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Abstract

Regaya, Yousra, M., Masters:

January: 2018, Master of Science in Computing

Title: Automated Segmentation of Cerebral Aneurysm Using a Novel Statisti-

cal Multiresolution Approach

Supervisor of Thesis: Prof. Abbes Amira

Cerebral Aneurysm (CA) is a vascular disease that threatens the lives of

many adults. It affects almost 1.5 − 5% of the general population. Sub-

Arachnoid Hemorrhage (SAH), resulted by a ruptured CA, has high rates of

morbidity and mortality. Therefore, radiologists aim to detect it and diagnose

it at an early stage, by analyzing the medical images, to prevent or reduce its

damages.

The analysis process is traditionally done manually. However, with the

emerging of the technology, Computer-Aided Diagnosis (CAD) algorithms are

adopted in the clinics to overcome the traditional process disadvantages, as

the dependency of the radiologist’s experience, the inter and intra observation

variability, the increase in the probability of error which increases consequently

with the growing number of medical images to be analyzed, and the artifacts

added by the medical images’ acquisition methods (i.e., MRA, CTA, PET, RA,

etc.) which impedes the radiologist’ s work.

Due to the aforementioned reasons, many research works propose different

segmentation approaches to automate the analysis process of detecting a CA

using complementary segmentation techniques; but due to the challenging task

of developing a robust reproducible reliable algorithm to detect CA regardless

of its shape, size, and location from a variety of the acquisition methods, a

diversity of proposed and developed approaches exist which still suffer from

some limitations.
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This thesis aims to contribute in this research area by adopting two promis-

ing techniques based on the multiresolution and statistical approaches in the

Two-Dimensional (2D) domain. The first technique is the Contourlet Trans-

form (CT), which empowers the segmentation by extracting features not ap-

parent in the normal image scale. While the second technique is the Hidden

Markov Random Field model with Expectation Maximization (HMRF-EM),

which segments the image based on the relationship of the neighboring pixels

in the contourlet domain.

The developed algorithm reveals promising results on the four tested Three-

Dimensional Rotational Angiography (3D RA) datasets, where an objective

and a subjective evaluation are carried out. For the objective evaluation, six

performance metrics are adopted which are: accuracy, Dice Similarity Index

(DSI), False Positive Ratio (FPR), False Negative Ratio (FNR), specificity,

and sensitivity. As for the subjective evaluation, one expert and four observers

with some medical background are involved to assess the segmentation visu-

ally. Both evaluations compare the segmented volumes against the ground

truth data.
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Chapter 1: Introduction

This chapter provides an insight of the overall picture of this thesis. Section 1.1

introduces the motivation to tackle Cerebral Aneurysm (CA) segmentation

problem. Section 1.2 highlights the problem statement; whilst Section 1.3 lists

the objectives and contribution of this work. Finally, Section 1.4 provides the

structure of this thesis.

1.1 Motivation

An aneurysm is a weak spot or a dilation in blood vessels. Such an abnor-

mal formulation when it takes place in the brain, it is known as a cerebral

aneurysm, an intracranial aneurysm, or a brain aneurysm. We will use the

Cerebral Aneurysm (CA) terminology throughout this thesis.

CA appears most commonly in areas with high blood flow, more precisely at

the branching point of the arteries [39, 58]. Per [11, 39], 1.5 − 5% of the gen-

eral population are affected by CA. It takes usually several years to develop;

therefore, it is detected more commonly after the age of forty. Different causes

may lead to this abnormality formulation as a constant blood flow pressure,

infections, drugs, direct brain trauma caused by an accident, etc. Figure 1.1,

adapted from [39], illustrates the different status of the brain blood vessels:

healthy vessels, the formulation of an unruptured CA, and the formulation of

a ruptured CA.

