Show simple item record

AuthorAl-Ansari, Ebrahim M.A.S.
AuthorRowe, G.
AuthorAbdel-Moati, M.A.R.
AuthorYigiterhan, O.
AuthorAl-Maslamani, I.
AuthorAl-Yafei, M.A.
AuthorAl-Shaikh, I.
AuthorUpstill-Goddard, R.
Available date2017-05-22T08:40:47Z
Publication Date2015-06-20
Publication NameEstuarine, Coastal and Shelf Science
Identifierhttp://dx.doi.org/10.1016/j.ecss.2015.03.022
CitationAl-Ansari, Ebrahim M.A.S. , Rowe, G... et al. "Hypoxia in the central Arabian Gulf Exclusive Economic Zone (EEZ) of Qatar during summer season",Estuarine, Coastal and Shelf Science, Vol. 159, 2015
ISSN02727714
URIhttp://www.sciencedirect.com/science/article/pii/S0272771415001006
URIhttp://hdl.handle.net/10576/5519
AbstractAbstract One of the most fascinating and unexpected discoveries during the Qatar University Marine Expeditions to the marine Exclusive Economic Zone (EEZ) of Qatar in 2000–2001, was the detection of a hypoxic water layer in the central region of the Arabian Gulf in waters deeper than 50 m. Hypoxia was defined as the region where the concentration of dissolved oxygen was less than 2 mg L−1. This article presents the discovery of hypoxia in the Arabian Gulf, based on samples collected (mainly during evening or night time) from vertical profiles along transects of the EEZ of Qatar and analyzed for physico-chemical properties, nutrients and chlorophyll-a. Hypoxia occurred in the summer months caused by an interaction between physical stratification of the water column that prevents oxygen replenishment, and biological respiration that consumes oxygen. Strong south-westerly winds (the SW monsoon) from June to September drive the relatively low-salinity nutrient-rich surface water from the Arabian Sea/Arabian Gulf (Sea of Oman) through the Strait of Hormuz into the central-Arabian Gulf, and this surface current penetration fertilizes the deep central-Arabian Gulf during the summer period. A strong seasonal pycnocline is formed between deeper waters at an ambient temperature of 20.9 °C and surface waters at 31.9 °C. This prevents the mixing of supersaturated O2 (>100–130%) water from the upper layer that would otherwise raise concentrations of dissolved oxygen below the thermocline, thus resulting in deep water hypoxia, i.e. dissolved oxygen levels of less than 0.86 ml L−1 at 17.3% saturation. These are the lowest values ever recorded for the Arabian Gulf.The calculated area of hypoxia is around 7220 square kilometers, and occurs in a layer about ≥15 m thick above the sea floor which extends toward the deep part of the Qatar Exclusive Economic Zone (EEZ). The biological consequences of this hypoxia on the sea floor are yet to be investigated.
Languageen
PublisherElsevier
Subjecthypoxia
nutrients
apparent oxygen utilization
redfield ratio
hydrography of Arabian Gulf
EEZ of Qatar
TitleHypoxia in the central Arabian Gulf Exclusive Economic Zone (EEZ) of Qatar during summer season
TypeArticle
Pagination60-68
Volume Number159


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record