
Qatar Univ. Sci. J. (1991), 11: 33 - 44 

S - COMPACTNESS VIA IDEALS 

By 

M.E. ABD EL-MONSEF, E.F. LASHIEN and A.A. NASEF 
Tanta University, Tanta, Egypt. 

ABSTRACT 

Compactness modulo as an ideal has not been widely studied. Many new sorts of 
weak compactness have been introduced to topological spaces in the last twenty 
years but have not been studied using ideals. So, the main aim of our work is to 
study relations between ideals and some types of weak compactness. We initiate 
types of compactness modulo an ideal that generalize semi-compactness, S­
closeness, S-Lindelofness and other types of compactness. Moreover, we study 
some of their properties and characterizations. 

INTRODUCTION AND PRELIMINARIES 

The concept of compactness modulo an ideal was first introduced by Newcomb [27] 
in 1967, and Rancin [32] in 1972 and was studied by Hamlett and Jankovic [17] in 
1990. In this paper, we use the concept of semi-open sets [21] to introduce new sorts 
of compactness modulo an ideal, namely SI-compactness and countably SI­
compactness. Throughout this note, (X;r) and (Y,o") (or simply X andY) denote 
topological spaces on which no separation axiom is assumed unless explicitly stated. 
Let W be a subset of X. Ch(W) (resp. lntT(W)) will denote the closure (resp. 
interior) of W with respect to T (we will omit T if there is no possibility of 
confusion). The complement of W will be denoted by (X-W). A subset W of X is 
said to be semi-open [21] (resp. preopen [24], a-open [28], ~-open [1]) ifW C Cl 
(Int (W)) (resp. W c Int (Cl(W)), W c Int (Cl (Int (W))), W c Cl (Int (Cl (W)))). 
The complement of a semi-open set (resp. preopen) is called semi-closed [21] (resp. 
preclosed [24]). The intersection of all semi-closed sets containing W C X is called 
the semi-closure [12] of Wand denoted by s-Cl(W). Recall that W is said to be 
regular open (resp. regular closed) ifW = Int (Cl (W)) (resp. W = Cl(Int(W))). W 
C X is said to be regular semi-open (Cameron, 1978 [10] if there exists a regular 
open set U of X such that U C W C CI(U). The family of all regular open (resp. 
regular closed, semi-open, preopen, a-open, ~-open) sets of (X, T) is denoted by 
RO (X,T) (resp. RC(X, T), SO(X, T), PO(X, T), Ta, ~O(X, T)). It is shown in [28] 
that Ta is a topology on X and T C Ta. Given a set X, a collection I of subsets of X is 
called an ideal [20] on X if: 
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(i) A E I and B ~ A implies B E I (heredity), and 
(ii) A E I and B E I implies A U B E I (additivity) 

If X E I, then lis said to be a proper ideal. Observe that in this case {A: X-A E I} 
is a filter, and hence proper ideals are sometimes called dual filters. We will denote 
by (X;r,I) a nonempty set X, a topology Ton X, and an ideal I on X. The following 
notations will be used in this paper: 

T(A) 

T[A] 

The simplest ideal on X 
The ideal of finite subsets of X 
The ideal of countable subsets of X 
The ideal of nowhere dense sets in (X, T) 
(W E In if lot (CI(W)) = <!>) 
The relative (or subspace) topology on A ~ X 
The restriction of I to A, i.e. 
~A = {E n A : E E I}. Note that ~A is an ideal [17] 
The simple extension of T by A ~ X, where, 
T(A) = {G u (G'nA) : G,G' E T, A E T} [22] 
The local discrete extension of T by A where 
T[A] = {U-B : U E T, B ~ A) for each A ~ X [34] 
The filter extension of T by a filter :J on X where 
T( J ) = {U n F : u E T, F E :J } [ 6] 

