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ABSTRACT 

In this Paper, a new algorithm based on the non-quadratic model is suggested for solving unconstrained 

optimization problems which modifies the classical conjugate gradiant methods. This technique has the 

same properties as the classical CO-method that can be applied to a quadratic function. This algorithm is 

derived and evaluated numerically for some standard test functions. The results indicate that in general the 

new proposed algorithm is an improvement on the previous methods so it remains to be investigated. 
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1. Introduction 
A Rational Exponential Model for Unconstrained Non-Linear Optimization 

Conjugate Gradient methods are iterative methods, which generaqted a sequence of approximations to 

minimise a function f(x). The conjugate gradient method was first developed by Hestenes and Stiefel, 

1952 for the solution of linear system. Fletcher and Reeves, 1964 adapted the method for solving uncon­

strained non-linear problems. The aim of the CG-method is trying to associate conjugacy properties with 

the steepest descent method to achieve both efficiency and reliability. The CG-method is based on the con­

jugacy property which is defined as follows: 

Definition: A set of vectors di. in En is said to be conjugate with respect to the symmetric positive defini­

tion matrix A if and only if dir and Adi = 0 for all i i= j. 

We can define the classical CG-algorithm as follows: 

For given X0 E Rn an initial estimate of the minimizer x· 

Step (1): Set d
0 
= -g

0 

Step (2): Fori= 1, 2, ... 

Compute X· =x· 1 +A.· 1 d· 1 1 1- 1- 1-

where Ai-l is the optimal step size obtained by the line search procedure. 

Step (3): Calculate the new direction 

di = -gi + f3idi 

where Pi is the conjugacy coefficient and it is the following formula: 

13. = gJgi -gi-l) 
1 

g[_l (gi -gi-l) 
(Hestenes and Stiefel (HIS), 1952). 

This form is considered a general form for the classical conjugate gradient. 

(Fletcher and Reeves (FIR), 1964) 

(Polak and Ribier (P/R), 1969) 

Dixon (Dx), 1975) 

When, quadratic functions and exact line search are used, all the above formula Pi'S are equivalent. 

However, these formulas vary according to general functions. 

Several algorithms have suggested as alternative ways of modifying the classical CG-models 

(see Al-Assady, 1993 and Al-Assady and Al-Bayati, 1994). 
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The CG-methods have in general the following basic properties: 

(1) The conjugacy condition. 

(2) The orthogonality condition. 

(3) The descent direction. 

(4) The quadratic termination condition with exact line search (ELS). 

2. Minimization of Quasi-Quadratic Function 

In order to obtain better global rate of convergence for minimization algorithms when applied to more 

general (Quasi-Quadratic) functions than quadratic, we propose in this paper a new algorithm that is 

invariant to non-linear scaling quadratic functions. Iff(x) is a quadratic function, then a function f(q(x)) is 

defined as a non-linear scaling of q(x) if the following condition holds. 

f =F(q(x)), df =f' >0 and q(x) >0 (1) 

where x· is the minimizer of q(x) with respect to x, Spedicato, 1976. The following properties are imme­

diately derived from the above condition: 

i) every contour line of q(x), then it is a contour line of f. 

ii) if x· is a minimizer of q(x), then it is a minimizer of f. 

iii) that x· is a global minimum of q(x) does not necessarily mean that it is a global minimum of f. 

Various authors have published related work in this area (see Al-Bayati, 1992; Al-Assady, et. al., 1993; 

Al-Assady and Al-Bayati, 1994; Hu et. al., 1994). 

A conjugate gradient method which minimizers the function f(x) = (q(xW, p > 0 and x E Rn ..... (2) 

in at most n step has been described by Fried (1971) and the special case. 

(3) 

where E 1 and Ezare scalars, has been investigated by Boland et. a., 1979. 

Tassopoulos and Storey, 1984a and 1984b, have proposed two specific models that are denoted by (T /S), 

they are following 

... (4) 

where E 
1 

and E 
2 

are scalars and q(x) = 112 xT G x + bT x + c is a quadratic function and 

F (q(x)) = 
1 
:q~xlx)' E > 0 and q > 0 

... (5) 

In this paper a new exponential model is investigated and tested on a set of standard test functions, on 

the assumption that condition (1) holds. An extended conjugate gradient algorithm is developed which is 
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based on this new model which scales q(x) by the exponential function for the rational q(x) functions: 

( 
E 1 q(x) l F(q(x)) =exp E
2

q(x) _ 1 ,E 2 <0 ... (6) 

We first observed that q(x) and f(q(x)) given by (6) have identical contours, though with different func­

tion rules, and they have the same unique minimum point denoted by x •. 

