INDECOMPOSABLE REPRESENTATIONS OF ORDER OF \widetilde{E}_{6}

By
ABDEL-RAOUF A.H. OMAR*
University of Qatar
and
F.I. SIDKY
Faculty of Science, Assiut Univ., Egypt

Key words: Bachstrom order - Extended Dynkin diagram - Indecomposable representations - valued graph.

ABSTRACT
The extended Dynkin diagram

is a valued graph. We are going to construct a Baechstrom order A associateed to E_{6}. We prove, by constructions, that the order A of infinite lattice-type but can be listed (tame-type), i.e., we put all indecomposable A - lattices in finite number of general forms. Finally we give a method to obtain easily and directly the lattices from its associated representations.

1. Baechstrom order of $\widetilde{\mathbf{E}}_{6}$

Ringel and Roggenkamp have introduced for each basic Bachstrom order a valued graph (4).
In this section we construct an R -order A for $\widetilde{\mathrm{E}}_{6}$, where R is a complete valuation ring. The orientation and the numerical of the vertices of the diagram $\widetilde{\mathrm{E}}_{6}$ are given as follows:

* Deceased in December 1985.

Let its modulation M be given as follows,
$\mathrm{S}_{\mathrm{j}}=\mathrm{F}$ and $\mathrm{F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{j}}=\mathrm{F}(\mathrm{F}=\mathrm{R} / \pi$ where π is the maximal ideal of R$), 1 \leqslant \mathrm{i} \leqslant 3,4 \leqslant \mathrm{j} \leqslant$ 7.

We construct an R-order Γ, satisfying the conditions:
(i) M is hereditary and (ii) $\left.\Gamma / \mathrm{rad} \Gamma=\stackrel{7}{\mathrm{II}}=4 \mathrm{(} \mathrm{~F}_{\mathrm{j}}\right)_{\mathrm{n}}$ as follows

$$
\Gamma=\left[\begin{array}{llllll}
\mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{R} \\
\pi & \mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{R} \\
\pi & \pi & \mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{R} \\
\pi & \pi & \pi & \mathrm{R} & \mathrm{R} & \mathrm{R} \\
\pi & \pi & \pi & \mathrm{R} & \mathrm{R} & \mathrm{R} \\
\pi & \pi & \pi & \mathrm{R} & \mathrm{R} & \mathrm{R}
\end{array}\right]
$$

Then

$$
\begin{aligned}
& \operatorname{rad} \Gamma=\left[\begin{array}{llllll}
\pi & \mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{R} \\
\pi & \pi & \mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{R} \\
\pi & \pi & \pi & \mathrm{R} & \mathrm{R} & \mathrm{R} \\
\pi & \pi & \pi & \pi & \pi & \pi \\
\pi & \pi & \pi & \pi & \pi & \pi \\
\pi & \pi & \pi & \pi & \pi & \pi
\end{array}\right] \\
& \text { and } \Gamma / \mathrm{rad} \Gamma=\left[\begin{array}{llllll}
\mathrm{F} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{~F} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{~F} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F}
\end{array}\right]
\end{aligned}
$$

so the simple Γ /rad Γ-modules are:

$$
S_{4}=\left[\begin{array}{l}
F \\
\mathrm{O} \\
\mathrm{O} \\
\mathrm{O} \\
\mathrm{O} \\
\mathrm{O}
\end{array}\right], \mathrm{S}_{5}=\left[\begin{array}{l}
\mathrm{O} \\
\mathrm{~F} \\
\mathrm{O} \\
\mathrm{O} \\
\mathrm{O} \\
\mathrm{O}
\end{array}\right] \quad, \mathrm{S}_{6}\left[\begin{array}{c}
\mathrm{O} \\
\mathrm{O} \\
\mathrm{~F} \\
\mathrm{O} \\
\mathrm{O} \\
\mathrm{O}
\end{array}\right], \text { and } \mathrm{S}_{7}=\left[\begin{array}{c}
\mathrm{O} \\
\mathrm{O} \\
\mathrm{O} \\
\mathrm{O} \\
\mathrm{O} \\
\mathrm{~F}
\end{array}\right]
$$

Now we construct a Bächstrom order A of $\tilde{\mathrm{E}}_{6}$, satisfying the conditions:
(i) $\mathrm{A} \subset \Gamma$
(ii) $\Lambda / \operatorname{rad} \Lambda=\underset{i=1}{I I^{3}} F_{i} \quad, F_{i}=F$
(iii) $\operatorname{rad} \Lambda=\operatorname{rad} \Gamma$
(iv) $\mathrm{S}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}}{\underset{\Lambda}{X}}_{\underset{\sim}{\mathrm{X}}}^{\mathrm{S}} \mathrm{j}=\mathrm{F}, 1 \leqslant \mathrm{i} \leqslant 3,4 \leqslant \mathrm{j} \leqslant 7$,
as follows:

$$
\Lambda=\left[\begin{array}{llllll}
\alpha & \mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{R} \\
\pi & \beta & \mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{R} \\
\pi & \pi & \gamma & \mathrm{R} & \mathrm{R} & \mathrm{R} \\
\pi & \pi & \pi & \dot{\alpha}^{\prime} & \pi & \pi \\
\pi & \pi & \pi & \pi & \beta^{\prime} & \pi \\
\pi & \pi & \pi & \pi & \pi & \gamma^{\prime}
\end{array}\right]
$$

where $\alpha=\alpha^{\prime}(\bmod \pi), \beta=\beta^{\prime}(\bmod \pi)$, and $\gamma=\gamma^{\prime}(\bmod \pi)$.

