
ISA Transactions 132 (2023) 69–79

M
a

b

c

d

w
l
l
s
a
D
t
o
w
m
D

f
i
c
c

(
(

h
0

Contents lists available at ScienceDirect

ISA Transactions

journal homepage: www.elsevier.com/locate/isatrans

Towards robust autonomous driving systems through adversarial test
set generation
Devrim Unal a,∗, Ferhat Ozgur Catak b, Mohammad Talal Houkan c, Mohammed Mudassir c,
ohammad Hammoudeh d

KINDI Center For Computing Research, Qatar University, Doha 2713, Qatar
Electrical Engineering and Computer Science Department, University of Stavanger, Rogaland 4021, Norway
Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

a r t i c l e i n f o

Article history:
Received 5 April 2022
Received in revised form 9 November 2022
Accepted 9 November 2022
Available online 17 November 2022

Keywords:
Risk-aware autonomous systems
DL
Test set generation
Uncertainty

a b s t r a c t

Correct environmental perception of objects on the road is vital for the safety of autonomous
driving. Making appropriate decisions by the autonomous driving algorithm could be hindered by
data perturbations and more recently, by adversarial attacks. We propose an adversarial test input
generation approach based on uncertainty to make the machine learning (ML) model more robust
against data perturbations and adversarial attacks. Adversarial attacks and uncertain inputs can affect
the ML model’s performance, which can have severe consequences such as the misclassification of
objects on the road by autonomous vehicles, leading to incorrect decision-making. We show that we
can obtain more robust ML models for autonomous driving by making a dataset that includes highly-
uncertain adversarial test inputs during the re-training phase. We demonstrate an improvement in
the accuracy of the robust model by more than 12%, with a notable drop in the uncertainty of the
decisions returned by the model. We believe our approach will assist in further developing risk-aware
autonomous systems.

© 2022 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Over the past decade, Deep Learning (DL) succeeded in a
ide range of applications, partly due to the use of powerful

earning algorithms that can learn complex relationships from
arge-scale datasets. More recently, DL schemes were applied
uccessfully in various tasks related to autonomous driving, such
s perception, prediction, planning, decision-making, and control.
eveloping robust DL schemes continues to attract more atten-
ion to safety–critical application domains. Despite the success
f DL [1], there are still challenges in applying DL to many real-
orld applications. One of the biggest obstacles to using DL in
any applications is the lack of explainability of how and why
L networks work.
In some cases, e.g., in medical applications, the neural network

unction must be explained to the user [2]. Another critical issue
s that Deep Neural Networks (DNNs) are very sensitive to the
hange in the distribution of inputs. For example, the image
lassification network trained on the ImageNet dataset [3] cannot

∗ Corresponding author.
E-mail addresses: dunal@qu.edu.qa (D. Unal), f.ozgur.catak@uis.no

F.O. Catak), mh1208170@qu.edu.qa (M.T. Houkan), mh1204033@qu.edu.qa
M. Mudassir), M.Hammoudeh@kfupm.edu.sa (M. Hammoudeh).
ttps://doi.org/10.1016/j.isatra.2022.11.007
019-0578/© 2022 ISA. Published by Elsevier Ltd. All rights reserved.
be directly used to classify images of different domains, such as
medical images. If we want to use a model trained on a large
dataset, e.g., ImageNet [4], to classify images in other domains,
the model will not work well. The main challenge here, is to train
a model that performs on all different data types and in real-life
circumstances with high uncertainty and noise.

When deploying a model to a new environment, it is critical
to test the model to ensure accurate results. However, there are
many ways to test a model. Traditional testing methods, including
statistical testing, modeling, and validation, do not produce a ro-
bust enough test set that can cover all possible scenarios. Instead,
to build DL models ready for industrial applications, we need to
follow software test engineering methodologies [5] to develop
and validate robust ML models. There are many different testing
methodologies in software testing, such as white-box testing,
black-box testing, and grey-box testing [6]. The grey-box testing
is a methodology that combines white-box testing and black-box
testing. Grey-box testing involves both the internal structure of
the system and the environment in which the system operates.
The system’s internal structure is used to generate test data, and
the environment is used to validate the test. Grey-box testing
is a robust testing methodology that can test the system from

different perspectives.

https://doi.org/10.1016/j.isatra.2022.11.007
https://www.elsevier.com/locate/isatrans
http://www.elsevier.com/locate/isatrans
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isatra.2022.11.007&domain=pdf
mailto:dunal@qu.edu.qa
mailto:f.ozgur.catak@uis.no
mailto:mh1208170@qu.edu.qa
mailto:mh1204033@qu.edu.qa
mailto:M.Hammoudeh@kfupm.edu.sa
https://doi.org/10.1016/j.isatra.2022.11.007

D. Unal, F.O. Catak, M.T. Houkan et al. ISA Transactions 132 (2023) 69–79

c
e
m
i
s
o
i
a
r
T
m
t
t
e
m

(
d
g
g
f
A
t
f
t
o
d
w
t
d

u
m
d
r
t
a
u
d
e
W
t
s
d
o
t
t
a
c
m
g

t
c
h
m
d
i
w
o
d
c
n
d
c

In this paper, we propose a grey-box testing methodology that
an test the system from the internal structure of the system, the
nvironment, and the user. The proposed method uses a system
odel to generate test data, a test oracle to validate the test,

.e., prediction performance, and a user model to evaluate the
ystem, i.e., DNN model. There are different approaches to devel-
ping robust DL schemes, such as modifying the data, the model
tself, adding auxiliary models, and adversarial test input gener-
tion. In this work, our focus is the test input generation-based
obust DL scheme development in autonomous driving systems.
wo significant gaps in recent works are the interpretability of DL
odels and training robust models in the presence of different

raining and test distributions [7]. This paper addresses both of
hese gaps by introducing a well-defined adversarial test set gen-
ration that reduces the uncertainty and produces more robust
odels that perform better in the presence of uncertain inputs.
We consider the two main types of uncertainty: epistemic

model) and aleatoric (data) uncertainty. When autonomous
riving is considered, DL models are generally multi-output re-
ression models. Classical means of dealing with uncertainty
enerally do not apply to DL. There is a need for novel methods
or measuring uncertainty in multi-output regression models.
ccording to Wickramasinghe’s recent work [8], many DNN solu-
ions for Cyber–Physical System (CPS) data only create outputs
or the input instances. They do not measure uncertainty in
he prediction phase, which could ultimately result in a lack
f trust in these approaches and could lead to unexpected and
angerous CPS behaviors. DNN models trained on data from CPS
ill require an uncertainty quantification framework to quantify
he model uncertainty correctly. Next, the researchers should
evelop procedures to deal with this uncertainty.
One of the open problems for training robust models against