Given a function f: (X, T) ~ (Y, cr), f is said to be irresolute [13] (resp. ~-irresolute 
[23]) if for every semi-open (resp. ~-open) set B ~ Y, f-1(B) is semi-open (resp. 
~-open) in X, and f is said to be pre-semi-open [13] if for every semi-open set W ~ 
X, f (W) is semi-open in Y. A subset W of X is said to be semi-compact [16] (resp. 
RS-compact [30], S-closed [29], N-closed [11], Quasi H-closed (abbreviated QHC 
[31]) subset relative to X if for each semi-open (resp. regular semi-open, 
semi-open, open, open) cover {Ua : a E \7} of W, there exists a finite subfamily 
\7 0 of \7 such that W ~ U {Ua: a E \7 0 } (resp. W ~ U {lot (Ua): a E \7 0 }, W ~ 
U {CI(Ua) :a E \7 0 }, W ~ U {lot (CI(Ua)): a E \7 0 }, W ~ U {CI (Ua): a E 
\7 0 } ). A space is said to be semi-compact [16] (resp. S-closed [33], s-closed [15] if 
each semi-open cover of the space contains a finite subcollection whose union 
(resp. closures, semi-closure) covers the space. A space is said to be QHC [31] 
(resp. strongly compact [2]), a-compact [25], ~-compact [3] if every open (resp. 
preopen, a-open, ~-open) cover of the space contains a finite subcollection whose 
closure (resp. union) covers the space. A space (X,T) is called Lindelof (resp. 
S-Lindelof [14]) if every open (resp. semi-open) cover contains a countable 
subcover. A space is called lightly compact [8] if any countable open cover of the 
space has a finite subfamily, the closures of whose members cover the space. Recall 
that a space (X, T) is resolvable [19] if there is a dense subset D ~X for which X­
Dis also dense. A space which is not resolvable is called irresolvable. Spaces having 
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only the property that their dense subsets are open are called submaximal [9]. 
Clearly every submaximal space is irresolvable. A space (X,T) is called extremely 
disconnected (briefed E.D.) if the closure of every open set is open. A subset W of 
a space (X, T ,I) is said to be !-compact [27] if for every open cover {U a : a E \1} of 
W, there exists a finite subcollection {Uai: i = 1,2, ... , n} such that W- U {Uai: i 
= 1 ,2, ... , n} E I. (X, T, I) is said to be !-compact if X is !-compact as a subset. A 
space (X,T,I) is said to be countably !-compact or countably-compact modulo I) 
[27], [18]iff for every countable open cover {Ua : a E \1} of X there exists a finite 
subfamily {Uai: i = 1, 2, ... , n} such that X-U {Uai: i = 1,2, .. , n} E I. Observe 
that the usual definition of countable compactness coincides with countable < <!> > -
compactness. 
Countable !-compactness ( countably-compact modulo I) has been studied exten­
sively in [18] and [27]. 

SJ-COMPACT SPACES 

Definition 2.1: A space (X, T, I) is said to be SJ-compact if for every semi-open 
cover {U a : a E \1} of X there exists a finite subfamily {U ai : i = 1,2 .. , n} such 
that X - U {U ai : i = 1 ,2 .. , n} E I. 

Remark 2.1: From the above definition, we observe that: 

(i) The class of SJ-compactness is contained in the class of !-compactness. 

(ii) A space is S < <!> > - compact iff it is semi-compact. 

Theorem 2.1: A space (X, T) is semi-compact iff (X, T, fr) is SJ1 compact. 

Lemma 2.1: [28] SO (X,T) is a topology iff (X,T) is extremely disconnected. 

Lemma 2.2: [4] If (X,T) is submaximal, and extremely disconnected, then T =SO 
(X,T) = PO (X,T) = Ta = ~0 (X, T). 

