• English
    • العربية
  • العربية 
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
Advanced Search
Advanced Search
View Item 
  •   Qatar University QSpace
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University QSpace
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On auxiliary information-based control charts for autocorrelated processes with application in manufacturing industry

    Thumbnail
    Date
    2019
    Author
    Ahmad S.
    Riaz M.
    Hussain S.
    Abbasi S.A.
    Metadata
    Show full item record
    Abstract
    Multivariate autoregressive (MAR) models are an attractive choice for applications in the processes related to finance, medical, and industry. For the monitoring of such processes, control chart is the most important and widely used tool of statistical process control tool kit. Moreover, the presence of auxiliary information helps in better estimation of different process parameters. The literature on use of auxiliary variables in control charts assumes independence of observations. In practice, we may come across processes dealing with autocorrelated outcomes. In such situations, a control chart usually produces high false alarms and exhibits slow detection of shifts when the process is out-of-control. This study intends to suggest some auxiliary information-based Shewhart charts for autocorrelated univariate and bivariate AR(1) processes. The proposed structures take into account the autocorrelation structure and offer more effective designs of control charts for efficient process monitoring. The performance measures used in this study are based on run length measures such as average run length, extra quadratic loss, relative average run length and performance comparison index. A detailed performance analysis is carried out to sort out the best performing charts. In addition, we have considered an application from a manufacturing process to demonstrate the implementation of the proposed charting structures in real scenario.

    DOI/handle
    http://dx.doi.org/10.1007/s00170-018-2671-9
    http://hdl.handle.net/10576/14431
    Collections
    • Mathematics, Statistics & Physics [‎284 ‎ items ]

    entitlement


    QSpace is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of QSpace
      Communities & Collections Publication Date Author Title Subject Type Language
    This Collection
      Publication Date Author Title Subject Type Language

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    QSpace is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video