COMPLETENESS OF DISTRIBUTIVE p-ALGEBRAS

By

S. EL-ASSAR and M. ATALLAH
Dept. of Mathematics, Faculty of Science,
Tanta University, Egypt

Key words: Distributive p-Algebras.

ABSTRACT

According to the triple characterization of distributive p-algebras which is given by T. Katrinák, we characterize the completeness of distributive p-algebras.

INTRODUCTION

It is known that there can be assigned to every distributive lattice with pseudocomplementation (= distributive p-algebra) L a Boolean algebra B (L) and a distributive lattice D (L) with 1 (see [4], [6] and [7] A problem for distributive p-algebras is considered solved if it can be reduced to two problems: One for Boolean algebras and one for distributive Lattices with 1, (Gratzer [4]). Except for Stone algebras (see [1], [2]) characterization of completeness of various classes of p-algebras is still an open question. In the present paper we discuss the completeness of a distributive p-algebra L by means of the triple B (L), D (L) and Φ (L).

PRELIMINARIES

A universal algebra $\langle L; v, \Lambda, *, 0, 1 \rangle$ of type $\langle 2, 2, 1, 0, 0 \rangle$ is called a p-algebra iff $\langle L; v, \Lambda, 0, 1 \rangle$ is a bounded lattice and the unary operation*(of pseudocomplementation) is defined by $\times \Lambda$ a = 0 iff $\times \leq a^*$ for each a \in L. The p-algebra is called distributive if the lattice $\langle L; v, \Lambda, 0, 1 \rangle$ is distributive. The standard results on p-algebras may be found in [3], [4] and [5].

The following rules of computation (see, e.g. (3), (4). will be used frequently.

- (1) $a \le b$ implies $b^* \le a^*$;
- (2) $a \le a^{**}$;
- (3) $a^* = a^{***}$;
- (4) $a^* \wedge a^{**} = 0$;
- $(5) (avb)^* = a^* \wedge b^*,$

- (6) $(a \wedge b)^{**} = a^{**} \wedge b^{**}$
- (7) $(a \land b)^* \ge a^* \lor b^*$;
- (8) $(a \ v \ b)^{**} = (a^{**} \ v \ b^{**})^{**}$

The identities (1) - (8) hold in any p-algebra.

The Stone algebra is a distributive p-algebra which satisfies the additional identity $\times^* v \times x^{**} = 1$

In any p-algebra L we can define the set of closed elements B (L) = $\{x : x = x^{**}\}$. It is known that < B (L); ∇ , \wedge , * , 0,1> is a Boolean algebra, where a ∇ b = $(a^* \wedge b^{**})$. Then the set of dense elements D(L) where D(L) = $\{x : x^* = 0\}$ forms a filter, namely a dual ideal of L. Let F(D(L)) denote the poset of all filters of D(L) ordered by set inclusion. For a distributive p-algebra L, F(D)L)) is a distributive lattice. Finally define the mapping

(L): B (L)
$$\rightarrow$$
 F(D (L))
where \mathfrak{P} (L): a{ x \in D (L): $\times \geqslant a^*$ }

= $(a^*) \cap D(L)$, A ϵ B (L), where (a^*) is the filter of L generated by a^* .

For a distributive p-algebra L, the sublattice of dense elements D(L) is distributive and contains 1. The mapping $\varphi(L)$ is a $\{0,1,\vee\}$ homomorphism of B (L) into F (D(L)), and for a \in B(L) we have

$$a^*(L)$$
 $\mathcal{P}(L) = (a v a^*).$

The following theorem shows the role played by B(L), D(L) and $\Phi(L)$.

THEOREM A (Katriňák (7))

A distributive p-algebra L is determined up to isomorphism by the triple < b (L), D (L), φ (L) >

According to Theorem A, any $x \in L$ is determined by the pair < a, d>, where $a \in B$ (L), $d \in D_a$, $d_a = \{d \in a \mathcal{P}(L): d \le d_a\}$, and

$$d_a = ava^*$$
.

For
$$x$$
, $y \in L$, $\times \approx \langle a,d \langle y \approx \langle b,e \rangle$

Then $x \le y$ iff $a \le b$ and $d \le e \varphi_a$, where the map φ_a : $D(L) \to D(L)$ is given by $d_a = dva$, $a \in B(L)$ $d \in D(L)$.

MAIN DESULTS

LEMMA 1 (Frink, (3))

For any complete p-algebra L, the Boolean algebra of closed elements B (L) is complete.

PROOF

Let HCB(L) and x be a lower bound of H in L. The fact $x \le a \underline{v}$ a \underline{e} H implies that $x^{**} \le a^{**} = a$, so x^{**} is also a lower bound of H. Consequently, if $\underline{x} = \underline{\inf_L H}$, then $x = x^{**}$ and $x = \inf_B (L)H$. Hence, B(L) is a complete lattice.

Now, we can formulate.

THEOREM 1

A distributive p-algebra L is complete iff the following conditions are satisfied;

- (i) B (L) is complete,
- (ii) D (L) is conditionally complete,
- (iii) for any subset ECD (L) the set

 $B_E = \{a: a \in B(L) \text{ and } \inf_{D(L)} E \mathcal{G}_a\}$ exists} has a greatest element in B(L).