ncertainty is generating relevant testing data to optimize the
odels. For this purpose, we use existing autonomous driving
ata sets, including sensor data, e.g., LIDAR and GPS, and video
ecording data. We generate highly uncertain test inputs from
hese data sets to train robust models against perturbations and
dversarial attacks. The generated test data will help reduce the
ncertainty of the decision-making process of an autonomous
riving system. To evaluate the robustness of the produced mod-
ls, we use the generated test data to test the trained models.
e also compare the results with the models which are not

rained with the generated test data. Our recent work [9] pre-
ented a new metric for uncertainty quantification for object
etection DNN models, where the experiments were conducted
n the NEXET, Berkeley DeepDrive, KITTI, and Stanford datasets,
ogether with SSD300, SSD512, and YoLo DNN models, to quan-
ify prediction-time uncertainty. Another study [10] proposed
robust model training method (NIRVANA). NIRVANA seeks to
ompare the accuracy of DNN model predictions with another
odel and to enhance DNN model predictions using results of
enerated uncertainty quantification.
Connected and Autonomous Vehicles (CAVs) are subjected

o cyber-attacks, particularly, zero-day attacks [11]. The limited
omputational power of Engine Control Units (ECU) in cars pro-
ibits them from processing robust security protocols. Further-
ore, cyber-attacks put the privacy and security of passenger
ata at risk. CAVs differ from traditional software in several ways
ncluding their cyber–physical nature, which comprises hard-
are, software, and physics. The complex operating environment
f CAVs includes people, and communication platforms [12]. The
evelopment and operation of CAVs are also fraught with un-
ertainty due to the inherent uncertainty of the DL models, the
aturally unpredictable nature of the environment, the unpre-
ictable nature of human behavior, and the unreliable network

ommunications among CAV parts [13,14]. The building and use

70
of CAVs are challenging because of such uncertainty sources.
Therefore, the data generated during the operation of CAVs can be
used with DL models to understand CAV behaviors’ uncertainties
better, improve future generations of CAVs, and build novel test
cases. We focus on the CAV data generated during their operation
to achieve this.

There are many studies in the literature on detecting and
preventing poisoning and trojan attacks; however, these stud-
ies mainly require using powerful computing resources and the
cloud. Our study is different from others because we focus on
test data set generation for robust ML/AI models for autonomous
driving, including the development of low-energy, low-latency,
and low-complexity methods that can easily integrate into the
training and inference algorithms without affecting their perfor-
mance.

The main contributions of this article are as follows:

1. We propose a method for generating highly uncertain test
input data for a given DL model for autonomous driving
systems. The generated test data are used to verify the
robustness of DL models.

2. We adopted an adversarial training mitigation method for
the highly uncertain test inputs to increase the robustness
of the DL models.

3. We compare the results of our proposed method with
the state-of-the-art testing method and show that our ap-
proach achieves better performance.

The rest of the paper is organized as follows. In Section 2, we
present the related work. Section 3 presents the system model in-
cluding the uncertainty-based test set generation and the adver-
sarial re-training algorithm. Section 4 presents the experiments
on generating test inputs based on uncertainty maximization.
In Section 5, we present the results and discuss the outcomes.
We conclude with Section 6, where we also give ideas on future
research tracks.

2. Related work

DL recently gained popularity in autonomous driving and in-
telligent transportation system-related problems, with the ability
to conduct feature selection during the learning process [15].
Some popular DL algorithms include Convolutional Neural Net-
work (CNN), Feedforward Deep Network (FDN), Long–Short Term
Memory (LSTM), Recurrent Neural Network (RNN), and Genera-
tive Adversarial Network (GAN) [15]. Boukerche et al. [16] discuss
the application of DL to vision-based autonomous vehicle recog-
nition. Various use cases include vehicle detection, vehicle make
and model recognition, and vehicle re-identification. Khan et al.
present [17] an LSTM-based intrusion detection system for the
Internet of vehicles. Jebamikyous and Kashef [18] discuss the two
prominent use cases of DL for perception in autonomous vehicles;
semantic segmentation and object detection. These tasks require
precise data for high-performance classification results. However,
uncertainty is a factor that reduces the classification performance
of DL algorithms.

Various research works addressed the uncertainty in
autonomous systems and proposed multiple methods to increase
the performance of ML/DL algorithms in the presence of uncer-
tainty. In [19], the authors analyze various sources of uncertainty
in autonomous systems, such as execution uncertainty, timing
uncertainty, adversarial attacks, and uncertainty of the behavior
of Neural Networks (NNs). The authors propose a cross-layer
weakly-hard design framework to tackle the execution uncer-
tainty problem and safety verification of NNs through reachability
analysis. Another study [20] addresses safe and adaptive au-
tonomous navigation in uncertainty. The common shortcoming

D. Unal, F.O. Catak, M.T. Houkan et al. ISA Transactions 132 (2023) 69–79

o
e
p
s
k

i
(
h
t
i
B
m
i
t
t
C
J
i
t

a
b
d
d
r
m
D
n
m
n
t
a
g
m
t
a
a

a
C
s
a
c
[
t
h
F
A

a
t
o
v
a
t
d
p

3

n
s
t
m

f
f
t
t

t
c

w
i
a
t

e
t
u
c

θ

f the approaches mentioned above is that they require knowl-
dge of the NN architecture to improve performance. In our
roposed work, test-set generation based on uncertain inputs and
ubsequent re-training is utilized for this purpose, and previous
nowledge of the NN architecture is not needed.
Uncertainty quantification is a method to rank the generated

nputs based on their corresponding uncertainty metrics values
variance, maximum probability), re-training the model with the
ighly uncertain new generated inputs. In [21], the authors apply
he Monte-Carlo (MC) dropout method to measure uncertainty
n inputs for autonomous driving. The deep ensemble is a non-
ayesian uncertainty quantification method [22]. Adversarial ML
ethods are based on generating challenging and misleading

nputs using attacks and then adding generated data or images
o the original test set. In [23], Ma et al. use various adversarial
raining methods, such as the DeepFool, Basic Iterative Method,
arlini–Wagner (CW), Fast Gradient Sign Method (FGSM), and the
acobian-Based Saliency Map Attack. The main aim of this study
s to increase the uncertainty in the re-training phase to improve
he model prediction performance.

