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ABSTRACT 

The extended Dynkin diagram 

is a valued graph. We are going to construct a Baechstrom order A associateed to E6• We 
prove, by constructions, that the order A of infinite lattice-type but can be listed 
(tame-type), i.e., we put all indecomposable A -lattices in finite number of general forms. 
Finally we give a method to obtain easily and directly the lattices from its associated 

representations. .... 
1. Baechstrom order of E6 

Ringel and Roggenkamp have introduced for each basic Bac~strom order a valued 

graph (4). 

In this section we construct an R-order A for E6 , where R is a complete valuation ring. 

The orientation and the numerical of the vertices of the diagram E6 are given as 

follows: 

1. .4 
2.~.5 
3.~.6 

.7 

* Deceased in December 1985. 



..... 
Indecomposable Representations of Order of E
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Let its modulation M be given as follows, 

isi = F and Fi = F i = F (F = Rhr where rr is the maximal ideal of R), 1 ::::::: i::::::: 3, 4::::::: j ::::::: 
7. 

We construct an R-order f, satisfying the conditions: 

7 
(i) M is hereditary and (ii) f /rad f = II (Fj)n as follows 

j = 4 

R R R R R R 
1T R R R R R 

r= 1T 1T R R R R 
1T 1T 1T R R R 
1T 1T 1T R R R 
1T 1T 1T R R R 

Then 

1T R R R R R 
1T 1T R R R R 
1T 1T 1T R R R 

rad r = 1T 1T 1T 1T 1T 1T 
1T 1T 1T 1T 1T 1T 
1T 1T 1T 1T 1T 1T 

F 0 0 0 0 0 
0 F 0 0 0 0 
0 0 F 0 0 0 and r /rad f= 0 0 0 F F F 
0 0 0 F F F 
0 0 0 F F F 

so the simple r /rad r -modules are: 

F 0 0 0 
0 F 0 0 

s4 = 0 'Ss = 0 , s6 F 'and s7 = 0 
0 0 0 0 
0 0 0 0 
0 0 0 F 

12 
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-Now we construct a Bachstrom order A of E6 , satisfying the conditions: 

(i) A c r 
(ii) Nrad A = II 3 Fi , Fi = F 

i = I 
(iii) rad A = rad f 

(iv) ·SJ. = f. @ S· = F 1 ~ i ~ 3, 4 ~ J. ~ 7, 
I IIA J ' 

as follows: 

a R R R R R 

11 B R R R R 

A= 11 11 y R R R 

11 11 11 a· 11 11 

11 11 11 11 ~ 11 

11 11 11 11 11 -y' 

where a = a' (mod 11), ~ = ~· (mod 11), and y =Y' (mod 11). 

2. The positive roots of E6. 
Let (G,d) be an extended Dynkin diagram, and let c be a Coxeter transformation of 
the vector space Q 0 of all vectors x = (xi)i E 0 over the rational field Q. Then all 
positive roots of negative, positive and zero defect with respect to c are the vectors 

(see [1]): 

(1) x = c-'-Pk, , 0 ~ r , 1 ~ t ~ n 

(2) x = c'-qkt , 0 ~ r , 1 ~ t ~ n and 

(3) X = Xo + rgii ' 0 ~ r ' Xo ~ gii ' a c X 0 = o, 

where ii is the canonic vector respectively. 

-In the case of E6 we have 

c = s1s2 ••• s7 the Coxeter transformation, 

c+ = s+ls+z ... s+7} 
The Coxeter functors, 

c- = s1-s-6 ... s-1 

and 

13 
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qt = St~ ... St-1 T} 
' 1 ::s:; t ::s:; 7 ' 

Pt = s,s6 . . . St-t T 

where T is the vector in QG defined by: 

Tt = 1 and Ti = o for all i ,& t. 

