KREIN'S METHOD FOR SOLVING THE INTEGRAL EQUATION OF THE FIRST KIND WITH LOGARITHMIC KERNEL

By

$$
\begin{aligned}
& \text { M. A. AbDOU and R. O. AbD El Ragman } \\
& \text { Faculty of Education, Alexandria University, Egypt } \\
& \text { طريقة كرين لحل معالة تكاملية } \\
& \text { من النع الأول ذات نواه لوغاريتمية } \\
& \text { محمد عبدالله أحمد عبده و ر. و . عبد الرحمن } \\
& \text { باعتبـار مـعادلة فريد هولم من النوع الأول ذات النواه المتـمثلة في دالة كارلمان قـام }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مع الطرق السابقة (طريقة كوشي) طريقة نظرية الجهد ، طريقة كثيرات الحدود المتعامدة ، } \\
& \text { • طريقة محولات فودبير }
\end{aligned}
$$

Key Words: Logarithmic Kernel, Krein's method

Abstract

Consider the Fredholm's integral equation of the first kind with logarithmic kernel $\mathrm{K}(|\mathrm{X}|)=(-\ln |\mathrm{x}|$. The aim of this paper is to establish the equivalence of Krein's method of solving the equation with the following methods of solution: method of potential theory, method of singular integral equations, method of orthogonal polynomials and method of Fourier transformation.

INTRODUCTION

In [1] different methods for solving the Fredholm's integral equation of the first kind which may be written in the form.
are considered, where the known function $f(x)$ belongs to C^{1} $[-\mathrm{a}, \mathrm{a}]$ (the class of continuous functions with continuous first derivatives in $[-a, a])$. Equation (1.1) is solved [2] by using the method of potential theory, and in $[7,8]$ the same equation is considered; using the method of singular integral equations and the theory of boundary value problems for analytic function, the solution is obtained. paPov in his work [6], solved equation (1.1) by using the method of orthogonal Tchebyshev polynomials. The equivalence of these methods is obtained in [1].

In [1], Mkhitarian and Abdou applied M.G. Krein's method for obtaining the basic formulae for the potential functions of (1.1) in the form:
$P_{+}(x)=\frac{J(a)}{\ln (2 / a)} \frac{1}{\sqrt{a^{2}-x^{2}}}-\frac{2}{\pi} \int_{x}^{a} \frac{d u}{\sqrt{u^{2}-x^{2}}} \cdot \frac{d}{d u}\left[u \frac{d}{d u} \int_{0}^{u} \frac{f_{+}(s) d s}{\sqrt{u^{2}-s^{2}}}\right]$ and
$P_{-}(x)=-\frac{2}{\pi^{2}} \frac{d}{d x} \int_{x}^{2} \frac{u d u}{\sqrt{u^{2}-x^{2}}} \int_{0}^{u} \frac{d E(s)}{\sqrt{u^{2}-s^{2}}}$
where

$$
\begin{aligned}
& J(u)=\frac{2}{\pi}\left[\int_{0}^{u} \frac{f_{+}(s) d s}{\sqrt{u^{2}-s^{2}}}+u \ln \frac{2}{u} \frac{d}{d u} \int_{0}^{u} \frac{f_{+}(s) d s}{\sqrt{u^{2}-s^{2}}}\right] \\
& f(x)=f_{+}(x)+f_{-}(x) \quad, \quad F(x)=P_{+}(x)+P_{-}(x) \\
& f_{+}(-x)= \pm f_{ \pm}(x) \quad, \quad P_{ \pm}(-x)= \pm P_{ \pm}(x) \quad(-a, a)
\end{aligned}
$$

In this paper, we prove equivalence of the previous methods with Krein's method.