2. The positive roots of \tilde{E}_{6}.

Let (G, d) be an extended Dynkin diagram, and let c be a Coxeter transformation of the vector space $\mathbf{Q}^{\mathbf{G}}$ of all vectors $\mathbf{x}=\left(\mathbf{x}_{\mathrm{i}}\right)_{\mathrm{i}} \boldsymbol{\epsilon}_{\mathrm{G}}$ over the rational field Q . Then all positive roots of negative, positive and zero defect with respect to c are the vectors (see [1]):
(1) $x=c^{-r}-P_{k_{1}}, O \leqslant r, 1 \leqslant t \leqslant n$
(2) $\mathrm{x}=\mathrm{c}^{\mathrm{t}} \mathrm{qkt}, \mathrm{O} \leqslant \mathrm{r}, 1 \leqslant \mathrm{t} \leqslant \mathrm{n}$ and
(3) $x=x_{o}+r g \bar{n}, O \leqslant r, X_{O} \leqslant \overline{n n}, \partial_{c} x_{o}=0$,
where $\overline{\mathrm{n}}$ is the canonic vector respectively.
In the case of $\widetilde{\mathrm{E}}_{6}$ we have
$\mathrm{c}=\mathrm{s}_{1} \mathrm{~s}_{2} \ldots \mathrm{~s}_{7}$ the Coxeter transformation,

and
$\left.\begin{array}{l}q_{t}=s_{1} s_{2} \ldots s_{t-1} T \\ P_{t}=s_{7} s_{6} \ldots s_{t-1} T\end{array}\right\}, 1 \leqslant t \leqslant 7$,
where T is the vector in Q^{G} defined by:
$\mathrm{T}_{\mathrm{t}}=1$ and $\mathrm{T}_{\mathrm{i}}=\mathrm{o}$ for all $\mathrm{i} \neq \mathrm{t}$.
The defect of $\tilde{\mathrm{E}}_{6}$ with the given orientation has the following components:

$$
\mathrm{d}_{\mathrm{c}}=3 \stackrel{\leftarrow}{\leftarrow-2 \longrightarrow 1} \begin{array}{r}
\longrightarrow \\
-2 \longrightarrow 1
\end{array}
$$

2.1 The positive roots with negative defect:

These roots are $C^{+r} q_{t}, 0 \leqslant r, 1 \leqslant t \leqslant 7$, we deduce the general forms as follows ($n \geqslant$ o):
$t=1$: there are three general forms:

$t=2$: We obtain the roots by interchanging the edges (1-4) and (2-5) in the case ($t=$ 1)
$t=3:$ Similarly by interchanging the edges $(1-4)$ and (3-6) in the case $(t=1)$ $t=4$: There are six general forms:

$t=5$: We obtain the roots by interchanging the edges (1-4) and (2-5) in the case ($t=$ 4)
$t=6:$ Similarly by interchanging the edges (1-4) and (3-6) in the case $(t=4)$
$t=7$: There are two general forms:
$3 n+1 \underset{2 n+1-n}{2 n+n} \begin{aligned} & 2 n+n \\ & 2 n+n+2\end{aligned} \quad, 3 n+\begin{aligned} & 2 n+2-n+1 \\ & 2 n+2-n+1 \\ & 2 n+2-n+1\end{aligned}$

2.2 The positive roots with positive defect:

These roots are $\mathrm{C}_{\mathrm{p}_{\mathrm{i}}}, 0 \leqslant r, l \leqslant t \leqslant 7$.
We deduce the general forms as follows $(\mathrm{n} \leqslant 0)$:
$t=1$: There are three general forms

$t=2$: We obtain the roots by interchanging the edges (1-4) and (2-5) in the case $(t=$ 1)
$t=3$: Similarly by interchanging the edges (1-4) and (3-6) in the roots of the case $(t=$ 1)
$t=4$: There are six general forms:

$3 n+2 \underset{2 n+1-n+1}{2 n+1} \begin{aligned} & 2 n+1 \\ & 2 n+1\end{aligned} \quad 3 n+2 \underset{2 n+1-n+1}{\sim} \begin{aligned} & 2 n+2-n+1 \\ & 2 n+1-n+1\end{aligned} \quad 3 n+3 \underset{2 n+2-n+1}{\sim}$
$t=5$: We obtain the roots by interchanging the edges (1-4) and (2-5) in the case $(t=$ 4)
$t=6:$ Similarly by interchanging the edges (1-4) and (3-6) in the case $(t=4)$.
$t=7$: There are two general forms

3. Construction of all indecomposable representations with non-zero defect of $\widetilde{\mathbf{E}}_{\mathbf{6}}$. These representations correspond the roots calculated in the previous sections, we use the following notations:
(i) FFF ... instead of the vector space $\mathrm{F}+\mathrm{F}+\mathrm{F}+\ldots$, for any number of F , where $\mathrm{F}=$ R / π. Also the vector of the representations is denoted by its dimensions, e.g. FFF : = 3.
(ii) The linear mappings of the representations are:
(a) 1: F \rightarrow F, 11: FF \rightarrow FF ... , ...

$$
\mathrm{f} \rightarrow \mathrm{f} \quad\left(\mathrm{f}_{1}, \mathrm{f}_{2}\right) \rightarrow\left(\mathrm{f}_{1}, \mathrm{f}_{2}\right)
$$