The defect of E6 with the given orientation has the following components: 

/-2 "1 
d = 3+--2----+ 1 

c '-2----+1 

2.1 The positive roots with negative defect: 

These roots are c+•qt , o ::s:; r, 1 ::s:; t ::s:; 7, we deduce the general forms as follows ( n ~ 
o): 

t = 1: there are three general forms: 

/2n+1 - n / 2n+1- n+1 
3n- 2n - n , 3n+1- 2n+1- n+1 

""-2n -n "·2n+1- n+1 

/2n+1-- n 
, 3n+2-2n+1- n+1 

'\2n+1 -- n+1 

t = 2: We obtain the roots by interchanging the edges (1-4) and (2-5) in the case (t = 
1) 

t = 3: Similarly by interchanging the edges (1 - 4) and (3-6) in the case (t = 1) 

t = 4: There are six general forms: 

1 2n-2 -n 
3n+1\2n+1- n, 

2n+1-n 

/2n+2-n+1 
3n+2'-... 2n+1-n , 

2n+1-n 

/2n+2- n+1 2n+1- n 
3n'. 2n - n ,3n+1( 2n+1- n+1, 

2n+1- n 2n+1- n+1 

/2n+1-n 
3n+3'. 2n+2- n+1 

2n+1-n 

/2n+1-n+1 
3n+2-2n+2- n+1 

'2n+2-n+1 

t = 5: We obtain the roots by interchanging the edges (1-4) and (2-5) in the case (t = 
4) 

t = 6: Similarly by interchanging the edges (1-4) and (3-6) in the case (t = 4) 

14 
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t = 7: There are two general forms: 

/2n+1-n 
3n+1" 2n+1-n 

2n+ -n 

/2n+2-n+1 
,3n+2..........._ 2n+2-n+1 

2n+2-n+1 

2.2 The positive roots with positive defect: 

These roots are c-rP, , o ~ r , 1 ~ t ~ 7. 

We deduce the general forms as follows (n ~ o): 

t = 1: There are three general forms 

/2n+1-n+1 /2n+1-n /2n+1-n+1 
3n+1-2n -n , 3n+2,2n+1-n+1, 3n+3, 2n+2-n+1 

'2n -n 2n+1-n+1 "-2n+2-n+1 

t = 2: We obtain the roots by interchanging the edges (1-4) and (2-5) in the case (t = 
1) 

t = 3: Similarly by interchanging the edges (1-4) and (3-6) in the roots of the case (t = 
1) 

t = 4: There are six general forms: 

/2n- n+1 
3n-2n- n. 

'-..2n-n 

/2n+1-n 
3n+1-2n -n 

'-2n -n' 

2n -n 
3n+1/ 2n+1-n+1 

'-2n+1-n+1 

/2n+1-n+1 
3n+2 '2n+1-n+1, 

2n+1-n+1 

/2n+2-n+1 /2n+1-n 
3n+2"'-. 2n+1-n+1, 3n+3'-2n+2 -n+1 

2n+1-n+1 2n+2-n+1 

t = 5: We obtain the roots by interchanging the edges (1-4) and (2-5) in the case (t = 

4) 

t = 6: Similarly by interchanging the edges (1-4) and (3-6) in the case (t = 4). 

t = 7: There are two general forms 

/2n--n 
3n+1-2n-n 

' 2n--n 

/2n+1-n+1 
, 3n+2'\2n+1-n+1 

2n+1-n+1 

15 
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3. Construction of all indecomposable representations with non-zero defect of E
6

• 

These representations correspond the roots calculated in the previous sections, we use 
the following notations: 

(i) FFF ... instead of the vector space F + F + F + .... , for any number ofF, where F = 
Rhr. Also the vector of the representations is denoted by its dimensions, e.g. FFF: = 
3. 

(ii) The linear mappings of the representations are: 

(a) 1: F - F , 11: F F - F F ... , ... 

f - f (f1, f2) ---7- (ft. f2) 

(b) o: F - o or o - F , oo : FF - o or o - FF , 

(c) 1 = 1:F - FF , 1 = 1 = 1: F - FFF ' ... 
f - (f,f) f - (f,f,f) 

(d) +: F F - F , + +: F F F F - F F , ... 
(ft.fz) - (ft +fz) (ft.f2,f3,f4) - (ft +fz, f3+f4) 

Moreover, we may also combine the above notations, for example: 

10: F F - F or F - F F 
(ft. f2) - f1 f1 - (ft. 0) 

1 +: F F F - F F , 101: F - F F F , and 
(ft.fz,fJ) - (f1,f2+f3) f - (f,o,f) 

(10)• : 10101010 ... 10 (10 is repeated n times), similalry 

( + )" and the other ( ... )•. 

