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Abstract. In this paper, the variational iteration method (VIM) and the Adomian 
decomposition method (ADM) are presented for the numerical simulation of the population 
dynamics model with density-dependent migrations and the Allee effects. The convergence of 
ADM is proved for the model problem. The results obtained by these methods are compared to 
the exact solution. It is found that these methods are always converges to the right solutions 
with high accuracy. Furthermore, VIM needs relative less computational work than ADM. 

1. Introduction 
Recently much attention has been devoted to various numerical methods which do not require 
discretization of space-time variables or linearization of the nonlinear differential equations, among 
which the variational iteration method (see [2], [6], [9]-[13], [20]-[23] and the reference cited therein) 
and the Adomian decomposition method (see [1], [3], [5], [7], [8], [14] and the reference cited therein) 
are widely used for this purpose. Many authors pointed out that the variational iteration method has 
merits over other methods and can overcome the difficulties arising in calculation of Adomian’s 
polynomials in Adomian decomposition method (see [16], [17], [19] and the references therein). The 
aim of this paper is to develop VIM and ADM to simulate the solutions of the model of population 
dynamics with density-dependent migrations and the Allee effect [4], [18]. This model can be 
described by the transient non-linear advection-diffusion-reaction equation of the form:  

    0T   ,   X       F(U)U]
X
U

D(U)U[
XT

U
>Ω∈+

∂

∂
−Θ

∂

∂
−=

∂

∂
.                              (1) 

The unknown field  is the population density inT)U(X,U = ℜ⊂Ω  and T.  U changes in space 
and time due to the non-linear velocity field (U), Θ≡Θ the diffusion D and the intrinsic growth rate 

, which includes all local processes (such as birth, death and predation/harvesting).  F(U)
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The model (1) specifies that the spatial distribution is affected by two physical processes, the 
advection and the isotropic diffusion of Fickian type [4], [18]. Here, we also consider a biological 
mechanism on the advection process in order to include the case when the species purposely migrates 
in some particular direction due to some chemical communication. These assumptions yield the 
following non-linear velocity field 

U10(U) Θ+Θ=Θ
.                                                                     (2) 

In this speed of migration model (2),  is the density-independent migration velocity, which is 

known or might come from a hydrodynamic solver. The model (2) also assumes the existence of a 
density-dependent migration that varies linearly with the population density, where depends on the 

species taxis. We assume here, for simplicity, that the fluid is incompressible (  ) and 

 and the diffusion coefficient  D are constants, yielding  

0Θ
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div( 0)0 =Θ
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                                               (3) 

Consider the growth dynamics with Allee effects given by 

U))(K0K U(U~F(U)U −−= α
,                                                            (4) 

Where K  is the carrying capacity and is the measure of the Allee effects. When is constant, it is 

convenient to use the dimensionless variable 
0

K K

U/Ku =  so that (4) is re-written as: 

  , u)β)(1u(u αf(u) −−=                                                               (5)  

where  represents the strength of the Allee effects. The strong and the weak Allee effects 

occur when  and , respectively. The parameter 

/K0Kβ =

0 < 1β < 0β1- << )(βαα =  is a normalization 
constant which is defined by a maximum growth rate, leading to a family of models. The qualitative 
results regarding the Allee effects and asymptotic rates of spread are independent from the choice of 

the normalization constant. With this assumption and using and 2K Tt α=  
D

2K
Xx =

α
, equation 

(3) can be written in the following dimensionless form: 

,3u-2u β)(1u β- xxu  xu)u1θ0(θtu ++=++
                                  (6) 

where we used the additional dimensionless parameters 
D αK

0Θ
0θ =  and 

D α
12Θ

1θ = . Hence, the 

population densities have been re-scaled so that . Travelling wave solutions 

are considered so that the (6) is solved in an unbounded domain with the following conditions at 
infinity: For (the species is at its carrying capacity); for 

]finalT[0,in  t  [0,1]u ∈∈

u      x 0=⇒−∞→  (the species is absent), 
some initial condition. Under these boundary conditions, one can find in [4] and the references sited 
therein, the asymptotic stability analysis of the travelling wave for the scaled diffusion–reaction 
equation           
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. g(u)xxutu +=
                                                           (7)  

The existence of wave fronts ct)U(xt)u(x, −=  was derived, relying on the properties of g. Here, 

 and has at least two distinct zeros,  and ; if there exists a 

strong Allee effect, there still is another zero between  and  at which the percapita growth rate is 

positive. For more details on this model, see [4] and [18]. 