In DeepXplore, new metrics such as Network Coverage (NC)
nd the number of activated neurons in the prediction have
een used [24]. DeepTest generates new inputs for autonomous
riving DL models where different image transformations lead to
ifferent NC values [25]. DeepMutation uses mutation score, a pa-
ameter used in traditional software engineering for testing DNN
odels. Their proposed method creates multiple new mutant
NN models from a given model using additional methods like
euron switch or layer removal [26]. DeepCT is a test coverage
etric indicating that within a given DNN layer, all tuples of
eurons in that DNN layer must be covered by at least one
est image [27]. DeepHunter is a fuzzing-based test generation
lgorithm to hunt defects in DL models. The coverage metrics
uide the fuzzing [28]. Ma et al. [29] define uncertainty-based
etrics for test case generation in DL systems. The authors argue

hat the most critical test inputs are those with high uncertainty,
principle we adopt in this paper for generating more realistic
utonomous driving test sets.
Djenouri et al. proposed an accurate object detection model by

dopting the Granular Region Convolution Neural Network (GR-
NN) to process vehicle image data to reduce accidents through a
mart road system [30]. Mekala et al. highlighted the importance
nd feasibility of DL techniques for autonomous vehicles to ac-
omplish an intelligent driving systemwithout human interaction
31]. They have reviewed the Lidar-based DL strategies to address
he research challenges in autonomous driving through a compre-
ensive analysis of Semantic Segmentation, Data Representation,
eature Extraction, Dynamic Object Detection, Data Fusion, and
utonomous Driving-Multi-Objective tracking mechanisms.
The existing literature addresses uncertainty quantification

nd various methods to train better-performing ML/AI models in
he presence of uncertainty. The current literature lacks the issue
f training robust models against uncertainty by generating rele-
ant testing data to optimize the models. There is no systematic
pproach to test data generation based on adjustable parameters
hat can be measured which represents the uncertainty of the test
ata, and evaluates the effect of changing these parameters on the
erformance.

. Uncertainty types and quantification in DL

To mitigate the overconfidence problem in DL models, we
eed to train the model to be uncertain about its predictions. This
ection introduces methods from the literature used to measure
he output uncertainty of DL models. Table 1 shows the two
ain types of methods for measuring the output uncertainty
71
of DL models. Bayesian methods are based on Bayesian infer-
ence, whereas non-Bayesian methods are based on other methods
such as Monte Carlo sampling, importance sampling, and boot-
strap sampling. Bayesian methods are usually more accurate but
require more extensive training data and are computationally
expensive compared to non-Bayesian methods. For these reasons,
non-Bayesian methods are more prevalent in practice.

We present our view of the taxonomy of uncertainty types in
Fig. 1. This taxonomy is motivated by the notion of epistemic and
aleatoric uncertainty in the statistical literature and the recent
work on DL uncertainty in [32]. The boxes in the diagram show
various sources of uncertainty, while the arrows indicate how
they propagate through the DL model. The middle region shows
the sources of uncertainty considered in this paper.

Epistemic uncertainty, also known as model uncertainty, arises
rom the fact that the model has been trained on an imper-
ect dataset and in an imperfect environment. It corresponds to
he model’s inherent uncertainty, which one can reduce during
raining by providing more data. Aleatoric uncertainty, or data
uncertainty, stems from imperfect and incomplete data. Whereas
Classical uncertainty, or label uncertainty, arises from the fact that
the ground truth labels are imperfect and incomplete. Classical
uncertainty corresponds to the inherent uncertainty in the labels,
which can be reduced by providing more data. Prediction uncer-
tainty, or output uncertainty, arises from the fact that the model
has been trained on an imperfect dataset and in an imperfect
environment. It corresponds to the inherent uncertainty in the
model, which can be reduced during training by providing more
data.

Model, prediction, and data uncertainty can all be exploited to
improve the quality of predictions made by the model. Epistemic
and Prediction uncertainty are the reducible components of the
otal uncertainty. While Classical and Aleatoric uncertainty can be
onsidered as the irreducible component of the total uncertainty.
DL models are often trained using a maximum likelihood ML

criterion, i.e., the model parameters are learned to maximize
the likelihood of the training data. However, the ML criterion is
known to be the Maximum a Posteriori (MAP) estimate in the
Bayesian setting [33]. Thus, the ML criterion can be viewed as
a special case of the MAP criterion when the prior is uniform
and can be used to learn the model parameters of a DL model.
However, the MAP criterion does not account for the uncertainty
in the model parameters. Instead, it is accounted for by using the
MAP criterion. The MAP criterion is given by

θ∗
= argmax

θ
log p(D | θ) + log p(θ) (1)

where D is the training data, θ are the model parameters, p(D | θ)
is the likelihood of the training data given the model parameters,
and p(θ) is the prior over the model parameters.

The uncertainty in the training data can be accounted for by
using the maximum a posteriori with data uncertainty (MAP-DU)
criterion defined as

θ∗
= argmax

θ
log p(D | θ) + log p(θ | D) (2)

here D is the training data, θ are the model parameters, p(D | θ)
s the likelihood of the training data given the model parameters,
nd p(θ | D) is the posterior over the model parameters given the
raining data.

The MAP-DU criterion can be used to learn the model param-
ters of a DL model. However, it does not account for the uncer-
ainty in the labels. The label uncertainty can be accounted for by
sing the maximum a posteriori with label uncertainty (MAP-LU)
riterion defined as
∗

= argmax log p(D | θ,L) + log p(θ | D,L) (3)

θ

D. Unal, F.O. Catak, M.T. Houkan et al. ISA Transactions 132 (2023) 69–79

p

p
t

t
d
g
c
t
t
t

a
f
t
r
c
p
p
m
m
l
m
c
a
u

Table 1
An overview of methods for measuring output uncertainty.

Bayesian methods Non-Bayesian methods

Probabilistic - Variational Inference (VI)
- Markov Chain Monte Carlo (MCMC)

- Monte Carlo Dropout (MCD)
- Bootstrap Ensemble

Non-probabilistic - None - Confidence Interval (CI)
- Importance Weighting (IW)
Fig. 1. Illustration of the different sources of uncertainty and how they affect the performance of a DL model.
where D is the training data, L are the labels, θ are the model
parameters, p(D | θ,L) is the likelihood of the training data given
the model parameters and labels, and p(θ | D,L) is the posterior
over the model parameters given the training data and labels.

The MAP-LU criterion does not account for the uncertainty
in the test data. Hence, the uncertainty in the test data can be
accounted for by using the maximum a posteriori with the test data
uncertainty (MAP-TDU) criterion given by

θ∗
= argmax

θ
log p(Dtest | θ,D) + log p(θ | D,Dtest) (4)

where D is the training data, Dtest is the test data, θ are the model
arameters, p(Dtest | θ,D) is the likelihood of the test data given

the model parameters and training data, and p(θ | D,Dtest) is the
osterior over the model parameters given the training data and
est data.

DL models are trained to optimize a loss function, making
hem susceptible to the data used to train the model. The depen-
ence on the training data may significantly impact the model’s
eneralization performance on unseen data during testing be-
ause DL models can extrapolate the underlying relationships in
he data and generalize them to unseen data. However, a model
rained on a dataset sampled from a different distribution from
he testing one will not generalize well.