Since we have a one-to-one correspondence between all positive roots of non-zero 
defect and all indecomposable representations of non-zero defect, it is enough to give 
only the linear mappings 

jii , i = 1, 2, 3, j = 4, 5, 6, 7 of the general forms. 

3.1 The indecomposable representations C+Qt of E
6

• 

The general forms of these representations are: 

t = 1: There are three general forms: 

(a) 4 i 1 = o(10)• , 5 t 2 = (01)" , 6 f 3 = ( + )" , 

16 
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for n = o 
for n = 1 
for n;;:::2 

7 i 2 = 1 ~-fhfl +f2,f2 !~~ : : ~ l (-fhft+f2,f2,ghg2,···•gi>···•gn-1)for n ;;;::: 2 

(note that we have defined the linear mapping with its value of (fh···,fn) where 

gi = f2i - f2j.f-1 , f2i-H , f2i+2 , f2i+2• i = 1, 2, ... , n-1), 

and 

7 ~ 3 = 1 1 = 1 for n = 1 
{ 

0 for n = 0 

f11 f2, f2, gi, g2, ... , gj, ... , g:r--1 for n ;;;::: 2 

where 

gj = f2i +f2i+l , f2i+2 , f2i+2 , i = 1, 2, ... , n-1 

(b) 4!1 = l(lO)·, si2 = O(l)", 6§3 = (+)"O, 
7! 1 = 1(1 = 1 1)" ' 7 f 2 = 1(110)" 

7 i 3 ~ t,,g', g",, ... , g';, .. g'. ::: : : ~ 
where g"i = f2i , -f 2i-1 , f2i-2 + f2i + f2i-1 , i = l, 2, . . . , n 

(c) 4 it= O(+)", 5i2 = (+)n--1
, 613 = (01)'*1 

{

01 

tl II II 
0, ft. g h g 2•···• g n for n ;;;::: 1 

for n = 0 

where g"i = o , f2i_2+f2i , f2i+2 i = 1, 2, ... , n 
7! 2 = 11(1 = 11)" and 

{

11 for n = 0 
7~ 3;: 

ft. f2, gh ... , gi>···· gn . for n ;;;::: 1 

where gi = f2i+t , f2i+t , f2i-+2 , i = 1, 2, . . . , n. 

t = 2, t = 3: by the same interchanging as in the roots. 

17 
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t = 4 There are six general forms: 

(a) 4i 1 = (+1)" , 5i 2 = 0(+)" 

where hi = f2i-2+f2i-+t , i = 2, 3, ... , n , 
7 i 1 = 0(101)" , 7f 2 = 1(110)" and 7 f 3 = 1(011)" 

(b) 4 t 1 = ( + )'*1 
, 5 t 2 = 6 f3 in case (a) , 6 i 3 = 0( + )•, 

7 i 1 = 11(101)", 7 i 2 = 10(110)" and 7 f 3 = 10(011)" 

(c) 4t1 = O(+)"o, 5i2 = (+)n+ 1
, 6;3 = (+)'*1

, 

7 i 1 = (101)'*1 
, 7 t 2 = (110)'*1 and 7 t 3 = (011) .. +-1 

(d) 4t1 = 1(01)", 5t2 = (10)", 6i3 = (01)", 
7 i 1 = 111 = 111 = ... = 111 (111 repeated n once), 
7 i 2 = ( 1 = 11)• and 7 i 3 = (11 = 1)" 

(e) 4i1 = 0(10)", 512 = 1(10)", 6t3 = 1(10)", 
= 

7lq = 1(111)" , 7 i 2 = 1(1 = 11)" , and 
- ... = --lL., 

7 i 3 = 1(1,11)(ifif..(1,11)(11\) 

