Show simple item record

AuthorTarlochan F.
AuthorMehboob H.
AuthorMehboob A.
AuthorChang S.-H.
Available date2019-09-30T07:43:36Z
Publication Date2018
Publication NameBiomechanics and Modeling in Mechanobiology
ResourceScopus
ISSN1617-7959
URIhttp://dx.doi.org/10.1007/s10237-017-0987-2
URIhttp://hdl.handle.net/10576/11960
AbstractCementless hip prostheses with porous outer coating are commonly used to repair the proximally damaged femurs. It has been demonstrated that stability of prosthesis is also highly dependent on the bone ingrowth into the porous texture. Bone ingrowth is influenced by the mechanical environment produced in the callus. In this study, bone ingrowth into the porous structure was predicted by using a mechano-regulatory model. Homogenously distributed pores (200 and 800 μ m in diameter) and functionally graded pores along the length of the prosthesis were introduced as a porous coating. Bone ingrowth was simulated using 25 and 12 μ m micromovements. Load control simulations were carried out instead of traditionally used displacement control. Spatial and temporal distributions of tissues were predicted in all cases. Functionally graded pore decreasing models gave the most homogenous bone distribution, the highest bone ingrowth (98%) with highest average Young’s modulus of all tissue phenotypes approximately 4.1 GPa. Besides this, the volume of the initial callus increased to 8.33% in functionally graded pores as compared to the 200 μ m pore size models which increased the bone volume. These findings indicate that functionally graded porous surface promote bone ingrowth efficiently which can be considered to design of surface texture of hip prosthesis.
SponsorAcknowledgements This work was supported in part by the NPRP under Grant No. NPRP 8-876-2-375 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein solely the responsibility of the authors.
Languageen
PublisherSpringer Verlag
SubjectBone ingrowth
Cementless hip prosthesis
Finite element analysis (FEA)
Functionally graded porous design
Mechano-regulation algorithm
TitleInfluence of functionally graded pores on bone ingrowth in cementless hip prosthesis: a finite element study using mechano-regulatory algorithm
TypeArticle
Pagination701-716
Issue Number3
Volume Number17


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record