Theorem 2.2: Suppose (X, T) is a space. Consider the following: 

(i) (X, T) isS < <!> > -compact. (ii) (X, T) is SJ1 compact. (iii) (X, T) is !-compact. 
(iv) (X, T) is compact. (v) (X, T) is semi-compact. (vi) (X, T) is strongly compact. 
(vii) (X, T) is a-compact. (viii) (X, T) is ~-compact. 

1. If (X, T) is E.D., then the properties from (i) to (v) are equivalent. 

2. By adding the condition of submaximality then the properties from (i) to (viii) 
are equivalent. 

The following results are immediate and the obvious proofs are ommitted. 
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Theorem 2.3: Let (X, T, I) be Sf-compact. If J is an ideal on X with I~ J, then (X, 
T, J) is SJ -compact. 

Theorem 2.4: If (X, T, If) is SJ1 compact, then (X, T) is s-closed. 

Corollary 2.1: (i) If (X, T, Ir) is SJ1 compact, then (X, T) isS-closed; (ii) If (X, T, If) 
is SJ1 compact, then (X, T) is QHC. 

Theorem 2.5: Let (X, T, I) be a space. If In~ land (X, T) isS-closed, then (X, T) is 
Sf-compact. 

Proof: Immediate. 

Theorem 2.6: Let (X, T) be a space. Then (X, T) is Sin-compact iff (X, T) isS-closed. 

Proof: (Necessity) Suppose that {U a : a E \7} is a semi-open cover of X, then 
there exists a finite subcollection {Uai: i = 1,2 .. , n} such that X- U {Uai: i = 1, 
2 .. , n} E In which implies X= U {Cl(Int (Uai)): i = 1,2 .. , n} = <f>. Hence X= U { 
Cl (Int (Uai)) : i = 1,2 .. , n} = U {Cl (Uai)): i = 1,2 .. , n}. 

(Sufficiency): Let {Ua : a E \7} be a semi-open cover of X, then there exists a 
finite subcover {Uai: i = 1,2 ... , n} such that X= U {Cl (Uai)): i = 1,2 ... , n}. So 
X- U {Cl (Int (Uai)): i = 1,2 ... , n} = <f>. Hence lot (Cl(X-U {(Uai): i = 1,2 .. , 
n})) =<!>,and therefore XC - U {(Uai): i = 1,2 .. , n} E J"' which completes the 
proof. 

Theorem 2.7: If (X, T, fc) is Sfc-compact, then (X, T) is S-Lindelof. 

Proof: Assume that {Ua: a E \7} is a semi-open cover of X, then there exists a 
finite subfamily {Uai): i = 1,2 .. , n} such that X - U {(Uai): i = 1,2 .. , n} E fc 
which means that X-U {(Uai): i = 1,2 .. , n} has a countable subcover. Hence (X, 
T) is S-Lindelof. 

Corollary 2.2: If (X, T, Jc) is Sic-compact, then (X, T) is Lindelof. 

The following lemma is very useful in studying the preservation of Sf-compactness 
by certain types of functions. 

Lemma 2.3: [17] Let f: (X, T, I)~ (Y, CJ') be a function. Then f (I)= { f (E): E E 1} 
is an ideal on Y. 

Theorem 2.8: Let f: (X, T, I) ~ (Y, CJ') be an irresolute surjection. If (X, T) is 
Sf-compact, then (Y, CJ') is S f(l)-compact. 

Proof: Let {V a : a E \7} be a CJ'-semi-open cover of Y, then {f-1 (V a) :a E \7} is a 
T-semi-open cover ofX by irresoluteness. By hypothesis, there exists a finite 
subcollection, {f-1 (V ai): i = 1,2 ... , n}. Such that X-U {f-1 (V ai): i = 1,2 .. , n} E 
I. This implies, Y - U {V ai: i = 1,2 .. , n} E f(l). Therefore (Y, CJ') is Sf 
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(1)-compact. 