SOLUTIONS OF THE PROBLEM

We start by proving the following lemmas.
Lemma 1: For all positive integers n, the value of the following integral

$$
\begin{equation*}
I_{n}=\int_{0}^{n} \frac{T_{2 n}(s) d s}{\sqrt{u^{2}-s^{2}}} \tag{2.1}
\end{equation*}
$$

is given in the form

$$
\begin{equation*}
I_{n}(u)=\frac{p}{2} P_{n}^{(-1 . n)}\left(2 u^{2}-1\right) \tag{2.2}
\end{equation*}
$$

where $\mathrm{T}_{2 \mathrm{n}}$ (s) are Tchebyshev Polynomials and $\mathrm{P}_{\mathrm{n}}(\alpha, \beta)(\mathrm{x})$ are Jacobe polynomials.

Proof: Using the substitution $s=u t$, and the two relations [5]
$\int_{-1}^{1}\left(l-t^{2}\right)^{-k} T_{n}\left(l-t^{2} y\right) \cdot d t=\frac{p}{2}\left[P_{n}(l-y)+P_{n-t}(l-y)\right]$,
$2 P_{n}^{(-1,0)}(x)=P_{n}(x)-P_{n-1}(x)$,
where $P_{n}(x), n=0,1,2, \ldots$, are Legender polynomials, together with $T_{2 n}(t)=T_{n}\left(2 t^{2}-1\right)$ the lemma can be proved.

Corollary 1: The first two derivatives of $I_{n}(u)$ are given by $I_{n}^{(1)}(u)=\frac{d I_{n}}{d u}=n \pi^{u} P_{n, i}^{(a)}\left(2 u^{2}-l\right),(n=l, 2,3$, \qquad). (2.3
$I_{n}^{(2)}(u)=\frac{d}{d u}\left(\frac{d I_{n}}{d u}\right)+\frac{d}{d u}\left[u I_{n}^{(1)}(u)\right]$
which can be written in the form
$I_{n}^{(2)}(u)=2 n \pi u P_{n, i}^{(0, l)},\left(2 u^{2}-l\right)+2 n \pi(n+l) u^{3} P_{n-2}^{(1,2)}\left(2 u^{2}-1\right)$,
($n=1,2,3, \ldots$)
$(2,4)$
Note that $P_{n}(\alpha, \beta)(x)=0$, for negative integers.
To find the value of $\mathrm{J}_{\mathrm{n}}(\mathrm{u})$ when $\mathrm{u}=1$, we substitute (2.3) in (1.4), and put $u=1$, to obtain

$$
J_{n}(1)=2\left[\frac{1}{2} P_{n}^{(-1.0)}(1)+n \ln 2 . P_{n, i}^{(0, i)}(1)\right] .
$$

Since it is known [9] that

$$
P_{n}^{(\alpha, \beta)}(l)=\frac{\Gamma(n+\alpha+1)}{n!\Gamma(\alpha+l)}
$$

then we have the following corollary.
Corollary 2: The value of $J_{\mathbf{n}}(1)$ is given by
$\mathrm{J}_{\mathrm{n}}(1)=2 \mathrm{n} 1 \mathrm{n} 2(\mathrm{n}=1,2, \ldots)$
Lemma 2: The value of the integral.
$H_{n}(y)=\int_{0}^{1}(l-t)^{-1 / 2} P_{n-1}^{(n)}[l-(l-y) t] d t$,
can be written in the form
$H_{n}(y)=\frac{\sqrt{\pi}(n-1)!}{\Gamma(n+1 / 2)} P_{n-1}^{n}(y) \quad(n=1.2 .3 \ldots$,
Proof: To prove this lemma, we use the relation between the hypergeometric function and the Jacobe polynomial [5].
$\int_{0}^{1} t^{\lambda-1}(1-t) \mu^{-1} p_{p}^{(\alpha, \beta)}(1-\gamma t) d t=$
$=\frac{\Gamma(\alpha+n+1) \Gamma(\lambda) \Gamma(\mu)}{n!\Gamma^{\Gamma}(1+\alpha) \Gamma(\lambda+\mu)} 3^{F_{2}\left(-n, n+\alpha+\beta+1 ; \lambda, \alpha+1, \lambda+\mu ; \frac{\gamma}{2}\right)}$

$$
\begin{equation*}
(\operatorname{Re} \lambda>0, \operatorname{Re} \mu>0), \tag{2.7}
\end{equation*}
$$

