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ABSTRACT 

In this paper we propose a Logistic Autoregressive Model, which is a special case of 
polynomial Autoregressive Model. The aim of this paper is to study and find the stability conditions 
of the above model by using a dynamical approach due to Ozaki and apply these conditions to the 
monthly-recorded Brucellosis data in Iraq in the interval (1989-2002). 

Introduction 

In the last three decades there was a growing interest in the study of nonlinear time 
series models. The ftrst and simplest reason is that the world is mostly nonlinear. 
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Here we are interested in nonlinear dynamics, that is, in the nonlinear relationships 
existing between observations of an object made sequentially over the time, where there is a 
theoretical evidence against linearity or jump phenomena. 

The general representation of a nonlinear time series of order p and q is given by: 

xt = f(xt-1' xt-2' · · ., xt-p' £t-1' £t-2' £t-q' £t ), 

where {ct }teN be a sequence of independent and 

t>l (1) 

identically distributed (liD) random 

variables and f: Rp+q+l --7 R is a nonlinear function.The Nonlinear Autoregressive (NLAR) 

models are the most famed models among the nonlinear time series models. The general 
form of a nonlinear autoregressive model of order p represents as 

x, = f (x,_l' x,_2' ... 'x,_P )+ £, 

where ~ '""'liD white noise process, and f : RP --7 R is a nonlinear function. 

The study of stability, i.e. stationarity of nonlinear autoregressive models leads often to 
stronger sufficient conditions on the coefficients than in the linear models, because zero is 
the only fixed point in linear AR models. While, in NLAR models there are many fixed 
points of each model. 

The literature discussing the stationarity and ergodicity of the NLAR (p) can be 
roughly divided into two categories: general cases and special cases. For the general cases 
Chan and Tong (1985), Tong_(l990), An and Huang (1996) and Fonseca (2000) have 
developed many good tools for finding a general stability conditions of nonlinear AR(p) 
models. Since they are dealing with general cases, the conditions given in these articles are 
usually very general (See [1], [2], [3], [4]). 

For the special cases, Chan and Tong (1985) and Tong (1990) give the sufficient and 
necessary conditions for the geometric ergodicity of the threshold autoregressive model. 
Ozaki (1982) presents a sufficient condition for the erogodicity of exponential AR models. 
To insure the geometrical ergodicity of the NLAR model they present a number of 
conditions based on a Lipschitz continuity of a nonlinear function. 

Ozaki (1982) proposes a dynamical approach in order to find the necessary and 
sufficient conditions for stability of exponential autoregressive models. This approach is a 
local linearization technique used to fmd the approximated linear autoregressive model near 
the nonzero singular point of a nonlinear model. By using a variational equation near the 
nonzero singular point of an exponential autoregressive model, Ozaki fmds the sufficient and 
necessary condition for existence and stability of a non-zero singular point of EXP AR 
model. Furthermore, he finds the stability conditions of a limit cycle if it exists (See [5], [6]). 
The stability conditions of nonlinear time series model consists of the 
stationarity conditions of the model at the zero singular point and the stability 
conditions of a non-zero singular point if it exists. Otherwise, the stability 
conditions of limit cycle when the model posses a limit cycle. To study the 
stability conditions in terms of EXP AR(p) model parameters Ozaki proposed a 
dynamical approach based on a local linearization approximation of the model 
in the neighborhood of a non zero fixed point of the model. In order to discuss 
this approach we need the following two definitions for general discrete time 

difference equation. ~ = f(~-4'~-2'······-~-p) (2) 

Definition 1: [5] and [6] 
A singular point ; of model (2) is defmed as a point, for which every trajectory of the 

model (2) beginning sufficiently near ~ approaches it either for t ~ 00 or t ~ -oo . If it 
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approaches ~ for t -7 00 we call ~ a stable singular point, and if it approaches ~ for 

t -7 -oo we call ~ an unstable singular point. 
Definition 2: [5] and [6] 

