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ABSTRACT 

The capillary-gravitodynamic instability of a self-gravitating fluid cylinder (radius Ro) dispersed in a self-gravitating 
medium of negligible motion has been developed. General stability criteria are derived, upon utilizing the Lagrangian second 
order differential equations concerning the energy principle as the fluid is stationary. As the fluid is axially streaming we have 
used the macroscopic perturbation technique of small increments. The stability eigenvalue relations are discussed analytically 
and the results are confirmed numetically. Both the capillary and the self-gravitating forces are strongly destabilizing in the 
axisymmetric mode m = 0 as long as the perturbed wavelength /.., is longer than the circumference 21tRo of the fluid cylinder 
where m is the azimuthal wavenumber. The model is capillary-gravitodynamic stable in the domains (/.., :o; 2 1t Ro, m = 0) of 
symmetric disturbance and (0 < /.., ·, oo, m * 0) of asymmetric disturbances. The streaming has strong destabilizing influence 
not only in the m = 0 mode but also in the modes m * 0. The self-gravitating and capillary forces have destabilizing influences 
on each other for some states in m = 0 but they have pure stabilizing influences on each other for all states in m * 0 modes. In 
m = 0 mode the instability of the model is very fast when the capillary and gravitational forces are acting all together and 
become more and more pronounced as the fluid is axially streaming. The latter, in addition, decreases the stable domains 
whether the disturbance ism= 0 or/and m * 0. · 
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INTRODUCTION 

The capillary instability of a full fluid cylinder in 
vacuum has been studied experimentally by Bassat [ 1] and 
Plateau [2]. Rayleigh [3] derived its dispersion relation 
and laid the theoretical foundation for such and related 
problems. These studies along with several extensions to 
different problems are documented by Drazin and Reid 
[4]. Its importance is not only for the academic view but 
also for its practical applications in the astronomical 
domains as well as in the industrial fields such as spray 
drying, fuel atomization and the production of controlled 
surfaces for heat and mass transfer in industrial processes. 
The self-gravitating instability of a fluid cylinder in a self­
gravitating vacuum was studied for the first time by 
Chandrasekhar & Fermi [5) by using the method of 
presenting solenoidal vectors in terms of poloidal and 
toroidal quantities. This has been done in the 
axisymmetric mode only. Moreover, they indicated the 
application of such study and its correlation with the 
breaking-up of the spiral arms of galaxies. The pioneering 
works of Rayleigh [3] and Chandrasekhar & Fermi [5] 
had been carried out with the assumption that the fluid is 
stationary in the unperturbed state. The self-gravitating 
instability of a full fluid jet acting upon different forms of 
external electrodynamic or/and electromagnetic forces has 
been recently investigated by Radwan [6], [7], [8] and [9]. 

The purpose of the present work is to investigate the 
stability of a fluid jet under the combined effects of the 
capillary and self-gravitating forces, dispersed in a self­
gravitating medium of negligible motion. This has been 
carried out in two categories: in the first we utilized the 
Lagrangian second order differential energy equations 
while in the second category we have assumed that the 
fluid is streaming and used the method of linear 
perturbation technique for solving this problem. 

Capillary gravitodynamic instability of a fluid cylinder 

Consider a circular gravitational fluid cylinder (Radius 
R,) dispersed in a self-gravitating vacuum in the 
unperturbed state. The fluid is assumed to be 
incompressible, inviscid and of uniform density p. The 
forces acting on the present problem are the self­
gravitation, pressure gradient and the capillary forces. We 
shall utilize the cylindrical polar coordinates (r, <p, z) 
system with the z-axis coinciding with the axis of the 
fluid cylinder. For an infinitismal departure from the 
m1perturbed state. every physical quantity '11 (r, <p, z: t) 
may be expressed in the form 

'11 (r; <p, z; t) = 'llo (r) + f>(t) 'Ill (r, <p, z) (1) 

where 'llo(r) denotes the value of '11 in the unperturbed state 
while '111 (r, <p, z) is an infinitismal increment due to 
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disturbance. f>(t) is the amplitude of the perturbation 
applied along the cylindrical interface at time t, given by 

f>(t) = f> 0 exp ( cr t) (2) 

where w(= f>(t) at t = 0) is the initial amplitude and cr is 
the temporal amplification of the perturbation, if cr (= ico, 
i = (-1)112 is imaginary then co/2n is the oscillation 
frequency. Thence, the deformation in the interfacial of 
the fluid cylinder could be written in the form 

r = R, + f>(t) R, cos (k.z + m<p) (3) 

The second term in the right side of (3) is the elevation of 
the surface wave normalized with respect to R, and 
measured from the unperturbed level surface where k (any 
real number) is the longitudinal wave number and m (an 
integer) is the transverse wave number. 