(b) o: F \rightarrow o or o $\rightarrow \mathrm{F}$, oo: $\mathrm{FF} \rightarrow \mathrm{o}$ or $\mathrm{o} \rightarrow \mathrm{FF}, \ldots$
(c) $1=1: \mathrm{F} \rightarrow \mathrm{FF}, 1=1=1: \mathrm{F} \rightarrow \mathrm{FFF}$

$$
\mathrm{f} \rightarrow(\mathrm{f}, \mathrm{f}) \quad \mathrm{f} \rightarrow(\mathrm{f}, \mathrm{f}, \mathrm{f})
$$

(d) + : FF \rightarrow F , ++: FFFF \rightarrow FF, ...
$\left(f_{1}, f_{2}\right) \rightarrow\left(f_{1}+f_{2}\right) \quad\left(f_{1}, f_{2}, f_{3}, f_{4}\right) \rightarrow\left(f_{1}+f_{2}, f_{3}+f_{4}\right)$
Moreover, we may also combine the above notations, for example:
10: FF \rightarrow F or $\mathrm{F} \rightarrow \mathrm{FF}$
$\left(f_{1}, f_{2}\right) \rightarrow f_{1} \quad f_{1} \rightarrow\left(f_{1}, 0\right)$
$1+:$ FFF \rightarrow FF, 101: F \rightarrow FFF, and
$\left(\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}\right) \rightarrow\left(\mathrm{f}_{1}, \mathrm{f}_{2}+\mathrm{f}_{3}\right) \mathrm{f} \rightarrow(\mathrm{f}, \mathrm{o}, \mathrm{f})$
(10) ${ }^{\mathrm{n}}: 10101010 \ldots 10$ (10 is repeated n times), similalry
$(+)^{\mathrm{n}}$ and the other (... $)^{\mathrm{n}}$.
Since we have a one-to-one correspondence between all positive roots of non-zero defect and all indecomposable representations of non-zero defect, it is enough to give only the linear mappings
$\mathrm{j}^{\Phi} \mathrm{i}, \mathrm{i}=1,2,3, \mathrm{j}=4,5,6,7$ of the general forms.

3.1 The indecomposable representations $\mathbf{C}^{+} \mathbf{Q}_{\mathbf{t}}$ of $\widetilde{\mathbf{E}}_{6}$.

The general forms of these representations are:
$t=1$: There are three general forms:
(a) $4 \Phi^{\Phi}=\mathrm{o}(10)^{\mathrm{n}}, 5 \Phi_{2}=(01)^{\mathrm{n}}, 6^{\Phi} 3=(+)^{\mathrm{n}}$,
$7^{\Phi} 1= \begin{cases}0 & \text { for } n=0 \\ 111 & \text { for } n=1 \\ 111(011)^{n-1} & \text { for } n \geqslant 2\end{cases}$
$7 \Phi 2=\left\{\begin{array}{lr}0 & \text { for } n=0 \\ \left(-f_{1}, f_{1}+f_{2}, f_{2}\right. & \text { for } n=1 \\ \left(-f_{1}, f_{1}+f_{2}, f_{2}, g_{1}, g_{2}, \ldots, g_{i}, \ldots, g_{n-1}\right) \text { for } n \geqslant 2\end{array}\right.$
(note that we have defined the linear mapping with its value of $\left(f_{1}, \ldots, f_{n}\right)$ where $\left.g_{i}=f_{2 i}-f_{2 i+1}, f_{2 i+1}, f_{2 i+2}, f_{2 i+2}, i=1,2, \ldots, n-1\right)$,
and
$7^{\Phi} 3=\left\{\begin{array}{lr}0 & \text { for } n=0 \\ 11=1 & \text { for } n=1 \\ f_{1}, f_{2}, f_{2}, g_{1}, g_{2}^{\prime}, \ldots, g_{i}^{\prime}, \ldots, g_{n-1} & \text { for } n \geqslant 2\end{array}\right.$
where

$$
\mathrm{g}_{\mathrm{i}}^{\prime}=\mathrm{f}_{2 \mathrm{i}}+\mathrm{f}_{2 \mathrm{i}+1}, \mathrm{f}_{2 \mathrm{i}+2}, \mathrm{f}_{2 \mathrm{i}+2}, \mathrm{i}=1,2, \ldots, \mathrm{n}-1
$$