Fig. 1 shows the three sources of uncertainty and how they
ffect the performance of a DL model. Data uncertainty comes
rom the fact that the dataset is sampled from an underlying dis-
ribution. Irreducible uncertainty is uncertainty that one cannot
emove. In contrast, model uncertainty is the uncertainty that
omes from the fact that the model is not trained on the entire
opulation. Fig. 1 shows how the three sources of uncertainty
ropagate through the model. The data uncertainty affects the
odel uncertainty, which affects the irreducible uncertainty. A
odel trained on a dataset generalizes better if the dataset is

arger. This is because a model trained on a larger dataset is
ore accurate, which reduces the model’s uncertainty. Data un-
ertainty comes from the fact that the dataset is sampled from
n underlying distribution. The data uncertainty affects the model
ncertainty, which in turn affects the irreducible uncertainty. The
72
model uncertainty is the primary source of uncertainty that we
focus on in this work.

A model with a high uncertainty has low performance on
unseen data. In this work, we focus on the aleatoric uncer-
tainty. There are two main ways to quantify aleatoric uncer-
tainty, the mean–variance approach, and the predictive entropy
approach. The mean–variance method quantifies the aleatoric
uncertainty by the model’s predictions’ mean and variance. The
predictive entropy approach quantifies the aleatoric uncertainty
by the entropy of the model’s predictions. In this article, we use
the mean–variance approach.

In the mean–variance approach, the mean is the expected
value of the model’s predictions, and the variance is the expected
value of the squared difference between the model’s predictions
and the mean. The mean and the variance can be estimated using
the Monte Carlo method [34]. The Monte Carlo method generates
samples from the model’s predictions. The mean and the variance
are then estimated using the generated samples.

4. System model

The main goal of this work is to build a robust DL model
for Cyber–Physical Systems (CPSs), based on model re-training
creating highly uncertain inputs. The proposed highly uncertain
instance generation mainly consists of the following three phases:
(I) is the dataset generation; (II) is the building of a dropout-based
neural network at prediction time; (III) is the re-training of the
model with the generated highly uncertain inputs (see Fig. 2).

4.1. Test input generation based on the non-dominated sorting ge-
netic algorithm

NSGA-II (Non-dominated Sorting Genetic Algorithm-II) follows
the general outline of a genetic algorithm with a modified mating
and survival selection. In this algorithm individuals are chosen
frontwise, leading to a situation where a front needs to be split
because not all individuals are permitted to survive. This splitting
front selects solutions based on crowding distance [35]. The main

D. Unal, F.O. Catak, M.T. Houkan et al. ISA Transactions 132 (2023) 69–79

a
i
o
t
i
r
P
i

C
o
i
a
i
m
t
p
D
p
d
a
c
t

t
f
m
a
d
D
t

Fig. 2. System overview.
dvantages of NSGA-II are that it can deal with mixed constraints,
t is elitist, is very unlikely to converge prematurely to a local
ptimum, and is computationally efficient. Elitist algorithms, a
ype of evolutionary algorithm, work by making sure that the best
ndividuals in one epoch are not discarded, and transferred di-
ectly into the next generation. The algorithm is implemented in
ython through the Pymoo module. Algorithm 1 shows the steps
n NSGA-II. The algorithm’s inputs are; the population size P , the
number of generations G, the objective function fi(xi), the lower
and upper bounds li, ui of decision variables xi. The output of
NSGA-II is the set of non-dominated solutions S∗.

Algorithm 1 NSGA-II

Require: P , G, fi(xi), li, ui
Ensure: S∗

1: Initialize the population P;
2: for i = 1 to G do
3: Calculate the fitness of each individual xi;
4: Sort the population P frontwise;
5: Select the non-dominated individuals S∗;
6: Calculate the crowding distance of S∗;
7: Select the best individuals with the smallest crowding

distance;
8: Generate the new population Pnew;
9: P := Pnew

10: end for RETURN S∗

Fig. 2 demonstrates the training dataset D is collected from
AVs in Phase I. In this study the inputs are LIDAR, and the
utput is a robust model that is trained to classify the objects
n the LIDAR. The algorithm’s primary output is the generation of
robust model that is not tricked by an adversarial test input

njection. Data preparation is conducted in Phase II and DNN
odel training with the input dataset D which is carried out from

he previous phase. Conventional DNN training is executed at this
hase to find the optimal weights. The primary output is the base
NN model, which is the DNN model with the best prediction
erformance and lowest loss value over the complete training
ata. The most crucial contrast between the base DNN model and
conventional DNN is the prediction time activated dropouts. In
ontrast, a standard DNN model has no dropouts in the prediction
ime.

In Phase III, the model is re-trained using highly uncertain
raining instances to improve the DNN model’s prediction per-
ormance. In this our approach, we use the training dataset and
odel with the NSGA-II optimization algorithm to generate new
nd highly uncertain instances. Then, we merge the training
ataset with newly generated instances. Finally, we re-train the
NN model with the new training dataset to improve the predic-
ion performance.
73
4.2. Adversarial training

In this research, we use the adversarial training method to
improve the robustness of the DL model. The adversarial training
mitigation method re-trains a DNN model to be robust against
a specific type of perturbation. In this work, we train a model
on a training set, where the inputs are perturbed by adding a
small amount of noise generated by the NSGA-II optimization-
based perturbation method to increase the uncertainty of the test
input for the DL model. Algorithm 2 shows the proposed method
for adversarial training. The algorithm’s input is the dataset D, the
number of iterations I , the learning rate α, the model F , and the
loss function L. The output of the algorithm is the robust model F ′.

Algorithm 2 Adversarial Training

Require: D, I , α, F , L
Ensure: F ′

1: Initialize the parameters of F ;
2: Initialize the parameters of F ′;
3: for i = 1 to I do
4: Randomly select an input xi from D;
5: xunc := xi + α · NSGA − II(xi, yi, F);
6: Update the model F by minimizing L(xunc, yi, F);
7: Update the model F ′ by minimizing L(xadv, yi, F ′);
8: end for
9: return F ′

5. Experimental evaluation

The aim of our experiments is to assess the effectiveness of our
approach in minimizing the effect of uncertainty in the prediction
results. The experimental setup and conditions are chosen to
ensure that the results are as close to real-world conditions as
possible. The results are then used to improve the model, and the
process is repeated until the desired level of accuracy is achieved.
We determined the best hyper-parameters for the DNN models
for the datasets used in the experiments using a simple grid
search. We found that the best hyper-parameters are the ADAM
optimization with a learning rate of 0.001. Fig. 3 shows the DNN
model. Dropout layers have been used during the model’s training
against adversarial test input injection. ReLu activation is used in
the input and all the hidden layers; the output layer is activated
by the Sigmoid function with the loss given by categorical cross-
entropy. We perform the optimization using the Adam optimizer.
The data is available from.1 We present information about the
dataset we employed in the experiments in Section 5.2, followed
by the training process description.

1 https://level-5.global/data/perception/.

https://level-5.global/data/perception/

D. Unal, F.O. Catak, M.T. Houkan et al. ISA Transactions 132 (2023) 69–79

5
m

o
o
t
a
t
a
u
o
p
s
o
a
d
s
a

w
p
f
t
i
w
h
t
d
E
h

n

a

x

m

p

r

5

P
g
d
p

u
i
r

5

P
t
P

w

Fig. 3. Architecture of the deep neural network.