A limit cycle of model (2) is defined as an isolated and closed trajectory 

X1 , xr+I, X1+2 , ••••••.••• , xr+q = X1 , where q is a positive integer. Closed means that if the initial 

value (xpx2, ....... ,xP) belongs to the limit cycle, then 

(X.+kq•Xz+kq•···· ... ...,xp+kq)=(XpXz, ........ .,tP) for any integer k. Isolated means that every 

trajectory beginning sufficiently near the limit cycle approaches it either for t -7 00 or 
t -7 -oo . If it approaches the limit cycle for t ~ oo we call it a stable limit cycle, and if it 
approaches the limit cycle for t -7 -oo we call it an unstable limit cycle. The smallest 
integer q that satisfies definition (2) is called the period of the limit cycle. 

Logistic Autoregressive Model 

The logistic map plays a role in nonlinear dynamical systems in general, and in chaotic 
dynamical systems as a famed map, because this map possess an important dynamical 
properties related to the behavior of trajectories generated by this map. 
The logistic map has the form, 

x
1 
= axt-1 (1- x1_1) x1 E [0,1] (3) 

Clearly for 0 s; as; 4 ,equation (3) defines a map from the unit interval into itself. [7], [4] 

Tong in 1990 discusses threshold autoregressive models such as, 

xr = a(xt-k )xt-1 + er . .. (4) 

where 

ja, if x,_<>a 

a(x,_<) = . < 
a 2 if x,_< - a 

where Et is a white noise input. [8], [4] 

Note that for 0 s; as; 4 in (3) the trajectories lies inside the unit interval, which mean that 
x1 E [0,1] for any t = 0,1, ........ then we define a logistic model such as 

x1 = ax1_1 (1- X1_1) + £~' X1 E [0,1],0 ~a~ 4 (5) 

where Et is a white noise input. 

In fact, model (5) is a special case of polynomial autoregressive models of order l with 
restriction that 0 s; a s; 4 . 

Clearly zero is a singular point of model (5). For a first order nonlinear autoregressive 
model (p=l), Fonseca (2000) mentions that the Markov chain related to a nonlinear 
autoregressive model is geometrically ergodic if there exists r>O such that 

f(x) 
sup--< 1 (6) 
lxl> r X 

where X 1 = f(xt-1) [3]. 

In our model 
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f(xz-t) axt-t (1- x1-1) 1 1 
1-=--....:.....:-1 = :s; a (1- x,_

1
) 

x,_J x,_J 

and for any real constant 0 < r < 1 

f(xt_t) 
sup S a ... 

lx,_ll>r xt-1 
(7) 

Because 11- x,_ 11::::; 1 ,then the Markov chain associated to model (5) is geometrically ergodic 

if a < 1. This is a concordant result to those mentioned in [9] related to the logistic map. 
We can easily find that the non-zero singular point of model (5) is given by 

1 
~ = 1-- (8) 

a 
We can find the stability condition of model (5) at this non-zero singular point by 

using a variational difference equation, i.e. 

by replacing ; + ;" ; + ;,_1 instead of X r and X r -I and suppressing the white noise in 

model (5). For~~ 1 1.1~ 1J sufficiently small, we get 

;
1 

= (2- a);,_1 (9) 

Then the stability condition of the model at the nonzero singular point ; is given by 

12-ai < 1 which yield that 1 < a < 3 which is the same condition mentioned in [9]. 

Using the same way, we can find the stability condition of limit cycle if it exists in 
model (5). 
Let the limit cycle of period q of the model (5) has the form 

xr' xr+I, xr+2 , •••••• , xr+q = xt 

Points X 1 , X 1 _ 1 on a trajectory near the limit cycle are represented as X1 + ~~ , x,_1 + ~t-1 
for 1;, 1. 1;,_11 sufficiently small respectively, we find the following difference equation 

~r = a(l- 2xr-I )~r-1 (10) 

Now (10) represents a difference equation with periodic coefficients, which is difficult 

to solve analytically. What is required is to know whether ~ 1 of (10) converges to zero or 

not ,and this can be checked by seeing whether ~~ t+ q I~ , I less than one or not. From the 

relation (10) we get 

~t+q = [a(l- 2xt+q-1 )]~,+q-t 
= [a(1- 2xt+q-t )].[a(l- 2x,+q-2 )]...... [a(1- 2x, )]~1 