Here, we intend to analyze this problem by utilizing the 
second order differential equation of Lagrange 

(4) 

with L = n- v (5) 

is the Lagrangian function and f> (dot over it means time 
derivative) is Lagrangian variable for this problem where 
n is the change in the kinetic energy of the model and V 
is the change in the total potential energy of the system. 
The latter is due to the self-gravitational and capillary 
forces influence on the present model. V can be written as 

V=Va+Vr (6) 

where Va is the gravitational potential energy and Vr is 
that due to the curvature pressure of the capillary force. 

Now, suppose that the amplitude of the deformation i 
is increased by 8f> then. consequent to this infinitismal 
increase in tl1e amplitude of tl1e deformation. the change 
8V a in the gravitational potential energy can be identified 
by evaluating the work done in redistribution of tl1e fluid 
required to effect the change in f>. For evaluating this 
work it is necessary to specify in a quantitative marmer 
the redistribution which does take place. 

An arbitrary deformation of an incompressible fluid 
can be thought of as resulting from Lagrangian 
displacement f;; applied to each point of the fluid. We 
propose that the perturbed motion is irrotational, since the 
irrotational motion of a non-viscous fluid is persistent ([ 4] 
p. 16). Therefore, the Lagragian displacement of the fluid 
could be derived from a scalar function tfl, say 
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(7) 

Equation (7) with the incompressibility condition 

~. 1;;=0 (8) 

show that the displacement potential\}' satisfies Laplace's 
equation 

(9) 

From the view point of the (q>, z)-dependence of the 
deformation [see (3)] and based on the linear perturbation 
technique. every physical quantity could be expressed as 

\}' (r, q>, z; t) = g(t) R(r) cos (kz + mcp) (10) 

By the use of (10), equation (9) yields 

(11) 

The solution of the ordinary differential equation (11) 
is given in terms of the ordinary Bessel functions of 
imaginary argument. Thereafter, under the present 
circumstances, the non-singular solution of equation (9) is 
being 

\}'=A f>o Im (kr) exp(cr t) (kz + mq>) (12) 

where Im(kr) is the modified Bessel function of first kind 
of order m. The constant A of integration can be 
determined by applying the boundary condition that the 
radial component of I;; must reduce to Ro cos(kz) + mcp) at 
r = Ro, thus 

A= Rj(k I'm (kRo)) (13) 

Hence 

and consequently the corresponding displacement 81;; 
which must be applied to each point of the fluid in order 
to increase the amplitude of the deformation by 8f> is 
given by: 

8~ = [R 0 & l(k I'm (kR0 ))]V {Im (kr)cos (kz+mtp)} (15) 

Now, due to that additional deformation 8f>, the change in 
the gravitational energy 8V G (per unit length) can be 
obtained by integrating the work done by the displacement 
8~ in the gravitational potential 8\}'. Thus we have 
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R 0 (l+cos(kz+mtp)) 

o v G = 2;rp « J (o'. Y' b'f') r dr)) (16) 
0 

where the angular brackets signify that the quantity 
enclosed should be averaged over all q> and z. 