.1. Generation of challenging inputs based on uncertainty maxi-
ization

Our approach is based on generating challenging inputs based
n uncertainty maximization. Our method is similar to the meth-
ds utilized for defending against adversarial ML attacks. Here, we
ry to increase the prediction uncertainty of the model by adding
small perturbation to the input. In adversarial ML attacks,

he objective is to fool the model using the loss maximization
pproach. We extend this approach by maximizing the prediction
ncertainty in the model’s prediction. We depict the overview
f our methodology in Fig. 4. In the first step, the data is pre-
rocessed including imbalance correction and train-test split. The
econd step trains the deep neural network model is trained
n the train set. Once the model has sufficient performance, an
dversarial test input generation is used to modify the training
ataset. In the third step, the model is re-trained on the adver-
arial dataset. The model becomes more robust to this type of
dversarial attack based on our approach.
To generate challenging inputs, i.e., highly uncertain inputs,

e used an optimization method to find the best perturbation
oints on the input to increase the uncertainty. The objective
unction of the optimization method is to maximize the predic-
ion uncertainty. There are three parts to the objective function,
ncrease uncertainty, lower perturbation amount, and increase
rong prediction amount. The objective function combines the
yper-parameters (α and β) to find the optimal solution. The op-
imization objective is to create new instances based on training
ata with the following optimization function given in Eq. (5).
q. (5) is constrained by the noise budget ϵ: ∥noise∥ < ϵ. We
ave assigned ϵ as 30% of the training dataset.

oise = arg min
noise

(
α

U(h(x))
+ ∥noise∥ + β · 1(y == ŷ)

)
,

∥noise∥ < ϵ

(5)

where:
 a

74
– U(h(x)) is the prediction uncertainty
– x is the input instance
– h is the DL model
– ∥noise∥ is the norm (i.e. magnitude) value of the noise
– ϵ is the Noise budget (i.e. the maximum distance between x

nd x + noise)
– x ∈ Rm and noise ∈ Rm

– noise has the same number of columns as the input instance

– α is the multiplication factor of uncertainty quantification
etrics value
– β is the multiplication factor of the number of incorrect

redictions
The ideal noise would have the following properties:
– Maximize the prediction uncertainty: ϵ

U(x)
– Minimize the noise magnitude (norm value): ∥noise∥
– Change the prediction class: 1(y == ŷ)
We use the generated data to train the model to increase its

obustness.

.2. Dataset

We use the LIDAR data in this study published by Woven
lanet Holdings [36]. The data is available from https://level-5.
lobal/data/perception. The LIDAR dataset size is about 37 GB. The
ataset is collected as cloud points as shown in Fig. 5. The cloud
oints are represented as 3D-coordinate points such as (x, y, z)

where x, y, and z are floats. In this dataset, a LIDAR scene cor-
responds to 4 images. However, we do not consider images in
this study. The reason for using LIDAR data as opposed to images
is that LIDAR sensors, unlike cameras, function independently of
ambient lighting. LIDAR can achieve great results both day and
night without any loss of performance due to disturbances such
as headlight glare, sunlight, shadows, or lack of ambient lighting.
The LIDAR sensors use an eye-safe laser to emit light pulses that
light up the region of interest.

This dataset was initially released for regression models. How-
ever, we modified the dataset for training classification models.
Since the dataset is too large, we down-sampled to 10% of the
original dataset. The LIDAR dataset contains labels of the objects.
We cropped the dataset and obtained the objects and their labels.
The new dataset consists of only LIDAR data of the objects and
their labels. There are 9 types of objects: animals (anml), bicy-
cle (bcycl), bus, car, emergency vehicle (EV), motorcycle (MC),
other vehicle (OV), pedestrian (pdstrn), and truck (trck). Only
these objects are extracted to prepare the train and test sets.
There is a class imbalance issue as there are more cars than cy-
clists or emergency vehicles. Therefore, we also applied class im-
balance correction. The minority classes are oversampled through
imbalance correction and the majority (car) class is undersam-
pled. The training dataset is 67% and the testing dataset is 33%.
The ML training is initiated by training on LIDAR data and labels.
The model outputs the softmax classification of the objects. Then,
sing the uncertainty formula and NSGA-II algorithm, the dataset
s modified with noise and sent to the ML models again for
e-training.

.3. Training

For defining the models and visualizing the analysis using
ython, the following packages are used: TensorFlow, uncer-
ainty wizard, Pandas, NumPy, Sci-Kit learn, SciPy, Keras, Seaborn,
ymoo, CleverHans, Tqdm, and Matplotlib.
The model is defined as a Stochastic Sequential Keras model

ith dense and dropout layers. ReLu activations are used for input

nd hidden layers with softmax activation in the final output. The

https://level-5.global/data/perception
https://level-5.global/data/perception
https://level-5.global/data/perception

D. Unal, F.O. Catak, M.T. Houkan et al. ISA Transactions 132 (2023) 69–79
Fig. 4. Steps of the uncertainty-based test input generation and DL model training.
Fig. 5. In this figure, (a) shows a LIDAR output, and its corresponding image in visible light is shown in (b). (c) is the LIDAR output of a different scene, and the
corresponding visible light image is shown in (d).
neurons in the dense layers are 100, 200, and 100, respectively.
The dropout layers use 9% dropout. Adam optimizer is used
with the loss function as categorical cross-entropy. The model is
executed and trained with early callbacks enabled.

A different type of neural network, Pointnet, is also used
for validating our approach. Pointnet is a neural network de-
signed to work directly with point clouds while considering the
permutation in-variance. [37].

6. Results and discussions

The performance of the ML model is evaluated using accu-
racy (defined in Eq. (6)), F-1 score (defined in Eq. (9)), recall, and
precision. These metrics are determined using True Positives (TP),
False Positives (FP), True Negatives (TN), and False Negatives (FN).
The F1-score is calculated based on precision and recall and a
75
value of the F1-score close to 1 indicates that the model performs
well in both precision (see Eq. (7)) and recall (see Eq. (8)).

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1–score =
2 · Precision · Recall
Precision + Recall

(9)

Fig. 6 plots losses and accuracy as the model is trained against
the adversarial test input injection dataset. We see that accuracy
is improving with a reduction in losses. Fig. 7 shows the accuracy,
precision, recall, and F1 score during the adversarial training. The

D. Unal, F.O. Catak, M.T. Houkan et al. ISA Transactions 132 (2023) 69–79

p
F
t

t
v
w
f
r
i
s
m
P
a
d

o
v
u
a
t
h
n
o
t
t
a
i
r
a
m

Fig. 6. Loss plot training.
Fig. 7. Accuracy, precision, and recall with adversarial test input injection training. Model performance improves with iterations.
erformance metrics are improving with every training iteration.
ig. 8 shows the drop in uncertainty before and after training with
he adversarial inputs.