where ($x 0$ is the gamma function and $3 F_{2}\left({ }^{\alpha} 1, \alpha_{2}, \alpha_{3}, \beta_{1}\right.$, β_{2}, Z) is the generalized hypergeometric series;

$$
\begin{aligned}
3^{\mathrm{F}}\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; \beta_{1}, \beta_{2} ; z\right) & =\sum_{m=0}^{\infty} \frac{\left(\alpha_{1}\right)_{m}\left(\alpha_{2}\right)_{m}\left(\alpha_{3}\right)_{m}}{\left(\beta_{1}\right)_{m}\left(\beta_{2}\right)_{m} \mathrm{~m}} 2^{m} \\
(\alpha)_{m} & =\frac{\Gamma(\alpha+m)}{\Gamma(\alpha)} .
\end{aligned}
$$

In this case, we can write $\mathrm{H}_{\mathrm{n}}(\mathrm{y})$ in the form

$$
\begin{align*}
H_{n}(y) & =2{ }_{3} F_{2}\left(-n+1, n+1,1 ; 1, \frac{3}{2}, \frac{1-y}{2}\right) \\
& =2 F\left(-n+1, n+1 ; \frac{3}{2} ; \frac{1-y}{2}\right), \tag{2.8}
\end{align*}
$$

where $\mathrm{F}(\alpha, \beta, \gamma, z)$ is the hypergeometric Gauss function. It is known [9] that
$P_{n}^{(\alpha, \beta)}(y)=\left({ }_{n}^{n+\alpha}\right) F\left(-n, n+\alpha+\beta+1 ; \alpha+1 ; \frac{1-y}{2}\right)$,
introducing (2.9) into (2.8) the result follows.
Lemma 3: The value of the integral

$$
G_{n}(y)=\int_{0}^{1}(1-t)^{-1 / 2} p_{n-2}^{(1,2)}[1-(1-y) t] d t .
$$

is given by
$\left.G_{n}(y)=\frac{-2 \sqrt{4}(n-1) 1}{(n-k / 2)(n+1)(I-y)} \quad P_{n-1}^{\left(-\frac{1}{2}\right.}, \frac{3}{2}\right)(y)+\frac{2}{(n+1)(1-y)}$,

Proof: Independent of the relation (2.7), we can write $G_{n}(y)$ in the form
$G_{n}(y)=2(n-1) \quad 3_{2}\left(-n+2, n+2,1 ; 2, \frac{3}{2} ; \frac{1-y}{2}\right)(n=1,2, \ldots)$
To write the hypergeometric series in the form of Jacobe polynomials, assume that
$h_{n}(z)=z{ }_{3} F_{2}\left(-n+2, n+2,1 ; 2, \frac{3}{2} ; z\right)\left(z=\frac{1-y}{2}\right)$,
Differentiating (2.12) with respect to z and using (2.9), we get

$$
\frac{d b_{n}(z)}{d z}=\frac{\sqrt{\pi} \Gamma_{(n-1)}}{2 \Gamma^{(n-1 / 2)}} p_{n-2}^{(1 / 2,5 / 2)}(1-2 z) \quad(n=2,3, \ldots) .
$$

Integrating the last equation under the condition $h_{n}(0)=0$, one easily obtains.
$h_{n}(z)=\frac{-\sqrt{\pi} \Gamma(n-1)}{2 \Gamma(n-1 / 2) \cdot(n+1)}{\underset{n-1}{\left(-\frac{1}{2}, \frac{3}{2}\right)}(1-2 z)+\frac{1}{2\left(n^{2}-1\right)} .}^{(}$
Comparing (2.12) with (2.13) lemma 3 follows.
Along the same lines, one may prove the following lemma.
Lemma 4: The value of the integral

$$
K_{n}(y)=\int_{0}^{1}(1-t)^{1 / 2} P_{n-2}^{(1,2)}[1-(1-y) t] d t
$$

is given by
$K_{n}(y)=\frac{-\sqrt{\pi}(n-1)!}{\Gamma(n+1 / 2) \cdot(n+1)(1-y)} P_{n-2}^{(1 / 2,1 / 2)}(y)+\frac{2}{(n+1)(1-y)} \cdot(2.14)$
Now, to connect the previous results in one we need the following lemma.