Usually, a small CA (less than 5 millimeters) is asymptomatic [39]. As an

1



(a) (b) (c)

Figure 1.1: Different status of brain blood vessels: (a) healthy vessels (b) CA
formulation (c) ruptured CA [39]

aneurysm enlarges gradually, taking some size and shape, the membrane be-

comes weaker. This growth produces more pressure affecting consequently the

brain and the surrounding nerves. Over time, this pressure and even strong

emotions may cause the rupture of a CA, resulting in the blood leakage into the

sub-arachnoid space. This incident is known medically as the Sub-Arachnoid

Hemorrhage (SAH), which has high rates of morbidity and mortality. Different

damages to the brain tissues and functions may happen consequently depend-

ing on the amount of blood loss that leads to different symptoms (e.g., sudden

severe headache, nausea and vomiting, vision impairment, hemorrhage stroke,

drowsiness, coma, or death as a worst-case scenario). Figure 1.2 illustrates some

statistics regarding the damages that could be caused by a ruptured aneurysm,

where 30 − 40% of the patients having a ruptured CA die [39]. Therefore,

detecting, diagnosing, and treating patients with a CA at an early stage is an

urgent matter to prevent more damages or reduce the high rates of morbidity

and mortality.

A clinician initiate the process by analyzing the medical images acquired from

a suitable adopted acquisition method (or modality), as each one captures dif-

ferent quantitative and qualitative information; for CA’s detection and analysis,

the most suitable modalities are Computed Tomographic Angiography (CTA),

2



Figure 1.2: Statistics of ruptured CA damages

Magnetic Resonance Angiography (MRA), Diagnostic Cerebral Angiography

(DCA), and Rotational Angiography (RA) [67, 86]. Later, according to a clini-

cian’ s diagnosis of the acquired images, the best suitable treatment is selected

accordingly. Globally, four therapeutic options are available [11, 32], which are

listed below. Moreover, Figure 1.3, adapted from [39, 45], illustrates the three

recommended treatments when a large unruptured or ruptured CA is detected

and diagnosed:

1. Medical Therapy: It is recommended when a small unruptured CA

is detected. As a small aneurysm does not need to be treated unless a

significant change is observed over time, a regular imaging examination

is requested to follow up with the patient.

2. Clipping: It is an open neurosurgery, recommended when a large un-

ruptured or ruptured CA is detected. In this treatment, a clip is placed

around the base of an aneurysm to prevent the blood leakage.

3. Coiling: It is an interventional neuroradiology, recommended when a

large unruptured or ruptured CA is detected too. In this treatment, a

CA is treated inside the brain blood vessels by directing a tube, called a

3



(a) (b) (c)

Figure 1.3: Three treatment options for a large and ruptured diagnosed CA:
(a) Coiling (b) Clipping (c) Blood Flow Diverters [39, 45]

catheter, through the vessels into a CA to place soft platinum micro-coils

that act as a mechanical barrier to the blood flow.

4. Blood Flow Diverters: It is recommended when a large unruptured

or ruptured CA is detected as well. This treatment places a tube made

of porous material within the CA. The porosity is increased at the two-

ending point and decreased at the central point to block the entrance of

the blood to the area of a CA.

1.2 Problem Statement

Medical image analysis is an imperative task in order to detect and determine

any abnormality that explains a person’s symptoms, where the best treatment

is selected according to the diagnosis results.

Traditionally, the analysis step is done manually by a clinician. This procedure

suffers from many disadvantages as the introduced artifacts by the acquisition

devices/scanners which impede a clinician’ s work, the bias results depending

on a clinician’ s experience, and the significant increase in the number of images

to be analyzed which increases consequently the following: the probability of

the analysis error, time consumption, and the number of needed experts. Due

4



to the aforementioned reasons, Computer-Aided Diagnosis (CAD) algorithms,

known as Medical Image Segmentation (MIS) algorithms, are introduced to

overcome the inter and intra operator variability, reduce the time consump-

tion, offer reproducibility, and improve the accuracy. Accordingly, many seg-

mentation algorithms are developed to analyze medical images, acquired from

different modalities, to detect and diagnose different diseases including the CA

disease.

CA segmentation algorithms help in determining the aneurysm state: ruptured

or unruptured. Moreover, they help to determine the size (e.g., small, medium,

or giant), the location (circle of Willis, anterior, or posterior), and the mor-

phology (e.g., the neck length, dome height, and diameter) of a CA. Recently,

these algorithms help also in measuring and analyzing the CAs’ hemodynam-

ics. All of the mentioned analysis helps a clinician in the treatment planning.

Therefore, the high accuracy of a CA segmentation algorithm is very critical

as it impacts greatly the clinician’s decision, which affects directly the human

life.