The model is made more robust with adversarial ML-based
est input generation. After we append the dataset with the ad-
ersarial inputs by the allocated percentage of the noise budget,
e re-train our model. In Fig. 7 we observe the model per-

ormance drops initially but improves again and becomes more
obust with subsequent training iterations. Fig. 8 shows the drop
n uncertainty after training with adversarial test inputs. Fig. 9
hows the improvement of the model across all the performance
etrics after training using the adversarial test input set. The
ointnet performs better than the typical dense neural network
s the architecture of this neural network is specially designed to
irectly handle point clouds.
Table 2 shows the influence of α and β hyper-parameters

n the performance of the DNN during the training against ad-
ersarial test input injection. α is the multiplication factor of
ncertainty quantification metrics value. We used mean–variance
s the uncertainty quantification metric. β is the multiplica-
ion factor of the number of incorrect predictions. Varying these
yper-parameters will determine how much of the noise origi-
ates from the magnitude of the prediction error, or the number
f wrong predictions. The hyperparameter values depend on the
ype of data and the classification task. Our optimization func-
ion uses these two hyper-parameters to penalize the classifier
nd train the model to become robust to adversarial test input
njection. The best value for α and β is 0.6. The model showed a
elatively optimal performance using this value which yields an
verage accuracy of 0.73, i.e., a 12% improvement upon the base
odel. The accuracy of the base model is 0.62.
76
Fig. 8. Average uncertainty of the neural network predictions before and after
training on the dataset with the adversarial test inputs. Average uncertainty
drops after training on the adversarial dataset.

Table 3 shows the class-wise prediction performance scores
for the robust model. The accuracy, precision, recall, and F1-score
of the model show modest performance in absolute terms. The
robust model exhibits relatively better performance than the base
model and is resistant to adversarial test input attacks.

In the context of autonomous driving, these results indicate
that robust models would be better at correctly classifying the
objects and will be secure against adversarial attacks with test
input generation when compared against a base model that has
not been trained likewise. The results also show that there is
room for improvement across all the metrics. Nevertheless, the

D. Unal, F.O. Catak, M.T. Houkan et al. ISA Transactions 132 (2023) 69–79

p
p

Fig. 9. The performance of the model improves across all metrics after training with adversarial test inputs. NN=dense neural network, PN=Pointnet.
Fig. 10. Accuracy, precision, and recall with adversarial test input injection training. the Pointnet model, performance improves with iterations.
Table 2
The table shows the values of the α and β parameters and the resulting model
erformance, the % improvement compared to the base model, and the average
erformance metrics.
α β Accuracy Precision Recall F1-score α/β Acc.

improved

0.9 0.9 0.68 0.69 0.68 0.68 1 7.3
0.9 0.6 0.67 0.67 0.68 0.67 1.5 5.9
0.9 0.3 0.69 0.70 0.68 0.69 3 8
0.9 0.1 0.62 0.61 0.63 0.62 9 1.53
0.6 0.9 0.68 0.69 0.67 0.68 0.67 7.33
0.6 0.6 0.73 0.76 0.73 0.74 1 12
0.6 0.3 0.61 0.59 0.61 0.60 2 −0.27
0.6 0.1 0.65 0.66 0.64 0.65 6 4.06
0.3 0.9 0.60 0.62 0.61 0.61 0.33 −0.59
0.3 0.6 0.71 0.71 0.70 0.70 0.5 9.74
0.3 0.3 0.60 0.60 0.61 0.60 1 −0.64
0.3 0.1 0.69 0.70 0.68 0.69 3 8.16
0.1 0.9 0.72 0.71 0.70 0.70 0.11 11
0.1 0.6 0.63 0.62 0.61 0.61 0.17 2.01
0.1 0.3 0.52 0.52 0.51 0.51 0.33 −9.36
0.1 0.1 0.61 0.60 0.61 0.60 1 0.08

Table 3
The class-wise performance metrics of the DL model with the optimal α and β

trained against adversarial test input injection dataset.
Animal bcycl Bus Car EV MC OV pdstrn trck

Accuracy 0.76 0.74 0.73 0.72 0.73 0.73 0.71 0.70 0.64
Precision 0.74 0.73 0.74 0.71 0.73 0.74 0.71 0.70 0.61
Recall 0.77 0.74 0.75 0.72 0.71 0.75 0.73 0.68 0.62
F1-score 0.75 0.73 0.74 0.71 0.72 0.74 0.72 0.69 0.61

robust model is already performing better than the base model by
a margin of 12%. Pointnet is used to classify point cloud data for
77
the purpose of testing the adversarial test input injection training
with a better-suited model. The resulting model without the
input injection the model had an accuracy of around 85%; after
the injection, the accuracy and other metrics reached around 96%.
The improvement of 11% indicated that the method could work
on diverse model types. The performance of the trained robust
Pointnet model across various metrics is shown in Fig. 10.

7. Conclusion and future works

Adversarial attacks are used maliciously to confuse ML models.
Uncertainty, which is inherent in the training data, or arising
from the training process, has a similar effect on the performance
of ML models. This can have severe consequences in the case
of autonomous vehicles where correct identification of objects
in the surroundings and road is critical. In this work, we used
an adversarial test input generation approach for making the
ML model more robust against uncertainty and adversarial at-
tacks. We demonstrated that adversarial test inputs can affect
the performance of the ML model, which can have severe con-
sequences, such as the mis-classification of objects on the road
by autonomous vehicles. However, by building a dataset that
contains adversarial test inputs and re-training, we can make the
ML model more robust to adversarial attacks. The accuracy of the
robust model can reach higher than that of the base model by up
to 12%, with a scalar reduction of 0.25 in uncertainty.

Our main contribution is a new method based on the NGSA-
II algorithm for generating highly uncertain test input data for a
given DL model for autonomous driving systems. We increased
the robustness of the DL models against high uncertainty using
the adversarial training mitigation method. The presented ap-
proach performs better in producing robust DL models against
similar works in the literature.

D. Unal, F.O. Catak, M.T. Houkan et al. ISA Transactions 132 (2023) 69–79

i
a
E
a
t
a
f
u
e
g
u
l
i

C

w
F
i
T
M
C
C
–

D

f
a

R

In future work, we plan to address data uncertainty problems
n addition to the model uncertainty problem addressed in this
rticle. For this purpose, we aim to investigate Kernel Density
stimation (KDE) based methods for moving the data instances in
training set into low-density regions, thus increasing the uncer-
ainty of the training data. Another improvement to the current
pproach of generating uncertain test data is looking at a DL loss
unction-based method for generating data instances with high
ncertainty. The NGSA-II based optimization used in this work
xhibits good performance. However, NGSA-II takes a long time to
enerate highly uncertain examples. The DL loss function-based
ncertainty maximization method has a similar performance with
ower execution times. Therefore, we will investigate this method
n our future works.