Lemma 5: The value of the integral equation

$$
A_{n}=\int_{x}^{I} \frac{I_{n}^{(2)}(u) d u}{\sqrt{u^{2}-x^{2}}}
$$

is given by
$A_{n}(x)=\frac{n \pi\left(1-T_{2 n}(x)\right)}{\sqrt{1-x^{2}}} \quad(n=1,2, \ldots)$
where $\mathrm{I}_{\mathrm{n}}(2)(\mathrm{u})$ is given in (2.4).
Proof: Substituting for $\mathrm{I}_{\mathrm{n}}{ }^{(2)}(\mathbf{u})$ from (2.4) the above integral becomes
$A_{n}(x)=2 n \pi \int_{x}^{2} \frac{u x_{n-1}^{(0,1)}\left(2 u^{2}-1\right) \cdot d u}{\sqrt{u^{2}-x^{2}}}+2 n \pi(n+1) \int_{x}^{2} \frac{u^{3}(1,2)\left(2 u^{2}-1\right) d u}{\sqrt{u^{2}-x^{2}}}$
Using the parameters $y=2 x^{2}-1$ and $v=2 u^{2}-1$ the last equation becomes
$A_{n}(x)=\frac{\pi n}{\sqrt{2}} \int_{y}^{1} \frac{1}{\sqrt{v-y}}\left[p_{n-1}^{(0,1)}(v)+\frac{n+1}{2} v \sum_{n-2}^{(2,2)}(v)+\frac{n+1}{2} P_{n-2}^{(1,2)}(v)\right] d v$.
Also, using the parameter $v=1-(1-y) t(o \leq t \geq 1)$ the previous equation takes the form

$$
\begin{array}{r}
A_{n}(x)=\frac{n \pi}{\sqrt{2}} \sqrt{1-y}\left[H_{n}(y)+\frac{n+1}{2}(1+y) A_{n}(y)+\frac{n+1}{2}(1-y) K_{n}(y)\right] \\
\left(y=2 z^{2}-1, n=1,2, \ldots\right)
\end{array}
$$

where

$$
\begin{aligned}
& H_{n}(y)=\int_{0}^{1}(1-t)^{-1 / 2} p_{n-1}^{(0,1)}[1-(1-y) t] d t . \\
& G_{n}(y)=\int_{0}^{1}(1-t)^{-1 / 2} p_{n-2}^{(1,2)}[1-(1-y) t] d t .
\end{aligned}
$$

and

$$
K_{n}(y)=\int_{0}^{1}(1-t)^{1 / 2} p_{n-2}^{(1,2)}[1-(1-\dot{y}) t] d t .
$$

Using the values of these integrals, obtained in lemmas (2)-(4) we obtain

$$
\begin{align*}
A_{n}(x)=\frac{\pi^{3 / 2} n!}{\sqrt{2} \Gamma(n-1 / 2)} & \cdot \frac{1}{1-y}\left[\frac{1-y}{2 n-1} P_{n-1}^{(1 / 2,1 / 2)}(y)-(1+y) P{ }_{n-1}^{\left(-1 / 2, \frac{3}{2}\right)}\right. \\
& +\frac{\sqrt{2} n \Pi}{\sqrt{1-y}}\left(y=2 x^{2}-1 ; n=1,2, \ldots\right) \tag{2.17}
\end{align*}
$$

Now it is our aim to find a relation between Jacobe polynomials and Tchebyshev polynomials. For this end we must use these two famous relations ([9], p. 177).
${\underset{P}{n}}_{(\lambda-1 / 2,-1 / 2)}^{\left(2 x^{2}-1\right)}=\frac{\Gamma(n+1 / 2) \Gamma(\lambda)}{\sqrt{\pi}(n+\lambda)} c_{2 n}^{\lambda}(x)$,
and

$$
\begin{equation*}
p_{n}^{(\lambda-1 / 2, / 2)}\left(2 x^{2}-1\right)=\frac{\Gamma(n+3 / 2) \Gamma(\lambda)}{\sqrt{\pi} \Gamma(n+\lambda+1) \pi} c_{2 n+1}^{\lambda}(x) \tag{2.18}
\end{equation*}
$$