(b) $4^{\Phi_{1}}=1(10)^{\mathrm{n}}, \quad 5 \Phi_{2}=0(1)^{\mathrm{n}}, 6^{\Phi_{3}}=(+)^{\mathrm{n}} \mathrm{O}$, $7^{\Phi}{ }_{1}=1(1=1 \quad 1)^{\mathrm{n}}, 7^{\Phi_{2}}=1(110)^{\text {n }}$
$7^{\prime} \Phi 3= \begin{cases}1 & \text { for } n=0 \\ f_{1}, g^{\prime \prime}, g^{\prime \prime}{ }_{2}, \ldots, g^{\prime \prime}, \ldots g^{\prime \prime} & \text { for } n \geqslant 1,\end{cases}$
where $g_{i}^{\prime \prime}=f_{2 i},-f_{2 i-1}, f_{2 i-2}+f_{2 i}+f_{2 i-1}, i=1,2, \ldots, n$
(c) $4^{\Phi} 1_{1}=\mathbf{O}(+)^{\mathrm{n}}, \quad 5^{\Phi} 2=(+)^{\mathrm{n}-1}, 6^{\Phi} 3=(01)^{\mathrm{n}+1}$
$7^{\Phi}{ }_{1}= \begin{cases}01 & \text { for } \mathrm{n}=0 \\ 0, \mathrm{f}_{1}, \mathrm{~g}^{\prime \prime \prime}{ }_{1}, \mathrm{~g}^{\prime \prime \prime}{ }_{2}, \ldots, \mathrm{~g}_{\mathrm{n}}^{\prime \prime} & \text { for } \mathrm{n} \geqslant 1\end{cases}$
where $g^{\prime \prime \prime}{ }_{i}=0, f_{2 i-2}+f_{2 i}, f_{2 i+2} \quad i=1,2, \ldots, n$ $7 \Phi 2=11(1=11)^{\mathrm{n}} \quad$ and
$7^{\Phi} 3= \begin{cases}11 & \text { for } n=0 \\ f_{1}, f_{2}, g_{1}, \ldots, g_{i}, \ldots, g_{n} . & \text { for } n \geqslant 1\end{cases}$
where $g_{i}=f_{2 i+1}, f_{2 i+1}, f_{2 i+2}, i=1,2, \ldots, n$.
$\mathbf{t}=2, \mathrm{t}=3$: by the same interchanging as in the roots.
$t=4$ There are six general forms:
(a) $4 \Phi^{\Phi}=(+1)^{\mathrm{n}}, 5 \Phi^{\Phi}=\mathrm{O}(+)^{\mathrm{n}}$
$6^{\Phi} 3=\left\{\begin{array}{lr}0 & \text { for } n=0 \\ f_{1}+f_{3} & \text { for } n=1 \\ f_{1}+f_{3}, h_{2}, h_{3}, \ldots, h_{i}, \ldots, h_{n} & \text { for } n \geqslant 2\end{array}\right.$
where $h_{i}=f_{2 i-2}+f_{2 i+1}, i=2,3, \ldots, n$
$7^{\Phi} 1=0(101)^{\mathrm{n}}, 7^{\Phi} 2=1(110)^{\mathrm{n}}$ and $7^{\Phi}{ }^{\Phi} 3=1(011)^{\mathrm{n}}$
(b) $4^{\Phi} 1=(+)^{n+1}, 5^{\Phi} 2=6^{\Phi} 3$ in case (a) , $6 \Phi 3=O(+)^{n}$, $7 \Phi 1=11(101)^{\mathrm{n}}, 7 \Phi 2=10(110)^{\mathrm{n}}$ and $7 \boldsymbol{\Phi} \mathbf{~} 3=10(011)^{\mathrm{n}}$
(c) $4 \Phi_{1}=O(+)^{\mathrm{n}} \mathrm{O}, 5^{\Phi} \Phi_{2}=(+) \mathrm{n}+^{1}, 6 \Phi_{3}=(+)^{\mathrm{n+1}}$, $7 \Phi_{1}=(101)^{n+1}, 7 \Phi_{2}=(110)^{n+1}$ and $7 \Phi_{3}=(011)^{n+1}$
(d) $4^{\Phi} 1=1(01)^{\mathrm{n}}, 5^{\Phi}=(10)^{\mathrm{n}}, 6 \Phi^{\Phi} 3=(01)^{\mathrm{n}}$, $7 \Phi 1=111=111=\ldots=111$ (111 repeated n once) $7 \Phi^{2}=(1=11)^{\mathrm{n}}$ and $7{ }^{\Phi} 3=(11=1)^{\mathrm{n}}$
(e) $4 \Phi_{1}=0(10)^{\mathrm{n}}, 5^{\Phi} 2=1(10)^{\mathrm{n}}, 6^{\Phi} 3=1(10)^{\text {n }}$,
$7 \Phi_{1}=1\left(\overline{(111)^{n}}, 7 \Phi 2=1(1=11)^{\mathrm{n}}\right.$, and
$7 \bar{\Phi}_{3}=\underbrace{\frac{=}{1(111)(111)} \ldots \underbrace{(111)(111)}_{\underline{E}}}_{n}$
(f) $4^{\Phi_{1}}=1(10)^{\mathrm{n}}, 5 \Phi_{2}=(10)^{\mathrm{n+1}}, 63=(01)^{\mathrm{n}+1}$,

$$
7^{\Phi_{3}}=11(11=1)^{n}
$$

$\mathrm{t}=5, \mathrm{t}=6$: by the same interchanging as in the roots.
$t=7$: We have two general forms:
(1) $4^{\tilde{\Phi}_{1}}=(+)^{\mathrm{no}}$,
$5 \Phi 2=\left\{\begin{array}{lr}0 & \text { for } n=0 \\ f_{1}+f_{3} & \text { for } n=1 \\ f_{1}+f_{3}, 1_{2}, \ldots, 1_{i}, \ldots, 1_{n} & \text { for } n \geqslant 2\end{array}\right.$
where $\mathrm{l}_{\mathrm{i}}=\mathrm{f}_{2 \mathrm{i}-2}+\mathrm{f}_{2 \mathrm{i}-1}, \mathrm{i}=2,3, \ldots, \mathrm{n}$;

$$
6^{\Phi} 3=52,7 \Phi 1=1(101)^{\mathrm{n}}, 7 \Phi 2=1(110)^{\mathrm{n}} \text {, and } 7 \Phi 3=1(011)^{\mathrm{n}}
$$

(b) $4^{\Phi} 1=(10)^{n+1}, 5^{\Phi} 2=6^{\Phi} 3=(01)^{n+1}, 7^{\Phi} 1=\overleftarrow{=11111} 111 \ldots .$.

$$
7^{\Phi_{2}}=1 \underset{\underbrace{\frac{=}{111} 111}_{n} \cdots \frac{1 \pi}{=} 111}{=}, 7 \Phi_{3}=11+1111111 \ldots 111
$$