= [n a(l- 2Xt+q-j )J~I 
J=l 

Implies that 

q, =a' {J!o- 2x,.,_;) J (Ill 

This leads us to construct the following proposition. 
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Proposition 1: 
Provided its existence, a limit cycle of period q the logistic model (5) is orbitally 

stable if 

lfl(l- 2xt+q-)l < ( ~ r (12) 

The result of this proposition is very important to test the stability of a limit cycles of 
the logistic model if it exists by applying the condition in equation (12), here a parameter a 

and the q values of a limit cycle xt, xt+I , ••••••••••• , xt+q-I play a major rule to decide the 

stability of the model. 

Application And Examples 

Brucellosis is well-known disease in hot areas around the world such as Africa, South 
America, Middle East and Mediterranean Sea zone. In Iraq the number of Brucellosis cases 
increases between May and September in each year. This fact is clearly appeared in figure 
(1), the time series plot of monthly observations of Brucellosis cases in Iraq (1989-2002) 
(10]. 

Figure (1) shows a strongly seasonal component with large values in summer seasons. 
From the above description of data, we can say that the non-linearity clearly appeared with 
its characteristic phenomena 

In our applied work, we use STATISTICA software (nonlinear estimation and time 
series parts ) in estimating the model parameters and modeling the linear autoregressive 
model and we construct a C++ program to plot the behavior of trajectories (simulation plot) 
for a large number of iterations. 

Time Series Plot Of Brucellosis Cases in IRAQ (1989-2002) 
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Figure 1: Time series plot of Brucellosis Data in Iraq (1989-2002) 
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For logistic modeling, all data are normalized to [0,1] interval by using the following 
equation: 

ith observatio n 
X. = , i = 1, 2, ... , 168 ( 13) 

' maximum observatio n 
Figure (2) shows the time series plot of transformed data according to equation (13). After 
we estimate the parameter of logistic model, we obtain the following model. 

X1 = 1.880137 X1_ 1 (1- x1_ 1) + e1 , x1 E [0,1] (14) 

<1 ; === o.o48985 

where cr ; denotes the residuals variance of the model. 

The dimensional plot of the model (14) and the normal probability plot of residuals appear in 
figure (3). 
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Time Series Plot Of Normalized Data in [0,1] Interval 
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Figure 2: Time series plot of nonnalized data in [0,1] interval 

-0.2 

Normal Probability Plot of Residuals 
of Logistic Model 

0.0 0.2 0.4 0.6 

Residuals 

22 

0.8 1.0 



~ 

1.1 

0.9 

0.7 

0.5 

0.3 

0.1 

-0.1 
0.1 0.2 

A. A. MOHAMMAD ,A. J. SALIM 

110 123 
0 0 

0.3 

X(t)=a*X(t-1)*( 1- X(t-1)) 

y=(l.880137)*x*(l-x) 
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Figure 3: Logistic Autoregressive Model (14) and Normal 
Probability Plot of Residuals 

1.0 

By comparing model (14) with stability condition (l<a<3), we say that the model (14) 

have stable nonzero singular point (~ = 0.4661). 

This result is checked by the simulation plot shown in figure ( 4 ), different trajectories start 

from the different initial values x0 approach the nonzero singular point as t ---too . 

In addition, we calculate the Akaike' s information criterion for nonlinear autoregressive 
models given by 

AIC = (N- m)ln(iJ~) + 2(number of parameters) ... (15) 

where N is the number of observations, a; is the residuals variance of the model and 

m is the maximum lag in all models in the set of models being considered. [ 11] 
For model ( 14) we obtain that. 