(f) 4 ; 1 = 1(10)" ' 5 f 2 = (10)'*1 
' 6 3 = (01)"+ 1

, 

= == 
1 ~ 1 = 1 = 1(111)" , 1 t2 = 11(111)(111) ... (111)(111), --=--~ 

n 

t = 5, t = 6: by the same interchanging as in the roots. 

t = 7: We have two general forms: 

(1) 4!1 = (+)"" 

for'n = o 
for n = 1 
for n ~ 2 

18 
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where li = f2i--2+f2i--1 , i = 2, 3, ... , n ; 
6~3 =52, 7i1 = 1(101)", 1i2 = 1(110)", and 7f3 = 1(011)" 

(b) 4i1 = (10)n+1
, 5 15 2 = 6i3 = (01)n+1 , 7i1 = 1t111111 ... i11, .._____, 

= -----n 

7f2 = 1l111111 ... llt111 '7,3 = 11+1111111 ... 111, 
= 

n 

- -3.2 The indecomposable representations CQt of E6• 

The general forms of these representations are: 

t = 1 We have the following three general forms: 

(a) 4 91 = 1(01)• , 5 f 2 = (10)(01)n---1 
, 6 i 3 = (10)• , 

7 9 1 = 1101 (11 = 1)n---1 , (n =t= o) 

forn=o 
forn=1 
forn=2 
forn;;:::3 

where mi = -f2i-+4 f2i+l , f2i+2, i = 1, 2, ... , n - 2, 

0 

1=11=1 
forn=o 
for n = 1 

where m\ = f2i--1 , f2i+1+f2i-t4 , f2i , i = 2, ... , n-2 

(b) 4 i 1 = o( + )", 

for n = o 
for n = 1 
for n ;;::: 2 

,where m"i =-f2i + f2i+3 , 1, 2, ... ,n-1 

19 
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for n = o, 7 t 1 = 01(011)", 

for n ;::::: 1 

for n = o 
for n = 1 
for n = 2 
for n ;::::: 3 

(c) 

where mi = f2i+f2i+2i+3 , f2i-2• f2i-t , i = 3, ... , n-1 
and 7~ 3 = (1 = 1 (110)") 

{ 

01 
010 
010( +)n-It 

1(10)" ' 5 t 2 = 

for n = o 
for n = 1 
for n ;::::: 2 

6f3 = (+)n--I '791 = (1 = 1 (101)") 

for n = o 
for n ;::::: 1 

where IDi = f2i-t , f2i-2 , o , i = 1, 2, ... , n 

and 

l :~:4,f2,o,f3,f4 f1 ,f4,f2,f5+f6,f3,f4,o,f5,f6 

ft.f4,f2,f5+f6,f3,f4,n3, ... ,ni> ... ,nm b, f2n-+1• f2n+2 

where ni = -(f2i+1+f2i+2), f2i-t, f2i , i = 3, ... ,n. 

t = 2, t = 3: by the same interchanging as in the roots. 

t = 4: we have the following six general forms: 

(a) 

11 for n = 1 , 5 9 2 = ( + )" 
{

o for n = o 

11( + )n--1 for n ;::::: 2 

{ ~ , ... ,o,, ... ,o~1 ,!1 ,!, 

20 
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where oi = f2i+f2i+h i = 1,2, ... ,n-1, 
7f1 = (110)", 7i2 = (011)" and 7i3 = (101)" 

(b) 4t1 = O(Ol)", 5f2 = (10)·, 6'3 = (10)", 1i1 = 1(11 = t)·, 

7 i 2 = loii for n = 1, 
{ 

o for n = o 

(c) 

1011 = 111 = 111 = ... = 111 = 111 for n ;;::a: 2 

,and 7 i 3= (1 = 11)•. 

where oj = f2i_1+f2i-2 , i = 1, 2, ... , n-1, 

for n = o 
for n ;;::a: 1 

6 i 3 = 1( + )• , 7 9t = 0(011)" , 7 i 2 = 1(101)• and 7 t 3 = 1(110)• 

(d) 4 it = 1(10)• ' 5 92 = 0(10)• '6 f3 = 0(10)•, 

for n = o 
for n = 1 , 7 i 2 = 01(1 = 11)• 
for n ;;::a: 2 

{ 

10 -
10 11 = 1+1 
10 11 - 1-1 - 11 - 1+1 
10 11 = 1-1 = 11 = 1-1 = ... - 11 - 1-1 = 11 - 1-r 

(e) 

for n = o 

' 5 i 2 = 1( + )• ' 6 i 3 = 1( + )•, 
for n ;;::a: 1 

for n = o 
' 7 t 2 = 10(110)•, 

for n ;;::a: 1 

and 7 il! 3 = 01(110)•. 