Jwhere $\mathrm{C}_{\mathrm{n}}(\mathrm{x})$ is Heigenber polynomials. When $\lambda \rightarrow \mathrm{o}$ ([5] p. 1044 equation (8) and p. 934 equation (4)),

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} \Gamma(\lambda) c_{n}^{\lambda}(x)=\frac{2}{n} x_{n}(x) \quad(n=1,2, \ldots) \tag{2.19}
\end{equation*}
$$

The results of equation (2.18) and equation (2.19), can be written in the form

$$
\begin{align*}
& P_{n}^{(-1 / 2,-1 / 2)}\left(2 x^{2}-1\right)=\frac{\Gamma(n+1 / 2)}{\sqrt{\pi} n!} T_{2 n}(x) \\
& P_{n}^{(-1 / 2,1 / 2)}\left(2 x^{2}-1\right)=\frac{2 \Gamma(n+3 / 2)}{\sqrt{\pi}(2 n+1) n!} x_{2 n+1}(x) \tag{2.20}
\end{align*}
$$

Equation (2.20) gives the relation between the Jacobe polynomials, and Tchebyshev polynomials of the first type, if we want to connect equation (2.20) with (2.17), firstly assume

$$
I_{n}(y)=\frac{1-y}{2 n-1} P_{n-1}^{\left(y_{2}, 1 / 2\right)}(x)-(1+y) p_{n-1}^{(-1 / 2,3 / 2)}(y),
$$

which may be written in the form

$$
\begin{align*}
& I_{n}(y)=\frac{2(1-y)}{n(2 n-1)} \frac{d}{d y}\left[P_{n}^{(-1 / 2,-1 / 2)}(y)\right]-\frac{2(1+y)}{n} \frac{d}{d y}\left[p_{n}^{(-3 / 2,1 / 2)}(y)\right] \\
&=\frac{2\left(1-x^{2}\right)}{x} \cdot \frac{\Gamma(n+1 / 2)}{\sqrt{\pi}(2 n-1) \cdot n!} U_{2 n-1}(x)-\frac{x}{n} \frac{d}{d x}\left[\frac{\left(n+\frac{3}{2}\right)}{\sqrt{\pi} \Gamma(n) x}\right. \\
&\left.\cdot\left(\lim _{\lambda \rightarrow-1} \Gamma(\lambda) C_{2 n+1}^{\lambda}(x)\right)\right](n=1,2, \ldots), \tag{2.21}
\end{align*}
$$

where $\mathrm{U}_{\mathrm{n}-1}(\mathrm{x})$ is Tchebyshev polynomials of the second kind. According to equation (2.19), and using [9, p. 185 equation (4)], we get
$\lim _{\lambda \rightarrow-1} \Gamma(\lambda) c_{2 n+1}^{\lambda}(x)=\frac{1}{n}\left[\frac{T_{2 n+1}(x)}{2 n+1}-\frac{T_{2 n-1}(x)}{2 n-1}\right](n=1,2, \ldots)$.
Secondary, rewrite (2.21) using (2.20), to get
$I_{n}(y)=I_{n}\left(2 x^{2}-1\right)=\frac{-4 \Gamma(n+1 / 2)}{\sqrt{\pi}(2 n-1) \Gamma(n)} \cdot T_{2 n}(x)(x=1,2, \ldots) \cdot(2.23)$
Introducing (2.23) in (2.17) we obtain (2.15) and the lemma is proved.