3. New Proposed Algorithm 

For any f satisfying the condion (1) it is shown in Boland et. al., directions and the same sequence of 

approximations xi to the minimizer x·, as does the original methods of Fletcher-Reeves, 1964, (FIR), when 

applied to f(x) = q(x). 

In order to modify the property (iii) in the following way: "that x* is a global minimizer of q(x) implies 

that is a global minimizer off", we have suggested new exponential model defined in the equation (6) 

based on Renpu Ge's Theorem, 1989 which is illustrated below: 

where xT =(x f, xi) 

It follows from equation (7) and (8) that; 

exp (F(x)) = exp (f1 (x)/g
2 
(x)) is a separable function. 

Thus according to the following theorem which states: 

Theorem (1): 

(7) 

(8) 

x*T = (x1*
1

, x2•
1

, ... , xn*1
) is a global minimizer of a rational separable function F(x) if and only if every 

xi·, i = 1,2 ... , n is a global minimizer offi (xJ 

Proof: See Renup-Ge, 1989. 

We can conclude that x· is a global minimizer of exp(F(x)) if and only if x
1
• and x

2
* are global mini­

mizers of exp exp (;~ i:~). Further more, the monotonicity of exp(t) implies that x· is a global minimizer 

ofF(x) if and only ifx
1
• and x

2
• are respectively global minimizers offlx

1
) and g

2
(x). 

3.1 The Out Line of the New Algorithm 

Given x E Rn and initial estimate of the minimizer x·. 
0 

Step (1): Set d
0 

= -g
0 

Step (2): Fori= 1,2, ... 

Compute xi = xi-l + Ai-l di-l 

where Ai-l is the optimal step size obtained by the line search procedure. 
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Step (3): Calculate 

ln (f) = (1- f) + (l-
2
f)

2 
+ (l-

3
f)

3 
+ ... 

n =A· 1 gJ 1 d· 1 1- !- 1-

g =ln (Q- ln (fi_ 1) 

c=wfi_ 1 -n 

Step ( 4): If lw) :S 0.1 E-5 or lei < 0.1 E-5, 

then step p. = 1 and go to step ( 6) 
I 

Else go to step ( 5) 

Step (5): Compute 

( f l 2 

p. = ___!.=1. _n_ 
1 f1 ( wfi_J 

where the derivation of scaling p. will be presented below. 
I 

Step (6): Calculate the new direction 

di = -gi + ~i dj.J 

where hi's defined by different formulae according to variation and it is expressed as follows: 

p. = g[ (pigi -gi-l) 
I g[_ 1 ( gi- gi- 1) 

r:l.. = g[ (pigi -gi-l) 
1-'t T 

gi-l gi-l 

(modified FIR, 1964) 

(modified HIS, 1952) 

(modified P/R, 1969) 

Conjugate gradient methods are usually implemented by restarts in order to avoid an accumulation of 

errors affecting the search directions. It is therefore generally agreed that restarting is very helpful in prac­

tice, so we have used the following restarting criterion in our practical investigations. 

d'[ gi ~ -0.8llgil12 
Ifthenewdirectionsatisfies: ... (9) 

then a restart is also initiated. This new direction is sufficiently downhill. 

3.2 The Derivation of the New Algorithm 

The implementation of extended conjugate gradient method has been performed for general functions 

F( q(x)) ofthe form of equation (6). The unknown quantities p. were expressed in terms of available quan-
1 

tities of the algorithm (i.e. function and gradient values of the objective function). 
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It is first assume that neither E 
1 
nor E 

2 
is zero in eq.( 6). Solving eq.( 6) for q(x), then 

q(x) = ln(f) 
e 1 (In (f) - e 1 I e 2) 

and using the expression for pi 

the quantity which has to be determined explicitly is ( E /E J 
During every iteration ( E /E 2) musst be evaluated as a function of known available quantities. 

from the relation gi =fil G(xi -x*) 

gi-l =f;_1 G(xi -1 -x*) 

where G is the Hessian matrix and x· is the minimum point, we get: 

Furthermore, 

and 

Therefore, we can write 

expression p. as follows: 
I 

f' 
Pi= li/ 

1 

= ( g~f )(;~,-::.) 

