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ABSTRACT  

Obesity is one of the major public health issues in the world with a rapid increase 

in its prevalence. According to the last public health report from supreme public health in 

Qatar in 2012, 71.8 % of the women were overweight compared to 68.3% of men. 

Adipocytes are where their size can vary with different food intake. The rapid expansion 

of the adipose tissue requires high vascularization to support their expansion. Branching 

of vasculature depends on properly functioning endothelial cells of the vessels. Different 

diseases including diabetes and obesity has been reported to cause defects in the 

endothelial cell function. This defect could be due to changes in nitric oxide production 

which regulate vascular contractility or production of other oxyradicals leading to damage 

to the tissue. 

Calreticulin (CRT) is a multifunctional protein localized in the endoplasmic 

reticulum of all mammalian cells. The main functions of CRT are regulation of 

intracellular Ca2+ hemostasis and chaperone. Our transgenic mouse model overexpressing 

CRT in endothelial cells (ECCRT+) showed evidence of endothelial dysfunction and 

susceptibility to obesity and diabetes as they age. Therefore, we hypothesized that 

overexpression of CRT in endothelial cells results in endothelial dysfunction that 

increases angiogenesis leading to activation of adipogenesis.   

In our study we examined changes in the phenotype of adipocytes of wild type 

(wt) and ECCRT+ mice fed either high fat (60%) or regular fat (10%) diet for different time 

points (8-24 weeks). Our results illustrated that these mice expressed lower eNOS thus 

leading to endothelial dysfunction. The Glucose tolerance test (GTT) assay illustrated that 



  
   

 iii 
 

ECCRT+ mice developed diabetes as they aged when on 10% fat diet. However, on high fat 

diet they failed to regulate blood glucose even at 8 weeks. Histological analysis of the wt 

and ECCRT+ mice showed significant changes in the adipocyte size and number suggesting 

a possible association between endothelial dysfunction and adipogenesis. Our study is the 

first to show an important role of endothelial dysfunction in altering adipogenesis process 

leading to the development of obesity and diabetes. Our data also highlights the 

importance of an endoplasmic reticulum chaperone in this process.   
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CHAPTER 1: INTRODUCTION  

Obesity is considered as one of the major public health issues in the world with a 

rapid increase in its prevalence reaching an epidemic proportion (Lobato et al., 2012). In 

the last WHO report published in 2012, 1.9 billion of adults 18 years and older, and 43 

million children under 5 years, were reported to be overweight. The same report illustrated 

that in total 13% of the adult population are obese, with higher percentage in women 

(15%) compared to men (11%) (WHO, 2012). Not only western countries suffer from 

obesity, gulf region also have a high prevalence of overweight and obesity among their 

population. According to the last public health report from supreme public health in Qatar 

in 2012, 71.8 % of the men were overweight compared to 68.3% of women (Figure1.1). 

Among the gulf region, Qatar has the 6th highest rate of obesity in young boys (NHS, 

2012). Moreover, the WHO survey in 2009 showed 70% of the Qatari children were obese 

because of the nutritional changes and unhealthy lifestyle (Figure 1.2). Many of the 

published studies illustrate the role of obesity in developing various diseases such as 

atherosclerosis, hypertension, insulin resistance, non-alcoholic fatty liver and cancer, all 

of which increase the rate of mortality and morbidity worldwide (Chan & Woo, 2010).  
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Figure 1.1 Qatar National Health Report released in 2012, statistics showing the 

prevalence of overweight and obesity among Qatari populations (NHS, 2012). 

 

 

Figure 1.2 Qatar National Health Report released in 2012, statistics showing the 

prevalence of poor nutrition among Qatari population (NHS, 2012). 
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Adipose tissue is an important endocrine organ that maintains body energy 

hemostasis (Caruso, Balistreri, & Candore, 2010) (Trayhurn & Beattie, 2001). Adipocytes 

are active cells secreting a number of adipokines such as adiponectin, leptin and resistin 

that modulate cell metabolism. During normal development, pre-adipocytes undergo a 

process of differentiation which is known as adipogenesis. During high caloric intake, the 

size of adipocytes increase to facilitate the storage of excess product as lipid. The growing 

adipose tissue requires higher supply of oxygen and nutrients, that will be achieved 

through increasing the number or branching of the pre-existing vasculature (Lijnen, 2008, 

Bruemmer, 2012).  

Angiogenesis is defined as the growth of new blood vessels from pre-existing 

vessels within the tissues (Corvera & Gealekman, 2014). Angiogenesis is considered a 

significant process for tissue development, in adipose tissue it is important for adipose 

tissue expansion, in tumor progression it allows growth of the solid mass and provides 

means for metastasis and during wound healing it is essential for closure of the wound. 

Thus, improper angiogenesis could cause adipose tissue dysfunction, endothelial 

dysfunction and improper adipogenesis in obesity (Kolluru, Bir, & Kevil, 2012).  

A layer of endothelial cells covers the entire lumen side of the vasculature. 

Endothelium layer forms the barrier that separates the vessel wall from the blood. Vascular 

endothelium is a dynamic tissue that produces many factors therefore playing a significant 

role in controlling vascular tone, maintenance of blood circulation, controlling the blood 

coagulation and inflammatory responses (Avogaro & De Kreutzenberg, 2005).  
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Endothelial dysfunction is the inability of endothelium to maintain the vascular 

homeostasis. It is defined as the imbalance in the production of vasodilator and 

vasoconstrictor substances that are produced by the endothelium (Lobato et al., 2012). 

Endothelial cells mainly produce nitric oxide through the activity of its nitric oxide 

synthase (eNOS). Endothelial dysfunction could develop due to reduction of nitric oxide 

bioavailability that results from impaired endothelium layer and/or increased nitric oxide 

inactivation by reactive oxygen species (ROS) (Singhal, 2005). Endothelial dysfunction 

causes inability of the arteries and arterioles to ideally dilate in response to a proper 

stimulus by vasodilator on the endothelium (Witting et al., 2007).  

Previous studies suggested that Calreticulin (CRT) could play a role in vascular 

development. Mesaeli et al., 1999, showed that during mice development, CRT protein 

was highly expressed in early stages of heart and vascular development (Mesaeli et al., 

1999). CRT promoter activity within the heart and descending aorta suggest that CRT 

could have a role in regulating the formation of new blood vessels in mice (Mesaeli et al., 

1999). Originally, CRT was identified as universal Ca2+ binding protein located in the 

lumen of endoplasmic reticulum (ER). It has many vital functions including regulation of 

Ca+2 homeostasis, chaperoning in ER and cell adhesion. CRT as one of the ER chaperone 

proteins, binds to the newly synthesized proteins and supports them for correct tertiary 

structure folding (Yokoyama & Hirata, 2005). Various studies discussed the importance 

of CRT, however its role in the development of endothelial dysfunction has not been fully 

discussed.  
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Several studies showed that endothelial dysfunction can result as a consequence 

of many diseases such as diabetes, obesity and hypertension and showed that increased 

adipocyte angiogenesis affects the development of obesity (Corvera & Gealekman, 

2014)(Neels, et al., 2004) but it is not clear how endothelial dysfunction could affect the 

onset of obesity. Therefore, my study focuses on this aspect.  

 

1.1 HYPOTHESIS  

Overexpression of CRT in endothelial cells results in endothelial dysfunction 

which affects the process of angiogenesis and adipogenesis leading to the development of 

obesity.   

 

1.2 SIGNIFICANCE OF THE PROBLEM 

Obesity has reached a worldwide epidemic status. It can result in the onset of many 

other diseases such as diabetes, cardiovascular disease and cancer. It is important to 

identify the cellular mechanism of development of obesity.  The published literature has 

illustrated the onset of endothelial dysfunction as the result of obesity and diabetes. As 

part of Dr. Mesaeli’s ongoing research on vascular development, an endothelial targeted 

transgenic mouse line was generated in her lab by overexpressing CRT, an ER chaperone, 

in these cells [will be referred to as (ECCRT+)]. One of the major phenotype of these mice 

is the development of visceral obesity and diabetes.  
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The preliminary results from Dr. Mesaeli’s lab illustrated that these mice suffer 

from endothelial dysfunction. This mouse model highlighted the possible role of 

endothelial dysfunction in the development of diabetes and obesity. Thus, this mouse 

model provides a valuable tool to examine the cause and effect relationship between 

endothelial dysfunction and obesity. Initial histological analysis of the fat from these 

ECCRT+ mice showed changes in adipocyte size and number suggesting a possible 

association between endothelial dysfunction and adipogenesis. However, the exact 

mechanism of adipogenesis upon endothelial dysfunction and its correlation with CRT is 

not clear.   
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1.3 AIMS AND OBJECTIVES 

AIM 

Many studies have focused on how obesity induces endothelial dysfunction. Very 

little information is available on the vice-versa. Therefore, the aim of our study is to 

determine the cause and effect relationship between CRT, endothelial dysfunction and the 

development of obesity using the ECCRT+ mouse model.  

OBJECTIVES  

1. Characterization of adipocyte phenotype of ECCRT+ mice. 

2. Examine Endothelial dysfunction.  

3. Examine adipose tissue angiogenesis in ECCRT+ mice. 

4. Determine effect of high fat diet on ECCRT+ adipocyte phenotype. 
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CHAPTER 2. REVIEW OF THE LITERATURE 

2.1 Calreticulin 

  2.1.1 Calreticulin overview 

Originally CRT was identified as a calcium (Ca2+) binding protein that was 

isolated from endoplasmic reticulum (ER) of rabbit skeletal muscles (Ostwald & 

MacLennan, 1974). In 1989, the coding gene of this protein was cloned and named 

Calreticulin (CRT), showing the localization and functional characteristic of this protein 

(Mesaeli et al., 1999) (Michalak et al., 1999). The predicted molecular weight of CRT is 

46 KDa but it appears as a 62 KDa protein on SDS-acrylamide gel due to high number of 

acidic amino acids at the C terminus of the protein (Michalak et al., 1999). Initial studies 

showed the localization of CRT to the ER but some reports also  suggested  its localization 

on the surface and in the nucleus of the cells (Wada et al., 1995) (Dupuis et al., 1993) 

(White, Zhu, & Tanzer, 1995) (Dedhar, 1994) (Arnaudeau et al., 2002). This is still a 

controversial topic in the field and more studies in intact cells and sophisticated imaging 

techniques needs to be conducted to confirm the other localization of the protein.  

In addition to the regulation of Ca2+ homeostasis, CRT also functions as an ER 

lectin like chaperone. CRT as one of the chaperone proteins in the ER, binds to newly 

synthesized proteins and support their correct tertiary structure folding (Yokoyama & 

Hirata, 2005). CRT has been shown to be involved in ER stress and injury response 

(Hebert & Molinari, 2007) (Jeffery et al., Raghavan, 2011). Furthermore, it was shown 

that CRT is involved in the regulation of cell migration, and adhesion (Gold et al., 2010).  
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2.1.2 Structure 

CRT gene in human is composed of 9 exons and 8 introns (Yokoyama & Hirata, 

2005). It is located on chromosome 19 in human and chromosome 8 in mice (Rooke et al.,  

1997) (McCauliffe et al., 1992). Although forming 3-D structure for CRT has been 

challenging due to the inability to crystalize the protein, its conformation has been 

identified using X-ray structure (Michalak, et al., 2002)(Giraldo et al., 2010).  CRT has 

three structural domains including, N-terminal domain that is important in protein-protein 

interaction, Proline-rich area known as P domain with internal repeats that is involved in 

protein-protein interaction and  also binds Ca2+, and the C-terminal domain which has a 

vital role in regulating Ca2+ homeostasis and ends with KDEL (Lys-Asp-Glu-Leu) 

retention signal of ER and (Jiang et al., 2014) (Figure 2.1).  