3u-2u β)(1u -β g(u) ++= 11 =g

1

00 =g

0g g

2. Implementation of VIM  
In this section, VIM will apply to the following nonlinear partial differential equation of the form:  

                                       
3u2β)u(1βuxxuxu)u1θ0(θtu −++−=++

,                                     (8) 

subject to the initial condition First, we construct the correction functional:                                                f(x).u(x,0) =

                (9)  
∫ ++−+−+++=+
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where λ is a general Lagrange multiplier, denote restricted variations, i.e.              nxxû , nxû , nû

0nxxû δnxû δnû δ === . 

Making the above correction functional stationary, we obtain the following stationary condition:    

 , 0t|)(1        , 0)( =
=

+= ττλτλ
 

The Lagrange multiplier, therefore, can be defined in the following form:          

   . 1)( −=τλ                                                (10)  

Substituting from (10) into (9) results the following iteration formula:    

                        (11)  
∫ ++−+−++−=+
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Now, if we start with the following initial approximation  

   
)2ξ2exp(λ)1ξ1exp(λ 1

)2ξ2exp(λ)1ξ1exp(λ β
u(x,0)

++

+
=

,                                                     (12)  

where, 21/2λ   and    2β/1λ  ;  2 , 1i  , ixiξ ===+= ϕ ,  are arbitrary constants. 

Using the recurrence relation (11), we obtain the first components of the solution in the case 
( ) in the following form:           

2 , 1  and ϕϕ

01θ0θ ==

 , u(x,0)t)(x,0u =
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λλ

λλλ
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and so on. The rest of components of the iterative formula (11) were obtained in the same manner 
using the Mathematica package. The exact solution of the equation (8) [in the case ( )] 

under the initial condition (12) is given by:  

01θ0θ ==

)2ξ

)2ξ

2exp(λ)1ξ1exp(λ 1
2exp(λ)1ξ1exp(λ β

t)
++

+
=u(x, , where, 

 ;  2 , 1i  , itiη-xiξ =+= ϕ ; i3λ-β)(1 2iη += , 21/2λ   and   2β/1λ == and  are 

arbitrary constants. Here, we set . 
2 , 1 ϕϕ

1002  and  1001  , 0.2β −=== ϕϕ

The error behaviour for different time values are shown in figures 1-4 where the numerical results 
are obtained by using two terms only from the iterative formula (11).  It is evident that the overall 
errors can be made smaller by adding new terms from the iteration formula.  

3. Implementation of ADM  
In this section, the ADM will apply to (8) and (12), so we rewrite (8) in the following form: 

     
N(u)βuxu0θxxuu tL +−−=

,                                                       (13) 

where  
ttL
∂

∂
=  is linear operator,   is nonlinear operator.   3u-2u β)(1xuu 1θ N(u) ++−=

By taken the inverse operator  of (13),  then the solution of (13) can be written in 

the form 

∫=− t

0
dt )()(1

tL ..

     
] N(u)βu-xu0θ-xx[u1

tL u(x,0)t)u(x, +−+=
.                                            (14) 

The ADM assumes that the unknown solution  can be expressed by an infinite series of the 
form:          

t)u(x,

          
∑
∞

=
=

0n
t)(x,nut)u(x,

.                                                      (15) 

and the nonlinear operator term N(u)  can be decomposed by an infinite series of polynomials, given 
by:       

           
∑
∞

=
=

0n nAN(u)
.                                                   (16) 
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the components  will be determined recurrently and are the Adomian’s polynomials of 
.  defined by:           

t)(x,nu
 

nA
. .  , 2u  , 1u  , 0u

                   
  . . .  2, 1, 0,n        , 0s] )

n
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i

uisN( 
nds
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n!