PROOF

Let L be a complete distributive p-algebra. B (L) is complete by Lemma 1, and (ii) is clearly satisfied. For (iii), let $E \subset D(L)$. Put $s = \inf_L E$. We claim that $s^{**} = \max B_E$. Indeed, since $s \leq d$ for all $d \in E$, $svs^* \leq dvs^* = dvs^{***} = d \varphi_s^{**}$ for all $d \in E$. Since $svs^* \in D(L)$, we infer that $E \varphi_s^*$ has a lower bound in D(L); hence $\inf_L E \varphi_s^{**} = \inf_D(L)E$ s^{**} and thus $s^{**} \in B_E$. Now, consider any $b \in B_E$. This means that $\inf_{D(L)} E \varphi_b^* = d_b$ exists. We have $d_b \land b \leq (d \lor b^*) \land b = d \land b \leq d$ for all $d \in E$.

Thus $d_b \wedge b \leq s$ since $s = \inf_L E$.

Consequently, $b = b^{**} = (d_b \land b^{**}) \le s^{**}$, that is, $b \le s^{**}$ and indeed $s^{**} = \max B_E$

To prove the converse, assume the validity of the conditions (i) - (iii) and consider MCL. Put

$$\begin{split} B_1 &= \{m^{**}; m \, \boldsymbol{\epsilon} \, M\}, \, E := \{m \, v \, m^*; \, m \, \boldsymbol{\epsilon} \, M\}, \, a := \inf_{B(L)^{^{\text{!`}}}} B_1 \, (using \, (i)), \, b = \text{greatest} \\ \text{element } c \, \boldsymbol{\epsilon} \, B \, \, (L) \, \text{ such that } \inf_{D(L)^{^{\text{!`}}}} E_{^{\text{!`}}} \, c \, \text{ exists } \, (using \, (iii) \, \text{ and } \, \text{ finally } \, d_b := \inf_{D(L)} E \, \phi_b. \end{split}$$

We claim that $a \wedge b \wedge d_b = in_L M$. For this end we have:

(1) we have, for all $m \in M$, $a \le m^{**}$ and $d_b \le m \vee m^* \vee b^*$. Hence $a \land b \land d_v \le m^{**} \land b \land (m \vee m^* \vee b^*) = m \land b \le m$,

thus $a \wedge b \wedge d_b \leq M$

(2) Let $z \le M$. Hence $z \le m \ v \ m^* \ v \ b^*$ for all $m \in M$, Consider $z \ v \ d_b$, $z \ v \ d_b \in D(L)$ and $z \ v \ d_b \le m \ v \ m^* \ v \ b^*$ for all $m \in M$, thus $z \ v \ d_b \le d_b = \inf_{b(L)} E \ \mathcal{P}_b$ and we conclude $z \le d_b$.

Moreover $z \le m$ implies $z^{**} \le m^{**}$ for all $m \in M$, hence $z \le z^{**} \le a = \inf_{N(L)} B_1$ and we conclude $z \le a$.

Consider
$$E \varphi_z vb = \{m \ v \ m^* \ v \ (z^* \land b^*); \ m \in M\}$$

= $\{(m \ v \ m^* v \ z^*) \land (m \ v \ m^* \ v \ b^*); \ m \in M\}$

 $(zvz^*) \wedge d_b \in D(L)$. Further, $z \vee z^* \leq m \vee m^* \vee z^*$ for all $m \in M$. So $(z \vee z^*) \wedge d_b \leq (m \vee m^* \vee z^*) \wedge (m \vee m^* \vee b^*)$ for all $m \in M$. Consequently, $E \not \varphi_{zvb}$ has a lower bound in D(L) and by (ii) $\inf_{D(L)} E \not \varphi_{zvb}$ exists. But $E \not \varphi_{zvb} = E \not \varphi_{(zvb)}^*$ So (iii) gives $b \geq (z \vee b)^{**} \geq z \vee b$ and we conclude $z \leq b$. Furthermore $z \leq a \wedge b \wedge d_b$.

COROLLARY 1

Let L be a distributive p-algebra. If B(L) and D(L) are complete then so is L. In this case $B_E = B(L)$ which has 1 as a greatest element.

COROLLARY 2

For the distributive p-algebra L, if B(L) is finite and D(L) is conditionally complete then L is complete.

In this case B_E is an ideal of a finite Boolean algebra, and by this B_E is necessarily principal.

REFERENCES

- [1] Chen C.C. and G. Gratzer. 1969. Stone Lattices I, Construction Theorems, Canad. J. Math. 21, 884-894.
- [2] Chen C.C. and G. Gratzer. 1969. Stone Lattices II, Structure Theorems, Canad. J. Math. 21, 895-903.
- [3] Frink. O. 1962. Pseudo-complements in semi-lattices, Duke Math. J. 29, 505-514.
- [4] Gratzer G. 1971. lattice Theory. First concepts and distributive Lattices, W.H. Freeman and Co.
- [5] Gratzer G. 1978. General Lattice Theory. Series on Pure and Applied Mathematics, Academic Press, N. Y; Math. Reihe, Band 52, Academic Verlag, Basel.
- [6] Katrinák T. 1970. Die kennzeichnung der distributiven pseudo Komplementaren Halbverbande, J. reine angew. Math. 241, 160-179.
- [7] Katrinák T. 1972. Uber eine Konstruktion der distributiven pseudo Komplementaren Verbande, Math. Nachr, 53, 85-89.