In the literature, different CA segmentation approaches are proposed, where

each algorithm consists of complementary segmentation techniques selected

carefully according to the adopted: dimensionality, modality, and the intended

level of user interaction. However, each work suffers from some limitations

which prevent to achieve the desired goal; these limitations are discussed later

on in section 2.2.

1.3 Research Objectives and Contribution

As aforementioned in section 1.2, the existing CA segmentation algorithms

suffer from a variety of limitations (e.g., inconsistent performance, the need

for some human interactions, and applicable for some certain cases as giant

5



CAs only or for some certain types as saccular CAs only). Therefore, the main

objective of this work is to contribute to this research area by:

1. Carrying out an intensive literature review with in-depth critical anal-

ysis of different MIS techniques and different existing CA segmentation

algorithms.

2. Developing a new promising robust automatic CA segmentation algo-

rithm using multiresolution and statistical approaches.

3. Evaluating the developed algorithm, given the ground truth data, objec-

tively using well-known performance metrics (accuracy, Dice Similarity

Index (DSI), False Positive Ratio (FPR), False Negative Ratio (FNR),

sensitivity, and specificity) and subjectively by involving clinicians to as-

sess the segmentation visually.

1.4 Thesis Organization

The remaining of this thesis is organized as follow: Chapter 2 introduces the

three key concepts in this thesis by presenting their backgrounds and how they

are addressed in the literature. These key concepts are MIS, CA, and the mul-

tiresolution and statistical approaches adopted in our proposed solution, which

are presented in Sections 2.1, 2.2, and 2.3 respectively. Next, the methodology

of the proposed solution is introduced and explained in Chapter 3. Later, the

results of the objective and the subjective evaluation of the proposed algorithm

are reported in Chapter 4. A conclusion and some future works are presented

in Chapter 5. Finally, the tools used to investigate and visualize the segmented

data in 2D and 3D domains are provided in the appendix.
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Chapter 2: Background and Related Work

This chapter is concerned primarily to introduce the basic key concepts in this

work. Section 2.1 introduces the Medical Image Segmentation (MIS) by ad-

dressing the following questions: What is it?, What are the different existing

techniques?, and How they are adopted in the literature? Section 2.2 sur-

veys the state-of-the-art of Cerebral Aneurysm (CA) segmentation algorithms,

which is the problem tackled in this work. Later, in Section 2.3, we go deeper

by introducing the multiresolution and statistical approaches adopted in the

proposed solution and how they are addressed in the literature.

2.1 Medical Image Segmentation

MIS partitions the image pixels in Two-Dimensional (2D) domain, or voxels in

Three-Dimensional (3D) domain, into distinct regions to distinguish between

different existing anatomical structures; thereby, it separates between the Re-

gion of Interest (ROI) and the other components. This fundamental approach

is introduced to help in the analysis of medical images, since decades, in or-

der to detect the presence or the absence of some anomalies. This approach

covers different biomedical applications as diagnosis, localization, treatment

planning, computer integrated surgery, etc. The segmentation does not over-

take the radiologists’ role; it only provides a robust second opinion to help them

at the analysis phase. Mathematically, MIS can be expressed by the following

7



equation 2.1 ⋃
Sk = I(x, y), where Ski ∩ Skj = ∅ (2.1)

, where I(x, y) is an image and k is the number of partitioned regions in I [51].

MIS approaches can be classified according to the human intervention during

the segmentation process into three main categories:

1. Manual segmentation: It is the traditional adopted technique. The

radiologist has to go through the whole dataset, slice by slice, to select

the ROI that best represents the region of the disease. This is a very

tedious task as the acquired images include some artifacts introduced by

the acquisition devices, known as modalities. Later, the ROI has to be

carefully delineated. The accuracy of this step depends on the radiologist’

s experience, which exposes the segmentation performance to inter and

intra operator variability. For example, the same dataset segmented by

different experts would most probably generate very different results [34].

2. Semi-automatic segmentation: It is the most commonly adopted ap-

proach in the literature. This category aims to combine both human

expertise and computers to deal with the complexity of the task. The

human intervention can be at one of the three following cases: initial-

ize some parameters at the beginning of the algorithm, interact at some

point while the algorithm is still running to give some sort of feedback,

or stop the algorithm [34, 51].