3.2 The indecomposable representations $\overline{\mathbf{C}} \mathbf{Q}_{t}$ of $\tilde{\mathbf{E}}_{\mathbf{6}}$.

The general forms of these representations are:
$t=1 \mathrm{We}$ have the following three general forms:
(a) $4^{\Phi} 1=1(01)^{\mathrm{n}}, 5^{\Phi}{ }_{2}=(10)(01)^{\mathrm{n}-1}, 6^{\Phi} 3=(10)^{\mathrm{n}}$,
$7^{\Phi} 1=1101(11=1)^{n-1},(n \neq 0)$

where $m_{i}=-f_{2 i+4} f_{2 i+1}, f_{2 i+2}, i=1,2, \ldots, n-2$,

$$
7^{\Phi} 3= \begin{cases}o & \text { for } n=o \\ 1=11=1 & \text { for } n=1 \\ f_{1}, f_{1}, f_{2}+f_{3}, f_{2}, f_{3}, 0, f_{4} & \text { for } n=2 \\ f_{1}, f_{1}, f_{2}+f_{3}, f_{6}, f_{2}, f_{3}, f_{5}, f_{4}, f_{5}, o, f_{6} & \text { for } n=3 \\ f_{1}, f_{1}, f_{2}+f_{3}+f_{6}, f_{2}, m_{5}, \ldots, m_{i}, \ldots, m_{n-2}, \\ \left.f_{2 n-3}, f_{2 n-1}, f_{2 n-2}, f_{2 n-1}, o, f_{2 n}\right\} \text { for } n \geqslant 4\end{cases}
$$

where $m_{i}^{1}=f_{2 i-1}, f_{2 i+1}+f_{2 i+4}, f_{2 i}, i=2, \ldots, n-2$
(b) $4^{\underline{I}} 1=o(+)^{n}$,
$\boldsymbol{S}_{2}=\left\{\begin{array}{lr}1 & \text { for } n=0 \\ f_{1}+f_{3}, f_{2} & \text { for } n=1 \\ f_{1}+f_{3}-f_{5}, m_{i}^{\prime \prime}, \ldots, m_{i-1}^{\prime \prime}, f_{2 n} & \text { for } n \geqslant 2\end{array}\right.$
,where $m_{i}^{\prime \prime}=-f_{2 i}+f_{2 i+3}, 1,2, \ldots, n-1$

Indecomposable Representations of Order of \tilde{E}_{6}

$$
\begin{aligned}
& 6^{\Phi_{3}}= \begin{cases}1 & \text { for } n=0,7^{\Phi} 1=01(011)^{n}, \\
+1(01)^{n-1} & \text { for } n \geqslant 1\end{cases} \\
& 7^{\Phi_{2}}= \begin{cases}10 & \text { for } n=0 \\
10101 & \text { for } n=1 \\
f_{1}, o, f_{2}, f_{4}, f_{3}, f_{4}, o, f_{5} \\
f_{1}, o, f_{2}, f_{4}, f_{3}, f_{2}, m_{2}^{*}, \ldots, m_{1}^{*}, \ldots, m_{n}^{*} _1, f_{2 n}, o, f_{2 n+1} & \text { for } n=2 \\
\text { for } n \geqslant 3\end{cases}
\end{aligned}
$$

$$
\text { where } m_{i}^{*}=f_{2 i}+f_{2 i}+{ }_{2 i+3}, f_{2 i-2}, f_{2 i-1}, i=3, \ldots, n-1
$$

$$
\text { and } 7^{\Phi} 3=\left(1=1(110)^{n}\right)
$$

(c)
$4^{\Phi} 1=1(10)^{n}, 5^{\Phi} 2= \begin{cases}01 & \text { for } n=0 \\ 010 & \text { for } n=1 \\ 010(+)^{n-1} 1 & \text { for } n \geqslant 2\end{cases}$
$6^{\Phi} 3=(+)^{n-1}, 7^{\Phi} 1=\left(1=1(101)^{n}\right)$,
$7^{\Phi} 2= \begin{cases}011 & \text { for } n=0 \\ 0, f_{1}, f_{2}+f_{3}, \underline{m}_{1}, \ldots, \underline{m}_{1}, \ldots, \underline{m}_{n} & \text { for } n \geqslant 1\end{cases}$
where $\underline{m}_{i}=f_{2 i-1}, f_{2 i-2}, \mathbf{o}, i=1,2, \ldots, n$
and
$7^{\Phi} 3= \begin{cases}101 & \text { for } n=0 \\ f_{1}, f_{4}, f_{2}, 0, f_{3}, f_{4} & \text { for } n=1 \\ f_{1}, f_{4}, f_{2}, f_{5}+f_{6}, f_{3}, f_{4}, o, f_{5}, f_{6} & \text { for } n=2 \\ f_{1}, f_{4}, f_{2}, f_{5}+f_{6}, f_{3}, f_{4}, n_{3}, \ldots, n_{i}, \ldots, n_{n}, b, f_{2 n+1}, f_{2 n+2} & \text { for } n \geqslant 3\end{cases}$
where $n_{i}=-\left(f_{2 i+1}+f_{2 i+2}\right), f_{2 i-1}, f_{2 i}, i=3, \ldots, n$.
$\mathrm{t}=2, \mathrm{t}=3$: by the same interchanging as in the roots.
$t=4$: we have the following six general forms:
(a)