Finally to obtain out main result we put $\mathrm{a}=1$ in (1.2) and let $\mathrm{f}_{+}(\mathrm{x})=\mathrm{T}_{2 \mathrm{n}}(\mathrm{x})(\mathrm{n}=1,2, \ldots)$; this gives.
$P_{+}(x)=\frac{I(1)}{\pi \ln 2} \cdot \frac{1}{\sqrt{1-x^{2}}}-\frac{2}{\pi^{2}} \int_{x}^{1} \frac{d u}{\sqrt{u^{2}-x^{2}}} \frac{d u}{d u}\left[u \frac{d}{d u} \int_{0}^{u} \frac{T_{2 n}(s) d a}{\sqrt{u^{2}-a^{2}}}\right]$
(2.24)
and hence we have:
Theorem 1: The complete solution of equation (2.24), can be adapted in the form.

$$
p_{+}(s)=\frac{2 n T_{2 n}(x)}{\sqrt{1-x^{2}}} \quad(0<x<1, n=1,2, \ldots)
$$

THE RESULTS OF THE PROBLEM

The above results lead to the following two theorems.
Theorem 2: For the Fredholm's integral equation of the first kind when the kernel is in the form of a logarithmic function $(K(|x-y|)=-$ in $(|x-y|)$ which has a singularity at $x=y$, and the known function is even and in the form of Tchebyshev function $T_{2 n}(x)$, the special relation has the form

$$
\int_{-1}^{1} \ln _{\left|\frac{1}{x-a}\right|} \frac{T_{2 n}(s) d s}{\sqrt{1-s^{2}}}=\frac{\pi}{2 n} T_{2 n}(x)(|x|<1 ; n=1,2, \ldots)
$$

Equation (3.1) is in agreement with (1.14) in [1] when n is replaced by 2 n and $\mathrm{a}=1$.

Also when the known function of Fredholm's integral equation is odd, and has the form $\mathrm{f}_{-}(\mathrm{x})=\mathrm{T}_{2 \mathrm{n}-1}(\mathrm{X})$, we have the spectral relation in the form

$$
\int_{-1}^{1} \ln \frac{1}{|x-a|} \cdot \frac{T_{2 n-1}(s) d s}{\sqrt{1-a^{2}}}=\frac{\pi}{2 n-1} T_{2 n-1}(x) \text {, (3.2) }
$$

which is in agreement with (1.14) in [1] when $a=1$ and n is replaced by $2 \mathrm{n}-1$.

Theorem 3: For solving equation (1.1) when $f(x) \varepsilon C^{\prime}[-a, a]$, $f^{\prime \prime}(x)$ satisfies the Dirichler condition in (-a,a), and

$$
f(x)=\sum_{n=0}^{\infty} a_{n} T_{n}(x, a)(|x|<a),
$$

where a_{n} is a linear parameter and a_{n} is determined as in [1] then we have the potential function in the form

$$
P(x)=\frac{1}{\pi \sqrt{a^{2}-x^{2}}}\left[P+\sum_{n=1}^{\infty} n_{a_{n}} F_{n}(x / a)\right](|x|<a) .
$$

REFERENCES

[1] Mkhitarian S. M. and M. A. Abdou, 1989. On different methods for solving the integral equation of the first type. Dakl. Akad. Nauk Armenia (USSR) (Russ.).
[2] Shtaerman, I. Ia., 1949. Contact problems of elasticity theory Goskhizdat Moscow.
[3] Ligthill, M. J., 1955. Introduction to Fourier analysis and generalised functions, Cambridge; University Press.
[4] Krein, M. G., 1955. Dak. Akad. Nauk USSR, T. 100 No. 3, P. 413-416.
[5] Gradchtein, I. C. and I. M. Reguk, 1971. Integrals Tables, summation, series and derivative, Nauk Moscow.
[6] Popov, G. I., 1982. Contact problems for a Linearly Deformable Foundation (Kiev) (Russ.).
[7] Muskhelishvili, N. I., 1962. Singular integral equations, Nauk Moscow (Russ.).
[8] Gakhov, F. D., 1977. Boundary value problems, Nauk Moscow.
[9] Bateman, G., A. Erdelyi, 1974. Higher Transcendental functions, T.2. Nauk Moscow (Russ.).