The basic equations which govern the gravitational 
potentials \}'fluid and \}'vac are 

(17) 

(18) 

where y is the gravitational constant. The solution of these 
equations, in taking into account the deformation (3), 
following similar steps as before, is given by 

\}'fluid= -n yp r + f>B Km(kRo) Imm(kr) cos (kz + mcp) 
(19) 

\}'vac = 2 1t yR~ p 1n (RjR) + f>C Im (kRo) Km(kr) 

cos (kz) + mq>) (20) 

where Km(kr) is the modified Bessel function of the 
second kind of order m. The constants B and C can be 
determined by applying the condition that the 
gravitational potential \}' and its derivative must be 
continuous across the perturbed surface (3) at r = Ro, from 
which we get 

B = C = 4 n y pR ~ (21) 

Hence the change in the gravitational potential \}'flUid is 
given by 

\}'fluid= 4n ypR~ Km (kRo) f>(t) Im(kr) cos(kz + mq>) (22) 

It is worthwhile to mention here that the solutions (19)­
(21) for \}'fluid and \}'vac lead to those obtained by 
Chandrasekhar and Fermi [5]. 

Substituting from (15) and (22) into (16), yields 

8 VG = 2 n 2 R~ y p2 (f> 8f>) 

(
1-

2 ~m (x)) f[(rm (z) l +(I+ m2z-2 )(1m(z) )
2 ]z dz (23) 

xi mCx) o 

where x (= kRo) is the dimensionless longitudinal 
wavenumber and z = kr. 

Using the differential identity (which follows from 
Bessel equations) [10] 
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equation (23) gives the change in the fluid gravitational 
potential energy (per unit length in the z-direction) in the 
form 

(25) 

By integrating this equation from zero to 8 we get 

2 4 2 2 VG=2n yR 0 p 8 (26) 

The potential energy of a system arising from the 
capillary force is simply proportional to the total 
superficial area. In a cylindrical polar coordinates (r. (p, z) 
frame, the superficial areaS (say) is given by 

(27) 

where the angular brackets signify that the quantity 
enclosed should be averaged over all cp and z. By a resort 
to equation (3), the superficial area S per unit length (in 
the z-direction) is finally given by 

(28) 

The change in the potential energy VT (per unit length in 
the z-direction) of the fluid cylinder is 

2 2 2 2 Vr =- (n R 0 T/2) (1 - m - x ) 8 (29) 

where T is the coefficient of the surface tension. Thus, the 
change in the total potential energy (see equation (6), on 
using (26) and (29). is finally given by 

V = [[4;r
2 

y Rcip 2(~- Jm(x)Km(x))- (1ZRoT 12)(1- m2
- x 2

)] 8
2 

(30) 

In order to use the present theoretical technique based 
on the energy principle and to apply equation (4) we have 
to find out the change in the kinetic energy of the model 
under consideration. Since the Lagrangian coordinate 8 is 
a function of time, each element of the fluid will execute 
motions. These could be derived from the Lagrangian 
displacement 

ar; 
u = --=-- at (31) 
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so that the velocity vector of the fluid cylinder is 

The change in the total kinetic energy n (per unit 
length) of the fluid cylinder associated with the motion 
specified by (32) is 

where use has been made of the differential identity (24). 

By substituting from (3) and (33) into (5), the 
Lagrangian function L could be clearly constructed and 
then equation (4) along with equation (2), at once, yields 

(34) 

Equation (34) is the required general eigenvalue relation 
for a self-gravitating fluid cylinder endowed with surface 
tension and dispersed in a self-gravitating medium of 
negligible motion. It relates the temporal amplification cr 

with the fundamental quantities (4n y p) -112
, (TJ(R6 p)r 

112 as a unit of timet, the modified Bessel functions Im(x) 
and Km(x) of the first and second kind of order m, the 
wavenumbers x and m and with the problem parameters p 
, T, R, and r. By means of this relation the characteristics 
of the present model could be identified. The neutral 
(marginal) stability is obtained by just setting cr = 0 in 
(34). The dispersion relation (34) is a linear combination 
of the dispersion relations of a self-gravitating fluid 
cylinder ambient with a self-gravitating vacuum and that 
of a fluid cylinder submerged in a vacuum acting upon the 
capillary force. 

If we propose that T = 0 and at the same time m = 0, 
then relation (34) yields 

2 X I 1 (x) l 
a =47ryp--(1 0 (x)K 0 (x)--) 

I 0 (x) 2 
(35) 
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That coincides with the dispersion relation derived for 
first time by Chandrasekhar and Fermi [5] in the 

axisymmetric mode m = 0 of disturbances. 