RediT authorship contribution statement

Devrim Unal: Conceptualization, Introduction, Related
orks, Formal analysis, Conclusion, Writing – original draft.
erhat Ozgur Catak: Conceptualization, Literature review, Cod-
ng, Methodology, Review of draft. Mohammad Talal Houkan:
raining ML models, Results, Discussion, Review of draft.
ohammed Mudassir: Methodology, Experiments, Discussion,
onclusion, Review of draft. Mohammad Hammoudeh:
onceptualization, Methodology, Discussion, Validation, Writing
review & editing.

eclaration of competing interest

The authors declare that they have no known competing
inancial interests or personal relationships that could have
ppeared to influence the work reported in this paper.

eferences

[1] Popoola SI, Adebisi B, Ande R, Hammoudeh M, Anoh K, Atayero AA.
SMOTE-DRNN: A deep learning algorithm for botnet detection in the
internet-of-things networks. Sensors 2021;21(9).

[2] Popoola SI, Adebisi B, Hammoudeh M, Gacanin H, Gui G. Stacked recurrent
neural network for botnet detection in smart homes. Comput Electr Eng
2021;92:107039.

[3] Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. ImageNet: A large-scale
hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. 2009, p. 248–55. http://dx.doi.org/10.1109/CVPR.
2009.5206848.

[4] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z,
Karpathy A, Khosla A, Bernstein M, et al. Imagenet large scale visual
recognition challenge. Int J Comput Vis 2015;115(3):211–52.

[5] Jamil MA, Arif M, Abubakar NSA, Ahmad A. Software testing techniques:
A literature review. In: 2016 6th international conference on information
and communication technology for the muslim world (ICT4M). 2016, p.
177–82. http://dx.doi.org/10.1109/ICT4M.2016.045.

[6] Hamza Z, Hammad M. Testing approaches for web and mobile applications:
An overview. Int J Comput Digit Syst 2020;9(4):657–64.

[7] Qayyum A, Usama M, Qadir J, Al-Fuqaha A. Securing connected & au-
tonomous vehicles: Challenges posed by adversarial machine learning and
the way forward. IEEE Commun Surv Tutor 2020;22(2):998–1026.

[8] Wickramasinghe CS, Marino DL, Amarasinghe K, Manic M. Generalization
of deep learning for cyber-physical system security: A survey. In: IECON
2018 - 44th annual conference of the IEEE industrial electronics society.
2018, p. 745–51. http://dx.doi.org/10.1109/IECON.2018.8591773.

[9] Catak F, Yue T, Ali S. Prediction surface uncertainty quantification in
object detection models for autonomous driving. In: 2021 IEEE interna-
tional conference on artificial intelligence testing (AITest). Los Alamitos,
CA, USA: IEEE Computer Society; 2021, p. 93–100. http://dx.doi.org/10.
1109/AITEST52744.2021.00027, URL https://doi.ieeecomputersociety.org/
10.1109/AITEST52744.2021.00027.

[10] Catak FO, Yue T, Ali S. Uncertainty-aware prediction validator in deep
learning models for cyber-physical system data. ACM Trans Softw Eng
Methodol 2022.
78
[11] Popoola SI, Ande R, Adebisi B, Gui G, Hammoudeh M, Jogunola O. Federated
deep learning for zero-day botnet attack detection in IoT-edge devices.
IEEE Internet Things J 2022;9(5):3930–44.

[12] Geisberger E, Broy M, editors. Living in a networked world: Integrated
research agenda cyber-physical systems (agendaCPS). acatech Studie,
München: Utz; 2015, URL http://www.acatech.de/de/publikationen/
empfehlungen/acatech/detail/artikel/living-in-a-networked-world-
integrated-research-agenda-cyber-physical-systems-agendacps.html.

[13] Zhang M, Ali S, Yue T, Norgren R, Okariz O. Uncertainty-wise cyber-
physical system test modeling. Softw Syst Model 2019;18(2):1379–418.

[14] Ma T, Ali S, Yue T. Testing self-healing cyber-physical systems under
uncertainty with reinforcement learning: an empirical study. Empir Softw
Eng 2021;26(3):1–54.

[15] Amanullah MA, Habeeb RAA, Nasaruddin FH, Gani A, Ahmed E, Nainar ASM,
Akim NM, Imran M. Deep learning and big data technologies for IoT
security. 2020, http://dx.doi.org/10.1016/j.comcom.2020.01.016.

[16] Boukerche A, Ma X. Vision-based autonomous vehicle recognition: A new
challenge for deep learning-based systems. ACM Comput Surv 2021;54(4).

[17] Khan IA, Moustafa N, Pi D, Haider W, Li B, Jolfaei A. An enhanced multi-
stage deep learning framework for detecting malicious activities from
autonomous vehicles. IEEE Trans Intell Transp Syst 2021;1–10.

[18] Jebamikyous H-H, Kashef R. Autonomous vehicles perception (AVP) us-
ing deep learning: Modeling, assessment, and challenges. IEEE Access
2022;10:10523–35.

[19] Zhu Q, Li W, Kim H, Xiang Y, Wardega K, Wang Z, Wang Y, Liang H,
Huang C, Fan J, Choi H. Know the unknowns: Addressing disturbances
and uncertainties in autonomous systems. In: Proceedings of the 39th
international conference on computer-aided design. New York, NY, USA:
Association for Computing Machinery; 2020, http://dx.doi.org/10.1145/
3400302.3415768.

[20] Ben Lakhal NM, Adouane L, Nasri O, Ben Hadj Slama J. Safe and adaptive
autonomous navigation under uncertainty based on sequential waypoints
and reachability analysis. Robot Auton Syst 2022;152:104065.

[21] Michelmore R, Wicker M, Laurenti L, Cardelli L, Gal Y, Kwiatkowska M.
Uncertainty quantification with statistical guarantees in end-to-end
autonomous driving control. 2020,

[22] Lakshminarayanan B, Pritzel A, Blundell C. Simple and scalable predictive
uncertainty estimation using deep ensembles. In: Proceedings of the 31st
international conference on neural information processing systems. Red
Hook, NY, USA: Curran Associates Inc.; 2017, p. 6405–16.

[23] Ma W, Papadakis M, Tsakmalis A, Cordy M, Traon YL. Test selection for
deep learning systems. ACM Trans Softw Eng Methodol 2021;30(2).

[24] Pei K, Cao Y, Yang J, Jana S. DeepXplore: Automated whitebox testing of
deep learning systems. Commun ACM 2019;62(11):137–45.

[25] Tian Y, Pei K, Jana S, Ray B. Deeptest: Automated testing of deep-neural-
network-driven autonomous cars. In: Proceedings of the 40th international
conference on software engineering. 2018, p. 303–14.

