner symmetrization. While finding the explicit formula for the 
capacity (1.1) is usually impossible, the lower bound (1.2) can be often estimated or given explicitly [5], [7, 
pp. 180-181], [9, Chapter 9].

Our aim in this paper is to find upper bounds for the condenser capacity, when n = 2, G is a simply 
connected domain, and E is a connected compact set. Numerous bounds are given in the literature in terms 
of domain functionals, such as the area of G, the diameter of E and the distance from E to the boundary ∂G
[5,7,9,15,17,21,22]. While these kinds of bounds have numerous applications as shown in the cited sources, 
these bounds do not reflect the conformal invariance of cap(G, E). We apply the conformally invariant 
hyperbolic metric in this paper and therefore our main results are conformally invariant.

By the conformal invariance of the capacity and the hyperbolic metric, we may assume without loss of 
generality that the domain G is the unit disk B2 in the two-dimensional plane C = R2. Naturally, we use 
here the Riemann mapping theorem [2]. After this preliminary reduction, we look for upper bounds for the 
condenser capacity cap(B2, E) in terms of the hyperbolic metric ρB2 of the unit disk, when the hyperbolic 
diameter ρB2(E) of the compact set E is fixed.

A first guess might be that for a compact set E ⊂ B2, a majorant for cap(B2, E) would be the capacity 
of a hyperbolic disk with the hyperbolic diameter equal to that of E. This guess is motivated by a measure-
theoretic isodiametric inequality, see Remark 3.14. However, the main result of this paper is to show that 
this guess is wrong. For this purpose, we introduce the so-called hyperbolic Reuleaux triangle, which is a set 
of constant hyperbolic width, and then compute its conformal capacity with novel computational methods 
[13,16,18,19] to confirm our claim. A valid upper bound for cap (B2, E) in terms of the hyperbolic diameter 
is instead naturally given in terms of the capacity of the minimal hyperbolic disk containing the set E and 
here we apply the work of B.V. Dekster in [4] who found this minimal radius.

Theorem 1.3. For a continuum E ⊂ B2 with the hyperbolic diameter equal to t > 0, the inequality

cap(B2, E) ≤ 2π
log((1 +

√
1 + v2)/v)

with v = (2/
√

3) sh(t/2) (1.4)

holds.
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Given a number t > 0, the hyperbolic Jung radius is the smallest number r > 0 such that every set E ⊂ B2

with the hyperbolic diameter equal to t is contained in some hyperbolic disk with the radius equal to r. 
Originally, the Jung radius was found in the context of the Euclidean geometry [14, p. 33, Thm 2.8.4] and its 
hyperbolic counterpart was found for dimensions n ≥ 2 by B.V. Dekster in [4]. His result is formulated below 
as Theorem 3.3 and Theorem 1.3 is based on the special case n = 2 of his work. It should be noticed that, 
by the Riemann mapping theorem, (1.4) directly applies to the case of planar simply connected domains. 
The sharp upper bound in Theorem 1.3 is not known and this motivates the following open problem.

1.5. Open problem. Given t > 0, identify all connected compact sets E ⊂ B2 with the hyperbolic diameter 
t, which maximize the capacity cap(B2, E).

Theorem 1.3 provides an upper bound for the quantity

b(t) ≡ sup{cap(B2, E) : E continuum and ρ(E) = t} (1.6)

that we will analyze further, in order to find a lower bound for it. To this end we have to apply numerical 
methods. Our first step is to write an algorithm for computing the hyperbolic diameter of a set in a 
simply connected domain. The boundary integral equation method developed in a series of recent papers 
[13,16,18,19] is used. Using this method, we can compute the hyperbolic diameter and the capacity of a 
subset bounded by piecewise smooth curves in a polygonal domain or in the unit disk. We show that the 
capacity of a hyperbolic disk with diameter t, denoted b1(t), is a minorant for the above function b(t), i.e. 
b(t) ≥ b1(t), see (3.12). For this purpose we introduce the aforementioned hyperbolic Reuleaux triangle 
and our numerical work shows that its capacity majorizes the capacity of a disk with the same hyperbolic 
diameter. A delicate point here is the essential role of the hyperbolic geometry: the hyperbolic Reuleaux 
triangle cannot be replaced by the Euclidean Reuleaux triangle with the same hyperbolic diameter, for its 
capacity is not a majorant for b1(t) for t > 2. The numerical algorithm is of independent interest, because it 
enables one to experimentally study the hyperbolic geometry of planar simply connected polygonal domains.

We apply our result to quasiconformal maps and prove the following result.