If we neglect the influence of the surface tension, the 
relation (34) reduces to 

which is valid for all axisymmetric m = 0 and non­
axisymmetric m * 0 modes of disturbance. 

In the absence of the self-gravitating force, the relation 
(34) becomes to 

(37) 

which is the capillary classical dispersion relation, of a 
full liquid jet in vacuum, derived for the first time by 
Rayleigh [3] 

In order to examine the effect of the capillary or/and 
the gravitating forces on the instability of the fluid 
cylinder we have to study some properties of the Bessel 
functions. 

From the viewpoint of the recurrence relations (see [10]). 

2 F' m (x) = F m+l (x) + F m-l (x) (38) 

where F' m (x) stands for I'm (x) and - K' m (x) while Fm(x) 

stands for Im(x) and Km(x), and utilizing the fact, for x -:F 

0, that 

we can observe that 

I'm (x) > 0 , K'm (x) < 0 

Therefore, 

xi' m (x) 
-"'---'--'- > 0 , 
I m (x) 

By the use of (41) in (37), we deduce that 

cr0
2 > 0 as 0 < x < 1 

cr2 :s;;Oas<XJ>x:2: 1 
in m= 0 mode 

(39) 

(40) 

(41) 

(42) 

(43) 
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crm 2 
::;; 0 as 0 < x < <XJ in m *- 0 modes (44) 

where cr2 in equation (37) is replaced by crm2 in order to 
distinguish between the different modes of disturbance. 
This means, in the absence of the self-gravitating forces, 
that the fluid cylinder is unstable only in the domain 0 < x 
< 1 for axisymmetric disturbances m = 0. It is stable as m 
= 0 in the domain 1 < x < <XJ and also stable for all 
disturbed states in the non-axisymmetric modes m * 0. 

Again using the identities (41) and (42) in equation 
(36), the oscillation and instability states may be 

identified. 

In the non-axisymmetric modes m :2: 1 it is well known 
for x -:F 0 that 

(45) 

This means that cr2 
::;; 0 for all x -:F 0 values in m :2: 1. In 

other words in neglecting the surface tension effect the 
self-gravitating fluid jet is purely stable in all disturbance 
states of modes m :2: 1. In the axisymmetric mode m = 0 it 
is found that the value of Io(x) Ko(x) may be greater or 
smaller than 1/2 and that depends on x * 0 values where 
the characteristic equation I0 (x)K0 (x)= 1/2 is 
corresponding to the marginal states as cr = 0. Therefore, 
in such kind of perturbation the model is stable or 
unstable according to certain restrictions. Numerically it 
is found that the fluid cylinder is gravitationally unstable 
in the domain of 0< x < 1.0668 and stable in all other 
domains 1.0668 ::;; x < <XJ. 

From the foregoing results of separate cases as the 
model is acted upon by the capillary force only or is acted 
upon by the gravitating forces only, we can deduce the 
influence of the capillary force on the self-gravitating 
instability of the fluid cylinder. 

In the general case in which the fluid cylinder is under 
the combined effect of the capillary and gravitating forces 

we predict the following results: 

The fluid cylinder is purely capillary-gravitodynamic 

stable in the non-axisymmetric modes m:? l, while in the 
m = 0 mode it is stable or unstable according to 
restrictions. The latter could be determined by studying 
the general stability criterion (34) numerically in the most 
critical mode m = 0 of disturbances. To carry out such 
study, it is found convenient to rewrite (34) in the 
dimensionless form 

_!!}__= xl'm(x) (lm(x)Km(x)-112)+M xi'm(x) (1-mz -xz) 
4Jry p lm(x) lm(x) 

(46) 
where 
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(47) 

is a dimensionless quantity since both the fundamental 

quantities (4n y p) and T(R~p r1 have the same unit of 

(timer2. The eigenvalue relation (46) has been computed 
numerically for the m = 0 mode for regular values of x :f:. 0 
for different values of M to determine the influence of the 
curvature pressure on the self-gravitating instability of the 
fluid cylinder. The numerical data are collected, 
classified, tabulated and presented graphically, see figure 
(1). Many characteristics can be deduced from these 
curves. It is found that the domain of instability is 
increasing with increasing M, this means that the 
capillary force increases t~e self-gravitating instability of 
the fluid cylinder. This is obvious from the following brief 
considerations: 

(i) Corresponding to M = 0, 0.25, 0.5, 1.0 and 2.0 it is 
found that the maximum mode temporal amplification 
values are (cr (4n y pr112

max = 0.24529, 0.29657, 0.34199, 
0.42828 and 0.54045 at x = 0.60, 0.65, 0.65 and 0.70. 
This shows how much the area under the instability 
curves are increasing with increasing M values. 

(ii) Corresponding to M = 0, 0.25, 0.5, 1.0 and 2.0, it is 
found that the unstable domains, respectively, are 0 < x < 
1.0668, 0 < X < 1.03911, 0 < X < 1.03253, 0 < X < 
1.02604 & 0 < x < 1.02021. This shows that the unstable 
domains are slowly decreasing horizontally and this can 
be ignored relative to the much vertical increasing, see 
figure (1). Therefore, there is always capillary­
gravitodynamic unstable domains whatever is the value 
(small or large) ofM. 

We conclude that the model of a full fluid cylinder 
ambient with vacuum is always unstable in the 
axisymmetric mode m = 0 of disturbance whether it is 
acted upon by the capillary or/and the self-gravitating 
force. While it is stable in m = 0 mode if x::::: 1.0668 and 
also completely stable in the non-axisymmetric modes m 
::::: 1 of disturbances for all short and long wavelengths of 
perturbation when x :f:. 0. 

a 
~4nyp 

~·0 ] ., 
0·! 

•·7 ... 
6·5 . 

0·~ 

0·1 

Fig. (1) 
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Gravitodynamic instability of a streaming fluid 
cylinder 

Basic equations 

Consider a uniform infinite cylinder (radius R,) of an 
incompressible inviscid fluid. In the initial unperturbed 
state the fluid is assumed to be streaming uniformly with 
the velocity 

U0 = (0, 0, U) 

along the cylindrical coordinates (r, <p, z) with the z-axis 
coinciding with the axis of the fluid cylinder. 

The self-gravitating fluid cylinder (density p) is 
ambient with self-gravitating medium of negligible 
motion. The fluid jet is acted upon by the capillary, self­
gravitating, inertia and pressure gradient forces. The 
fundamental equations describing the motion of the fluid 
particles are a combination of the ordinary hydrodynamic 
equations together with those of Newtonian's 
gravitational field theory. For the problem under 
consideration they are: the vector gravitohydrodynamic 
equation of motion, continuity equation, of the curvature 
pressure due to the capillary force. Under the present 
circumstances these equations can be written as 

P ( au +(u. V)u)=-Vp+pV'P at - -
v ._!!=0 
v2 'Pint = -4n Y P 
V2'Pext= 0 

p.= T(V.N.) 

(3.1) 

(3.2) 
(3.3) 
(3.4) 
(3.5) 

Here p and u are the fluid kinetic pressure and velocity 
vector. 'Pmt and 'Pext are the gravitational potentials 
interior and external to the fluid, y is the gravitational 
constant, p. is the curvature pressure due to the capillary 
force (surface tension coefficient T) influence and N. is a 
unit outward vector normal to the fluid boundary surface 
given by 

N. = V F (r, <p , z; t)f jVF(r, rp, z; t) j (3.6) 

where F(r, <p, z; t) = 0 is the boundary surface equation at 
timet. 

The unperturbed basic state is studied and the 
fundam~ntal quantities in this state are given by 

Tio = 'Pint + (pj p) = const 
Pos= T/R, 

\Hint 
ro =-nypr2 

'Pt':t = -TC y p R~ (1+21n(r/R
0

)) 

(3.7) 
(3.8) 

(3.9) 

(3.10) 



AHMED E. RADWAN 

where the conditions that 'Po and its derivative are 
continuous across the unperturbed boundary surface r = 

R, were applied to obtain (3. 9) and (3 .10) due to the 
solution of the differential equations (3.3) and (3.4) with 
zero derivative with respect to and z. Moreover, applying 
the condition that the total pressure must be balanced 
across the boundary surface r = R,, we obtain 

(3.11) 

where the physical restrictions Po > 0 at r = R, is 
identically satisfied due to the presence of the curvature 
pressure influence in this problem. 

Perturbation analysis 

Since we consider departures from an unperturbed 
right-cylinder shape of an incompressible fluid, a normal 
mode can be expressed uniquely in terms of the deformed 
surface. Suppose that the deformed interface is described 
by 

r = R, + s(t) R1 (3.12) 

with R1 = R,exp [i(kz + m<p)] (3.13) 

where k (a real number) is the longitudinal wavenumber 
and m (an integer) is the transverse wavenumber, note 
that R1 is the elevation of the surface wave measured from 
the unperturbed position and normalized with respect to 
Ro. s(t) is the amplitude of the perturbation given by 

s(t) = S 0 exp (crt) (3.14) 

where so = s(O) and cr is the temporal amplification of 
instability, if cr (= ico, i = (-1) 112 ) is imaginary then co/2n 
is the oscillation frequency of the stability states. For 
small departure from the unperturbed streaming state, 
every variable quantity Q (r, <p, z; t) may be expressed as 

Q (r, <p, z; t) = Qo (r) + s(t) Q 1 (r, <p, z) (3.15) 

where Q with suffix o indicates the unperturbed quantity 
while that with a suffix of I is an increment due to 
disturbances, Q stands for p, u, 'Pin\ 'Pext and N,. In view 
of these expansions, the perturbation equations are given 
by 

(cr + ikU) !!1 =- V IT1 

rr1 =- 'P ~~ + CP1ip) 

V. !!1 = 0 
v2 'Pmt = 0 

1 

v2 'I' ext= 0 
1 

(3.16) 

(3.17) 

(3 .18) 

(3.19) 

(3.20) 
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(3.21) 

Based on the linear perturbation technique and in view 
of the (<p, z)-dependence (3.13) and also from the 
linearized theory used for solving the stability problems of 
cylindrical configurations, we may express Q1 (r, <p, z) in 
the form 

(3.22) 

By the use of the expansions (3 .22), equations (3 .19) and 
(3.20) tum into the total ordinary second order differential 
equation 

_ 1 d ( dQt (r) r - r-=.!.....:....:... 
dr dr 

(3.23) 

where Q1* (r) stands for 'P f 1 (r) and 'P ~xt (r) . The 

solution of this equation is given in terms of the ordinary 
Bessel functions of imaginary argument. For the problem 
under consideration, apart from the singular solution, the 
solution of equations (3 .19) and (3 .20) are given by 

where Im and Km are the modified Bessel functions of first 
and second kind of order m; A and B are constants of 
integration to be determined. Combining equations (3.16) 
and (3.18), we obtain 

(3.26) 

In view of the expansion (3.22), using similar techniques 
as has been done for equation (3 .19) and (3 .20), the finite 
(as r ~ 0) solution of equation (3.26) is given by 

(3.27) 

from which, with the aid of equation (3 .16), we can easily 
write down the components of the perturbed velocity 
vector u1 (= (!!1r, u1'l', u1z)) e.g. 

-80Ck I (• ) u1r = . I m(kr)exp t(kz+mtp)+ut 
(u+tkU) 

(3.28) 

Eigenvalue relation 

The solution of the relevant perturbation equations 
(3.16)-(3.21) must satisfy appropriate boundary 
conditions across the perturbed interface (3 .12) at the 
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unperturbed boundary r = Ro. Under the present 
circumstances they are the following: 

(i) The gravitational potential 'I' and its derivative must 
be continuous on the boundary (12) at r = R,. These 
conditions yield 

A=B=4n ypR~ (3.29) 

where use has been made of the Wronskian relation 

X (I'm (x) Km (x)- lm (x) K' m (x)) = 1 (3.30) 

(ii) The radial component of the velocity vector !! must be 
compatible with the velocity of the boundary surface (12) 
at r = R,. This condition reads 

Or 
!"l:.u=- atr=R, - at (3.31) 

with 

(3.32) 

!"l: = !"l:o + 8 !"l:1 = (1, 0, 0)- 8 (0, im, ik R,) R1 (3.33) 

from which we obtain 

C'= -(cr+ikU)
2 

R 0 

xi'm(x) 
(3.34) 

where x(=kRo) is the dimensionless longitudinal 
wavenumber. 

(iii) The jump of the pressure across the surface (3.12) 
must be discontinuous by the curvature pressure p1 s at the 
unperturbed initial position r = R,. This condition gives, 
at once, the eigenvalue relation 

(3.35) 

DISCUSSION 

The eigenvalue relation (3.35) is a simple linear 
combination of the relations of a streaming fluid cylinder 
endowed with surface tension and of a self-gravitating 
streaming fluid cylinder dispersed in a self-gravitating 
medium of negligible motion. It contains the most 
fundamental information about the oscillation and 
instability of the present model of fluid jet. 
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The neutral (marginal) stability could be obtained from 
equation (3.35) such that cr = 0. The stability criteria 
(2.34)-(2.37) which are deduced in the first part of the 
present work on using the second order differential 
equation of Lagrange can be recovered from the general 
relation (3.35) with appropriate simplifications. 

Moreover, if we postulate that y = 0 but T =t- 0. the 

relation (3.35) reduces to 

(cr+tkU) =-- (1-m - x ) . 2 T (xl'm(x)) 2 2 

pR~ lm(x) 
(3.36) 

which is the capillary eigenvalue relation of a streaming 
fluid cylinder ambient with a medium of negligible 
pressure. 

If we assume that T = 0 but y =t- 0, the relation (3.35) 
reduces to 

which is the eigenvalue relation of a self-gravitating 
streaming fluid cylinder submerged in a self-gravitating 
medium of negligible motion. 

The relations (3.36) and (3.37) with U = 0 are clearly 
discussed in the first part of this paper. 

Since the streaming has a strong destabilizing 

influence for all x =t- 0 in all non-axisymmetric modes m =t­

O of perturbation and also in the axisymmetric (sausage) 
modem= 0, therefore we conclude the following: 

The streaming has the effect of increasing the capillary 
unstable domain (0 ::::; x < 1 in m = 0) and decreasing the 
stable domains (I ::::; x < oo, in m = 0) & (0 < x < oo in m ~ 
1) 

The discussions of the relation (3.37) show that the 
streaming has the influence of increasing the self-

gravitating unstable domain (0 ::::; x < 1.0668 in m = 0) 
and decreasing the stable domains (1.07 ::::; x < oo in m = 
0) & (0 < x < oo in m ~ 1). 

These results may help in discussing the general 
stability criterion (3.35). As the model is acted upon by 
the combined effect of the self-gravitating and capillary 
forces, we predict that the streaming influence will 
increase the capillary-gravitational unstable domains and 
decrease those of stability. This could be proved by 
numerical evaluation of the dimensionless relation 
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(c>+ikU) 2 

4try p 
fi,(x) Km(x) -1/2) + M(l- m2- x2)}x I'm(x) 

lm(x) 

(3.38) 

for different values of the streaming parameters. U* (= -
ikU (4n y pY112

) and M (see equation (2.47) in the most 
critical mode m = 0. The numerical data, for cr2/(4n y p) 
> 0 corresponds to the unstable states while those of 
stability corresponds to cr2/(4n y p) < 0. The results are 
tabulated and presented graphically. See figures (2) - (6). 
The numerical analysis and discussions reveal the 

following characteristics and features. 

For the same values of M, the unstable domains are 
fastly increasing while those of stability are 
simultaneously decreasing witl1 increasing U* ·values. 
This confirms the analytical results that t11e streaming is 
strongly destabilizing for all different states, see figures 
(2) - (6) and tllis can be realized from t11e following data. 

(i) When M = 0.25 it is found that for U* = 0, 0.3, 0.6, 
0.8 and 1.0 the unstable domains, respectively, are 0 < x < 
0.93911, 0 < X <1.18495. 0 < X < 1.46012, 0 < X < 

1.65136 and 0 < x < 1.8392 while those of stability are 

0.93911 :S:: X < oo. 1.18495 :S:: X < 00, 1.46012 :S:: X < oo, 

1.65136::::; x < oo and 1.8392::::; x < oo. See figure (3). 