1
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=∑
=

=

                     (17 ) 

Substituting from (15), (16) in (14), we can obatain the subsequent components: 

. 0n   ,  ) n(A1
tL)nβu-nxu0θ-nxxu ( 1

tL t)(x,1nu       , u(x,0)t)(x,0u ≥−+−=
+

=
            (18)  

One can use the general form of formula (17) for as follows:     An
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For numerical comparisons purpose, based on the ADM, we constructed the solution  as:  t)u(x,

                 ,  where   .                             (19) 
t)u(x,t)(x,nΦnlim =

∞→
0n      , 

1-n

0m
t)(x,mut)(x,nΦ ≥∑

=
=

To obtain the components of the solution, we start by substituting the initial condition (12) in (18):   

 , u(x,0)t)(x,0u =
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 and so on the other terms can be obtained in the case ( ). 01θ0θ ==

3.1. Convergence Analysis of the ADM   
In this section, we will prove the convergence of ADM applied to equation (8). Let us define the 

Hilbert space , as a set of all applications  T])[0,β)((α(2LH ×=

+∞<∫
×

→×   
]T[0,),(

d s)ds(x,2u      with RT][0,),(:u
βα

τβα

. 
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Consider (8) with the notation , 
t
u

L(u)
∂

∂
=  then we can write (8) in the following operator form:  

       .                                      (20)  
3u2β)u(1βuxuu1θxu0θxxuL(u) −++−−−=

Theorem: ( Sufficient conditions of convergence )  
The ADM applied to the nonlinear equation (20) is converges towards a particular solution if the 
following two hypotheses are satisfied: 

; Hvu,   , 0m   ,  2v-um) v-u L(v),-L(u) (  :(H1) ∈∀>≥  

(H2) :    C(K) 0, K 0   such that       u ,v H  with u K , v K,

            we have ( L(u)-L(v),w )  C(K) u-v  w      w H. 

∃ > > ∀ ∈ ≤ ≤

≤ ∀ ∈
 

Proof :   To verify  ( H1) for the operator , we have L(u)

2 1 2 2 2 2 3 3L(u) L(v) (u-v) θ (u-v) θ (u v ) β(u-v) (1 β)(u v ) (u v )0 12 x x2x

∂ ∂ ∂
− = − − − − + + − − −

∂ ∂∂ . 

Then we claim: 

  ).v-u ,3v3u()v-u,2v2β)(u(1v)-u , v-β(u                                

v)-u , )2v2(u
x

 (1θ2

1
)v-u ,v)-(u

x
(0θv)u v),-(u

2x

2
 (v)u L(v),L(u) (

−−−++

−−
∂

∂
−

∂

∂
−−

∂

∂
=−−

    (21) 

Since 
x∂
∂

 and 
2x

2

∂

∂
 are differential operators in  then there exist constants  and : H, 1δ 2δ

                 
2vu1δvu vu1δ) vuv),(u

x
 ( −=−−≥−−
∂

∂
−

 ,                                         (22)  

                         

2vu2δv-u vu2δ) vuv),(u
2x

2
 ( −≤−≤−−
∂

∂

  ,                                          (23) 

and                            v-u 2v-2u1δv)u ),2v2(u
x

( ,                                     ≤−−
∂

∂

this according to  Schwartz inequality. Now, by using  the mean value theorem and  the above relation 

we get:  2v-u2η12δv-u2v-2u1δv)u ),2v2(u
x

( =≤−−
∂

∂
,                                      

where,   and  vηu << Kv  ,u ≤ . Therefore,   2vu2K12δv)u ),2v2(u
x

( −≥−−
∂

∂
−          (24)  

Also, we have    2vuvu vuv)u , v(u −=−−≤−−  ,                                                            (25)  

                 