X(t) 

0 4661 

AIC (I)= -502.712 
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t 

Figure 4: Time series plots of simulated realizations of model (14) 
Starting with difference initial values x0 
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To make a comparison between the autoregressive logistic model and the other 
nonlinear autoregressive model of the first order see [12]. We choose the exponential 
autoregressive model of the first order EXP AR ( 1) for modeling the normalized data in [0, 
1] interval and we find the following model 

X
1 

= (0.204062 + 0.851628e-0
·
279354

x
12
-

1 )x
1
_

1 
+ £

1 06) 

where E1 is a white noise and a; is the residuals variance of the model . Figure (5) shows 

the two dimensional plot and Normal Probability Plot of Residuals of 
EXPAR (l) model (16). 

We calculate the Akaike's information criterion for exponential autoregressive model 
by using equation (15) and we find that 

AIC (1) =-351.139 

According to the values of a; and AIC (1) of the logistic autoregressive model and 

EXPAR( 1) model , the logistic autoregressive model is the best fitted among the two 
models 
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Figure 5: two dimensional plot and Normal 
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Since we are not faced any limit cycle in our application to due to the Brucellosis data, 
We apply this result of proposition (1) to the following examples for an arbitrary values of a 
parameter a and we check the stability of logistic models mentioned in the following two 
examples. 

Example 1: 
The logistic model given by 

X
1 
= 3.8xt-J (1 X1_ 1) £~' X

1 
E [0,1] 

has unstable non-zero singular point, ~ = 0.7435 
{0.93, 0.55, 0.82, 0.68, 0.23, 0.93 } ... 
by easy calculations we see that 

(17) 

,and a limit cycle of period 5 which is 

(18) 

5 

L (1 2xt+s-J 0.01107, 
i=l 

( -
1
-)

5 

= 0.1262Xl0-2 

3.8 
Then the condition (12) does not satisfy, and the limit cycle (18) is orbitally unstable. 
Figure (6) shows that the trajectories starting from different initial values tends to unstable 

limit cycle as t ~oo . 

Example 2: 
The logistic model given by 

X
1 

= 3.2X
1
_ 1 (l- X

1
_ 1) + £

1 
X

1 
E (Q,l) (19) 

has an unstable non-zero singular point; 0.6875 

The trajectories starting from different initial value x0 tend to a limit cycle of period 2, the 

trajectory oscillate between the two values 0.513 and 0.7994 by easy calculations we see that 

( ;-) 

2 

= 0.0976 and 

(1- 2x0.513).(1 2x0.7994) 0.01557 
Then the condition (12) is satisfied, and by proposition (1), we obtain that the limit cycle of 
model ( 19) is orbitally stable. Figure (7) shows that the trajectories starting from different 

initial value x0 approaches the limit cycle as t ~oo • 

YJt) 
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Figure 6: Time series plots of simulated realizations of the model in example (1) 
Starting with difference initial values x0 
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X(t) 

0.1 

X(t) 

Figure 7: Time series plots of simulated realizations of the model in example (2) 
Starting with difference initial values x0 

2- Conclusion 
In this paper, we study and find the stability conditions of logistic autoregressive 

model by using a dynamical approach due to Ozaki. 
This approach bases on a local linearization technique near the non zero singular point 

of the model, by this technique all nonlinear autoregressive models approximate to a linear 
autoregressive models near the non zero singular point. 

The first step of stability is the existence of a non-zero singular point that is if the 
model does not have a non-zero singular point, then the model is unstable. If the non-zero 
singular point exists and satisfies the stability conditions that we find, then the model is 
stable. 

When the non-zero singular point is unstable, we search for existence of a limit cycles. 
If the limit cycle exists and stable, then the model is stable. Otherwise, it is unstable. 
For a logistic autoregressive model, we find the stability conditions of the non-zero singular 
point of the model in terms of its parameter (a), when this parameter belongs to the interval 
[0, 4]. According to the stability conditions, this interval is divided into three subintervals. 

In the first interval (when O::;a:::: 1) all trajectories approach to zero, that is zero is an 
attracting fixed point. (See [12]) 

In the second interval ( l<a<3 ), the model is stable and all trajectories approach the 
non-zero singular point of the model. 
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In the third interval (3~a~4 ), the non-zero singular point of the model is unstable, but if 
the limit cycle exists, then it is stable if it satisfies the condition mentioned in proposition ( 1 ). 
Otherwise, it is unstable limit cycle. 
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