(ii) When M = 0.5 it is found that for U* = 0, 0.3, 0.6, 
0.8 and 1.0 the unstable domains, respectively, are 0 < x < 
1.03252, 0 < X < 1.18105, 0 < X < 1.33274, 0 < X < 
1.47735 and 0 < x < 1.62021 while those of stability are 
1.03252 :S:: X< 00, 1.18105 :S:: X < oo, 1.33274 :S:: X< 00, 

1.47735::::; x < oo and 1.62021 ::::; x < oo. See figure (4). 

(iii) When M = 1.0: corresponding to U* = 0, 0.3, 0.6, 0.8 
and 1.0 it is found that the unstable domains, respectively, 
are 0 <X< 1.02604, 0 <X < 1.09035 0 <X< 1.22503, 0 < 
x < 1.3308 and 0 < x < 1.43745. While tlwse ofstability 
are 1.02604 ::::; x < oo, 1.09035 ::::; x < oo, 1.22503 ::::; x < oo, 

1.3308::::; x < oo and 1.43745 ::::; x < oo. See figure (5).' '· 

(iv) When M = 2.0: corresponding to U* = 0, 0.3, 0.6, 0.8 
and 1.0 it is found that the unstable domains are 0 < x < 
1.0202, 0 < X < 1.070112, 0 < X < 1.14309, 0 < X < 
1.22569 and 0 < x < 1.32269 while those of stability are 
1.0202 :S:: X < oo, 1.07011 :S:: X < 00, 1.14309 :S:: X < oo, 

1.22569::::; x < oo,. See figure (6). 

For the same values of U* the unstable domains are 
fastly vertically increasing (slowly increasing horizontally 
and could be neglected relative to the vertical increasing) 
and simultaneously the stable domains are decreasing 
with increasing M values. This can be clarified through 
the following data and results: 

(l) When U* = 0, we may refer to the first part of this 
paper. 
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(2) When U* = 0.3: corresponding toM= 0.25, 0.5, 1.0 
and 2.0 it is found that the unstable domains are 0 < x 
< 1.18105, 0 < x < 1.09035 & 0 < x < 1.070112 and 
their maximum mode of instability are 0.59621. 
0.63958, 0.71741 & 0.84045 at x = 0.6, 0.6, 0.7 and 
0.7 respectively. The stable domains are 1.18495::::; x 
< 00, 1.18108 :S:: X< 00, 1.09035 :S:: X< 00 & 1.0()1 :S:: X< 
00. 

(3) When U* = 0.6: corresponding to M = 0.25, 0.5, 1.0 
and 2.0 it is found that the unstable domains are 0 < x 
< 1.46014, 0 <X< 1.33274, 0 <X< 1.22503 & 0 <X 
< 1.14309 and their maximum mode of instability are 
0.89621. 0.93958, 1.01741 & 1.14045. The stable 
domains are 1.46012 ::::; x < oo, 1.33274 ::::; x < oo, 

1.22503 :S:: X< 00 & 1.14309 :S:: X< oo. 

(4) When U* = 0.8: corresponding to the same values of 
M as above it is found that the unstable domains are 0 
<X< 1.65136. 0 <X< 1.33274, 0 <X< 1.3308 & 0 < 
x < 1.2257 and their maximum mode of instability 
are 1.0962, 1.1396, 1.21741 & 1.24045. The stable 
domains neighbouring to the foregoing unstable 
domains are 1.65136 ::::; x < oo, 1.33274 ::::; x < oo. 

1.3308 ::::; x < oo & 1.22569 ::::; x < oo where the 
equalities are corresponding to the marginal 
stabilities. 

(5) When U* = 1.0: corresponding to M = 0.25, 0.50, l.O 
and 2.0 it is found that the unstable domains are 0 < x 
< 1.83916, 0 <X< 1.62021, 0 <X< 1.43745 & 0 <X 
< 1.32269 and their maximum mode of instability are 
1.29621, 1.33958, 1.4174 & 1.54045. The 
neighbouring stable domains to those unstable 
domains are 1.83916 ::::; x < oo, 1.62021 ::::; x < oo, 

1.43745 :S:: X< 00 & 1.32269 :S:: X< oo. 
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