Theorem 1.7. Let f : G1 → G2 = f(G1) be a K-quasiconformal homeomorphism between two simply 
connected domains G1 and G2 in R2, and let E ⊂ G1 be a continuum. Then

thρG2(f(E))
2 ≤ 4

(
thh(2, ρG1(E))

2

)1/K

(1.8)

where ρG1 and ρG2 refer to the hyperbolic metrics of G1 and G2, resp., and h(2, t) stands for the hyperbolic 
Jung radius of a set with the hyperbolic diameter equal to t defined in Theorem 3.3 due to B.V. Dekster [4].

For a large class of simply connected plane domains, so called ϕ-uniform domains, we give explicit bounds 
for the hyperbolic Jung radius of a compact set in the domain.

We are indebted to Prof. Alex Solynin for pointing out the above open problem.

2. Preliminaries

An open ball defined with the Euclidean metric is Bn(x, r) = {y ∈ Rn : |x −y| < r} and the corresponding 
closed ball is Bn(x, r) = {y ∈ Rn : |x −y| ≤ r}. The sphere of these balls is Sn−1(x, r) = {y ∈ Rn : |x −y| =
r}. Note that if the center x or the radius r is not otherwise specified in these notations, it means that x = 0
and r = 1. In a metric space (X, d), a ball centered at x and with radius r > 0 is Bd(x, r) and the diameter 
of a non-empty set A ⊂ X is d(A).
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Fig. 1. Examples of hyperbolic circles in a simply connected polygonal domain G (left) and a square with the vertices 0.5 ±h +(0.5 ±h)i
for h = 0.2 in the simply connected polygonal domain G (right).

In the Poincaré unit ball Bn = {x ∈ Rn:|x| < 1}, the hyperbolic metric is defined as [2, (2.8) p. 15]

sh2 ρBn(x, y)
2 = |x− y|2

(1 − |x|2)(1 − |y|2) , x, y ∈ Bn.

The hyperbolic segment between the points x, y is denoted by J [x, y]. Furthermore, the hyperbolic balls 
Bρ(q, R) are Euclidean balls with the center and the radius given by the following lemma.

Lemma 2.1. ([9, (4.20) p. 56]) The equality Bρ(q, R) = Bn(j, h) holds for q ∈ Bn and R > 0, if

j = q(1 − t2)
1 − |q|2t2 , h = (1 − |q|2)t

1 − |q|2t2 and t = th(R/2).

For a given simply connected planar domain G, by means of the Riemann mapping theorem, one can 
define a conformal map of G onto the unit disk B2, f : G → B2 = f(G), and thus define the hyperbolic 
metric ρG in G by [2]

ρG(x, y) = ρB2(f(x), f(y)), x, y ∈ G. (2.2)

As an example, consider the simply connected domain G inside the polygon with the vertices 0, 3, 3 + i, 
2 + i, 2 + 0.2i, 1 + 0.2i, 1 + i, and i. Fig. 1 (left) displays examples of hyperbolic circles in the domain G. 
These hyperbolic circles are plotted by plotting the contour lines of the function

u(z) = ρG(α, z), z ∈ G,

corresponding to the levels (the hyperbolic radii of the hyperbolic circles) 0.5, 1.5, 4, 10, 16, 21, 23, 23.5, and 
23.75 where α = 0.5 +0.5i. The values of ρG(α, z) are computed using the method described in Appendix A.1
with n = 213.

The hyperbolic diameter of a compact set E ⊂ G, denoted by ρG(E), is defined by

ρG(E) = sup{ρG(x, y) |x, y ∈ E}.

For the polygonal domain G in Fig. 1 (left), let E ⊂ G be the closure of the square with the vertices 
0.5 ± h + (0.5 ± h)i for 0 < h < 0.5 (see Fig. 1 (right) for h = 2). The approximate values of the hyperbolic 
diameter of the set E for several values of h, computed by the method described in Appendix A.1 with 
α = 0.5 + 0.5i and n = 213, are given in Table 1. Table 1 also presents the values of the capacity of the 
condenser (G, E), which are computed using the method described in Appendix A.4 with α = 1.5 + 0.1i, 
z2 = 0.5 + 0.5i, and n = 213.

Note that while we already defined the condenser capacity in (1.1), its definition can be also written as

cap(G,E) = M(Δ(E, ∂G;G)),
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Table 1
The hyperbolic diameter ρG(E)
and the capacity cap (G, E) for 
the sets G and E shown in Fig. 1
(right).

h ρG(E) cap (G,E)
0.1 1.0729 4.1331
0.2 2.3071 7.5564
0.3 3.9596 14.2096
0.4 6.7393 33.9643
0.45 9.5123 72.8330

as in [7, Thm 5.2.3, p. 164], [9, Thm 9.6, p. 152]. Here, Δ(E, F ; G) stands for the family of all the curves in 
the set G that have one end point in the set E and another end point in F [9, p. 106]. The definition and 
basic properties of the modulus M(Γ) of a curve family Γ can be found in [9, Ch. 7, pp. 103-131]. We often 
use the fact that the capacity is, in the same way as the modulus, conformally invariant.