= g( (xi - x*) 

smce g:r d· 1 = 0 I I-

from (4) and (5), we get: gr (x· -x*) +A.· g:r d· 
_ I-1 I-1 I-1 I-1 I-1 

Pi- T( *) gi xi -x 

Therefore, 
I * * T f 1 (x· 1 -x )TG(x· 1 -X) +A.· 1 g· 1 d· 1 - 1- 1- I- . I- I- 1-

Pi- I * * fi(xi -X )TG(xi -X) 
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Therefore, 

I T 
2f· 1 q· 1 +A· 1 g· 1 d· 1 - 1- 1- 1- 1- 1-

Pi- I 

2f·q· 1 1 

- ( qi- 1 ) + Ai- 1 g'[_ 1 di- 1 -p·-
1 qi 2( q· 

1 1 

... (16) 

The quantities (q. /q) and (F. q) can be rewritten: 
t-1 1 1 I 

... (17) 

I f ln(f)(ln(f)- e · /e 2) f q· = 1 1 1 1 

1 1 Ei I E2 

... (18) 

Substituting (17) and (18) in (16), gives: 

... (19) 

Using the transformation: 

A· 1 g·T1 d· 1 =2n 1- 1- 1-
... (20) 

Substituting (20) in (19), gives: 

... (21) 

from (11) and (21), it follows that: 
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2 -(ln(fi-l)l [ln(fi_ 1)- e 11e2]- ln(fi) (ln(fi_ 1)-e 11e2). 

n ( E 1 I E 2) (In (fi) - E 1 IE 2) 
(In (fi) - E 1 I E 2) - f. In (f.) 

1- 1 1 

r
fi_ 1 ln (fi)ln (fi_ 1) -fi_ 1ln

2 (fi-I) -nln (fi-I) 
fi_ 1ln (fj) 

Using the following transformation: 

w = ln(Q - In(~) 

and substituting eq (22) in eq (11), we get: 

-(fi-1)( n )

2 
p·-- --

1 fi w~-1 

4. Numerical Results and Conclusion 

... (22) 

In order to test the effectiveness of the new algorithm which has been used to extend the standard CO­

method, the comparative tests involve several well-known test functions (see Appendix) has been chosen 

and solved numerically by utilize the new and established methods. 

Tables (1,) (2) and (3) utilize the comparison between our proposed new algorithm which is corre­

sponding to the new non-quadratic model represented in equation ( 6), dennoted by (NEW), the classical 

CO-method, denoted by (CO), the rational model of tassopoulos and Storey (TIS) for low; intermediate 

and high dimensions. 

The identicallineral search was used, namely, the cubic fitting procedure described by (Bundy, 1984) 

and also used in each case so that I! g. II < 1 x 1 o·s. Specifically quantity the number of function calls (NO F), 
I•] 

the number of interations (NOI). 
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Test 

function 

Rosen 

Wood 

Powell 

Miele 

Dixon 

Total 

Huda Khalil Al-Mashhadany 

Table (1) 

Comparison of different metods for non-quadratic models 

2:::; n:::; 10 

n- CG- TIS HIN 

dimension NOI(NOF) NOI(NOF) NOI(NOF) 

2 31 (73) 31 (73) 31 (73) 

4 28 (61) 36 (78) 36 (75) 

4 50 (114) 38 (96) 51 (109) 

4 57 (178) 46 (139) 57 (178) 

10 22 (46) 18 (44) 21 (44) 

188 (472) 169 (430) 196 (479) 

New 

NOI (NOF) 

31 (73) 

31 (65) 

30 (67) 

30 (67) 

18 (38) 

140 (310) 

Now, we can show from this table that the new algorithm, for this set of low dimensionality test func­

tions, improve the classical CO-algorithm is about (26%) NOI and (18%) (NOF). Also, the new algorithm 

improve the (TIS) algorithin about 17%) NOI and (28%) NOF. Finally, the new method improves the H/N 

method in about (29%) NOI and (35%) NOF. 

Test 

function 

Non-dig. 

Wood 

Powell 

Miele 

Rosen 

Powell 

OSP 

Powell 

Wood 

Powell 

Total 

Table (2) 

Comparison of different methods for non-quadratic models. 

