• English
    • العربية
  • العربية 
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
Advanced Search
Advanced Search
View Item 
  •   Qatar University QSpace
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University QSpace
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Gyrotactic microorganisms and thermoelectric effects on the dynamics of 29 nm CuO-water nanofluid over an upper horizontal surface of paraboloid of revolution

    Thumbnail
    Date
    2018
    Author
    Sivaraj R.
    Animasaun I.L.
    Olabiyi A.S.
    Saleem S.
    Sandeep N.
    Metadata
    Show full item record
    Abstract
    Purpose: The purpose of this paper is to provide an insight into the influence of gyrotactic microorganisms and Hall effect on the boundary layer flow of 29 nm CuO-water mixture on the upper pointed surface of a rocket, over the bonnet of a car and upper pointed surface of an aircraft. This is true since all these objects are examples of an object with variable thickness. Design/methodology/approach: The simplification of Rosseland approximation (Taylor series expansion of T4 about T�) is avoided; thus, two different parameters relating to the study of nonlinear thermal radiation are obtained. The governing equation is non-dimensionalized, parameterized and solved numerically. Findings: Maximum vertical and horizontal velocities of the 29 nm CuO-water nanofluid flow is guaranteed at a small value of Peclet number and large value of buoyancy parameter depending on the temperature difference. When the magnitude of thickness parameter ? is small, cross-flow velocity decreases with the velocity index and the opposite effect is observed when the magnitude of ? is large. Originality/value: Directly or indirectly, the importance of the fluid flow which contains 29 nm CuO nanoparticle, water, and gyrotactic microorganisms in the presence of Hall current has been pointed out as an open question in the literature due to its relevance in imaging, ophthalmological and translational medicine informatics. ? 2018, Emerald Publishing Limited.

    DOI/handle
    http://dx.doi.org/10.1108/MMMS-10-2017-0116
    http://hdl.handle.net/10576/11940
    Collections
    • Mathematics, Statistics & Physics [‎276 ‎ items ]

    entitlement


    QSpace is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of QSpace
      Communities & Collections Publication Date Author Title Subject Type Language
    This Collection
      Publication Date Author Title Subject Type Language

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    QSpace is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video