Lemma 2.3. (1) If 0 < a < b and D = B
n(b)\Bn(a),

M(Δ(Sn−1(a), Sn−1(b);D)) = ωn−1(log(b/a))1−n.

(2) If R > 0 then for x ∈ Bn and R > 0

M(Δ(Sn−1, Bρ(x,R);Bn)) = ωn−1(log(1/th(R/2)))1−n .

Here, ωn−1 is the (n − 1)-dimensional surface area of the unit sphere Sn−1. In particular, ω1 = 2π.

Proof. (1) This is a well-known basic fact, see e.g. [9, (7.3), p. 107].
(2) The value of the left hand side is independent of x by the Möbius invariance of the modulus and 

of the hyperbolic metric and hence we may assume that x = 0. By Lemma 2.1, Bρ(x, R) = Bρ(0, R) =
Bn(0, th(R/2)) and hence the proof follows from part (1). �

The Grötzsch and Teichmüller capacities are the following decreasing homeomorphisms γn : (1, ∞) →
(0, ∞), τn : (0, ∞) → (0, ∞) [9, (7.17), p. 121]:

γn(s) = M(Δ(Bn
, [se1,∞];Rn)), s > 1,

τn(s) = M(Δ([−e1, 0], [se1,∞];Rn)), s > 0,

where the notation e1, ..., en stands for the unit vectors of Rn. These capacities satisfy γn(s) = 2n−1τn(s2−1), 
for s > 1 and various estimates are given in [9, Chapter 9] for n ≥ 3. For n = 2, r ∈ (0, 1), the following 
explicit formulas are given by [9, (7.18), p. 122],

γ2(1/r) = 2π
μ(r) ; μ(r) = π

2
K(

√
1 − r2)

K(r) , K(r) =
1∫

0

dx√
(1 − x2)(1 − r2x2)

. (2.4)

Lemma 2.5. (1) [9, Lemma 9.20, p. 163] If x, y ∈ Bn, x �= y, and E ⊂ Bn is a continuum with x, y ∈ E, 
then

cap (Bn, E) ≥ γn

(
1

th(ρBn(x, y)/2)

)
.
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Fig. 2. A hyperbolic Reuleaux triangle with vertices on {z : |z| = 0.5}. The dotted circular arc is a part of the boundary of the disk 
Bρ(0.5, M), which is one of the three hyperbolic disks defining this triangle, and M is the hyperbolic distance between vertices of 
the triangle.

Here, the equality holds if E is the geodesic segment J [x, y] of the hyperbolic metric joining x and y.
(2) If G is a simply connected domain in R2, E ⊂ G is a continuum, and x, y ∈ G, x �= y, then

cap (G,E) ≥ γ2

(
1

th(ρG(x, y)/2)

)
.

Proof. (2) By the Riemann mapping theorem, we may assume without loss of generality that G = B2 and 
hence the proof follows from part (1). �
2.6. Sets of constant width [14]. Let E ⊂ Rn be a compact set with diameter equal to t > 0. We say that E
is a set of constant width if for every z ∈ ∂E,

t = sup{|z − x| : x ∈ E} .

2.7. The Euclidean and hyperbolic Reuleaux triangle. An example of a set of constant width is the Reuleaux 
triangle, the intersection of three closed disks with radii equal to t > 0 and with centers at the vertices of an 
equilateral triangle having side lengths equal to t. We can define the hyperbolic Reuleaux triangle (Fig. 2), a 
subset of the unit disk B2 in the same way. To be more explicit, consider the hyperbolic Reuleaux triangle 
with vertices at r, r exp(2πi/3), r exp(4πi/3), and let

M = ρB2(r, r exp(2πi/3)) = 2 arsh r
√

3
1 − r2 .

By Lemma 2.1, Bρ(r, M) = B2(y, h) where y and h are given by

y = (1 − t2)r
1 − r2t2

, h = (1 − r2)t
1 − r2t2

, t = th(arsh r
√

3
1 − r2 ) .

Let D1 = B
2(y, h) and let D2, D3 be the disks obtained from D1 by rotation around the origin with angles 

2π/3 and 4π/3, resp. Now, the hyperbolic Reuleaux triangle with vertices at the above points is D1∩D2∩D3.