20:::; n:::; 80 

n- CG- TIS HIN 

dimension NOI(NOF) NOI(NOF) NOI(NOF) 

20 24 (61) 24 (61) 24 (61) 

20 52 (107) 43 (90) 34 (70) 

20 34 (78) 45 (102) (45110) 

20 46 (114) 64 (160) (42105) 

20 23 (56) 23 (57) 22 (52) 

40 72 (158) 71 (159) (54120) 

40 25 (62) 18 (51) 23 (65) 

60 92 (198) 75 (167) 95 (194) 

80 69 (140) 43 (90) 76 (154) 

80 112 (239) 75 (167) 95 (194) 

549 (1347) 481 (1104) 510 (1026) 

New 

NOI (NOF) 

23 (58) 

31 (64) 

38 (82) 

22 (55) 

22 (54) 

28 (66) 

19 (56) 

28 (66) 

36 (74) 

28 (66) 

275 (641) 

Clearly the new algorithms beats CG-method in (50%) NOI and (52%) NOF; TIS method in (43%) 

NOI and (42%) NOF; H./N method in (46%) NOI and (38%) NOF. 
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Table (3) 

Comparison of different methods for non-quadratic models. 

Test n- CG- TIS HIN New 

function · dimension NOI(NOF) NOI(NOF) NOI(NOF) NOI (NOF) 

Powell 100 129 (63) 73 (167) 95 (194) 28 (66) 

Non-dig. 100 25 (62) 25 (62) 25 (59) 24 (60) 

Wood 100 69 (140) 43 (90) 76 (154) 36 (74) 

Miele 100 110 (257) 104 (240) 59 (174) 71 (158) 

Wood 200 69 (140) 47 (98) 48 (98) 36 (74) 

Miele 200 209 (472) 154 (351) 59 (174) 37 (92) 

Rosen 400 23 (56) 23 (57) 22 (51) 23 (56) 

Miele 400 404 (897) 156 (355) 74 (221) 33 (83) 

Total 1038 (2287) 625 (1420) 458 (1125) 288 (663) 

In the following table, taking the NOI and NOF 100%, we can determine the performance of the new 

algorithm according to others used in this paper. 

CG TIS HIN NEW 

NOI = 100 40 56 72 

NOF = 100 38 51 71 

Clearly the new algorithm has (72%) improvements in the NOI and it has about (71%) NO F. We con­

clude that our new proposed rational logarithmic model is superior on some models in both quadratic 

and non-quadratic models. 

14 



Huda Khalil Al-Mashhadany 

APPENDIX 

1. Rosenbrock Function: 
n/2[ 2 2] 

F(x) =.L 100(x2i -x~i- 1)2 +(1 -x2i_ 1) , 
1= 1 

T 
x0 =( -1.2; 1.0; ... )-

2. Generalized Powell Quadratics Functions: 

n/ 4 [ 2 2 4 4] 
F(x) = .L (x4i-3 + 10x4i-2) +5(x4i-1 -x4i) +(x4i-2 -2x4i-1) + 10(x4i-3 -x4i) ' 

1= 1 

Xo = (- 3.0; - 1.0; 0.0; 1.0 )T 

3. Wood Function: 

n/4 
F(x) = L 100 

2 2 2 
(x4i-2 +xai-3) +(1 -x4i-3) +90(x4i -x2 4i-1) i = 1 

+(X4i -1)2 + 19.8 (x4i_ 2 -1) (x4i -1) 

T x0 = (- 3.0; - 1.0; -3.0; -1.0 ...... ), 

4. Miele Function: 

~4 2 6 
F(x) = .~ [exp (x4i_ 3) -x4i_2] + 100 (x4i_2 -x4i -1) + 

1=1 2 
[tan (x4i-1 -x4i)t +x~i-3 +(x4i -1) 

2 
x0 =(1.0; 2.0, 2.0 2.0 ...... )-

5. Non-Diagonal Variant of Rosenbrock Function: 

n 2 2 
F(xJ = L [100 (x· - x?) + (1 - x.)] 

i=2 1 1 1 
n > 1, 

T 
x0 = ( - 1.0; ... ) 

6. OSP Oren and Spedicato Powell Function: 

2 

F(x) = [.t i xr], 
1 = 1 

7. Dixon Function: 

T 
x0 = ( - 1.0; ... ) 

2 2 ~ 
F(x) =(l-x1) +(1 -x10) + . .l.t (xi -xi+ 1), 

T 
x0 = ( - 1.0; ... ) 

1=2 
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