The N-domain and P-domain of CRT share high homology to N and P domains of calnexin 

and based on this similarity it has been predicted to have a globular structure (Roderick, 

et al., 2000). N-terminus is also called lectin domain due to its binding to carbohydrate 

residues on the newly synthesized peptides (Schrag et al., 2001). The P domain contains 

tandem repeats of two proline rich sequence motifs which interact with one another in a 

head-to-tail fashion (Schrag et al., 2001). The structural similarities of the P domain 

between the CRT and calnexin was confirmed using NMR reconstruction (Leach et al., 

2002). Moreover, the primary polypeptide and carbohydrate binding site of N-domain of 

CRT along with the P-domain, is responsible for the chaperone function of CRT (Leach 

et al., 2002). 
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The C-domain of CRT contains a large number of acidic amino acid residues 

(glutamic acids) that are characterized by their ability to bind Ca2+ with high capacity and 

low affinity (Baksh & Michalak, 1991). The C-domain is considered highly susceptible 

to proteolytic cleavage due to the lack of complex tertiary structure (Jorgensen et al., 

2005). The highly negative charge of this domain has prevented the ability to crystalize 

CRT and obtain the full protein crystal structure. CRT has been shown to be 

phosphorylated on serine-threonine residues and arginylated by arginyl-tRNA protein 

transferase at the cell surface that increases susceptibility of the cell to apoptosis (Decca 

et al., 2007).  

 

 

 

 

Figure 2.1 Schematic representation of the structural domains of calreticulin 

protein. The protein consists of three functional domains including: N-domain, P-

domain, and C-domain. The KDEL ER retentional peptide at C-terminal and signal 

sequence at N-terminal. Modified figure from  (Michalak et al., 1999). 
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2.1.3 Function 

2.1.3.1 Calreticulin as Chaperone 

The complex structure of CRT demonstrates how it can have several functions in 

and out of the cell, as a chaperone and as a regulator for the quality of the newly 

synthesized proteins (Michalak et al.,2009). ER is the place where polypeptides interact 

with the molecular chaperones and thiol oxidoreductases after translation. Inside the ER, 

chaperones are grouped according to their functions. Lectin chaperones such as Calnexin 

and CRT are involved in recognizing and folding the proteins that contain certain pattern 

of sugar moieties. Classical ER chaperones, includes several subfamilies, such as Hsps 

(40, 60, 70, 90, and 100 KDa) that are transcribed by the induction with heat shock. 

Another subfamily known as GRP78/BiP and Grp94 are glucose regulated proteins (Spiro 

et al.,1996) (Helenius, 2001).  

In ER, some proteins can fold using general chaperones, however, due to the 

complex structure of some proteins, they require special assistance. This assistance is 

provided through chaperones known as substrate specific chaperones, which include 

receptor associated proteins (RAP) that ensure the proper folding of proteins and prevent 

the aggregation of low density lipoprotein receptors (Hebert & Molinari, 2007). Hsp47 

which is a collagen specific chaperone is required for retaining the triple helical structure 

of collagen by interacting with other chaperones such as CRT and Calnexin (Spiro et al., 

1996).   
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2.1.3.2 Calreticulin/Calnexin cycle 

Calnexin and CRT are homologous lectin chaperones that interact with the newly 

synthesized glycoproteins in the ER. In fact, the role of this cycle is to selectively engage 

newly synthesized glycoproteins. The functional process of these chaperones starts once 

the polypeptide is recognized by CRT and calnexin to ensure the proper folding of these 

proteins through the cycle. Prolonged interaction between the protein and calnexin/CRT, 

will subject the protein to degradation via ER associated degradation (ERAD)(Hebert & 

Molinari, 2007). On the other hand, proper folding of proteins will allow them to be 

transported out the ER to the Golgi apparatus for further processing.  

Glycosylation of newly synthesized proteins acts as a signal for enhanced folding 

and quality control and/or for the degradation of misfolded proteins (Hebert & Molinari, 

2007). CRT, which is a soluble protein, associates with glycans that emerge deeper into 

the ER lumen while calnexin binds to glycans found in the membrane proximal domains 

(Trombetta et al.,1996). Calnexin binds transiently to most glycoproteins whereas CRT 

binds to a more restricted set of glycoproteins (Keller et al., 1998) (Peterson et al., 1995). 

Given that calnexin and CRT bind monoglucosylated glycans with micromolar affinities, 

their chaperone binding cycles are controlled via the glucosidases and glucose-transferase 

that dictate the composition of the carbohydrate on the maturing glycoproteins in the ER 

(Kapoor et al., 2003).  
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Monoglucosylated N-glycans mediate initial association of folding polypeptides 

with calnexin and/or CRT that exposes them to the glycoprotein dedicated oxidoreductase 

ERp57 (Hammond et al., 1994). ERp57 is an additional component in the calnexin/CRT 

cycle. It is a member of the PDI family of proteins (Oliver et al., 1997). ERp57 catalyzes 

rearrangements of disulfide-bonds within the substrate proteins, but does not recognize 

their glycon moiety (Zapun et al., 1998). It is likely that most glycopolypeptides are 

released from calnexin/CRT/ERp57 in a native, transport competent state (Frickel et al., 

2002). They are rapidly deglucosylated and partially demannosylated and eventually 

sequestered in transport vesicles that leave the ER (Hebert & Molinari, 2007). For a 

fraction of the newly synthesized glycoproteins, folding is not completed in a single round 

of association with calnexin/CRT. The folding intermediate released from the lectin 

chaperones is deglucosylated, but its forward transport is inhibited by glucose transferase 

1. Glucose transferase 1 adds back a glucose residue only to glycoproteins with nearly 

native conformation. These rebind to calnexin/CRT and are subjected to additional folding 

attempts likely to consist in disulfide reshuffling. Glycopolypeptides released from 

calnexin/CRT and displaying major folding defects are ignored by glucose transferase 1, 

rather, they attract BiP (Julio et al., 2004). They are extensively demannosylated and 

dislocated across the ER membrane for proteasome mediated degradation (Caramelo et 

al., 2003).  
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A study conducted by Pipe and colleagues demonstrated that some coagulation 

factors binds to different chaperones despite the structural similarity or glycosylation 

patterns. For instance, factor VIII interacts only with calnexin while Factor V interacts 

with both CRT and calnexin. In addition, CRT knockout cells (or CRT deficient ) cells 

was shown to have a slight decrease in folding efficiency while cells with calnexin 

deficiency completely prevents folding of some proteins, such as hemagglutinin (Pipe et 

al.,1998). Moreover, CRT deficient cells have increased calnexin similarly calnexin 

deficient cells express higher level of CRT suggesting that these chaperones can 

compensate each other’s function (Molinari et al., 2004). Remarkably, both CRT and 

calnexin knockout cells express higher levels of GRP78 which is known as the master 

regulator of the ER stress, suggesting that other ER chaperones may be compensating for 

the loss of CRT or calnexin, at least in vitro (Molinari et al., 2004). However, deletion of 

CRT system in vivo has been shown to  cause  embryonic death resulted from a lesion in 

cardiac development as shown by Mesaeli et al. (Mesaeli et al., 1999). A study conducted 

by Kraus, et al. in 2010 showed that calnexin knockout mice suffer from  myelinopathy 

with no apparent effects on other systems (Kraus et al., 2010). However, Denzel et al, 

showed that calnexin deletion caused severe growth and motor disorders, and premature 

death (Denzel et al., 2002).  These lethal outcomes could confirm that the calnexin/CRT 

chaperone system plays a vital role during protein biogenesis which may be restricted to 

specific organs or developmental phases. 
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2.1.3.3 Calreticulin and Ca2+ homeostasis  

CRT plays a vital role in Ca2+  homeostasis within the cell (Wada et al., 1995). 

Ca2+ signaling is very important in regulating cell signaling, cell survival, induction of ER 

stress and apoptosis (Michalak et al., 2009). Therefore, it is crucial that ER and 

cytoplasmic Ca2+ are well controlled. The level of Ca2+ is sustained by an on/off stimulus 

which promotes Ca2+ uptake and release in the cytoplasm. The regulation of cytoplasmic 

Ca2+ is operated through different channels such as; receptor operated channels and 

inositol triphosphate (IP3)(Berridge et al., 2000a). Once Ca2+ is released from these 

channels, it will be removed from the cytoplasm through sarco-endoplasmic reticulum 

Ca2+ ATPase (known as SERCA pump) into the ER.  Following the reuptake, Ca2+ in the 

ER can be either free or bound to Ca2+ binding proteins (including many chaperons) such 

as CRT since it has high Ca2+  binding capacity (Berridge et al., 2000b).  

Reduction in CRT level, decreases the capacity of Ca2+ storage of the cells that 

leads to accumulation of misfolded proteins, inhibition of ER Golgi trafficking which 

affects chaperone’s functions (Peters & Raghavan, 2011). On the other hand, several 

studies demonstrated that overexpression of CRT increase the Ca2+ storage in the ER with 

no effect on the cytoplasmic Ca+2 level (Opas et al., 1996). For instance, Mery et al.,  

showed that CRT overexpression in L fibroblast cell lines increased Ca2+ content by 

1.5+_0.2 fold (Mery et al., 1996). Furthermore, Arnaudeau et al., demonstrated that 

overexpression of CRT increased the luminal Ca2+ level in ER because of enhanced Ca2+ 

binding to its C-domain (Arnaudeau et al., 2002).  These authors suggested a correlation 

between ER and mitochondria in some disease state that decreases the mitochondrial Ca2+ 

content and membrane potential in CRT overexpressing cells  (Arnaudeau et al., 2002). 
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In addition, overexpression of CRT has been reported to enhance the inactivation and 

degradation of SERCA2a in cells under oxidative stress, suggesting a role for CRT 

regulation of Ca2+ homeostasis in the onset of myocardial disease (Ihara et al., 2005).  

2.1.3.4 Calreticulin and ER stress  

As previously mentioned, CRT is one of the ER chaperone proteins that works to 

ensure the proper folding of the newly synthesized proteins and their transportation from 

the ER into their final destination within the cell. Equilibrium in the cell is achieved 

between the nascent polypeptide numbers and ER chaperone numbers that are available 

to assist in folding  (Bueter et al., 2009). When misfolded proteins accumulate in ER, 

protein translation increases, Ca2+ homeostasis is altered, as well other functions of ER 

will be affected thus resulting in the onset of ER stress. Under stress conditions like 

hypoxia, oxidative stress or heat shock, specific signaling pathways are activated that are 

known as unfolded protein response (UPR).  

For the cells to overcome the stress condition they will activate a defense 

mechanism to repair the improper folded proteins, inhibit the synthesis of new proteins, 

and increase ER chaperone levels to resume the normal function of the cell (Sambrooks 

et al., 2012). Through the UPR signaling pathways, cells are induced to produce pro-

apoptotic proteins and generate granules known as stress granules (Sambrooks et al., 

2012). If ER stress persist, cells will be triggered to undergo apoptosis, however, in case 

of cancer, cells will resist apoptosis and tumor will form (Carpio et al., 2010). Under the 

stress conditions, Ca2+ is lacking and CRT acts as one of the pro-apoptotic proteins in its 

argynilated form (Ozcan & Tabas, 2012). CRT is argynilated through arginyl-tRNA 
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protein transferase (ATE) as part of UPR in which it is recruited by stress granules to 

activate apoptosis (Jeffery et al., 2011). Recent study has shown that ER stress induced 

apoptosis or ER stress is involved in different types of diseases such as cancer, 

neurodegeneration, type 2 diabetes, and atherosclerosis (Ozcan & Tabas, 2012).  