3. Capacity and Jung radius

For a compact subset E of a metric space X, the Jung radius is the least number r > 0 such that, for 
some x ∈ X, E is a subset of the closed ball centered at x with the radius r [14]. The metric space in 
our work will be the hyperbolic disk and we denote the hyperbolic Jung radius of the set E by rJung(E). 
Clearly, it follows from the conformal invariance of the hyperbolic metric that the Jung radius is conformally 
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invariant. Because of the same reason, for every simply connected domain G � R2 and all compact sets 
E ⊂ G, there exists z ∈ G with

cap(G,E) ≤ cap(G,Bρ(z, rJung(E))). (3.1)

By Lemma 2.1, Bρ(z, rJung(E)) is conformally equivalent to B2(0, th(rJung(E)/2)) and thus it follows from 
(3.1) and Riemann’s mapping theorem that

cap(G,E) ≤ 2π
log(1/th(rJung(E)/2)) . (3.2)

Theorem 3.3. (B.V. Dekster [4, Thm 2, (1.3)]) If E ⊂ Bn is a compact set with ρBn(E) ≤ t, then

rJung(E) ≤ arsh
(√

2n
n + 1sh t

2

)
≡ h(n, t).

Remark 3.4. Making use of the identity

thM2 = shM
1 +

√
1 + sh2M

, M > 0 ,

we observe that

thh(n, t)
2 = u sh(t/2)

1 +
√

1 + u2sh2(t/2)
, u =

√
2n/(n + 1) , t > 0 . (3.5)

For Lemma 3.7, which provides bounds for the function h(n, t), we first prove some preliminary results.

Proposition 3.6. (1) For all k > 0, the function h : (0, ∞) → R, h(x) = sh(kx)/x, is increasing.
(2) For all x ≥ 1, k > 0, the inequality x shk ≤ sh(kx) holds.

Proof. (1) Writing f(x) = sh(kx) and g(x) = x, we see that f ′(x)/g′(x) = kch(kx) is increasing and, by [9, 
Thm B.2, p. 465], so is h(x) = f(x)/g(x).

(2) Since the function h(x) = sh(kx)/x of part (1) is increasing for all k > 0,

x ≥ 1 ⇔ h(1) ≤ h(x) ⇔ sh(k) ≤ sh(kx)/x ⇔ x shk ≤ sh(kx). �
Lemma 3.7. For all n ≥ 2, t > 0, the inequality 

√
2(n + 1)/n ≤ t/h(n, t) ≤ 2 holds.

Proof. We can write
√

2(n + 1)
n

≤ t/h(n, t) ⇔ h(n, t) = arsh
(√

2n
n + 1sh t

2

)
≤ t

√
n

2(n + 1)

⇔
√

2n
n + 1sh t

2 ≤ sh
(
t

2

√
2n

n + 1

)
.

By choosing x =
√

2n/(n + 1) ≥ 2/
√

3 > 1 and k = t/2 > 0, we see that the inequality follows from 
Proposition 3.6. Furthermore, since
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Fig. 3. A hyperbolic Reuleaux triangle T with vertices on {z : |z| = 0.5} and a hyperbolic disk D with the hyperbolic diameter 
equal to that of T . Note that cap(B2, D) < cap(B2, T ).

t/h(n, t) ≤ 2 ⇔ h(n, t) = arsh
(√

2n
n + 1sh t

2

)
≥ t

2 ⇔
√

2n
n + 1sh t

2 ≥ sh t

2

⇔
√

2n
n + 1 ≥ 1 ⇔ n ≥ 1,

the latter inequality in the lemma also holds. �
Corollary 3.8. (1) If E is a compact subset of the unit ball Bn , n ≥ 2, with the hyperbolic diameter at most 
t, then

cap(Bn, E) ≤ ωn−1

(log(1/th(h(n, t)/2)))n−1 , t ≤ 2h(n, t) ≤ t
√

2n/(n + 1) .

(2) If E is a compact subset of a simply connected domain G � R2, then

cap(G,E) ≤ 2π
log((1 +

√
1 + v2)/v)

with v =
√

4
3shρG(E)

2 .

Proof. (1) follows immediately from Theorem 3.3, Lemma 3.7 and Lemma 2.3 and some basic properties of 
the modulus.

(2) The proof follows from (3.2) and the identity (3.5). �
3.9. Proof of Theorem 1.3. The proof follows from Corollary 3.8(2). �
Remark 3.10. We compare here the capacities of several sets in terms of the hyperbolic diameter t. The 
results are parametrized so that the vertices of the Reuleaux triangle are on the circle |z| = r. The results are 
given in the following table organized in seven columns as follows: (1) r = th(t/2), (2) t, (3) 2π/μ(th(t/2))
i.e. the capacity of the hyperbolic geodesic segment of diameter t, (4) the capacity of a Euclidean Reuleaux 
triangle with hyperbolic diameter t, (5) 2π/ log(1/th(t/4)) i.e. the capacity of a hyperbolic disk with diam-
eter t, (6) the capacity of a hyperbolic Reuleaux triangle with diameter t, (7) the upper bound given by 
Corollary 3.8. The values in columns (4) and (6) are computed using the method described in Appendix A.4
with α = 0.4 + 0.6r, z2 = 0, and n = 3 × 28. (See Fig. 3.)