2vu2K2vu22ηvu 2v2u)vu,2v2(u −=−=−−≤−−
 ,                              (26) 
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2vu23K2vu33ηvu 3v3u)vu,3v3(u −=−=−−≤−−
,                                    (27) 

substituting from (22)-(27) into (21), we get  

2v-um2v-u )23Kβ)K2(1βK1δ10.5θ1δ0θ2(δv)u L(v),(L(u) =++++++≥−−
, 

where, . Hence, we verified  (H1). 23Kβ)K2(1βK1δ10.5θ1δ0θ2δm ++++++=

To verify   (H2) for the operator , we have L(u)

2 1 2 2( L(u) L(v), w) ( (u-v), w) θ ( (u-v), w) θ ( (u v ) , w)0 12 x x2x
2 2 3 3                               β(u-v , w) (1 β)(u v ,w) (u v , w),

∂ ∂ ∂
− = − − −

∂ ∂∂

− + + − − −

                              (28) 

therefore,  w v-uC(K)w v-u )23Kβ)K2(1βK10.5θ0θ(1   w)L(v),(L(u) =++++++≤− , 

where, .  Hence, we verified  (H2).   2K 3β)K2(1βK1θ 0.50θ1)K( ++++++=C

 
4. Special Cases of the Model   
Case I:  No Migration: 0  and (6) reduces to:      1θ0θ ==

               
.3u-2u β)(1u β- xxu  tu ++=
                                                         (29)   

The exact solution of (29)  is 
)2ξ2exp(λ)1ξ1exp(λ 1

)2ξ2exp(λ)1ξ1exp(λ β
t)u(x,

++

+
= ,   where, ,  itiη-xiξ ϕ+=

;  2 , 1i =   ; i3λ-β)(1 2iη += , 21/2λ   and   2β/1λ == and  are arbitrary constants.  2 , 1 ϕϕ

 
 
Case II:  Density-Independent Migration: 
 In the case that the speed of the species migration does not depend on the population density e.g., 
when drifting with the wind, the dynamics of the population are described by the following equation: 

             
,3u-2u β)(1u β- xxu  xu0θ tu ++=+
                                         (30)  

where  is the speed of advection.  0θ

Considering traveling wave coordinates,  where , so that , from 

(30) we obtain                

t)(z,t)(x, → t0θ-xz = t)(z,ûu =

                                                
.3û-2û β)(1û β- xxû  tû ++=
                                          (31) 

2007 International Symposium on Nonlinear Dynamics (2007 ISND) IOP Publishing
Journal of Physics: Conference Series 96 (2008) 012008 doi:10.1088/1742-6596/96/1/012008

7



Equation (31) coincides with (29) and thus the exact solution of (29) gives also an exact solution of 
(31) with the obvious change  z.x →
Case III:   Density-Dependent Migration: 
      In this section, we consider the case when the density-independent advection caused by 
environmental factors is absent and migration takes place due to biological mechanisms which are 
assumed to be density-dependent. Then  and from (6) we arrive at the following equation:  00θ =

          
,3u-2u β)(1u β- xxu  xuu1θ tu ++=+
                                              (31)   

The exact solution of (32) is given by: 

)22exp()11exp( 1

)22exp()11exp( β
t)u(x,

ψωψω

ψωψω

++

+
=

, 

where, ,itiq-xi εψ += ; )13()1(iq iωνθνβ +−+= i ;  2 , 1=   , /1 νβω =  /22 νω = such that  

)82
11(5.0 ++= θθν   and  are arbitrary constants.  2 , 1 ϕϕ

 
Case IV:  General Case: 
  In a general case, migrations can take place due to both density-dependent and density-independent 
factors. The dynamics of a given population are then described by full (6) where now 

01θ  and  00θ ≠≠ . The exact solution in this case exact solution: 

   
)]2)t02((2[ exp)]1)t01((1[ exp 1

)]2)t02((2[ exp)]1)t01((1[ exp β
t)u(x,

εθωεθω

εθωεθω

++−+++−+

++−+++−
=

qxqx

qxqx

. 

where the notations are the same as in (32). 
 
The figures 1-4, simulate the error between the exact solution and the both methods approximate 
solution of the above four cases respectively. 
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Figure 1: (Case I) The error at             Figure 2: (Case II) The error at                             

and .                                                  and . 