2.1.3.5 Role of ER Stress in Obesity  

There is a growing body of evidence indicating a link between ER stress and 

obesity, insulin resistance, type 2 diabetes, and fatty liver (Boden & Merali, 2011)(Sharma 

et al., 2008). It is widely known that excess nutrient intake is the main cause for obesity, 

and several recent studies have implicated ER stress as an early consequence of nutrient 

excess along with increased demand for protein synthesis to assist metabolism, local 

glucose deficiency due to insulin resistance, and decreased vascularization (Gregor & 

Hotamisligil, 2007a) (Achard & Laybutt, 2012)(Ozcan et al., 2004). This leads to 

accumulation of excess lipid in hypertrophied adipocytes, and abnormal energy changes 

observed in obesity may be a chronic stimuli causing ER stress (Fu et al., 2011). As 

mentioned in the above section, excess accumulation of unfolded protein aggregates will 

activate a process known as UPR in which also functions as regulator for the lipid 

metabolism under ER stress (Sambrooks et al., 2012)(Gregor & Hotamisligil, 2007b) 
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During ER stress, chaperone proteins play an important role in compensating for 

the correct folding of the newly synthesized proteins. Under quiescent or non-stressed 

conditions, a ubiquitous ER chaperone termed BiP or GRP78 acts as a master regulator of 

the UPR by binding to and inactivating these ER stress sensors (Basseri, et al., 2009). 

However, under conditions of ER stress, GRP78 dissociates from these sensors in order 

to interact and assist in the folding of luminal misfolded proteins thus activating UPR 

(Basseri, et al., 2009)(Prattes et al., 2000). Other chaperones such as disulfide isomerase 

(PDI), calnexin, the Hsp70, ERp29, CRT, and the peptidyl propyl isomerase family also 

play a role in the UPR process but the exact mechanism for each chaperone in relation to 

obesity is still unclear. In our preliminary data for another study in the lab we have 

observed a significant increase in the splicing of XBP-1 to sXBP-1 (one of the ER stress 

sensor pathways) suggesting the onset of ER stress upon overexpression of CRT (Lab’s 

un-published data). 

A study conducted by Basseri et al., hypothesized that during adipogenesis UPR 

activation would allow the cells to manage ER stress which exists due to the elevation of 

the protein load and lipid biosynthesis (Basseri et al., 2009). In this study, the authors 

showed that during differentiation of the 3T3-L1 preadipocytes, UPR pathways is 

activated and there were an increase in the expression of the ER chaperone GRP78 and if 

3T3-L1 cells were treated with the ER stress inhibitor 4-PBA, adipogenesis was blocked 

(Prattes et al., 2000)(Chen et al., 2016) (Basseri et al., 2009).  
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Previous studies have suggested that ER stress may be activated in the 

subcutaneous fat of obese human due to excess nutrient intake (Boden, 2009). In these 

individuals, the adipose tissue has to uptake and store excess calories as fat and, hence, 

need to increase the synthesis of many proteins to meet this challenge. The massive 

expansion of the adipose tissue and the overwhelming need for increased protein synthesis 

could further contribute to the induction of ER stress. However, the exact mechanism and 

the role of ER chaperones specifically CRT in this process in vivo is still not clear.   

2.2 Adipogensis/Angiogenesis    

  2.2.1 Adipose Tissue Structure and Functions  

Although adipose tissue functions as a major storage site for fat, it is also involved 

in several physiological processes; including secretion of different angiogenic factors, 

expression of hormone receptors, cytokines and secretion of several adipokines (Lemoine 

et al., 2013). The amount of fat storage distribution throughout the body and their role in 

physiological processes varies among different species and adipose depots (Tchkonia et 

al., 2013). Adipose tissue depots can be distinguished by their architecture as Brown or 

White adipose tissues. They can also be categorized by their localization to abdominal, 

subcutaneous, etc.; and their secretion of different adipokines (Sierra-Honigmann, 1998).  

Adipose tissue consists of a heterogeneous mixture of mature adipocytes 

surrounded by a stromal vascular cell fraction containing pre-adipocytes, pericytes, 

macrophages, endothelial cells, fibroblasts, progenitor and mesenchymal stem cells (Han 

et al., 2015). Active cells of adipocyte secrete a number of adipokines such as adiponectin, 

leptin and resistin that modulate cell metabolism (Cao et al., 2001). The level of 
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expression of adipokines correlates negatively or positively with the adipose mass. The 

released adipokines not only send signals to the brain and other organs for adipose tissue 

replenishment, and appetite regulation but also, they participate in the angiogenic process 

(Rupnick et al., 2002).  

The two subtypes of adipose tissue, white and brown, are significantly vital. The 

main function of white adipose tissues is triacylglycerol (TG) storage when there is excess 

energy intake, then release of this energy in the form of fatty acids under the conditions 

of lack of energy (Miettinen et al., 2008a). However, brown adipose tissues that are rare 

in adult human are essential for production of body heat for newborn babies (Gregoire et 

al., 1998). Various studies demonstrated that an embryonic stem cell precursor produce 

adipocyte lineage with differentiation capacity into the mesodermal cell types of 

chondrocytes, osteoblasts, myocytes and adipocytes (Konieczny & Emerson, 1984). 

Adipoblasts belong to the adipogenic lineage, become pre-adipocytes and in a suitable 

environment it differentiates into mature lipid-storing and lipid-synthesizing adipocytes 

(Katz et al., 1999) (Figure 2.2). The new fat cells are produced from the precursor cells 

and continue throughout the lifespan. Adipocytes are considered as one of the few cells 

where their size can vary under physiological conditions (Farnier et al., 2003). Adipose 

tissue grows as they store excess energy intake. Adipose tissue expands in two  ways, by 

increasing in adipocyte size (Hypertrophy) or increasing in adipocyte numbers 

(Hyperplasia). The phenotype of adipose tissues is influenced by the interaction of diet 

and genetics (Jo et al., 2009). Hypertrophic expansion of adipose tissue is often observed 

with increase in caloric intake such as in high fat diet. Hyperplastic growth of adipose 

tissues appears at early stages of development prior to hypertrophy to meet the needs of 
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lipid storage. As the size and number of adipose tissues varies, their molecular and 

physiological properties will show differences. This in turn can affect the metabolite 

profile in the circulation.  
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Figure 2.2 Process of adipocyte development and differentiation. In response to several 

transcription factors and signals, the pluripotent mesenchymal stem cells can form 

preadipocytes, myocytes, or osteoblasts depending upon these various promoters. Modified 

figure from (Garg, 2011) 
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2.2.2 Adipose Tissue Angiogenesis  

Adipose tissue is a highly vascularized tissue (Lemoine et al., 2013) (Lijnen, 

2008). The vascular networks play a vital role in the adipogenesis process. The vasculature 

of adipose tissue provide oxygen, growth factors, nutrients, and cytokines to the 

progenitor cells that are differentiated into pre-adipocytes and vascular endothelial cells 

(Tang et al., 2008). During embryonic development, both arteriolar differentiation and 

changes in extra-cellular matrix (ECM) precede differentiation of adipocytes. However, 

later during development of adipose tissue, throughout the whole life, it seems that 

adipocytes themselves drive the development and maintenance of their blood vessels 

(Mandrup et al., 1997). To adapt to changes in the size and metabolic rate of adipose 

depots, adipose vasculature requires constant regulation by several angiogenic 

modulators.   

Adipocytes regulate angiogenesis by cell to cell contact and by adipokines 

secretion. For instance, adipocytes secrete pro-angiogenic growth factors like fibroblast 

growth factor (FGF), vascular endothelial growth factor A (VEGF-A), and leptin (Xue et 

al., 2009).  They can also secret antiangiogenic factors including thrombospondin-1 (TSP-

1), or other angiogenic modulators such as plasminogen activator inhibitor or adiponectin 

(Xue et al., 2009). The ratio of all these factors at any time will determine the angiogenic 

phenotype in the adipose tissue (Xue et al., 2009).   
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2.3 Endothelial Dysfunction  

Vascular endothelial cells form the inner barrier of the vessel wall are responsible 

for maintaining the vascular vasodilation and constriction (Caballero, 2003). Endothelial 

dysfunction is defined as inability of the vascular endothelium layer to perform its 

function of regulating blood clotting and controlling relaxation of vascular wall. The cause 

of this dysfunction is the imbalance in the production and or release of vasodilators and 

vasoconstrictors affecting the narrowing and widening of the blood vessels (Lobato et al., 

2012). Some of the factors responsible for the imbalance are; reduced production of nitric 

oxide, over-expression of adhesive molecules, over-expression of chemokines and 

cytokines, and an increase in the generation of reactive oxygen species in the endothelium 

(Kolluru et al., 2012).  

Defect in the endothelial cell function has been shown to result as a consequence 

of different diseases such as obesity, diabetes, high blood pressure (Singhal, 2005). 

Studies examining this dysfunction with obesity showed that in obese people there is a 

direct correlation between the obesity and efficiency of endothelium vasodilators release 

(Lobato et al., 2012). As already mentioned, an increase or decrease in the generation of 

the reactive oxygen species is one of the main causes of endothelium dysfunction. These 

factor specifically are linking obesity to endothelial dysfunction (Adya et al., 2015). 

For maintaining vascular contractility, endothelial cells generate nitric oxide 

through activation of endothelial nitric oxide synthase (eNOS). Altered eNOS generation 

could contribute to the onset of endothelial dysfunction (Montezano & Touyz, 2012). 

Uncoupling of eNOS is a major contributor for the generation of the reactive oxygen 

species that result in decreased nitric oxide (NO) bioavailability (Montezano & Touyz, 
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2012). The fluctuation in the balance of NO and reactive oxygen species in the endothelial 

cells can influence the adipocyte cells leading to the storage of fats in fat tissues and the 

impairment of adipocytes which may lead to obesity (Lijnen, 2008). Furthermore, 

decrease in NO production will influence the contractility of the vascular wall thus 

affecting blood flow. Previous preliminary research in Dr. Mesaeli lab on the mesenteric 

artery function of ECCRT+ mice showed a significant reduction in the relaxation of 

mesenteric artery in response to acetylcholine stimulation (Figure 2.3). These studies also 

illustrated  that addition of NO donor (SNP) could recover the relaxation of the mesenteric 

artery of ECCRT+ mice (Figure 2.4) which suggest a defect in the endothelial cells on the 

vascular smooth muscle cells. These data suggest the onset of endothelial dysfunction 

upon overexpression of CRT in the endothelial cells. Based on the previous publication 

we suggest that endothelial dysfunction in the ECCRT+ mice plays an important role in the 

increased obesity in these mice. 

Insulin resistance in endothelium layer due to endothelial dysfunction was shown 

to increase the formation of fat leading to obesity (Kim et al., 2006) . This hormone plays 

a major role in maintaining the glucose levels in the body, regulating the metabolism of 

proteins, lipids, and carbohydrates, thus affecting tissue development (Wilcox, 2005). 

Several studies have illustrated the role of insulin in vessel wall to be mediated via NO 

release leading to vasodilation (Potenza et al., 2005)(Montagnani et al., 2002)(Zeng et al., 

2000). Vasodilation increases blood flow through the vessels leading to glucose uptake 

by target tissue including the skeletal muscle (Potenza et al., 2005). Insulin resistance and 

direct obesity correlate with dysfunction of endothelium (Prieto et al., 2014). 
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Diabetic patients often exhibit less supply of blood to some organs or parts of the 

body, because of the reduction in the angiogenic growth factors (Kolluru et al., 2011). 