3.11. Comparison of the bounds. Corollary 3.8(2) gives an upper bound b2(t) for

b(t) ≡ sup{cap(B2, E) : E connected and ρ(E) = t} .

As we have seen above,
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Table 2
The values of the computational results in Remark 3.10.

r h-diam capSeg capERtri capDisk capHRtri capJung
0.05 0.1734 1.6396 2.0242 2.0017 2.0245 2.0974
0.15 0.5255 2.3028 3.1332 3.0869 3.1397 3.3120
0.25 0.8937 2.8457 4.2040 4.1470 4.2360 4.5324

0.35 1.2903 3.3831 5.4255 5.3920 5.5272 5.9850
0.45 1.7305 3.9583 6.9289 6.9994 7.1957 7.8687
0.55 2.2359 4.6082 8.8968 9.2558 9.5369 10.5099

0.65 2.8416 5.3821 11.6482 12.7508 13.1588 14.5855
0.75 3.6173 6.3706 15.8319 18.9982 19.6196 21.8407
0.85 4.7413 7.8018 23.0155 33.5301 34.5948 38.6613
0.95 7.0399 10.7285 38.0667 106.0995 108.9365 122.4953

Fig. 4. Graph of the quotient b2(t)/b1(t) and 2/
√

3.

b(t) ≥ 2π/ log(1/th(t/4)) ≡ b1(t) .

Define b2(t) as in Corollary 3.8(2). Now, we know that for a hyperbolic Reuleaux triangle T of hyperbolic 
diameter equal to t we have

b1(t) ≤ cap(B2, T ) ≤ b2(t) . (3.12)

Fig. 4 displays the graph of the function b2(t)/b1(t) and its limit value 2/
√

3 when t → ∞.

3.13. Capacity comparison: the Euclidean vs hyperbolic Reuleaux triangle. We have shown above that the 
hyperbolic Reuleaux triangle of diameter t has a larger capacity than b1(t), the capacity of a hyperbolic disk 
with the same diameter. A natural question is: Why do we use for this purpose the hyperbolic Reuleaux 
triangle, not the Euclidean one? It follows easily from Lemma 2.1 that, as a point set, the hyperbolic triangle 
contains the Euclidean one and thus has a larger capacity. The key point now is that the capacity of the 
Euclidean Reuleaux triangle is smaller than b1(t) for t > 2. In Fig. 5 (left) we demonstrate this fact by 
graphing, as a function of t, the four quotients (1) Jung bound Corollary 3.8(2) divided by b1(t), (2) the 
capacity of the hyperbolic Reuleaux triangle/b1(t), (3) b1(t)/b1(t) (horizontal line), (4) the capacity of the 
Euclidean Reuleaux triangle/b1(t).

Fig. 5 (right) displays three sets of equal hyperbolic diameter: a disk, a hyperbolic Reuleaux triangle 
(solid line) and a Euclidean Reuleaux triangle (dashed line).

Remark 3.14. For the Lebesgue measure of a measurable set E ⊂ Rn, the well-known isodiametric inequality 
states that m(E) ≤ m(Bn(0, r)) where the Euclidean diameter of E is 2r [12, p. 548, Thm C.10]. A similar 
result was proven very recently by K.J. Böröczky and Á. Sagmeister in [3] for the balls in the hyperbolic 
geometry. As the above computational results demonstrate, for the condenser capacity there is no similar 
result.
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Fig. 5. On the left, the capacities divided by b1(t) (see (3.12)) as a function of the hyperbolic diameter t. On the right, three sets 
of equal hyperbolic diameter: a disk D (dash-dotted line), a hyperbolic Reuleaux triangle T (solid line), and a Euclidean Reuleaux 
triangle E (dashed line), E ⊂ T . Note that by the results in Table 2 we have cap(B2, E) < cap(B2, D) < cap(B2, T ) for all large 
enough t.

3.15. Proof of Theorem 1.7. Due to the conformal invariance of the hyperbolic metric, we may assume 
without loss of generality that G1 = G2 = B2. Let Δ = Δ(E, ∂B2; B2) be the family of all curves in B2

joining E and ∂B2. By quasiconformality,

M(fΔ) ≤ KM(Δ). (3.16)

Next, because μ(t) < log(4/r) by [9, (7.21)] for r ∈ (0, 1), we obtain by Lemma 2.5(2) and (2.4) that

M(fΔ) ≥ γ2

(
1

th(ρG2(f(E))/2)

)
≥ 2π

μ(th(ρG2(f(E))/2)) ≥ 2π
log(4/(th(ρG2(f(E))/2))) . (3.17)

On the other hand, by Corollary 3.8,

M(fΔ) ≤ 2π
log(1/(th(h(2, ρG1(E))/2))) . (3.18)

The inequalities (3.16), (3.17) and (3.18) together yield

thρG2(f(E))
2 ≤ 4

(
thh(2, ρG1(E))

2

)1/K

,

as desired. �
4. Upper bounds for the hyperbolic Jung radius

In view of Corollary 3.8, it is natural to look for bounds of the hyperbolic Jung radius of a compact set 
in a simply connected plane domain G. Perhaps a first question to study is whether we can find an upper 
bound in terms of the domain functional d(E)/d(E, ∂G). As Example 4.1 demonstrates, this is not true in 
general simply connected domains, but by (4.4) such a majorant is valid for ϕ-uniform domains.