[26] Ma L, Zhang F, Sun J, Xue M, Li B, Juefei-Xu F, Xie C, Li L, Liu Y, Zhao J, et
al. Deepmutation: Mutation testing of deep learning systems. In: 2018 IEEE
29th international symposium on software reliability engineering (ISSRE).
IEEE; 2018, p. 100–11.

[27] Ma L, Juefei-Xu F, Xue M, Li B, Li L, Liu Y, Zhao J. Deepct: Tomographic
combinatorial testing for deep learning systems. In: 2019 IEEE 26th
international conference on software analysis, evolution and reengineering
(SANER). IEEE; 2019, p. 614–8.

[28] Xie X, Ma L, Juefei-Xu F, Chen H, Xue M, Li B, Liu Y, Zhao J, Yin J, See S.
Deephunter: Hunting deep neural network defects via coverage-guided
fuzzing. 2018, arXiv preprint arXiv:1809.01266.

[29] Ma W, Papadakis M, Tsakmalis A, Cordy M, Traon YL. Test selection for
deep learning systems. ACM Trans Softw Eng Methodol 2021;30(2).

[30] Djenouri Y, Belhadi A, Srivastava G, Djenouri D, Lin JC-W. Vehicle detection
using improved region convolution neural network for accident prevention
in smart roads. Pattern Recognit Lett 2022;158:42–7.

[31] Mekala M, Park W, Dhiman G, Srivastava G, Park JH, Jung H-Y. Deep
learning inspired object consolidation approaches using lidar data for
autonomous driving: a review. Arch Comput Methods Eng 2021;1–21.

[32] Hüllermeier E, Waegeman W. Aleatoric and epistemic uncertainty in
machine learning: An introduction to concepts and methods. Mach Learn
2021;110(3):457–506.

[33] Gane A, Hazan T, Jaakkola T. Learning with Maximum A-Posteriori Per-
turbation Models. In: Kaski S, Corander J, editors. Proceedings of the
seventeenth international conference on artificial intelligence and statis-
tics. Proceedings of machine learning research, Vol. 33, Reykjavik, Iceland:
PMLR; 2014, p. 247–56, URL https://proceedings.mlr.press/v33/gane14.
html.

http://refhub.elsevier.com/S0019-0578(22)00599-7/sb1
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb1
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb1
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb1
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb1
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb2
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb2
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb2
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb2
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb2
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb4
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb4
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb4
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb4
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb4
http://dx.doi.org/10.1109/ICT4M.2016.045
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb6
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb6
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb6
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb7
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb7
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb7
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb7
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb7
http://dx.doi.org/10.1109/IECON.2018.8591773
http://dx.doi.org/10.1109/AITEST52744.2021.00027
http://dx.doi.org/10.1109/AITEST52744.2021.00027
http://dx.doi.org/10.1109/AITEST52744.2021.00027
https://doi.ieeecomputersociety.org/10.1109/AITEST52744.2021.00027
https://doi.ieeecomputersociety.org/10.1109/AITEST52744.2021.00027
https://doi.ieeecomputersociety.org/10.1109/AITEST52744.2021.00027
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb10
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb10
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb10
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb10
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb10
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb11
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb11
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb11
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb11
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb11
http://www.acatech.de/de/publikationen/empfehlungen/acatech/detail/artikel/living-in-a-networked-world-integrated-research-agenda-cyber-physical-systems-agendacps.html
http://www.acatech.de/de/publikationen/empfehlungen/acatech/detail/artikel/living-in-a-networked-world-integrated-research-agenda-cyber-physical-systems-agendacps.html
http://www.acatech.de/de/publikationen/empfehlungen/acatech/detail/artikel/living-in-a-networked-world-integrated-research-agenda-cyber-physical-systems-agendacps.html
http://www.acatech.de/de/publikationen/empfehlungen/acatech/detail/artikel/living-in-a-networked-world-integrated-research-agenda-cyber-physical-systems-agendacps.html
http://www.acatech.de/de/publikationen/empfehlungen/acatech/detail/artikel/living-in-a-networked-world-integrated-research-agenda-cyber-physical-systems-agendacps.html
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb13
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb13
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb13
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb14
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb14
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb14
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb14
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb14
http://dx.doi.org/10.1016/j.comcom.2020.01.016
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb16
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb16
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb16
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb17
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb17
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb17
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb17
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb17
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb18
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb18
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb18
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb18
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb18
http://dx.doi.org/10.1145/3400302.3415768
http://dx.doi.org/10.1145/3400302.3415768
http://dx.doi.org/10.1145/3400302.3415768
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb20
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb20
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb20
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb20
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb20
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb21
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb21
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb21
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb21
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb21
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb22
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb22
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb22
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb22
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb22
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb22
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb22
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb23
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb23
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb23
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb24
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb24
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb24
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb25
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb25
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb25
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb25
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb25
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb26
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb26
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb26
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb26
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb26
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb26
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb26
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb27
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb27
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb27
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb27
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb27
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb27
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb27
http://arxiv.org/abs/1809.01266
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb29
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb29
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb29
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb30
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb30
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb30
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb30
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb30
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb31
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb31
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb31
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb31
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb31
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb32
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb32
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb32
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb32
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb32
https://proceedings.mlr.press/v33/gane14.html
https://proceedings.mlr.press/v33/gane14.html
https://proceedings.mlr.press/v33/gane14.html

D. Unal, F.O. Catak, M.T. Houkan et al. ISA Transactions 132 (2023) 69–79
[34] Maddox W, Garipov T, Izmailov P, Vetrov DP, Wilson AG. A simple baseline
for Bayesian uncertainty in deep learning. 2019, CoRR, abs/1902.02476
arXiv:1902.02476.

[35] Deb K, Agrawal S, Pratap A, Meyarivan T. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. In:
International conference on parallel problem solving from nature. Springer;
2000, p. 849–58.
79
[36] Kesten R, Usman M, Houston J, Pandya T, Nadhamuni K, Ferreira A, Yuan M,
Low B, Jain A, Ondruska P, Omari S, Shah S, Kulkarni A, Kazakova A,
Tao C, Platinsky L, Jiang W, Shet V. Level 5 perception dataset 2020. 2019,
https://level-5.global/level5/data/.

[37] Qi CR, Su H, Mo K, Guibas LJ. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017, p. 652–60.

http://arxiv.org/abs/1902.02476
http://arxiv.org/abs/1902.02476
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb35
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb35
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb35
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb35
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb35
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb35
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb35
https://level-5.global/level5/data/
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb37
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb37
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb37
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb37
http://refhub.elsevier.com/S0019-0578(22)00599-7/sb37

	Towards robust autonomous driving systems through adversarial test set generation
	Introduction
	Related Work
	Uncertainty Types and Quantification in DL
	System Model
	Test Input Generation based on the Non-dominated Sorting Genetic Algorithm
	Adversarial Training

	Experimental Evaluation
	Generation of Challenging Inputs Based on Uncertainty Maximization
	Dataset
	Training

	Results and Discussions
	Conclusion and Future Works
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References