Meanwhile, the human intervention reduces the complexity of the task

and produces effective segmentation results, it is still laborious and ex-

poses the results to inter and intra operator variability as well.

3. Automatic segmentation: In this category, no human intervention

is allowed at any point of the algorithm’s running time. Indeed, a full

8



computerized algorithm is implemented to segment the medical images.

The fact that humans have a high visual processing level but they still rely

on an expert in the field to analyze these images, implies that developing

such an algorithm with a high level of accuracy is an extremely challenging

task. Therefore, until now full-automatic algorithms are restricted only to

the research work and they are not yet adopted in the clinical practice [34].

A wide diversity of segmentation techniques are available, where usually they

are not used separately. Complementary techniques are jointly employed to

overcome the limitation of each individual technique [62, 80], which produce

more accurate, robust, and effective segmentation to better analyze and diag-

nose different diseases. Indeed, these techniques are the main building blocks

of any developed segmentation algorithm.

Initially, basic segmentation techniques are introduced as threshold-based,

edge-based, and region-based where three main features are used to help in

partitioning the image into distinct mutual exclusive regions: the distribution

of pixels properties (intensity values or color), discontinuities in intensity

levels, or finding distinct regions directly. These techniques resulted in a very

naive segmentation which cannot cope with the complexity and the variations

of anatomical structures, noise, cluttered objects and their different textures,

variation in the illumination, etc. Therefore, these three techniques are usually

used as an initial segmentation step. Consequently, artificial intelligence

methods (e.g., pattern recognition and machine learning approaches) are

introduced and used in conjunction with the basic techniques described above.

However, these techniques tend to rely on the human intervention. Later on,

while targeting full automatic approaches, experts’ knowledge is implemented

as models, atlas, etc [71].

The segmentation techniques are growing tremendously. Therefore, some

form of organization is desirable to capture the breadth of these techniques.
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Per [7, 33, 60, 62, 67, 92], MIS techniques can be categorized into seven groups,

where Figure 2.13 summarizes all the available categories. Below each category

is presented and described separately:

1. Threshold-based: These techniques identify an intensity value(s) as a

threshold. Accordingly, image pixels whose values are less or equal to the

defined threshold are grouped into one region, and all other pixels are

grouped into a different region(s). Two threshold-based techniques exist:

hard and multi-thresholding. The first technique fixes only one threshold

value for the whole image. This technique is recommended when the in-

tensity distribution of image pixels are sufficiently distinct. While in the

second technique, many threshold values are determined over an image to

overcome the limitation of the first technique when uneven background

illumination is present. The threshold value(s) can be selected interac-

tively for semi-automatic segmentation algorithms; as for the automatic

segmentation algorithms, the automatic selection can be done by going

through an iterative process to select the best-suited value(s). This au-

tomation increases the time complexity which increases with the size of

the image [7]. The main objective of selecting the best suitable threshold

value(s) is to minimize the error of assigning pixels to the wrong regions.

This category is a simple yet a powerful technique. Nevertheless, it has

its own limitations as the spatial information is not considerate, which ex-

poses it to be subjective to noise. In addition, in its simplest techniques,

hard-thresholding, it only identifies two regions. Moreover, this category

cannot be adopted for multichannel images [62]. Figure 2.1 and 2.2 il-

lustrate two segmentation examples of a Magnetic Resonance Imaging

(MRI) human skull slice and a 3D RA CA slice using the two introduced

threshold techniques respectively.
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(a) (b) (c)

Figure 2.1: 128× 128 MRI human skull slice (a) original gray-scale image (b)
segmented image using hard-thresholding (c) segmented image using
multi-thresholding

(a) (b) (c)

Figure 2.2: 512× 512 3D RA CA slice (a) original gray-scale image (b)
segmented image using hard-thresholding (c) segmented image using
multi-thresholding [lesion is contoured in red]

2. Edge-based: These techniques follow the assumption that regions

boundaries would experience sharp differences in the intensities. It is

inspired by the human perception of objects in real life [62]. Therefore,

they partition an image into regions based on abrupt changes in the inten-

sities. These techniques are suitable for images having good contrast [7].