Example 4.1. For G = B2\[0, 1), let t ∈ (0, 1/4), fix the points xt = (1/2, t), yt = (1/2, −t), and let Et be 
the set {xt, yt} ⊂ G. Then d(Et)/d(Et, ∂G) = 2 but ρG(xt, yt) → ∞ if t → 0+. Therefore, the hyperbolic 
Jung radius has no bounds in terms of d(E)/d(E, ∂G).

4.2. ϕ-uniform domains. Let ϕ : [0, ∞) → [0, ∞) be an increasing homeomorphism and G ⊂ R2 a simply 
connected domain. We say that G is ϕ-uniform if



M.M.S. Nasser et al. / J. Math. Anal. Appl. 508 (2022) 125870 11
ρG(x, y) ≤ ϕ

(
|x− y|

min{dG(x), dG(y)}

)
(4.3)

for all x, y ∈ G.
The class of ϕ-uniform domains [9, pp. 84-85] contains many types of domains, including, for instance, 

all convex domains and so called quasidisks, which are images of the unit disk under quasiconformal maps 
of the plane [6].

Now, we observe that if E is a compact subset of a simply connected ϕ-uniform domain G, then by 
Theorem 3.3,

rJung(E) ≤ arsh
(

2√
3
shϕ(d(E)/d(E, ∂G))

2

)
. (4.4)

Finally, we give a simple sufficient condition for a domain G ⊂ R2 to be ϕ-uniform: There exists c ≥ 1
such that every pair of points x, y in G can be joined by a curve γ with length at most c|x − y| so that

d(γ, ∂G) ≥ (1/c) min{dG(x), dG(y)}.

For more details, see [6, p. 35] and [9, pp. 84-85].

Remark 4.5. Recall that in every plane domain G, the hyperbolic diameter of a continuum E ⊂ G is bounded 
in terms of d(E)/d(E, ∂G) [9, 6.32] and hence so is its hyperbolic Jung radius by Theorem 3.3.

Data availability

All the data used in the research for this article was created with MATLAB codes available in GitHub 
at github .com /mmsnasser /hypdiam.

Appendix A. Computational methods

Computational tools for computing several conformal invariants in simply and doubly connected domains 
have been presented recently in [18,19]. These tools are based on using the boundary integral equation with 
the generalized Neumann kernel. A fast numerical method for solving the integral equation is presented 
in [16] which makes use of the Fast Multipole Method toolbox [8]. In this appendix, we briefly describe 
these tools and demonstrate how they can be applied to compute numerically the hyperbolic diameter of 
compact sets as well as the capacity of condensers.

A.1. Numerical computation of hyperbolic diameter. If E ⊂ G is a compact set in a simply connected 
domain G, then the hyperbolic diameter of E with respect to G,

ρG(E) = max{ρG(x, y) |x, y ∈ ∂E}, (A.2)

can be computed once we have an algorithm for the hyperbolic distance ρG(x, y). In this paper, the maximum 
in (A.2) is approximated numerically by discretizing the boundary ∂E with a sufficiently large number of 
points. The hyperbolic distance ρG(x, y) itself is approximated numerically by approximating a conformal 
mapping from the domain G onto the unit disk B2.

A MATLAB function hypdist for approximating the hyperbolic distance ρG(x, y) when the boundary 
Γ = ∂G is a piecewise smooth Jordan curve is presented in [18]. To use the function hypdist, we parametrize 
Γ, which is assumed to be oriented counterclockwise, by a 2π-periodic complex function η(δ(t)), t ∈ [0, 2π], 
where δ : [0, 2π] → [0, 2π] is a bijective strictly monotonically increasing function. When Γ is smooth, we 

https://github.com/mmsnasser/hypdiam
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choose δ(t) = 1. For piecewise smooth boundary Γ, the function δ is chosen as described in [13, p. 697] (see 
also [11]). We define n equidistant nodes s1, . . . , sn in the interval [0, 2π] by

sk = (k − 1)2π
n
, k = 1, . . . , n, (A.3)

where n is an even integer. Then we compute the vectors et and etp by

et = η(δ(s)) ∈ Cn, etp = η′(δ(s))δ′(s) ∈ Cn,

where s = [s1, . . . , sn] ∈ Rn. We also discretize the boundary of E by a vector of points z. Then, the 
hyperbolic diameter ρG(E) is approximated by calling

max(max(hypdist(et,etp,n,alpha,z,z))),

where α is an auxiliary point in G. For more details, we refer the reader to [18].

