Show simple item record

AuthorMakhetha, T.A.
AuthorMpitso, K.
AuthorLuyt, A.S.
Available date2018-07-11T10:35:03Z
Publication Date2017
Publication NameJournal of Composite Materials
CitationM. A. Sibeko, A. S. Luyt, M. L. Saladino & E. Caponetti (2017) Morphology, interfacial interaction, and thermal degradation of polycarbonate/MCM-41 (nano)composites, International Journal of Polymer Analysis and Characterization, 22:5, 424-434, DOI: 10.1080/1023666X.2017.1313808
ISSN0021-9983
URIhttp://hdl.handle.net/10576/6802
AbstractPoly(lactic acid)/ethylene vinyl acetate blends and poly(lactic acid)/ethylene vinyl acetate/sugarcane bagasse composites were prepared by melt mixing. The lower viscosity of poly(lactic acid), the lower interfacial tension between poly(lactic acid) and sugarcane bagasse, and the wetting coefficient of poly(lactic acid)/sugarcane bagasse being larger than one, all suggested that sugarcane bagasse would preferably be in contact with poly(lactic acid). A fairly good dispersion of sugarcane bagasse was observed in the composites. Exposed fibre ends were observed in the composite micrographs, which were believed to add to the efficiency of metal adsorption. The impact properties depended more on the poly(lactic acid):ethylene vinyl acetate ratio than on the presence of sugarcane bagasse. The poly(lactic acid)/ethylene vinyl acetate blends showed two melting peaks at approximately the same temperatures as those of the neat polymers, which confirms the complete immiscibility of poly(lactic acid) and ethylene vinyl acetate at all the investigated compositions. Sugarcane bagasse-related weight loss occurred at higher temperatures for sugarcane bagasse in the composites, which could have been the result of the sugarcane bagasse being protected by the polymers, or a delay in the diffusion of the sugarcane bagasse decomposition products out of the sample. Water absorption increased with an increase in sugarcane bagasse loading in the composites. More lead was adsorbed than one would expect if the partial coverage of the fibre by the polymer is taken into account, and therefore it may be assumed that some of the lead was trapped inside the cavities in the composites and that the polymers may also have played a role in the metal complexation process, since both polymers have functional groups that could interact with the lead ions. The metal impurities underwent monolayer adsorption.
Languageen
PublisherSAGE Publications
SubjectPoly(lactic acid)
ethylene vinyl acetate
sugarcane bagasse
composites
lead adsorption
TitlePreparation and characterization of EVA/PLA/sugarcane bagasse composites for water purification
TypeArticle
Pagination424-434
Issue Number5
Volume Number22
ESSN1530-793X


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record