During endothelial dysfunction, a considerable reduction in the level of NO was observed 

due to an increase in the superoxide anion which results in reducing the effect of angiogenic 

growth factors (Onat et al., 2012). A focus on the effect of NO on angiogenesis is evident 

in the healing of diabetic wounds (Y. Cao, 2013). Angiogenesis plays an important role in 

wound healing but in the case of diabetic patient wound healing is difficult due to 

impairment of the epithelial layer (Y. Cao, 2013) 
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Figure 2.3 Effect of Acetylcholine on relaxation of mesenteric arteries (third branch) 

isolated from ECCRT+ as compared to wt mice. Data were collected from pressure 

myography assay. As shown there was a significantly lower relaxation of mesenteric 

arteries in response to acetylcholine treatment suggesting either defect in NO production 

or defect in smooth muscle function. 
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Figure 2.4 Effect of Sodium nitroprusside (SNP, NO donor) on Acetylcholine mediated 

relaxation of mesenteric arteries (third branch) isolated from ECCRT+ as compared to wt 

mice. Data were collected from pressure myography assay. As shown there was no 

difference in the relaxation of mesenteric arteries isolated from ECCRT+ mice as compared 

to the wt mice. This suggest that there is no defect in NO in smooth muscle function of 

these mice. 
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CHAPTER 3. MATERIALS AND METHODS:  

3.1 MATERIALS AND REAGENTS  

Material used in research included in the current thesis were of highest Molecular 

Biology grade and are listed in Table 3.1 to 3.6.  All tables contain a list of materials/kits 

and their sources and their catalogue numbers (where applicable). 

 

Table 3.1 LIST OF KITS USED IN THIS STUDY  

 

Items Company Part Number 

Phire Tissue Direct PCR Master 

Mix Kit 
Thermo Fisher Scientific F170S 

PierceTM BCA Protein Assay Kit Thermo Fisher Scientific 23227 

 

 

Table 3.2 LIST OF ANTIBODIES USED IN THIS STUDY 

 

Items Company Part Number 

Rabbit HA Epitope Tag  Rockland 600-401-384 

Rabbit Anti-eNOS  NeoMarkers PA1-037 
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Table 3.3 LIST OF REAGENTS USED IN THIS STUDY 

 

Item Company Part Number 

Precision Plus ProteinTM Dual Color 

Standard 

Bio-Rad 161-0374 

Ponceau S Stain Sigma P3504-100G 

DEPEX Mounting Media, Electron 

Microscopy Sciences 

Electron Microscopy Science 100496-550 

O.C.T.™ Compound Tissue-Tek-Science Service 4583 

Paraformaldehyde, Prills, 95% Sigma 441244-3kg 

Xylene Sigma 534056-1L 

Hydrochloric Acid Sigma 25814-500mL 

Absolute Ethanol VWF 20821-321 

Eosin Y di-sodium Sigma E4382-100G 

Hematoxylin Sigma H9627-25G 

Dulbecco's phosphate-buffered saline 

(DPBS)-1XPBS 

Thermo Fisher Scientific 14190136 

Non-Fat Skim Milk Regilait  

Tween®20 Sigma P9416-100mL 

SuperScript™ II Reverse 

Transcriptase 

Thermo Fisher Scientific 18064014 

RNaseOUT™ Recombinant 

Ribonuclease Inhibitor 

Thermo Fisher Scientific 10777019 

Oligo(dT)12-18 Primer Thermo Fisher Scientific 18418012 

ProLong™ Gold Antifade Mountant 
with DAPI 

Thermo Fisher Scientific P36935 

Power SYBR® Green PCR Master 
Mix 

Thermo Fisher Scientific 4388869 
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Table 3.4 LIST OF INUSTRUMENT USED IN THIS STUDY 

 

 

 

Table 3.5 LIST OF SOFTWARE USED IN THIS STUDY 

 

 

 

 

 

 

Items Company Part Number 

Axiovision ZEISS Microscopy Carl ZEISS Microscopy 490035-0041-000 

Tissue Processer Cryostat-

Frozen LEICA CM 3050S 
LEICA     14047033518 

Tissue Processer Microtome-

Paraffin LEICA RM 2255 
LEICA     1492255UL01 

Licor odyssey CLX-Infrared Licor Biotechnology 
    926-75001 

 

Glucose measurement machine  One Touch Ultra-soft     Y197004 

Confocal Axiovision ZEISS 

Microscopy 
Carl ZEISS Microscopy  

Items Company 

LI-COR® Image Studio™ Lite Software Licor Biotechnology 

Axiovision Software SE64 Rel.4.8.2 Carl ZEISS Microscopy 

ZEN Microscope Software  Carl ZEISS Microscopy 
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Table 3.6 LIST OF LAB SUPPLIES USED IN THIS STUDY 

 

Items Company Part Number 

Disposable Base Molds 
Thermo Fisher 

Scientific 
41740 

Superfrost ®Plus Micro Slide VWF 48311-703 

96 Well Clear Flat Bottom TC-Treated 

Culture Microplate 
FALCON 353027 

Nitrocellulose membrane  Life Science  66485 

0.5 ml individual PCR tubes with 

attached flat caps 
USA Scientific  1615-5510 

TipOne® 0.1-10 µl Filter Pipet Tips USA Scientific 1121-3810  

TipOne®1-20 µl Beveled Filter Pipet 

Tips 
USA Scientific 1120-1810  

TipOne®1-200 µl Graduated Filter 

Pipet 

USA Scientific 1120-8810  

TipOne® 101-1000 µl Filter Pipet Tips USA Scientific 1126-7810  

Blood EDTA Tubes 1.3ml K3E Sarstedt 41.1395.105 

Glucose Strips  One Touch Ultra-soft  2730-055 

MicroAmp™ Fast Optical 96-Well 

Reaction Plate with Barcode, 0.1 mL 

Thermo Fisher 

Scientific 

4346906 
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3.2 METHODS  

3.2.1 Ethical approval  

This study included animal samples, so the ethical approval has been obtained 

from the Institutional Animal Care and Use Committee (IACUC) in Weill Cornell 

Medicine in Qatar (WCM-Q).  

3.2.2 Generation of mice model (ECCRT+) - Tie2-CRT transgenic mice 

The main mouse model used in my study was overexpressing CRT in endothelial 

cells and was developed in Dr. Mesaeli’s lab in Canada. To direct CRT expression to 

endothelial cell, Tie2 promoter which is an endothelial specific promotor was used. CRT 

cDNA was cloned sandwiched between the Tie2 promoter and Tie2 enhancer as shown in 

(Figure 3.1). To differentiate between the exogenous and endogenous CRT, hemagglutinin 

tag (HA-tag) was cloned at the C-terminus of the CRT cDNA upstream of the KDEL ER 

retention signal sequence in CRT cDNA. Previous research in the lab showed that this 

cDNA of CRT has the same localization as endogenous CRT and was able to reinstitute 

CRT function in CRT knockout cell line, therefore it was functioning correctly. The 

plasmid was then digested and purified using gel extraction. The transgene was then 

injected into the wt oocytes, as a result, eight different lines of ECCRT+ were generated and 

their genotyping was confirmed by PCR. Each line was from a separate oocyte injection. 

The phenotype of these mice was examined overtime and they showed very similar 

phenotype. 
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3.2.3 Generation of mice model (Cdh-ECCRT+ -EGFP) transgenic mice 

To examine the changes of angiogenesis in ECCRT+ mice in vivo, we generated a 

mouse line which overexpressed CRT and EGFP in the endothelial cells. To label all the 

endothelial cells with EGFP, we purchased Cdh-Cre and B6.129(Cg)-

Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J (ROSA-EGFP for short) mice from Jackson 

Laboratories USA. ROSA-EGFP mice express Flox-Stop-EGFP caste and can be used to 

label different cells in live mice with EGFP when they are crossed with a specific Cre mice. 

We bred these with Cdh-Cre at our Vivarium core at WCM-Q. This resulted in the 

generation of mice Cdh-EGFP mice in which Cre is activated in endothelial cells and thus 

excising Floxed STOP signal from EGFP leading to expression of EGFP in the endothelial 

cells only. The Cdh-EGFP mice were then bred with ECCRT+ mice to generate the Cdh- 

ECCRT+-EGFP mice. These crossbred mice will express EGFP and overexpress CRT in the 

endothelial cells. Tissue were collected from the Cdh- ECCRT+ -EGFP mice and Cdh-EGFP 

mice (control mice) for examining in vivo angiogenesis. Tissue was then fixed and 

processed for cryo-sections as described below. The fluorescent signal in the vasculature 

of mice was captured by confocal microscopy. The comparison of the experimental and wt 

will be easier and less time consuming than using the other immunohistochemical 

techniques.  
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3.2.4 Genotyping of the wild-type and transgenic mice (wt, ECCRT+, and Cdh-ECCRT+ -

EGFP) 

3.2.4.1 Polymerase chain reaction (PCR) analysis  

To confirm the genotype of ECCRT+ transgenic mice, Cdh-EGFP and Cdh-ECCRT+-

EGFP, we used a phire tissue direct PCR master mix kit (Thermo-Scientific) following the 

manufacture protocol. Briefly, tip of the mouse tail was clipped using a sharp blade from 

different mice and placed in a mixture of dilution buffer and DNA Release provided in the 

kit. Samples were incubated for 5 minutes at room temperature then were preheated using 

heat block for 10 minutes. The samples were then centrifuged, and the supernatant was 

collected. A total of 1µL of the genomic DNA isolated from the tail was used for 20µL 

PCR reaction. We used gene specific primers for CRT-HA, Cdh, and EGFP in the PCR 

mixture to examine the expression of CRT cDNA-HA tag coding sequence, Cadherin and 

EGFP respectively. The sequences for each primer are listed in (Table 3.7). The optimum 

annealing temperature was determined as being 60°C. The DNA was amplified by a single 

denaturing cycle for one minutes at 98°C followed by 40 amplification cycles as follows: 

98°C for 5 sec; 60°C for 5sec and 72°C for 20 sec. Each PCR reaction also contained a 

PCR positive control and negative control. PCR products were separated on a 1% agarose 

gel and visualized by ethidium bromide staining. Images were visualized using the Bio-

Rad Gel-Doc system. A fragment with the expected band size was amplified from the 

transgene and was only detected in samples from transgenic mice.  
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Figure 3.1 Schematic diagram showing the transgene used to generate ECCRT+ mice. 

The transgene cassette consists of the full-length CRT cDNA including the NH2-terminal 

signal sequence, CRT cDNA followed by the HA epitope tag and ending with the KDEL 

ER retrieval signal at the COOH-terminal. The transgene was under the control of the Tie2 

promoter and the Tie2 Enhancer. I would like to acknowledge Dr. Nasrin Mesaeli for 

designing, generating and establishing the mice colonies, genotyping and initial histo-

pathological analysis of the mice in her lab in Canada.  
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3.2.5 Western blot analysis 

The expression of different proteins in wt and ECCRT+ were determined using 

western blot analysis. Briefly, tissues were collected from wt and ECCRT+ and washed in 

ice cold phosphate buffer saline (1XPBS). Lysis buffer was added to the collected tissues 

for homogenization. Tissue lysates were then centrifuged at 10,000 rcf for 10 mins at 4°C. 

Supernatants were collected and protein concentrations were measured using PierceTM 

BCA Protein Assay Kit (Thermo-scientific). A total of 40µg of the total protein for each 

sample was loaded on 10% SDS- polyacrylamide gel (SDS-PAGE). Protein standard 

Precision Plus-ProteinTM Dual Color Standard (Bio-Rad) was used as a reference molecular 

size of the proteins. The proteins were then transferred to nitrocellulose membrane using 

semi-dry transfer technique.  

To ensure that the proteins has been transferred completely, nitrocellulose 

membrane was stained with Ponceau S staining solution (Sigma) prepared in acetic acid. 

The nitrocellulose membrane was incubated in 5% non-fat skim milk powder prepared in 

1XPBS for 60 mins at room temperature to block non-specific binding. Then, the 

membrane was incubated with the primary anti-body diluted in 5% non-fat skim milk in 

1XPBS with continuous shaking for different time as required for each anti-body. The 

membrane was washed two times for 15 mins with 1XPBS containing 0.1% Tween and 

once with 1XPBS to remove unbinding unbound residues. The membrane was then 

incubated for one hour at room temperature with fluorescently tagged secondary anti-body 

prepared in 5% non-fat skim milk powder in 1XPBS with (1:15,000 dilution). The 

membrane was washed again for three times as above and visualized using Licor odyssey 
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CLX-Infrared (Imaging System). To ensure the equal loading of the protein samples, the 

same membrane was re-incubated with α-actin or Tubulin anti-body (sigma) repeating 

same conditions as described above.  