A.4. Numerical computation of the capacity. Consider a bounded simply connected domain G in the plane 
and a compact set E ⊂ G such that D = G \E is a doubly connected domain. In this paper, the capacity of 
the condenser (G, E) will be computed by the MATLAB function annq from [19]. The boundary components 
of D = G \E are assumed to be piecewise smooth Jordan curves. Let Γ1 be the external boundary component 
and Γ2 be the inner boundary component such that Γ1 is oriented counterclockwise and Γ2 is oriented 
clockwise. We parametrize Γj by a 2π-periodic complex function ηj(δj(t)), t ∈ [0, 2π], where δj : [0, 2π] →
[0, 2π] is a bijective strictly monotonically increasing function, j = 1, 2. When Γj is smooth, we choose 
δj(t) = 1. For piecewise smooth boundary component Γj, the function δj is chosen as in [13, p. 697]. We 
compute the vectors et and etp by

et = [η1(δ1(s)) , η2(δ2(s))] ∈ C2n,

etp = [η′1(δ1(s))δ′1(s) , η′2(δ2(s))δ′2(s)] ∈ C2n,

where s = [s1, . . . , sn] ∈ Rn and s1, . . . , sn are given by (A.3). Then the MATLAB function annq can be 
used to approximate cap (G, E) as follows,

[~,cap] = annq(et,etp,n,alpha,z2,’b’),

where α is an auxiliary point in the domain D and z2 is an auxiliary point in the interior of E (see Fig. 1
(right)). The readers are referred to [19] for more details.

The values of the parameters in the functions hypdist and annq are chosen as in [18,19]. The codes for 
all presented computations in this paper are available in the link https://github .com /mmsnasser /hypdiam.

References

[1] A. Baernstein, Symmetrization in Analysis, with David Drasin and Richard S. Laugesen, with a foreword by Walter 
Hayman, New Mathematical Monographs, vol. 36, Cambridge University Press, Cambridge, 2019, xviii+473 pp.

[2] A.F. Beardon, D. Minda, The hyperbolic metric and geometric function theory, in: S. Ponnusamy, T. Sugawa, M. Vuorinen 
(Eds.), Proc. International Workshop on Quasiconformal Mappings and Their Applications (IWQCMA05), 2006, pp. 9–56.

[3] K.J. Böröczky, Á. Sagmeister, The isodiametric problem on the sphere and in the hyperbolic space, Acta Math. Hung. 
160 (1) (2020) 13–32.

[4] B.V. Dekster, The Jung theorem for spherical and hyperbolic spaces, Acta Math. Hung. 67 (4) (1995) 315–331.
[5] V.N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory, Birkhäuser, 2014.
[6] F.W. Gehring, K. Hag, The Ubiquitous Quasidisk, Mathematical Surveys and Monographs, vol. 184, American Mathe-

matical Society, Providence, RI, 2012, with contributions by Ole Jacob Broch.

https://github.com/mmsnasser/hypdiam
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib8A4FE2EAC821CC07DB049F1279357195s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib8A4FE2EAC821CC07DB049F1279357195s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib5089FA881630360A9B3361469C1A0C5Ds1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib5089FA881630360A9B3361469C1A0C5Ds1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib9A231C14A3416B1055B8FFB960151AEEs1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib9A231C14A3416B1055B8FFB960151AEEs1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib5F02F0889301FD7BE1AC972C11BF3E7Ds1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib13A014CB9DE9F7CAD88D5DAFB70ECB41s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib19B19FFC30CAEF1C9376CD2982992A59s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib19B19FFC30CAEF1C9376CD2982992A59s1


M.M.S. Nasser et al. / J. Math. Anal. Appl. 508 (2022) 125870 13
[7] F.W. Gehring, G.J. Martin, B.P. Palka, An Introduction to the Theory of Higher-Dimensional Quasiconformal Mappings, 
Mathematical Surveys and Monographs, vol. 216, American Mathematical Society, Providence, RI, 2017, ix+430 pp.

[8] L. Greengard, Z. Gimbutas, FMMLIB2D: a MATLAB toolbox for fast multipole method in two dimensions, version 1.2, 
www .cims .nyu .edu /cmcl /fmm2dlib /fmm2dlib .html, 2019. (Accessed 6 November 2020).

[9] P. Hariri, R. Klén, M. Vuorinen, Conformally Invariant Metrics and Quasiconformal Mappings, Springer Monographs in 
Mathematics, Springer, Berlin, 2020.

[10] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical 
Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993; Revised and 
extended edition: Dover, 2006.

[11] R. Kress, A Nyström method for boundary integral equations in domains with corners, Numer. Math. 58 (2) (1990) 
145–161.

[12] G. Leoni, A First Course in Sobolev Spaces, Graduate Studies in Mathematics, vol. 105, American Mathematical Society, 
Providence, RI, 2009, xvi+607 pp.

[13] J. Liesen, O. Séte, M.M.S. Nasser, Fast and accurate computation of the logarithmic capacity of compact sets, Comput. 
Methods Funct. Theory 17 (2017) 689–713.

[14] H. Martini, L. Montejano, D. Oliveros, Bodies of Constant Width. An Introduction to Convex Geometry with Applications, 
Birkhäuser/Springer, Cham, 2019, xi+486 pp.

[15] V. Maz´ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, second, revised and augmented 
edition, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 342, 
Springer, Heidelberg, 2011, xxviii+866 pp.

[16] M.M.S. Nasser, Fast solution of boundary integral equations with the generalized Neumann kernel, Electron. Trans. Numer. 
Anal. 44 (2015) 189–229.

[17] M.M.S. Nasser, O. Rainio, M. Vuorinen, Condenser capacity and hyperbolic perimeter, Comput. Math. Appl. (2021), to 
appear.

[18] M.M.S. Nasser, M. Vuorinen, Conformal invariants in simply connected domains, Comput. Methods Funct. Theory 20 
(2020) 747–775.

[19] M.M.S. Nasser, M. Vuorinen, Computation of conformal invariants, Appl. Math. Comput. 389 (2021) 125617.
[20] G. Pólya, G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, vol. 27, Princeton 

University Press, Princeton, NJ, 1951, xvi+279 pp.
[21] Yu.G. Reshetnyak, Space Mappings with Bounded Distortion, translated from the Russian by H.H. McFaden, Translations 

of Mathematical Monographs, vol. 73, American Mathematical Society, Providence, RI, 1989, xvi+362 pp.
[22] S. Rickman, Quasiregular Mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (Results in Mathematics and 

Related Areas (3)), vol. 26, Springer-Verlag, Berlin, 1993, x+213 pp.

http://refhub.elsevier.com/S0022-247X(21)00952-5/bib5CADAAA0D5A9AF6F6035DCA369ED3D0Es1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib5CADAAA0D5A9AF6F6035DCA369ED3D0Es1
http://www.cims.nyu.edu/cmcl/fmm2dlib/fmm2dlib.html
http://refhub.elsevier.com/S0022-247X(21)00952-5/bibD8D72D4CBB0BF6E31D9E5DF1F9A9D2FAs1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bibD8D72D4CBB0BF6E31D9E5DF1F9A9D2FAs1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bibF8F782FB6BD0F7CD5082A1BFA1B92AC2s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bibF8F782FB6BD0F7CD5082A1BFA1B92AC2s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bibF8F782FB6BD0F7CD5082A1BFA1B92AC2s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bibAFCFD0B6CD7730B35BF58C4A3C802F95s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bibAFCFD0B6CD7730B35BF58C4A3C802F95s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib550EADB88A230018BF043D1B6AD15863s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib550EADB88A230018BF043D1B6AD15863s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib1052F65F3638D070660421E5D92BA2D2s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib1052F65F3638D070660421E5D92BA2D2s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bibE22901F8C931624D1BEA8979BE872406s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bibE22901F8C931624D1BEA8979BE872406s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib6F8F57715090DA2632453988D9A1501Bs1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib6F8F57715090DA2632453988D9A1501Bs1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib6F8F57715090DA2632453988D9A1501Bs1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib8925D407B1E336D87A90E53D2B1528C3s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib8925D407B1E336D87A90E53D2B1528C3s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bibE7C7A09778108D84A291FB1A3003C195s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bibE7C7A09778108D84A291FB1A3003C195s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib0F1EDC61CFD92BB31D2D61EEAF480207s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib0F1EDC61CFD92BB31D2D61EEAF480207s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bibF9EAB7A52FBDA6F4788F438BA1A8DA94s1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib8812C36AA5AE336C2A77BF63211D899As1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib8812C36AA5AE336C2A77BF63211D899As1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib9B207167E5381C47682C6B4F58A623FBs1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib9B207167E5381C47682C6B4F58A623FBs1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib891F490E5D7BDB06D90D56F8D7DB405Fs1
http://refhub.elsevier.com/S0022-247X(21)00952-5/bib891F490E5D7BDB06D90D56F8D7DB405Fs1

	Condenser capacity and hyperbolic diameter
	1 Introduction
	2 Preliminaries
	3 Capacity and Jung radius
	4 Upper bounds for the hyperbolic Jung radius
	Data availability
	Appendix A Computational methods
	References