200x = 650x =

01θ0θ == 01θ  ,  1.00θ ==
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Figure 3: (Case III) The error at                      Figure 4: (Case IV) The error  at     

and .                                                         and . 

500x = 500x =

0.11θ  , 00θ == 1.01θ 0θ −=−=

5. Conclusion  
In this paper, VIM and ADM are applied to solve the model of population dynamics with density-
dependent migrations and the Allee effects, the methods need much less computational work 
compared with traditional methods. We achieved a very good approximation with the actual solution 
of the model by using two terms of the iteration scheme derived above in the ADM and VIM. It is 
evident that the overall results come very close to the exact solution even using only few terms of the 
iteration formula. Errors can be made smaller by taking new terms of the iteration formulas. It is found 
that these methods are always converges to the right solutions with high accuracy. We found that the 
variational iteration method can overcome the difficulties arising in calculation of Adomian’s 
polynomials in Adomian decomposition method. Furthermore, VIM needs relative less computational 
work than ADM. 

References 
[1] Abbasbandy S and Darvishi T M 2005 Applied Mathematics and Computation. 163  1265 
[2] Abdou A M and  Soliman A A 2005 Physica D 211  1 
[3] Adomian G 1989 Nonlinear Stochastic Systems and Applications to Physics ( Kluwer Academic 

Publishers-Dordrecht) 
[4] Almeida C R, Delphim A S and Costa S I M 2006 Ecological Modelling 192  601 
[5] Bhattacharyya K R and Bera K R  2004 Applied  Mathematics Letters 17 703 
[6] Biazar J, Ghazvini H 2007 Int. J. Nonlinear Sci. 8 311 
[7] Bulut H, Ergüt M , Asil V and Bokor H R 2004 Applied Mathematics and Computation 153 733 
[8] Guellal S, Grimalt P and Cherruault Y 1997 Computers Math. Appl. 33 25 
[9] He J H 1999 Int. J. Non-Linear Mech. 34 699 
[10] He J H 2000 Applied  Mathematics and Computation 114  115 
[11] He J H and Xu-Hong Wu 2006 Chaos, Solitons and Fractals 29 108 
[12] He J H 2006 Int. J. Modern Physics  20 1141 
[13] He J H  2006 Perturbation methods: Basic and Beyond (Elsevier, Amsterdam) 
[14] Kaya  D and  El-Sayed M S 2003 Physics Letters A  313 82 
[15] Kaya D and Inan  E I 2005 Applied Mathematics and computation 161 1015 
[16] Lesnic D 2002 Computers and Mathematics with Applications 44 13 
[17] Lesnic D 2005 Communications in Nonlinear Science and Numerical Simulation 10 581 
[18] Petrovskii  S and Bai-Lian Li 2003 Mathematical Biosciences 186 79 
[19] Soufyane A and Boulmalf M 2005 Applied Mathematics and Computation 162 687 

2007 International Symposium on Nonlinear Dynamics (2007 ISND) IOP Publishing
Journal of Physics: Conference Series 96 (2008) 012008 doi:10.1088/1742-6596/96/1/012008

9



 
 
 
 
 
 

[20] Sweilam H N and Al-Bar R F 2007 Computers and mathematics with Applications 54 993 
[21] Sweilam H N, Khader M M and Al-Bar R F 2007 Physica Letters A 371 26 
[22] Sweilam  H N 2007 J. Comput. Appl. Math. 207 64  
[23] Sweilam H N and Khader M M 2007 Chaos, Solitons and Fractals 32 145 
[24] Vadas P and Olek  S 2000 In. J. Heat and Mass Transfer 43 1715 
[25] Wazwaz A M  1997 Appl. Math.Comp. 81 265 
 

2007 International Symposium on Nonlinear Dynamics (2007 ISND) IOP Publishing
Journal of Physics: Conference Series 96 (2008) 012008 doi:10.1088/1742-6596/96/1/012008

10


	The exact solution of (29)  is ,   where, , 
	  and  are arbitrary constants. 
	Case II:  Density-Independent Migration:



