Show simple item record

AuthorThirumal Kumar, D
AuthorUmer Niazullah, Maryam
AuthorTasneem, Sadia
AuthorJudith, E
AuthorSusmita, B
AuthorGeorge Priya Doss, C
AuthorSelvarajan, E
AuthorZayed, Hatem
Available date2019-02-14T04:54:01Z
Publication Date2019-03-01
Publication NameJournal of Cellular Biochemistry
Identifierhttp://dx.doi.org/10.1002/jcb.27624
CitationThirumal Kumar D, Umer Niazullah M, Tasneem S, et al. A computational method to characterize the missense mutations in the catalytic domain of GAA protein causing Pompe disease. J Cell Biochem. 2019;120:3491‐3505. https://doi.org/10.1002/jcb.27624
ISSN0730-2312
URIhttp://hdl.handle.net/10576/11321
AbstractPompe disease is an autosomal recessive lysosomal storage disease caused by acid α-glucosidase (GAA) deficiency, resulting in intralysosomal accumulation of glycogen, including cardiac, skeletal, and smooth muscle cells. The GAA gene is located on chromosome 17 (17q25.3), the GAA protein consists of 952 amino acids; of which 378 amino acids (347-726) falls within the catalytic domain of the protein and comprises of active sites (518 and 521) and binding sites (404, 600, 616, and 674). In this study, we used several computational tools to classify the missense mutations in the catalytic domain of GAA for their pathogenicity and stability. Eight missense mutations (R437C, G478R, N573H, Y575S, G605D, V642D, L705P, and L712P) were predicted to be pathogenic and destabilizing to the protein structure. These mutations were further subjected to phenotyping analysis using SNPeffect 4.0 to predict the chaperone binding sites and structural stability of the protein. The mutations R437C and G478R were found to compromise the chaperone-binding activity with GAA. Molecular docking analysis revealed that the G478R mutation to be more significant and hinders binding to the DNJ (Miglustat) compared with the R437C. Further molecular dynamic analysis for the two mutations demonstrated that the G478R mutation was acquired higher deviation, fluctuation, and lower compactness with decreased intramolecular hydrogen bonds compared to the mutant R437C. These data are expected to serve as a platform for drug design against Pompe disease and will serve as an ultimate tool for variant classification and interpretations.
Languageen
PublisherWiley
SubjectGAA
Pompe disease
catalytic sites
molecular docking
molecular dynamics
protein misfolding
variant classification
TitleA computational method to characterize the missense mutations in the catalytic domain of GAA protein causing Pompe disease.
TypeArticle
Pagination3491-3505
Issue Number3
Volume Number120
ESSN1097-4644


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record