3.2.6 Examining the endothelial dysfunction 

3.2.6.1 Examining eNOS expression  

Western blot analysis was carried out with proteins isolated from wt and ECCRT+ 

whole mesenteric arteries using a rabbit anti-eNOS (NeoMarkers) to detect the expression 

of enzyme nitric oxide synthase (eNOS). Further details of the western blot analyses carried 

out in this study are explained in section 3.2.5.  

3.2.6.2 RNA extraction and quantitative real-time polymerase chain reaction (qRT-

PCR) analysis 

To examine changes in eNOS mRNA in the endothelium of the wt and ECCRT+ mice 

qRT-PCR was used. Total RNA was extracted using Trizol reagent and following 

manufacturer’s protocol. Briefly, mesenteric artery, descending aorta and fat from mice 

were collected in RNAase free tubes containing 1ml Trizol reagent. A total of 200µl of 

chloroform per 1ml of Trizol were added to the samples. Followed by centrifugation at 

13,000 rcf for 20 minutes at 4°C. Following the centrifugation, the mixture separates into 

three layers, lower red, phenol-chloroform phase, an interphase, and a colorless upper 

aqueous phase. The aqueous colorless phase where RNA remains in was transferred 

carefully without disturbing the interphase into fresh tube. Precipitating the RNA was done 

by adding 500µl isopropyl alcohol to the colorless liquid in the fresh tube. Then, mixing 
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and centrifugation was done at 4°C for one hour at 13,000 rcf. RNA will precipitate as 

small pellet on the tube side. The supernatant was removed and 750µl 75% of ethanol 

prepared in DEPC water were added to the samples. The samples were then centrifuged at 

4°C for 10 minutes at 7500 rcf, ethanol was completely removed, and RNA pellet were 

dried and then dissolved in DEPC water according to the pellet size.  

The cDNA was synthesized using cDNA synthesis kit (Invitrogen) following the 

manufacturer’s instructions. A total of 25ng of the cDNA was used for qRT-PCR in a Quat 

Studio 6Flex thermal cycler (Applied Biosystems) using SYBR green from Invitrogen. 

Briefly, a total of 5µl of cDNA in a final volume of 20µl reactions were carried out in 

MicroAmp1 Fast Optical 96-well plates (Thermo Fischer Scientific), under the following 

program: 20 min at 95 C, followed by 40 cycles of 3sec at 95°C and 30sec at 60°C, and a 

dissociation curve. Total of 250ng of gene specific primers was used to amplify eNOS and 

r18S (ribosomal RNA), the list of primers is provided in (Table 3.7).  eNOS target gene 

expression was normalized to an endogenous control (r18S) and the average Ct value from 

each triplicate was used to calculate fold induction of the gene in the ECCRT+ mice 

compared to the wt mice.  
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Table 3.7 LIST OF PRIMERS 

 

Items Forward  Reversed  

CRT-HA 
5’CTCATCACCAACGATG

AGG3’ 

5’CCTGTCTAGCATAGTCAG

G3’ 

PPARg2 
5’AAGAGCTGACCCAATG

GTTG3’ 

5’ACCCTTGCATCCTTCACA

AG3’ 

CEBPa 
5’CAAGAACAGCAACGA

GTACCG3’ 

5’GTCACTGGTCAACTCCAGC

AC3' 

ADIPOQ 
5’TGTTCCTCTTAATCCTG

CCCA3’ 

5’CCAACCTGCACAAGTTCC

CTT3’ 

r18S  
5’GTAACCCGTTGAACCC

CATT3’ 

5’CCATCCAATCGGTAGTAG

CG3’ 

eNOS 
5’TCAGCCATCACAGTGT

TCCC3’ 

5’ATAGCCCGCATAGCGTAT

CAG3’ 

Cdh 
5’CCAGGCTGACCAAGCT

GAG3’ 

5’CCTGGCGATCCCTGAACA

3’ 

EGFP 
5’TAGAGCTTGCGGAACC

CTTC3’ 

5’CTTTAAGCCTGCCCAGAA

GA3’ 
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3.2.7 Characterization of the wt and ECCRT+ 

3.2.7.1 Histological analysis 

3.2.7.1.1 Tissue preparation 

Adipose tissues were collected from the wt and ECCRT+ mice. The tissues were fixed 

in 4% paraformaldehyde (PFA) (paraformaldehyde, Prills, 95%-Sigma) for overnight and 

embedded in paraffin and processed using tissue processer machine (Fisher Tissue Path, 

Fisher Health care). Tissues were sectioned (5µm) using Microtome and mounted on 

Superfrost Plus slides (VWF, USA). The sections were placed on a heat block at 50°C 

overnight to adhere the section to the glass slide, then cooled at room temperature and 

stored until use.   

3.2.7.1.2 Hematoxylin and eosin staining  

Adipose tissue sections from each wt and ECCRT+ mice were stained using 

histological techniques to examine the phenotypic changes (shape and size) of adipocyte 

in these mice. Sections were stained with Hematoxylin and Eosin staining protocol of 

Harris Hematoxylin (Prophet et al. 1994). Briefly, sections were deparaffinized in xylene 

for 5 minutes followed by hydration process through serial incubation in 100, 95, and 70 

% ethanol for 1 minutes each. Slides were then washed with tap water then with distilled 

water for total hydration. Sections were then stained with hematoxylin staining for 30 

seconds (nuclear staining) and washed in running tap water for 1 minute followed by quick 

wash with distilled water and then differentiated in 1% acid alcohol (1% hydrochloric acid 

in 70% ethanol) for 30 seconds.  
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Slides were washed in running tap water for 1 minute and counterstained in eosin-

phloxine solution (quick – 7 dunks) for cytoplasmic staining. After staining, sections were 

washed and dehydrated through two changes of 95% alcohol and absolute alcohol for 2 

minutes for each, then cleared in xylene for 5 minutes twice. Coverslips were then mounted 

on slides with pre-mount mounting media (Electron microscopy science).  

3.2.7.1.3 Quantification of adipocyte size and numbers  

5-6 images were obtained from each section of adipose tissue isolated from the wt 

and ECCRT fed standard diet. Tissues were analyzed to quantify the size and number of 

adipocytes in each field using a Zeiss Axiovision microscope equipped with an AxioCam 

and analyzed with the Axiovision SE64 version 4.8 program. Adipocytes at the image 

borders were calculated as a number by drawing a line inside the adipocyte, but they were 

not counted for size quantification.  as shown in (Figure 3.2) 
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Figure 3.2 Quantification of the adipocyte size and number. By using Axiovision SE64 

software the quantification has been done by drawing on the adipocyte as shown in the 

figure which gave the size of the adipocyte and represent the numbers. Adipocytes at the 

figure borders were calculated as a number by drawing a line inside the adipocyte, but they 

were not counted for size quantification.   
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3.2.8 Diet experiment of the wt and ECCRT+ mice 

To examine the effect of diet on the phenotype of the wt and ECCRT+, 4 weeks old 

wt and ECCRT+ litter-mate mice were fed with special diet containing either high fat (60%) 

or regular fat (10%) diet for different length (8-24 weeks). 20 pellets of food which is equal 

to 20 grams of food per week was given to these mice. A total of 10 mice was included in 

each group. Body weight and blood glucose measurements using one touch ultra-soft 

machine were obtained for each mouse bi-weekly after fasting the mice for 6 hours. At the 

end time of study for each group, glucose tolerance test (GTT) were measured for each 

mouse (see details below). The next day after the GTT test, mice were euthanized; blood, 

epididymal fat, liver, descending aorta, kidney, heart, lungs, and skeletal muscle were 

collected. Fat tissues were sectioned and stained using histological techniques for 

quantification of the adipocytes size and number. Phenotypic characteristics that observed 

visually were also recorded. Serum was collected and used for metabolomics analysis by 

Metabolon LTD, USA.   

3.2.8.1 Glucose tolerance test (GTT)  

At the end time point, each mouse fed the high fat (60%) or regular fat (10%) diet 

was fasted for 16 hours then body weight was measured, and 2g glucose/kg body weight 

of sterilized glucose was injected intraperitoneally into the mice according to their body 

weight. Blood samples was collected every 30 minutes up to 2 hours to check the glucose 

level in mg/dl.   
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3.2.8.2 RNA extraction and quantitative real-time polymerase chain reaction (qRT-

PCR) analysis 

Fat tissues were isolated from the wt and ECCRT+ mice of different group (8w, 16w, 

and 24w) to examine the changes in gene expression of the most studied genes related to 

adipogensis (Adiponectin, PPARg, and CEBPa). Further details for RNA extraction and 

qRT-PCR analysis carried out in this study are explained in section 3.2.6.2.   

3.2.9 Angiogenesis in Cdh-ECCRT+-EGFP 

To examine changes in angiogenesis in the transgenic mice, heart, fat, descending 

aorta and mesenteric artery tissues were collected from the Cdh-ECCRT+-EGFP and Cdh-

EGFP mice and fixed in 4% PFA and then was proceed for histological sectioning as 

previously described in section [3.2.7.1.1 Tissue preparation]. Images were taken using a 

Zeiss Confocal microscope.  

3.2.10 Statistical analysis  

The data was analyzed using widely accepted statistical software (Prism). Unpaired 

student’s T-test was used for adipocyte quantification and ANOVA was used for GTT 

analysis. Significant difference was defined as P value<0.05. For qRT-PCR analysis, 

results were calculated using the DDCT and are expressed as the mean ±S.D. of three 

samples each assayed in duplicate.  

  

 



  
   

 46 

CHAPTER 4. RESULT  

4.1 Genotyping confirmation of the wild-type and transgenic mice (wt, ECCRT+, and 

Cdh-ECCRT+ -EGFP) 

Mice were generated at WCM-Q by breeding, tail biopsies from these mice were 

used for genotyping, by PCR and western blot, to identify the transgenic mice 

overexpressing CRT under the control of Tie2 promotor (ECCRT) and the wt. Figure 4.1A 

shows a representative Western blot of the protein isolated from mouse tails blotted with 

anti-HA antibody. Figure 4.1B, shows a representative PCR image of the genomic DNA 

and specific primers of CRT C-terminus and HA tag (Table 3.7) demonstrating the desired 

band of CRT-HA amplification in the transgenic mice, ECCRT+, and absence of this band 

in the wt mice. Genotyping of Cdh-ECCRT+-EGFP and Cdh- EGFP was carried out as 

described in material and methods using specific primers to detect VE-Cadherin, CRT-HA 

and EGFP listed in (Table 3.7). Figure 4.2A, B, and C illustrates the results of a 

representative PCR using the three different primers to amplify the target sequence. CRT-

HA positive and negative, Cdh, and EGFP positive transgenic mice which were used for 

examining the angiogenesis differences between these mice.   
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A. 

 

 

 

B.  

 

 

 

 

 

 

Figure 4.1 Genotyping of ECCRT+ mice Transgenic mice using tail biopsies.  (A) A 

representative Western blot analysis using an anti-HA antibody and anti-actin as a loading 

control. A single protein band at 65 kDa was detected in the ECCRT samples only. (B) Using 

the genomic DNA isolated from tail biopsies and specific primers PCR was performed as 

described in Material and Methods. A representative gel shows the PCR product of 

genomic DNA of ECCRT mice and wt A 200 bp amplicon was detected in the samples from 

transgenic mice only (samples: 3-7,10, 12-17, 18, 19 are positive) (samples:1, 2, 8, 9, 11, 

20 are negative). Sample 21 represent the positive control and sample 22 represent the 

negative control where L is 1kb ladder. 
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Figure 4.2 Genotyping of Cdh-ECCRT+ -EGFP and Cdh-EGFP by PCR analysis. PCR 

reaction of the genomic DNA from mouse litters were set to identify Cadherin, EGFP and 

CRT-HA. Samples in lane 1-8 were PCR of genomic DNA of transgenic mice lane 9 and 

10 are the positive control (a universal primer and gene specific primer respectively). A) 

A representative PCR for Cdh-cre, B) A representative PCR for EGFP primer. C) A 

representative PCR for CRT-HA primer.  
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4.2 Examining the presence of endothelial dysfunction in the transgenic mice ECCRT+ 

One of the objective of our study was to examine changes in endothelial function 

in the ECCRT+ mice. As mentioned earlier, preliminary data from our lab on the vascular 

function showed a significant decrease in mesenteric artery relaxation after administration 

of acetylcholine in the ECCRT+ mice compared to the wt mice. The defect in relaxation was 

overcome when applying a NO donor SNP. This observation suggested that the ECCRT+ 

mice suffer from endothelial dysfunction as a result in changes in NO production.  To 

examine the status of eNOS in the ECCRT+ mice, western and qRT-PCR was carried out. 

Figure 4.3, illustrates that eNOS protein expression is significantly reduced in ECCRT+ 

mesenteric arteries as compared to the wt mesenteric arteries. In the western blot HUVEC 

cell (human umbilical vein endothelial cells) lysates were used as a positive control because 

they are expressing eNOS. As shown in the Figure 4.3, eNOS is expressed in the HUVEC, 

wt and the ECCRT+ mesenteric arteries. However, in the transgenic mice, the expression of 

eNOS is significantly decreased.  

To determine whether changes observed in eNOS protein is due to gene expression 

or protein stability we carried out qRT-PCR of eNOS on RNA isolated from different 

arteries and adipose tissue from the wt and transgenic mice. Figures 4.4 summarizes the 

qRT-PCR results for the expression of eNOS gene on the isolated mesenteric artery, 

descending aorta and fat tissues from 4-5 different wt and ECCRT+ mice. As shown there 

was a significant reduction in eNOS mRNA in different tissues isolated from the ECCRT+ 

as compared to the wt. 

 



  
   

 50 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 4.3 eNOS expression of ECCRT+ and wt mice. Western blot analysis using an anti-

eNOS antibody and anti-tubulin as a loading control. (A) Proteins extracted from HUVEC 

cell line (endothelial cells) and mesenteric arteries isolated from the wt and ECCRT mice 

was resolved on a 7.5% SDS acrylamide gel. Lower panel is the same blot probed with 

antibody to Tubulin to assess equal loading of the samples. (B) eNOS protein 

quantification. Bar graphs are mean ± SE of n=3 mice in each group. ** P<0.01, as 

compared to the wt mice. 
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Figure 4.4 Quantification of qRT-PCR of eNOS in different tissues of wt and ECCRT+ 

mice. The qRT-PCR was carried on 4-5 separate RNA extractions. ΔΔCT was calculated 

to reference gene r18S for each sample. Bar graphs are mean ± SE of n=4-5 mice in each 

group. * P<0.05, ***P<0.001 as compared to the wt mice.   
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4.3 Characterization of adipose tissue in the ECCRT+ and wt mice 

One of the phenotypes that we observed while observing the ECCRT+ mice as they 

aged was increased amount of adipose tissue, specifically in the mesenteric region and 

associated with different internal organs and subcutaneous area, as compared to the wt 

mice. Therefore, we aimed to characterize the adipose tissue. The epididymal fat pad was 

isolated from different mice and fixed and prepared for histological analysis. As shown in 

Figure 4.5 hematoxylin and Eosin staining, there was a significant increase in the number 

of adipocytes in the fat pad of ECCRT+ as compared to the wt mice. Furthermore, we 

observed a significant reduction in the size of the adipocytes in the ECCRT+ as compared to 

the wt mice (Figure 4.5). The mice we examined in this experiment were fed a normal diet. 

This prompted us to expand our study and examine effect of normal fat diet (10%) and 

high fat diet (60%) on the adipocyte phenotype in these mice.  
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Figure 4.5 Characteristics of Adipocyte tissues.  Hematoxylin and Eosin staining of 

epididymal adipose tissue from ECCRT+ and wt mice on standard diet. 5-6 Image field from 

each specimen was analyzed to quantify the number and size of adipocytes in each field. 

Bar graphs showing the mean ± SE of 6 separate wt or ECCRT+ mice. *** P<0.001 as 

compared to the wt mice.  
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4.4 Characterization of metabolic phenotype in wt and ECCRT+ mice on different diet  

4.4.1 Body weight measurements  

To determine effect of increased fat intake on the phenotype of the ECCRT+ mice we 

fed the mice 10% or 60 fat diet for different time periods (8, 12, 16, 20 and 24 weeks). In 

this report I will highlight the changes in the 8, 16 and 24 weeks.  The body weight of wt 

and ECCRT+ mice fed for 8, 16 and 24 weeks were measured and recorded bi-weekly. At 

the end of time point the body weight was recorded and summarized in Figure 4.6. As seen 

in this figure, both the wt and ECCRT+ mice showed an increase in the body weight as the 

mice aged from week 8 to week 24 under 10% and 60% fat diet. Furthermore, both the wt 

and ECCRT+ mice body weight significantly increased after feeding mice 60% fat diet at 8 

and 24 weeks as compared to the 10% fat diet. Interestingly, at 16 weeks, only ECCRT+ mice 

showed a significant increase in body weight on 60% fat diet. 

4.4.2 Glucose tolerance test  

As part of metabolic phenotyping of the mice we measured changes in blood 

glucose of the mice at end of time of treatment (8, 16 and 24 weeks). At the end of each 

time point wt and ECCRT+ mice fed the high fat (60%) or regular fat (10%) diet was sat for 

GTT. As described in materials and methods, the measurement was taken every 30 minutes 

for two hours.  As shown in figure 4.7 there were some differences in glucose uptake in 

the ECCRT+ mice as compared to the wt fed 10% fat diet. The difference was significant at 

24 weeks of age. However, under high fat diet, the glucose failed to return to normal level 

at 2 hrs. in the ECCRT+ mice compared to the wt (Figure 4.7D). At 16 and 24 weeks GTT 

was significantly different between the ECCRT+ mice and the wt mice under 60% fat.  
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Figure 4.6 Body weight measurements of ECCRT+ and wt mice. Mice were fed a diet 

containing 10% or 60% fat for 8,16, and 24 weeks. At end of the treatment dates mice were 

weighed. Data were represented as bar graphs as mean ± SE of n=10 mice in each group. 

* P<0.05, ***P<0.001as compared to the 10% fat diet.  
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Figure 4.7 Glucose tolerance test of wt and ECCRT+ mice. Mice were fed a diet containing 

10% or 60% fat for 8,16, and 24 weeks. At end of the treatment dates mice were weighed 

and glucose tolerance test was performed as described in Materials and Methods. Values 

were plotted against time to show the difference between the wt and ECCRT+ mice. Data 

were represented as bar graphs as mean ± SE of n=10 mice in each group. * P<0.05, ** 

P<0.01, ***P<0.001 as compared to the wt mice. 
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4.4.3 Phenotype of adipose tissue in wt and transgenic mice fed different diet 

To determine effect of increased fat intake on the size and number of adipocytes of 

the wt and ECCRT+ mice, epididymal fat tissues were isolated from the ECCRT+ and wt mice 

fed normal fat (10% Fat) and high fat diet (60%) for 8, 16 and 24 weeks. As shown in 

figure 4.8A, the adipocyte size in ECCRT+ mice fed 10% fat diet for 8 weeks was 

significantly lower as compared to the wt adipocytes. Furthermore, the total number of 

adipocytes at 8 weeks were significantly increased in ECCRT+ as compared with the wt 

(Figure 4.8B). Similarly, ECCRT+ mice fed 10% diet for 16 weeks showed a significantly 

lower cell size as compared to the wt with no change in cell number (Figure 4.9A and B).  

Interestingly, mice fed 10% fat diet for 24 weeks showed a significantly higher adipocyte 

size (Figure 4.10A) with no change in the number of adipocytes (Figure 4.10B).  

Figure 4.11 shows that when the mice were fed high fat diet (60%) for 8 weeks 

there were no difference in the adipocyte size and number between the two-mouse strain 

(ECCRT+ and wt). Similar data was observed when mice were fed 60% fat diet for 16 weeks 

(Figure 4.12). However, after 24 weeks on 60% diet the adipocytes in the ECCRT+ mice 

were significantly smaller as compared to the wt (Figure 4.12A) and they were significantly 

higher in number as compared to the wt mice (Figure 4.12B). 
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Figure 4.8 Characteristics of Adipocyte tissues isolated from mice fed 10% fat diet 

for 8 weeks.  Hematoxylin and Eosin staining of adipose tissue from wt mice and ECCRT+ 

mice on 10% fat diet. 5-6 Image fields from each specimen was analyzed to quantify the 

size (A) and number (B) of adipocytes in each field. Bar graphs showing the mean ± SE of 

3 separate wt or ECCRT+ mice. ** P<0.01, significantly different from the wt mice. 
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Figure 4.9 Characteristics of Adipocyte tissues isolated from mice fed 10% fat diet 

for 16 weeks.  Hematoxylin and Eosin staining of adipose tissue from wt mice and ECCRT+ 

mice on 10% fat diet. 5-6 Image fields from each specimen was analyzed to quantify the 

size (A) and number (B) of adipocytes in each field. Bar graphs showing the mean ± SE of 

3 separate wt or ECCRT+ mice. No significant differences observed. 
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Figure 4.10 Characteristics of Adipocyte tissues isolated from mice fed 10% fat diet 

for 24 weeks.  Hematoxylin and Eosin staining of adipose tissue from wt mice and ECCRT+ 

mice on 10% fat diet. 5-6 Image fields from each specimen was analyzed to quantify the 

size (A) and number (B) of adipocytes in each field. Bar graphs showing the mean ± SE of 

3 separate wt or ECCRT+ mice. * P<0.05, significantly different from the wt mice.  
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Figure 4.11 Characteristics of Adipocyte tissues isolated from mice fed 60% fat diet 

for 8 weeks.  Hematoxylin and Eosin staining of adipose tissue from wt mice and ECCRT+ 

mice on 60% fat diet. 5-6 Image fields from each specimen was analyzed to quantify the 

size (A) and number (B)of adipocytes in each field. Bar graphs showing the mean ± SE of 

3 separate wt or ECCRT+ mice. No significant differences observed. 
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Figure 4.12 Characteristics of Adipocyte tissues isolated from mice fed 60% fat diet 

for 16 weeks.  Hematoxylin and Eosin staining of adipose tissue from wt mice and ECCRT+ 

mice on 60% fat diet. 5-6 Image fields from each specimen was analyzed to quantify the 

size (A) and number (B)of adipocytes in each field. Bar graphs showing the mean ± SE of 

3 separate wt or ECCRT+ mice. No significant differences observed. 
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Figure 4.13 Characteristics of Adipocyte tissues isolated from mice fed 60% fat diet 

for 24 weeks.  Hematoxylin and Eosin staining of adipose tissue from wt mice and ECCRT+ 

mice on 60% fat diet. 5-6 Image fields from each specimen was analyzed to quantify the 

size (A) and number (B)of adipocytes in each field. Bar graphs showing the mean ± SE of 

3 separate wt or ECCRT+ mice. * P<0.05, significantly different from the wt mice.  
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4.5 Adipocyte specific gene expression profile 

As shown above there was a significant change in the adipocyte phenotype of the 

wt and ECCRT+ epididymal fat fed different fat diet. Therefore, we examined changed in 

expression of some fat specific transcription factors, Adiponectin, PPARg, CEBPa. 

Figures (4.14, 4.15 and 4.16) summarizes the qRT-PCR results for the expression of the 

three tested genes in the epididymal fat isolated from wt and ECCRT+ mice fed 10% and 

60% fat diet for different times.  As shown in Figure 4.14 adiponectin expression was lower 

in ECCRT+ fed with 10% fat diet as compared to the wt at the 3 times tested (Figure 4.14 

A). Interestingly, feeding the mice with 60% diet reduced expression of adiponectin in both 

the wt and the ECCRT+ mice (Figure 4.14B). The variation in the standard error bar was due 

to the variation between the mice of the same group although they were showing the same 

trend of genes that is downregulated.   

Figure 4.15 shows changes in the expression of PPARg in the epididymal fat 

isolated from the wt and the ECCRT+ mice fed different diets. There was a significant 

decrease in PPARg expression in mice fed 10% fat diet for 8 and 16 weeks with no 

difference in the 24 weeks time point (Figure 4.15B). However, after high fat diet (60% 

fat) PPARg expression was reduced in the ECCRT+ mice at all the three-time points (Figure 

4.15B.  
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Figure 4.16 summarizes the qRT-PCR data for CEBPa expression in the 

epididymal fat isolated from the wt and the ECCRT+ mice fed different diets. 10% fat diet 

had no significant difference in CEBPa expression at different weeks between the wt and 

the ECCRT+ mice (Figure 4.16A). Interestingly, feeding mice a diet containing 60% fat 

significantly reduced the expression of CEBPa in the ECCRT+ mice as compared to the wt 

mice at 8 and 16 weeks (Figure 4.16 B). Furthermore, at 24 weeks feeding with 60% fat 

diet, we observed no significant change in the CEBPa expression (Figure 4.16B).    
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Figure 4.14 qRT-PCR of fat tissue of ECCRT+ and wt mice under 10% and 60% fat 

diet. The figure shows the mRNA level of ADIPONECTIN. Downregulation of the three 

genes was observed on the mice under both fat diet (10% or 60%). Bar graphs are mean ± 

SE of n=3-6 mice in each group. ** P<0.01, as compared to the wt mice.  
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Figure 4.15 qRT-PCR of fat tissue of ECCRT+ and wt mice under 10% and 60% fat 

diet. The figure shows the mRNA level of PPARg. Downregulation of the three genes was 

observed on the mice under both fat diet (10% or 60%). Bar graphs are mean ± SE of n=3-

6 mice in each group. * P<0.05, ***P<0.001, as compared to the wt mice.  
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Figure 4.16 qRT-PCR of fat tissue of ECCRT+ and wt mice under 10% and 60% fat 

diet. The figure shows the mRNA level of CEBPa. Downregulation of the three genes was 

observed on the mice under both fat diet (10% or 60%). Bar graphs are mean ± SE of n=3-

6 mice in each group. ** P<0.01, as compared to the wt mice. 
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4.6 Angiogenesis in Cdh-ECCRT+-EGFP 

As previously discussed, angiogenesis plays an important role in the expansion of 

adipocytes and onset of obesity. In our preliminary work we have observed changes in 

vascular density in different tissue. Therefore, one of the objective of the current study was 

to measure changes in angiogenesis as one of the factors contributing to obesity. To 

examine the changes in the angiogenesis between the transgenic and wt mice, we developed 

Cdh-ECCRT+-EGFP and Cdh-EGFP (wt) mice as described in Material and Methods. 

Cryosections of different tissues from both Cdh-ECCRT+-EGFP and Cdh-EGFP mice were 

prepared as described in the Material and Methods.  Slides were washed with PBS and 

mounted with mounting media containing DAPI satin and visualized directly using a Zeiss 

confocal microscope. The main laser line used for EGFP excitation was the argon laser at 

488nm. During imaging the gain and pinhole were set constant for all images. Figure 4.17, 

shows representative images of sections of descending aorta, heart, mesenteric artery and 

visceral fat obtained from 2-3 Cdh-ECCRT+-EGFP and Cdh-EGFP mice. As observed in 

this figure, all tissue sections from the Cdh-ECCRT+-EGFP had a significantly higher 

number of endothelial cells (EGFP fluorescent, arrowheads) in comparison with Cdh-GFP 

(Figure 4.17).  
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Figure 4.17 Angiogenesis analysis in Cdh-ECCRT+-EGFP. Representative images of 

vasculature of different tissues obtained from Cdh-ECCRT+-EGFP and Cdh-EGFP mice. 

Green corresponds to the endothelial cells tagged with EGFP, while blue correspond to the 

DAPI stain. Arrow pointing to the endothelium of the arteries. Arrowheads represents the 

endothelial cells in the capillaries. Images were taken using a Zeiss Confocal microscope.  
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CHAPTER 5. DISCUSSION 

Overweight or obesity has become a public health concern worldwide. Obesity is 

defined as the accumulation of an abnormal or excessive fat which leads to a major health 

risks. Among the gulf regions, Qatar ranked sixth in obesity prevalence globally according 

to the international association for the study of obesity (NHS, 2012). Obesity results from 

an imbalance between energy intake and energy output, which is mainly associated with 

the adipose tissue expansion. Recently, it has been shown that adipose tissue not only stores 

excess energy, but it is considered to be the largest endocrine organ in the human body that 

exerts it effects on several other vital organs. In adults, the predominant type of fat is the 

subcutaneous and visceral WAT, where excess calories are stored in adipocytes as 

triglyceride molecules. Thus, the imbalance in energy leads to alterations in glucose and 

lipid disposal as well as dysregulation of adipocytokine expression in WAT. Oxidative 

stress and inflammation have been shown to be present in obese adipose tissue and can 

cause insulin resistance and adipose tissue dysfunction (Manna & Jain, 2015) 

It has become well-established that maladaptive responses in the insulin resistant 

adipocyte can impact organelles such as the ER which is the principal site of protein 

synthesis and folding. ER is involved in several cellular functions in addition to protein 

synthesis including storage of Ca2+, lipid synthesis and modification. These functions of 

the ER are helped by several ER resident proteins, also known as chaperones. One of the 

chaperones that has been shown to have multiple different functions is CRT. It plays an 

important role in protein folding, Ca2+ homeostasis, cell adhesion and lipid/phospholipid 

synthesis (Chaudhari et al., 2014). 
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As part of the quality control in the ER, CRT binds to the newly synthesized 

proteins and support them for correct tertiary structure folding. Improper protein folding 

will lead to accumulation of misfolded proteins in the ER that can activate unfolded protein 

response and ER stress (Rao & Bredesen, 2004). Thus, alteration in CRT expression could 

result in several changes in the cells. As previously mentioned that CRT could play a role 

in vascular development (Mesaeli et al., 1999). Like in other tissues, vasculature of adipose 

tissue provide oxygen, growth factors, nutrients, and cytokines to the developing tissue at 

different stages of tissue development and maintenance. During early development of 

adipose tissues, the progenitor cells receive these factors through vascular supply that help 

them differentiate into pre-adipocytes. Vascular endothelial cells form the inner barrier of 

the vessel wall and it is responsible for maintaining the vascular vasodilation and 

constriction. Defect in the endothelial cell function has been shown to result as a 

consequence of different diseases such as obesity, diabetes and high blood pressure (Lobato 

et al., 2012) (Singhal, 2005). An increase or decrease in the generation of reactive oxygen 

species is one of the causes of endothelial dysfunction (Montezano & Touyz, 2012). The 

fluctuation in the balance of these factors in the endothelium has an influence in the 

adipocyte cells which is responsible for the storage of fat which causes an impairment of 

adipocytes and may lead to obesity (Jankovic et al., 2016). 
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Various studies discussed the importance of CRT, however its role in the 

development of endothelial dysfunction has not been fully discussed. Furthermore, many 

studies have focused on how obesity induces endothelial dysfunction but, very little 

information is available on the role of endothelial dysfunction in the onset of obesity and 

diabetes. Therefore, in this study we examined the role of CRT in endothelial dysfunction 

and in the process of adipogenesis leading to the development of obesity and diabetes.  

In our lab we have generated a mouse model that overexpressed CRT in the 

endothelial cells (ECCRT+ mice) under the control of Tie2 promoter and enhancer (Figure 

3.1), which is a commonly used promoter for endothelial cells. Genotyping of the mice 

showed that the gene is incorporated in the mouse genome and the proteins are expressed 

in the arterial wall from the transgenic mice (Figure 4.1). Overall, we have observed a 20-

25% increase in the CRT protein expression (Data not shown). One of the main phenotypic 

changes in these transgenic mice is the development of obesity and diabetes as they aged. 

The question which raise due to this observation was how overexpression of CRT in the 

endothelial cells can induce obesity? One of our initial postulate was that this could be 

mediated through onset of endothelial dysfunction. Indeed, De Boer et al. 2012 have 

reported that in obese people, impairment of endothelial function result in impair activation 

of endothelial nitric oxide synthase (eNOS) (De Boer et al., 2012). The reduction in eNOS 

reduces NO-dependent vasodilation and NO production (Hoier & Hellsten, 2014) (F. Kim 

et al., 2005) (Witting et al., 2007).  
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As shown in Figure 4.3 and 4.4, overexpression of CRT resulted in a significant 

reduction in eNOS expression at the level of protein and mRNA. Furthermore, previous 

preliminary research in our lab on the mesenteric artery function of ECCRT+ mice we 

observed a significant reduction in the relaxation of mesenteric artery in response to 

acetylcholine stimulation (Figure 2.3). These studies also showed that addition of NO 

donor (SNP) could recover the relaxation of the mesenteric artery of ECCRT+ mice (Figure 

2.4). Overall, these data suggest the onset of endothelial dysfunction upon overexpression 

of CRT in the endothelial cells. Based on the previous publication we suggest that 

endothelial dysfunction in the ECCRT+ mice plays an important role in the increased obesity 

in these mice. 

As mentioned above one of the phenotypic changes of ECCRT+ mice are the 

development of obesity and diabetes. The mice had a large volume of visceral and 

subcutaneous adipose tissue. Adipose tissues are the main depot for storing extra food 

intake as fat thus causing obesity. Development of adipose tissue is achieved through 

adipogensis process. Any alteration in this process could lead to obesity and many other 

diseases. A role for CRT in adipose cell development has been suggested (Szabo et al., 

2009) but limited information is available on the effect of CRT on adipose tissue and 

obesity in vivo. To examine the phenotype of adipose tissue in the ECCRT+ mice, we 

examined sections of epididymal fat isolated from the ECCRT+ mice and their wt littermates.  

Interestingly, we observed a significant increase in the cell number with a decrease in cell 

size in the ECCRT+ mice as compared to the wt mice. This suggest that in the ECCRT+ mice, 

there is adipocyte hyperplasia not hypertrophy. Increased cell number will contribute to the 

increase in obesity with over-feeding. Previous reports showed that when examining  
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different cellular pattern in terms of various aspect of body composition, body size, and 

age of onset of obesity, only the latter uniquely distinguishes the hyperplastic from the 

hypertrophic obesity (Murphy et al., 2017)(Salans et al., 1973). Interestingly, hyperplastic 

obesity was characterized by an early age of onset, and hypertrophic by a late age of onset 

(Murphy et al., 2017). How this could be correlated to our transgenic mouse model was of 

interest to us. Therefore, we examined the changes in the adipocytes challenged with 

different fat diet. Indeed, in our mouse model they had higher adipocyte number initially 

suggesting early hyperplasia, as the mice aged (fed high fat diet) the adipocytes undergone 

hypertrophy (as seen in (Figure 4.8-4.13). 

To characterize if CRT has an effect on the adipogenic process we fed 4 weeks old 

wt and transgenic (ECCRT+) litter mate mice with special diet containing either high fat 

(60%) or regular fat (10%) diet for different time points (8-24 weeks). To ensure that the 

mice had similar food intake (and eliminate the possibility that one mouse line were 

overfeeding), they were given the same amount of food, 20 pellets of food which is equal 

to 20 grams of food per week. At the end time point (8, 16 or 24 weeks) glucose tolerance 

test (GTT) was performed to determine the state of diabetes.  

 Epididymal adipose tissues were collected from the wt and ECCRT+ mice for 

histological analysis. As shown in (Figure 4.6) there were no significant change in total 

body weight between the ECCRT+ and wt mice fed 10% fat diet. Similarly, there was no 

difference between the two-mouse line after feeding 60% fat diet. This could be attributed 

to the fact that we ensured equal amount of food intake by the two mouse lines. Further 

analysis of the body weight we observed a 65% increase in body weight in wt mice fed 

60% fat diet while the ECCRT+ had increased by 94%, that is they gained more body weight 
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overall at 8 weeks. The same was also observed at 16 weeks (wt 75% and ECCRT+ had 98% 

increase) while at 24 weeks the percentage increase was reversed (wt 145% and ECCRT+ 

had 125% increase). Despite the observation of no changes in body weight between the 

two mouse lines under controlled feeding experiments, we recently received metabolomics 

data showing significant differences in several metabolites at each time point tested (data 

not shown, and currently being analyzed further).  

For phenotypic analysis of the adipose tissue, we carried out the quantification of 

adipocyte size and numbers. As shown in Figures 4.8 to 4.13 we observed changes in the 

adipocyte cell size and number. Similar to our data from mice on standard chow, at 8 weeks 

under 10% there was a higher number of adipocyte in ECCRT+ with a significantly smaller 

size (Figure 4.8). Interestingly, as the mice aged (16 and 24 weeks on 10% fat diet), the 

number of cells became equal between the two mouse lines (Figure 4.9 and 4.10). This 

observation suggests that the hyperplasia had perhaps started at the early development and 

then it was maintained as the mice grew older. Figure 4.9 also illustrates that the adipocytes 

were still smaller in the ECCRT+ mice at 16 weeks after 10% fat diet, however at 24 weeks 

this difference was lost. This illustrates that the adipocytes of ECCRT+ increase in size as 

the mice age.  After high fat diet feeding for only 8 weeks the size of the adipocyte in the 

ECCRT+ increased to the same as wt and interestingly there were no differences in the 

number of adipocytes (Figure 4.11). The same was observed for the 16 weeks. This suggest 

that on high fat diet there is increase in the size of adipocytes in both mice at 8 and 16 

weeks.  
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On the other hand, after 24 weeks on 60% fat diet the number of adipocytes 

increased in the ECCRT+ mice (Figure 4.13). While, the wt adipocytes increased in size upon 

60% fat diet for 24 weeks but the ECCRT+ adipocytes did not change in size (Figure 4.13). 

This suggest that possibly the ECCRT+ adipocytes have reached their maximum size. 

The association between obesity and diabetes is well established. Although, not all 

obese will become diabetic and vice versa. Our results illustrated that ECCRT+ mice fed 

60% Fat diet had more resistance to return their circulating blood glucose to normal at the 

end of GTT even at 8 weeks of age. This was even worse at 16 and 24 weeks (Figure 4.7).  

Interestingly, at 10% fat diet (regular diet) the ECCRT+ exhibited defect in ability to restore 

glucose level to normal after GTT test only at 24 weeks of feeding.  

There are a number of adipogenic transcription factors and adipokines which has 

been shown to play an important role in the adipogenesis and can be considered as marker 

for adipogenesis. The peroxisome proliferator activated receptor gamma 2 (PPARg2), 

CCAAT-enhancer binding protein a (CEBPa), and adiponectin are the most common 

adipogenic markers involved in adipose tissue development process (Miettinen et al., 

2008). A study conducted by Winrow et al. 2002 showed that CRT can act as a negative 

regulator of PPARg and it can also bind to GC-rich stem-loop structures causing inhibition 

of CEBPa mRNA translation (Winrow et al., 1995).   
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Szabo and colleagues showed that when CRT is overexpressed, PPARg is 

downregulated suggesting again that CRT modulate PPARg by a negative feedback 

mechanism (Szabo et al., 2009). Since PPARg is consider the master regulator of the 

adipogenesis process, aberrant expression of CRT may alter the function of PPARg 

therefore affect the adipogensis process. In this study, we showed that our ECCRT+ mice 

that overexpress CRT in endothelial cells express lower level the adipogenic markers 

PPARg, and Adiponectin when fed either 10 or 60% fat diet for the different time points 

(8,16, and 24 weeks) (Figure 4.14 and 4.15). The effect after high fat diet was more 

significant. CEBPa was not different in ECCRT+ mice as compared to wt mice fed 10% diet 

(Figure 4.16A).  However, it was significantly reduced upon feeding mice a 60% fat diet 

(Figure 4.16B). This suggest that the changes in the endothelial cells have an indirect effect 

on the adipocytes. Lemoine et al. 2013 suggested that the level of expression of several 

adipokines including Adiponectin are either positively or negatively correlated with the 

adipose area (Lemoine et al., 2013). This study supports our observation of decreased 

Adiponectin expression in the ECCRT+ mice under 10% fat diet and smaller size of the 

adipocyte. However, under high fat diet the increased intake of calories perhaps masked 

the effect of lower Adiponectin expression and the cell size was back in to different from 

the wt mice. 
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Finally, one of our hypothesis early in our study was a possible effect of changes 

in angiogenesis in the ECCRT+ mice as a mean to alter adipogenesis. Adipose tissue is a 

highly vascularized tissue and each adipocyte is surrounded by an extensive capillary 

network which is essential for its expansion (Lemoine et al., 2013) (Lijnen, 2008). Previous 

reports have showed a correlation between angiogenesis and increased adipogenesis 

(Lemoine et al., 2013) (Lijnen, 2008). In the current study we examined whether CRT has 

an effect on angiogenesis in vivo, using the Cdh- ECCRT+-EGFP mice which express EGFP 

and overexpress CRT in the endothelial cells. Our data showed that indeed, ECCRT+ has a 

higher number of capillaries in different tissues including fat (Figure 4.17) as compared to 

the wt mice. Our result from fat, mesenteric artery and heart sections from Cdh- ECCRT+-

EGFP mice showed a significant increase in the capillaries as compared to Cdh-EGFP 

mice. The increase in the capillary number suggests activation of the angiogenesis process 

could be due to overexpression of CRT. In this mouse model increase in CRT and increase 

in angiogenesis has a very early onset (before birth). To date we do not know the time of 

onset of endothelial dysfunction. Our experiments to assess endothelial dysfunction were 

carried out on 8 weeks or older mice. It will be interesting to examine changes in 

endothelial function at the embryonic stage. This is one of the future line of investigation 

using our mouse model. Further experiments are required to confirm the correlation 

between the increased angiogenesis process to adipogenesis in our transgenic mouse 

model, however, this initial data showed a possible association between these two 

processes.  
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FUTURE DIRECTION:  

1. Understand the changes in the metabolic profile of our generated transgenic and wt 

mice from the mice under diet experiment.  

2. Measuring the eNOS expression level from the tissues and endothelial cells of the 

Cdh- ECCRT+ -EGFP- mice.  

3. Increasing the number of the mice from the diet feeding experiment for 

quantification of adipocyte size and numbers.   

LIMITATION:  

Due to the limited time of the thesis submission, we were not able to finish the analysis 

of adipocyte phenotype in all of the mice. Thus, we were not able to complete the 

statistical analysis. 
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APPENDIX B: Abstract translated in Arabic  

 ةنمسلا ریوطت يف ببستت ةیلآك ةیومدلا ةیعولأا ةناطب لخاد للخ

 ةماعلا ةحصلا نم ریرقت رخلآً اقفوو .اھراشتنا يف ةعیرس ةدایز عم ملاعلا يف ةماعلا ةحصلا ایاضق مھأ نم ةدحاو ةنمسلا ربتعت

 نكمی ثیح يھ ةینھدلا ایلاخلا .لاجرلا ىدل ٪68.3 ـب ةنراقم ٪71.8 ءاسنلا ىدل ةنادبلا ةبسن تناك ،2012 ماع يف رطق يف ایلعلا

 .اھعسوت معدل ةیلاع ةیومد ةیعوأ دوجو بلطتی ةینھدلا ةجسنلأا يف عیرسلا عسوتلا .ماعطلا لوخدم فلاتخاب اھمجح فلتخی نأ

 يف امب ةفلتخم ضارمأ نع ریراقتلا نم دیدعلا رادصا مت .حیحص لكشب ةیناطبلا ایلاخلا لمع ىلع دمتعی ةیومدلا ةیعولأا عرفت

 يف تاریغتلا ببسب بیعلا اذھ نوكی نأ نكمی .ةیناطبلا ةیلخلا ةفیظو يف بویع اھببس ناك يتلاو ةنمسلاو يركسلا ضرم كلذ

 .ةجسنلأا فلت ىلإ يدؤی امم ىرخلأا سلاكیداریسكولأا جاتنإ وأ ةیومدلا ةیعولأا ضابقنا مظنی يذلا دیسكأ كیرتینلا جاتنإ

 Calreticulin (CRT) اذھل ةیسیئرلا فئاظولا .تاییدثلا ایلاخ لكل ةیمزلابودنلاا ةكبشلا يف دجوی فئاظولا ددعتم نیتورب وھ 

 ةیناطبلا ایلاخلا يف overexpressed CRT ةساردلا هذھ يف ایثارو ةلدعملا نارئفلا جذومن رھظأ .ایلاخلا میظنت يھ نیتوربلا

)CRT +EC(كلذل .نسلا يف نارئفلا هذھ مدقت عم يركسلا ضرمو ةنمسلل ةیلباقلاو ةیناطبلا ایلاخلا يف يفیظو للخ ىلع ةلدأ، 

 طیشنت ىلإ يدؤی امم يئاعولا عرفتلا نم دیزی يناطب يفیظو للخ ىلإ يدؤی ةیناطبلا ایلاخلا يف CRT يف طارفلإا نأ انضرتفا

 .نوھدلا نیوكت ةیلمع

 مھتیذغت تمت ثیح CRT +EC  و  wt نارئفلا نم ًلاك يف ةینھدلا ایلاخلل نزولا يف ةیرھاظلا تارییغتلا انسرد ةساردلا هذھ يف

 نارئفلا هذھ نأ اھیلإ انلصوت يتلا جئاتنلا ترھظأ .)عیباسأ 24-8( ةفلتخم ةینمز ةرتفل )٪ 10( ةیداعلا نوھدلا وأ )٪ 60( نوھدلا

 GTT مدلا يف ركسلا تاصوحف تحضوأ .ةیناطبلا ایلاخلا ةفیظو يف فعض ىلإ يدؤی امم يعیبطلا نم  لقأ  eNOS ةبسن اھیدل

 نوھدلاب ينغ يئاذغ ماظن ىلع ،كلذ عمو .نوھدلا نم ٪10 لوانت دنع رمعلا مدقت عم يركسلا ضرم تروط CRT +EC نارئف نأ

 تارییغت   wt و CRT +EC نارئفلا نم ًلاكل نزولل يجیسنلا لیلحتلا رھظأ .عیباسأ 8 يف ىتح مدلا يف ركسلا يوتسم میظنت يف اولشف

 ببست يذلا للخلاو ةیناطبلا ایلاخلا يف CRT  نیتورب ةدایز نیب طابترا دوجو ىلإ ریشی امل اھددعو ةینھدلا ایلاخلا مجح يف ةریبك

 رییغت يف ةینطابلا ةیلاخلا ةفیظو للخل مھملا رودلا رھظت يتلا ىلولأا يھ انتسارد .نوھدلا نیوكت ةفیظو نیبو اھتفیظو للخ يف

 تانیتوربلا دوجو ةیمھأ ىلع ءوضلا انتانایب طلست امك .يركسلا ضرمو ةنمسلا روطت ىلإ يدؤت يتلا نوھدلا نیوكت ةیلمع

  .ةیلمعلا هذھ يف ةیمزلابودنلاا ةكبشلا يف ةدوجوملا

 