$$
\begin{aligned}
& 4^{\Phi} 1= \begin{cases}0 & \text { for } n=0 \\
11 & \text { for } n=1,5^{\Phi} 2=(+)^{n} \\
11(+)^{n-1} & \text { for } n \geqslant 2\end{cases} \\
& 6^{\Phi} 3= \begin{cases}0 & \text { for } n=0 \\
+ & \text { for } n=1 \\
o_{1}, \ldots, o_{i}, \ldots, o_{n-1}, f_{1}, f_{2 n} & \text { for } n \geqslant 2\end{cases}
\end{aligned}
$$

where $o_{i}=f_{2 i}+f_{2 i+1}, i=1,2, \ldots, n-1$,
$7 \Phi_{1}=(110)^{\mathrm{n}}, 7 \Phi_{2}=(011)^{\mathrm{n}}$ and $7 \Phi_{3}=(101)^{\mathrm{n}}$
(b) $4 \Phi_{1}=0(01)^{\mathrm{n}}, 5^{\Phi}=(10)^{\mathrm{n}}, 6 \Phi_{3}=(10)^{\mathrm{n}}, 7 \Phi_{1}=1(11=1)^{\mathrm{n}}$,
$7 \Phi_{2}= \begin{cases}\begin{array}{l}0 \\ \underset{=}{1011} \\ \\ \underbrace{1011=111=111=\ldots=111=111}\end{array} & \text { for } n=0 \\ \text { for } n=1, \\ \text { for } n \geqslant 2\end{cases}$
, and $7 \Phi^{\Phi}=(1=11)^{n}$.
(c)

$$
\text { where } \mathrm{o}_{\mathrm{i}}^{\prime}=\mathrm{f}_{2 \mathrm{i}-1}+\mathrm{f}_{2 \mathrm{i}-2}, \mathrm{i}=1,2, \ldots, \mathrm{n}-1
$$

$$
6^{\Phi} 3=1(+)^{n}, 7^{\Phi} 1=0(011)^{\mathrm{n}}, 7^{\Phi} 2=1(101)^{\mathrm{n}} \text { and } 7^{\Phi} 3=1(110)^{\mathrm{n}}
$$

(d) $4 \Phi_{1}=1(10)^{\mathrm{n}}, 5 \Phi_{2}=0(10)^{\mathrm{n}}, 6^{\Phi} 3=0(10)^{\mathrm{n}}$,
$7^{\Phi} 1=\left\{\begin{array}{ll}1=1 & \text { for } n=0 \\ 11=110 & \text { for } n=1 \\ 11=110(110)^{n-1} & \text { for } n \geqslant 2\end{array}, \quad 7^{\Phi} 2=01(1=11)^{n}\right.$
$7 \Phi_{3}= \begin{cases}10= & \text { for } n=0 \\ 1011=1+1 & \text { for } n=1 \\ 1011=1-1=11=1+1 & \text { for } n=2 \\ 1011=1-1=11=1-1=\ldots=11=1-1=11=1-1 & \text { for } n \geqslant 3\end{cases}$
(e)
$4^{\Phi} 1=\left\{\begin{array}{ll}+ & \text { for } n=0 \\ 0(+)^{n} 1 & \text { for } n \geqslant 1\end{array}, 5 \Phi 2=1(+)^{n}, 6 \Phi 3=1(+)^{n}\right.$,
$7 \Phi_{1}=\left\{\begin{array}{ll}11 & \text { for } n=0 \\ 11(101)^{n-1} 101+1 & \text { for } n \geqslant 1\end{array}, 7 \Phi_{2}=10(110)^{n}\right.$,
and $7 \Phi 3=01(110)^{\text {n }}$.
(f) $4^{\Phi}{ }_{1}=\mathrm{O}(10)^{\mathrm{n}}, 5 \Phi_{2}=(01)^{\mathrm{n+1}}, 6 \Phi_{3}=(10)^{\mathrm{n+1}}$,
$7 \Phi_{1}=001(1=11)^{\mathrm{n}}, 7 \Phi_{2}=(11=1)^{n+1}$.
and

$$
{ }^{\prime} \Phi_{3}= \begin{cases}\frac{\overbrace{111}}{=} & \text { for } n=0 \\ \underbrace{111=111=111=\ldots=111=111}_{n+1} & \text { for } n \geqslant 1\end{cases}
$$

$\mathrm{t}=5, \mathrm{t}=6$: By the same interchanging as in the roots.
$t=7 \mathrm{We}$ have following two general forms:
(a) $4 \Phi_{1=(+)^{n}, 5 \Phi_{2}=(01)^{n}, 6 \Phi_{3}=(10)^{n} \text {, }, \text {, }}$
${ }_{1}$

$$
\begin{aligned}
& 7 \Phi_{1}
\end{aligned}\left\{\begin{array}{ll}
0 & \text { for } n=0 \\
1=1=1+\overline{1-}(1=1+\overline{1-1})^{n-1} & \text { for } n \geqslant 1
\end{array}\right\} \begin{array}{ll}
0 & \text { for } n=0 \\
1=110(110)^{n-1} & \text { for } n \geqslant 1
\end{array}
$$

and
$7 \Phi_{3}= \begin{cases}0 & \text { ao } \\ \underbrace{0011(011+1)(011+1) \ldots(011}_{n-1}+1) & \text { for } n \geqslant 1\end{cases}$
(b)

$$
4 \Phi_{1=1(+)^{n}, 5 \Phi_{2}=\quad\left\{\begin{array}{ll}
1 & \text { for } n=0 \\
1+ & \text { for } n=1, \\
1(01)^{n} & \text { for } n \geqslant 2
\end{array} \quad \mathbf{I}^{\mathbf{n}} \quad\right.}=1(01)^{n},
$$

$$
7_{1}=1=1(101+1)^{n}, 7 \Phi 2= \begin{cases}10 & \text { for } n=0 \\ 10-1-11 & \text { for } n=1 \\ 10(1=1=1+1)^{n} & \text { for } n \geqslant 2\end{cases}
$$

and
$7 \Phi_{3}=\frac{=}{01} \frac{=}{\left.\mathbf{n}^{(011+1)(011+1) . .(011}+1\right)}$
4. The regular representations of $\tilde{\mathrm{E}}_{6}$:

The regular representations of $\widetilde{\mathrm{E}}_{6}$ include the homogeneous and the nonhomogeneous regular representations. Therefore we give first the simple regular representations and then the indecomposable regular representations.

4.1: The simple regular representations of $\widetilde{\mathbf{E}}_{6}$:

For E_{6} we have the following eight simple regular representations:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{o}}^{\prime}=1{\underset{\sim}{c}}_{0} \rightarrow 0 . \\
& \left.\mathrm{E}_{2}^{\prime}=1{\underset{\sim}{2}}_{1} \rightarrow \begin{array}{l}
1 \\
1 \\
0
\end{array}\right),
\end{aligned}
$$

4.2: The indecomposable regular homogeneous representations of $\tilde{\mathbf{E}}_{\mathbf{6}}$.

We construct these representations for $\mathrm{n} \geqslant 2$, they can be summarized in the following two cases:

Case 1: n is odd

$$
\begin{aligned}
& \Phi{ }_{1}=(\mathrm{F} \oplus \mathrm{~F} \oplus \ldots \oplus \mathrm{~F}) \otimes \mathrm{F} \rightarrow \mathrm{~F} \oplus \mathrm{~F} \oplus \mathrm{~F} \oplus \ldots \oplus \mathrm{~F} \oplus \mathrm{~F} \\
& \left.\left(f_{1}, f_{2}, \ldots, f_{n}\right) x m_{1} \rightarrow\left(f_{1}+f_{2}\right), f_{3}, f_{4}, \ldots, f_{n}, f_{1}\right) m_{1} \\
& \Phi 2=(F \oplus F \oplus \ldots \oplus F) \otimes F \rightarrow F \oplus F \oplus F \oplus \ldots \oplus F \oplus F \\
& \left(f_{1}, f_{2}, \ldots, f_{n}\right) x_{2} \rightarrow\left(f_{1}, f_{2}, f_{3}, \ldots, f_{n-1}, f_{n}\right) m_{2} \\
& \left(\mathrm{C}_{1}\right)_{\mathrm{n}}=\left\{\left(\mathrm{f}_{1}{ }_{1}+\mathrm{f}^{\prime}{ }_{2}\right), \mathrm{f}^{\prime}{ }_{3}, \mathrm{f}^{\prime}, 4, \ldots, \mathrm{f}^{\prime}{ }_{\mathrm{n}}, \mathrm{f}^{\prime}{ }_{1}\right),\left(\mathbf{f}^{\prime}{ }_{1}, \mathrm{f}^{\prime}{ }_{2}, \ldots, \mathrm{f}_{\mathrm{n}}\right),(\stackrel{(\sigma, 0, \ldots, \mathbf{o}}{ }) \\
& \left.\mid\left(f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right) \quad(F)^{n}\right\} \\
& \left(C_{2}\right)_{n}=\left\{\left(f_{1}, f_{2}, \ldots, f_{n}\right),\left(f_{1}, f_{2}, \ldots, f_{n}\right),\left(f_{1}, f_{2}, \ldots, f_{n}\right)\right. \\
& \left.\mid\left(\mathbf{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{3} \mathrm{n}\right) \in \mathrm{F}^{\mathrm{n}}\right\}+\left(\mathrm{C}_{1}\right)_{\mathrm{n}}
\end{aligned}
$$

$\left(C_{i}\right)_{n}=C_{i}(i=1,2)$ in the case $\operatorname{dim} U=\operatorname{dim} V=n$
Case 2: n is even.
$\Phi_{1}:(F \oplus F \oplus \ldots \oplus F) \otimes F \rightarrow F \oplus F \oplus F \oplus F \oplus F \oplus \ldots \oplus F \oplus F$ $\left(f_{1}, f_{2}, \ldots, f_{n}\right) x_{1} \rightarrow\left(f_{1}+f_{2}, o, f_{3},+f_{4}, o, f_{5}+f_{6}, \ldots, f_{n-1}, f_{n}, o\right) m_{1}$

```
\(\Phi 2:(F \oplus F \oplus \ldots \oplus F) \otimes F \rightarrow F \oplus F \oplus F \oplus F \oplus F \oplus \ldots F \oplus F \oplus F\)
        \(\left(f_{1}, f_{2}, \ldots, f_{n}\right) \times n \rightarrow\left(0, f_{1},+f_{2},, f_{3}+f_{4}, 0, \ldots, f_{n-3}+f_{n-2}, o\right.\),
        \(\left.\left(f_{1}+f_{2}+\ldots+f_{n}\right)\right) m_{2}\)
\(\mathrm{C}_{\mathbf{1}}=\left\{\left(\mathrm{f}^{\prime}{ }_{1}+\mathrm{f}^{\prime}{ }_{2}, \mathbf{o}, \mathrm{f}^{\prime}{ }_{3}+\mathrm{f}^{\prime}{ }_{4}, \mathbf{o}, \ldots, \mathrm{f}^{\prime}{ }_{\mathrm{n}-1}+\mathrm{f}_{\mathrm{n}}, \mathbf{o}\right),\left(\mathrm{f}^{\prime}{ }_{1}, \mathrm{f}^{\prime}{ }_{2}, \ldots, \mathrm{f}^{\prime}{ }_{\mathrm{n}}\right)\right.\),
\((\overbrace{0, \ldots, 0}^{n}) \mid\left(f^{\prime}, \ldots, f^{\prime}{ }_{n}\right) \in F^{n}\}\)
\(C_{2}=\left\{\left(0, f_{1}+f_{2}, 0, f_{3}+f_{4}, o, \ldots, f_{n-3}+f_{n-4}, o, f_{1}+f_{2}+\ldots+f_{n}\right)\right.\),
    \(\left.\left(\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}\right),\left(\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}\right) \mid\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}}\right) \in \mathrm{F}^{\mathrm{n}}\right\}+\mathrm{C}_{1}\)
```


5. A method of constructing the Λ - lattices:

One can construct at once the Λ - lattices, where A is the Baechstromorder of $\widetilde{\mathrm{E}}_{6}$. Using the following method:
Let $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{7}, \mathrm{j} \Phi_{\mathrm{i}}, \mathrm{i}=1,2,3, \mathrm{j}=4,5,6,7\right)$ be a representations of $\widetilde{\mathrm{E}}_{6}$, and let
$\operatorname{dim} \mathrm{x}=\left(\operatorname{dim} \mathrm{x}_{\mathrm{i}}\right)=\left(\mathrm{n}_{\mathbf{i}}\right), \mathrm{i}=1,2, \ldots, 7$.
Then the A - lattice M , which corresponds to x has the following form:

where N is the $3 \times n_{7}$-matrix $\left(\operatorname{Im} 7 \Phi_{1, \operatorname{Im} 7} 7 \Phi_{2}, \operatorname{Im} 7 \Phi_{3}\right)^{\mathrm{T}}$. It is clear that $R^{\text {n4 }}$ and Im $7 \Phi 1$ are related by $4 \Phi 1, R^{\text {ns }}$ and $\operatorname{Im} 7{ }^{\Phi}{ }^{2}$ are related by $5 \Phi 2$, and $R^{n 6}$ and $\operatorname{Im} 7 \Phi 3$ are related by $6 \Phi 3$.
Some examples of Λ - lattices: It is enough to give for each Λ - lattice the block N and the relations indicated above.
(1) The following Λ - lattices are the lattices, which are correspond to the representations included in the general form (a) in $3.1(t=1)$, i.e. the representations $\mathrm{C}^{+3} \mathrm{Q}_{1}, \mathrm{C}^{+6} \mathrm{Q}_{1}, \ldots$. See also the general form (a) of roots in $2.1(\mathrm{t}=1)$.

Note that we have used the following notations:
(i) $R — R_{i}$ means $r \times r_{i}(\pi)$ for all $r \in R, r_{i} \in R_{i}$
(ii)
 means $r=\left(r_{i} r_{j} \ldots+r_{t}\right)(\pi)$ for all $r \in R$ and $r_{s} \in R_{s}, s=i, \ldots, t$
(iii) $\mathrm{R}_{\mathrm{i}}=\mathrm{R}$ for all $\mathrm{r}=1,2, \ldots$ and the $\mathrm{R}^{\prime s}$ with the same index means there exists the relation $=(\pi)$ between the elements in $\mathrm{R}^{\prime s}$.
(2) The following Λ-lattices are the lattices, which correspond to the representations included in the general form (b) in $3.1(t=1)$, i.e. the representations $\mathrm{C}^{+} \mathrm{Q}_{1}$, $\mathrm{C}^{+4} \mathrm{Q}_{1}, \ldots$. See also the general form (b) of roots in $2.1(\mathrm{t}=1)$

$$
\text { Indecomposable Representations of Order of } \tilde{E}_{6}
$$

(3) $\mathrm{C}^{+2} \mathrm{Q}_{1}, \mathrm{C}^{+5} \mathrm{Q}_{1}, \ldots$ are:

The following Λ - lattices are the lattices, which correspnd to the representations included in the general forms (a), (b) and (c) in $3.1(t=4)$ see also (a), (b), (c) in 2.1 $(t=4)$), i.e. the representations $\mathrm{C}^{+} \mathrm{Q}_{4}, \mathrm{C}^{+\dagger} \mathrm{Q}_{4}, \ldots, \mathrm{C}^{+3} \mathrm{Q}_{4}, \mathrm{C}^{+4} \mathrm{Q}_{4}, \ldots$ and $\mathrm{C}^{+5} \mathrm{Q}_{4}$, $\mathrm{C}^{+11} \mathrm{Q}_{4}, \ldots$
(4)

(5)

(6)

REFERENCES

Dalb, V. and Ringel, C.M. 1976. Indecomposable representations of graphs and algebras. Memoris of American Mathematical Society Vol. 6. No. 173.

Reiner, I. 1975. Maximal Orders. Academic Press Inc. (London).
Ringel, C.M. and Roggenkamp, K.W. 1978/79. Indecomposable representations of orders and Dynkin diagrams. C.R. Math. Rep Acad. Soc. Canad. 1, No. 2: 91-94.

Ringel, C.M. and Roggenkamp, K.W. 1979. Diagramatic methods in the representation theory of orders. J. Algebra 60. No. 1: 11-42.

Indecomposable Representations of Order of \widetilde{E}_{6}
Roggenkamp, K.W. and Hobber-Dysom, 1969. Lattices over orders I. Lecture notes in Math. 115, Springer-Verlag.

Roggenkamp, K.W. 1970. Lattices over orders II. Lecture notes in Math. 142, Springer-Verlag.