Theorem 2.9: Let f: (X, T) ~ (Y, o) be [3-irresolute from an Sf-compact space X, in 
which every [3-open set is closed into Y. Then f (X) is Sf(l)-compact relative toY. 
The proof is clear. 

The following lemma gives a sufficient condition for the inverse image of an ideal to 
be an ideal. 

Lemma 2.4: [17] Iff: (X, T) ~ (Y, (T) is an injection and J is an ideal on Y, then 
f-1(J) is an ideal on X. 

Theorem 2.10: Iff: (X,T) ~ (Y, (T, J) is a pre-semi-open bijection and (Y, (T) isS 
J-compact, then (X, cJ-) is S t-1(1)-compact. 

The proof is similar to the proof of Theorem 2.8. 

Theorem 2.11: Let (X, T, 1) be a space. If (X, T*') is Sf-compact, then (X, T) is 
Sf-compact, where T*' (1) is the topology generated by the subbasis {U-E : U E 
SO (X) and E E 1} [7]. 

Proof: The result is immediate from the observation that T ~ T*' (1) (see [7]). 

Theorem 2.12: Let (X, T, 1) be a space. The following are equivalent: 

(i) (X, T) is Sf-compact. 

(ii) For every family {Fa: a E V } of semi-closed sets of X for which n {Fa: a E 
V} = <j>, there exists a finite subfamily {F ai: i = 1,2 .. , n} such that n {F ai: i = 1,2 
... , n} E I. 

Proof: To show that (i) implies (ii), let {Fa: a E V} be a family of semi closed sets 
for which n {Fa: a E V} = <j>. Then {X-Fa: a E V} is a semi-open cover of X. 
By (i), there exists a finite subcollection {X-F ai : i = 1,2 ... , n} such that X - U 
{(X - Fai): i = 1,2 .. , n} E I. Hence n {F ai: i = 1,2 ... , n} E I. 

(ii) implies (i): Suppose that {Ua: a E V} is a semi-open cover of X. Then 
{X-Ua: a E V} is a collection of semi-closed sets and n {(X-Ua): a E V} = <j>. 
Hence there exists a finite subcollection {(X - Uai): i = 1,2 ... , n} such that n 
{(X-Uai): i = 1.2 .. , n} E I. From De Morgan's Law, we have X- n {(Uai): i = 
1,2 .. , n} E I. Thus (X, T) is Sf-compact. 

Remark 2.2: If I = { <l>} in the previous theorem, we obtain the standard 
characterizations of semi compactness. 

Theorem 2.13: If (X, T, 1) is Sf-compact, then for every cover {Ua: a E V} of 
regular closed sets of X, there exists a finite subfamily { (U ai: i = 1,2 .. , n}, such 
that X - U {U ai : i = 1 ,2 .. , n} E I. 
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Theorem 2.14: For a space (X, T, I), if (X, T) is Sf-compact, then any preopen cover 
{Ua: a E v} of X has a finite subcover {Uai: i = 1,2 ... , n}, such that 
X - U {Cl(Uai): i = 1,2 ... , n} E I. 

Proof: Follows directly from the fact that, the closure of each preopen set is 
semi-open. 

Corollary 2.3: If (X, T, I) is Sf-compact, then any preclosed family {P a : a E \1} for 
which n {P a: a E \1} =<!>,has a finite subfamily {P ai: i = 1,2 ... , n} such that n 
{(Int (P ai>: i = 1,2 ... , n} E I. 

Lemma 2.5: [28] If (X, T) is a space, then: SO (X, T) = SO (X, Ta). 

Theorem 2.15: A space (X, T, I) is Sf-compact iff (X, Ta, I) is Sf-compact. 

Proof: Let {U a: a E \1} be a Ta - semi-open cover of X. Then there exists a finite 
subfamily {Uai: i = 1,2 .. , n} such that X-U {Uai: i = 1,2 .. , n} E /(Lemma 
2.5). Hence, (X, Ta) is Sf-compact. The converse is obvious. 

Theorem 2.16: The property of being Sf-compact is a semi-topological property. 

Proof: Obvious from Lemma 2.5. 

Lemma 2.6 [5]: If A is T-dense and T-semi-open, then SO (X, T) =SO (X, T (A)). 

Theorem 2.17: A space (X, T, I) is Sf-compact iff (X, T (A), I) is Sf-compact, where 
A is T-dense and T-semi-open. 

Proof: Follows directly from Lemma 2.6. 

In 1969, J.S. Miodnszewski, et al. [26] proved the following lemma: 

Lemma 2. 7: If T ~ T', then RO (X, T) = RO (X, T') iff Cl T (W) = CIT, (W) for every 
wE 'T

1
• 

By making use of Lemma 2. 7, we introduce the following result: 

Corollary 2.4: For a space (X, T) and A~ X, we have: RO (X, T) = RO (X, T [A]), 
consequently, RC (X, T) = RC (X, T [A]), if An U = 0 for every U E T and U ~ 
X. 

Theorem 2.18: Let (X, T) be Sf-compact. Then (X, 'T [A]) is Sf-compact if An u = 
<!>, for every U E T and U ~ X. 

Proof: Obvious, by using corollary 2.4. 

Lemma 2.8 [6]: If (X, T) is an irresolvable space, T ( J) is a filter extension ofT by a 
filter Jon X and FE SO (X, T), for every FE J , then SO (X, T) =SO (X, T ( J )). 
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Theorem 2.19: If (X, T, I) is SI-compact and T( J) is a filter extension ofT by a filter 
Jon X, then (X, T( J ), I) is SI-compact iff (X, T) is irresolvable and FE SO (X, T) 

for every F E J . 

Proof: Let {Ua: a E 'V} be a semi-open cover of X by T( J )-semi-open sets. Then 
{Ua: a E 'V} is aT-semi-open cover. Since (X, T) is irresolvable (Lemma 2.8) and 
F E SO(X, T) for every F E J , and (X, T) is SI-compact, there exists a finite 
subcollection {U ai: i = 1,2 ... , n} such that X - U {Uai : i = 1,2 ... , n} E I. Hence 
(X, T ( J ), I) is SI-compact. 

SI-COMPACT SUBSETS RELATIVE TO A SPACE 

Definition 3.1: A subset W of a space (X, T, I) is said to be SI-compact relative to X 
if for every semi-open cover {Ua: a E 'V} of W, there exists a finite subcollection 
{U ai : i = 1 ,2 ... , n} such that W - U {U ai : i = 1,2 ... , n} E I. 

Theorem 3.1: The following are equivalent for a subset W of X. 

(i) W is SI1 compact. 
(ii) W is S < <1> > - compact. 
(iii) W is semi-compact. 

Theorem 3.2: For a subset W of an E.D. space X, the following are equivalent: 

(i) W is Sit - compact relative to X. 
(ii) W is RS-compact relative to X. 
(iii) W is S-closed relative to X. 
(iv) W is N-closed relative to X. 
(v) W is QHC relative to X. 

Theorem 3.3: If Wb i = 1 ,2, are SI-compact sets relative to a space (X, T, I), then 
W 1 U W 2 is an SI-compact set relative to X. 

Corollary 3.1: The intersection of two open sets having SI-compact complements is 
also an open set having an SI-compact complement. 

Theorem 3.4: Let (X, T) be a space with an ideal I on X and let W E Ta. W is 
SI-compact iff (W, T I W) is SI I W-compact. 

Proof: (Necessity) Let {Ua n W} beaT I W-semi-open cover of W, where Ua E 
SO (X, T) for each a. Now {Ua} is aT-semi-open cover ofW and hence there exists 
a finite subfamily {Uai} such that W- U {Uar i = 1,2 ... , n} E I. This implies W 
n (W - U {U ai: i = 1,2 ... , n}) E I n W, and we have W n (W - U {U ai= i = 1 ,2 
... , n}) = w- u {(W n uai): i = 1,2, ... , n} E II w. Thus, (W, T I W) is SII 
W-compact. 
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(Sufficiency) Let {U :a E V} beaT-semi-open cover ofW. Then {Ua n W} is a,. a 
I W semi-open cover of W. Hence there exists a finite subfamily {Uai n W} such 
that w - u {Uai n W: i = 1,2, ... , n} E I I w k I. Hence w is Sf-compact. 

Theorem 3.5: A subset W of a space (X, T, I) is Sf-compact relative to X, if for 
every cover {Ua: a E V} of W such that Ua E ~O(X), there exists a finite 
subcollection {Uai: i = 1,2 ... , n} such that W- U {Cl (Uaj): i = 1,2 ... , n} E I. 

COUNTABL Y Sf-COMPACT SPACES 

Definition 4.1: A space (X, T, I) is said to be countably Sf-compact or countably 
S-compact modulo Iiff for every countable semi-open cover {Ua: a E V} of X, 
there exists a finite subfamily {U ai : i = 1,2 .. , n} such that X - U {U ai : i = 1,2 .. , 
n} E I. 

Remark 4.1: From the above definition, we observe that: 

1. The ordinary definition of S-Lindelof coincides with countably S < <1> > 
-compactness. 
2. Every Sf-compact space is countably Sf-compact. 
3. A space (X, T) is S-Lindelof iff it is countable Sit-compact. 
4. Every countably Sf-compact space is countably /-compact. 

Theorem 4.1: If (X, T, I) is countably Sf-compact and J is an ideal on X such that 
I !: J, then (X, T, J) is countably SJ-compact. 

Theorem 4.2: If (X, T, I) is countably Sf-compact and S-Lindelof, then (X,,., I) is 
Sf-compact. 

Definition 4.2: [27] Given a space (X, ,. , I), lis called a,. boundary if,. n I= { 0 } . 

Theorem 4.3: If (X, T, I) is countably Sf-compact and lis a,. boundary, then (X, T) 
is lightly compact. 

Proof: Assume that {Uai : a E V } is a countable open cover of X, then it is a 
semi-open cover, there exists a finite subcollection {Uai : i = 1,2 ... , n} such that X 
- U {Uai: i = 1,2 ... , n} = E E I. Since lis aT-boundary, then Int (E) = 0, 
implies, Int (X-U {Uai: i = 1,2 ... , n}) = Int (E)= 0. Hence X= U {Cl(Uai~: i 
= 1,2 ... , n}. Therefore (X, T) is lightly compact. 

Theorem 4.4: The following are equivalent for a space (X, ,., wi). 

(i) (X, T) is countably Sf-compact. 
(ii) For every countable family {Fa : a E V} of semi-closed sets such that 
n { F :a= 1,2 ... , oo} = <1> there exists a finite subfamily {Fai: i = 1,2 .. , n} such a 
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that n {Fai : i = 1,2 ... , n} E I. 

Proof: It is similar to the proof of Theorem 2.12. 

Corollary 4.1: If (X, T) is countably SI-compact then for every countabie family 
{Fa: a E V} of regular closed sets such that n {Fa : a = 1,2 ... , oo} = <f> there exists 
a finite subfamily {Fai : i = 1,2 ... , n} such that n {Fai : i = 1,2 ... , n} E I. 

The obvious proofs of the following theorems are omitted. 

Theorem 4.5: Let f: (X, T, I)~ (Y, cr) be an irresolute surjection. If (X, T, I) is 
countably SI-compact, then (Y, cr) is countably S f(I)-compact. 

Theorem 4.6: If f. (X, T) ~ (Y, cr, J) is a pre-semi-open bijection and (Y, cr) is 
countably SJ-compact, then (X, T) is countably S t-1(J)-compact. 
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