(f) 4 + 1 = 0(10)• ' 5! 2 = (01)'*1 
' 6 (i 3 = (10)'*1 ' 

711 = 001(1 = 11)" ' 7 92 = (11 = 1)'*1• 

and 

21 
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{
ill 
111 = 111 = 111 : = 111 = 111 

n+l 

t = 5 , t = 6: By the same interchanging as in the roots. 

t = 7 We have following two general forms: 

(a) 4f1 = (+)", 5!2 = (01)", 613 = (10)", 

{ 

o for n = o 

1 = 1 = 1+1-=(1 = 1+1 - =l)Jt-1 for n ~ 1 

for n = o 

forn~l 

{: - 110 (110)-' 

for n = o 

forn~l 

and 

{ :11 (01 I+ I) (011 +1) -~- (ol I + I) :, n ;. I 
n-1 

4 t 1 = 1( + )" ' 5 t 2 = 
{

1 
1+ 
1(01)" 

forn=o 
forn = 1, 
forn~2 

= {10 
7ft = 1 = l(lol+l)" ,712 = 10-1 -1 1 

10(1 = 1 = 1+1)" 

and 

7 t 3 = 01' (011 + 1 )(011 + 1) .. (011 + 1) 
"' n 

forn=o 
for n = 1 
forn~2 

4. The regular representations of E6: 

The regular representations of E6 include the homogeneous and the nonhomogeneous 
regular representations. Therefore we give first the simple regular representations and 
then the indecomposable regular representations. 

22 
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4.1: The simple regular representations of~: 

For E6 we have the following eight simple regular representations: 

4.2: The indecomposable regular homogeneous representations of E6• 

We construct these representations for n ;::1:: 2, they can be summarized in the following 
two cases: 

Case 1: n is odd 

t 1 = (F E9 F E9 ... EB F ) ® F-+ FEB F ESF E9 ... E9 F E9F 
(fh f2, ... , f0 ) xm1 -+ (f1 +f2), f3, f4, ... , fu. f1) m1 

12 = (FEB F E9 ... EB F ) ® F-+ FEB F E9 FEB ... E9 F EBF 
(ft. f2, ... , f0 ) xm2 -+ (ft. f2, f3, ... ,fn-h fu)m2 n 

(Cl)n = {(f1'1+f'2), f'3, f',4, ... , f'u. f'1), (f't. f'2, ... ,f'0 ), (o,o, ... ,o) 
j(f't.···•f'n) (F)"} 

(~)n = {(ft.f2,••••fn), (ft.f2•···•fn),(fh f2, ... ,f0 ) 

j(ft.f2,···•f3n) E F"} + (Cl)n 

(Ci)n = C1 (i = 1, 2) in the case dim U = dim V = n 

Case 2: n is even. 

t1: (FffiFE9 ... E9F)®F-+FffiFE9FE9FffiFE9 ... E9FE9F 
(ft. f2, ... , f0 ) xm1 -+ (f1+f2,o,f3,+f4,o,f5+f6, ... ,f0 _ h fu.o)m1 

23 
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'2: (FEf)FEf) ... ffiF )®F- F®FEBFEBF®FEf) ... FEBF®F 
(ft. f2, ... , f0 ) X n - (o,f1,+f2,o,f3+f4,o, ... ,fn-3+fn-2•o, 

(ft+f2+ ... +f0 ))m2 

C1 = {(f't+f'2,o,f'3+f'4, o, ... , f'n-t+f'mo) , (f't,f'2, ... ,f'n}, 

n 
(~ I (f't.···,f' 0 } E F'} 

~ = { (o,f1 +f2,o,f3+f4,o, ... ,fn-3+fn-4,o,ft +f2+ ... +fn}, 

(ft.f2, ... ,f0 },(ft,f2,···•fn}i(ft.···•fn} E F'} + Ct 

5. A method of constructing theA - lattices: 

One can construct at once the A- lattices, where A is the Baechstromorder of E6 • 

Using the following method: 

Let x = (xt. x2, ... , x7 , j t i, i = 1, 2, 3, j = 4, 5, 6, 7) be a representations ofE6 , and 

let 

dim x = (dim xi) = (ni) , i = 1, 2, ... , 7. 

Then the A - lattice M, which corresponds to x has the following form: 

n7 

Rn4 R.s Rn6 R ... R 

~ R"s R•6 R ... R 

~ 11"'5 Rn6 R ... R 

M= ~ ~ 1T"6 

1T"4 1TnS 1Tn6 

~ ~ 1T"6 N 

~ 1TnS 11"'6 

where N is the 3 x n7 - matrix (Im 7 i 1, Im 7 t2, lm 7 i 3} T.It is clear that R"4 and Im 
7! 1 are related by 4 I 1, R"5 and lm 7i 2 are related by 5 t 2, and R"6 and Im 7 !3 are 

related by 6 ! 3. 

Some examples of A -lattices: It is enough to give for each A -lattice the block Nand 

the relations indicated above. 

(1) The following A - lattices are the lattices, which are correspond to the 
representations included in the general form (a) in 3.1 (t = 1}, i.e. the representations 
c+30t. C'-60t. .... See also the general form (a) of roots in 2.1 (t = 1). 
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R 

R 
I 
R R 1T R 

R 
N = \ 

-Rl R1+Rz Rz ;Rz-R3 R3+~ 

. R1 Rz Rz Rz+R3 ~ 
--....I ; "'-.._/ 

. R ; R 
·~ ! n = 1 

n = 2 
n = 3 

R 
I 
R 

Note that we have used the following notations: 

1T 

(i) R -- Ri means r x ri (1r) for all r E R, ri E Ri 

means r = (riri ... +rt) (1r) for all 
r E R and rs E Rs , s = i , ... , t 

R 

R 
I 
R 

R 
I 
~~··· 
R6~ 

I 
I 
I 
I 

(iii) Ri = R for all r = 1, 2, ... and the R'' with the same index means there exists the 
relation = (1r) between the elements in R'•. 

(2) The following A -lattices are the lattices, which correspond to the representa
tions included in the general form (b) in 3.1 (t = 1), i.e. the representations c+Qh 

c+'Qh . See also the general form (b) of roots in 2.1 (t = 1) 

R R 
I I 
R R-R 

N= 

R R 

,1\ Rz 
I "/ 
l R 
.!..v-1 

n.= o 

R 
I 
R 

R 

1T 

n = 2 

R 
I 

R-R 

R 

R 
I 
R 

25 
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1T 

R 
I 

R-R 

R 
I 

R R 

R 

1T 
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R R R 

rrR+{\ L\ L\ . 
rg R 

1T R+R R 1T R+R R 

N= I\ R R R 
/'\ 1\ /'\ 

R-R R R-R R R-R R ... 
lR R R R R R R R R R/R . 
I I I I I 

R/ 
I 

I R' R I I R I I I I .. I I ln=o I I I "' I n=1 I .__ 
n=2 

The following A - lattices are the lattices, which correspnd to the representations 
included in the general forms (a), (b) and (c) in 3.1 (t = 4) see also (a), (b), (c) in 2.1 
(t = 4)), i.e. the representations c+Q4, C+7Q4, ... , c+3Q4, c+'Q4, ... and c+5Q 4, 

c+IIQ4, ••• 

(4) 

R R R 
/\. I ""' /\. R R R rr R R R R R rr N= 

R 1T R R 1T R R 1T R R . 

: ~R7-l---R'7J---_R~ 
~ I I 
n-o I ' - I I 
L ___ n_=:_l __ -v ! 

n=2 
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(5) 

(6) 

N= 
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