However, they are too noise sensitive compared to threshold-based and
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cluster-based techniques. In addition, they do not function well in

the following two cases: the presence of too many edges or ill-defined

edges [62]. Therefore, edge information is not always reliable.

Edge-based techniques are categorized into two main groups: first deriva-

tive methods, which are known also as histogram-based techniques, and

second derivative methods, which are known also as gradient-based tech-

niques. The first derivative methods examine the intensity distribution in

the neighboring pixels of a certain pixel in order to classify it as an edge

or not. These methods are very sensitive to noise and produce thicker

edges. Sobel, Prewitt, Roberts, and Canny operators are some examples

that fall in the first group. While the second derivative methods detect

edges based on the extraction of zero crossing points which indicates

the presence of maxima in the image. Laplacian is an example of the

second group [9]. Usually, the second category techniques enhance the

fine details in an image much better than the first group operators [33].

Figure 2.3 and 2.4 illustrate two segmentation examples of a MRI human

skull slice and a 3D RA CA slice using one operator from each group in

the edge-based category.

3. Region-based: Two techniques are available under this category: re-

gion growing and region splitting-and-merging. For the first technique,

regions are identified in images based on some predefined criteria as in-

tensity or color. A user selects a seed point for each region, and all the

pixels with the same criteria are grouped together to form a homogenous

region. The selection of predefined criteria depends on the application

and the adopted image modality. For example, intensity levels and spatial

properties may be used as regions characterization for gray-scale images

[33]. This selection must be done carefully as regions may be merged or
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(a) (b) (c)

Figure 2.3: 128× 128 MRI human skull slice (a) original gray-scale image (b)
segmented image using canny edge operator (c) segmented image using
Laplacian edge operator

(a) (b) (c)

Figure 2.4: 512× 512 3D RA CA slice (a) original gray-scale image (b)
segmented image using canny edge operator (c) segmented image using
Laplacian edge operator [lesion is contoured in red]

spread with adjacent regions [7]. Region growing main limitation is the

need for the human interaction to select a seed point and/or to stop the

algorithm. However, an automatic selection is possible and addressed in

some research works [90, 94]. The accuracy of this technique depends on

both seed selection and examination order of pixels or regions.

As for the second technique, split-and-merge regions, no manual seed se-
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(a) (b)

Figure 2.5: 128× 128 MRI human skull slice (a) original gray-scale image (b)
segmented image using region growing technique

lection is required. Regions are splattered arbitrary and then merged

trying to connect related regions. Splitting without merging would result

in adjacent regions with identical properties. Therefore, the merging step

is crucial to achieving mutual exclusive homogenous regions, which is the

main aim of the segmentation [33].

The techniques under this category are useful in delineating a specific

anatomical structure or lesion (e.g., tumor) as they divide the image into

spatially connected homogeneous regions. They are also less sensitive to

noise than threshold-based and edge-based techniques due to the regional

properties consideration [7]. Nevertheless, they are expensive in terms of

time and memory [62]. In addition, variation in intensities may result in

over segmentation or formulation of holes [34]. Figure 2.5 and 2.6 illus-

trate two segmentation examples of a MRI human skull slice and a 3D

RA CA slice using region growing technique.
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(a) (b)

Figure 2.6: 512× 512 3D RA CA slice (a) original gray-scale image (b)
segmented image using region growing technique [lesion is contoured in red]

4. Graph-based: The techniques of this category aim to represent the

image as a weighted undirected graph data structure, where pixels are

represented as nodes (or vertices). Edges connect these nodes, where non-

negative weights are assigned to each one according to some properties

to highlight their relationships in an image; some nodes may not be con-

nected if no relationship is found. The segmentation in this category aims

to partition the image into regions, where each region is a sub connected

graph. Some techniques that fit in this category are: minimum spanning

tree [98], shortest path [66], local variation [30], eigenvector [91], random

walker [35], dominant set [64, 65], and graph-cut [93, 81, 10] which is the

most commonly adopted approach in MIS [3]. These techniques benefit

from graph-theory tools [57], where no discretization errors are expected

due to the usage of combinatorial operators. Figure 2.7 and 2.8 illustrate

two segmentation examples of an MRI human skull slice and a 3D RA

CA slice using a graph cut technique, where the image is clustered to

foreground and background regions.
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(a) (b)

Figure 2.7: 128× 128 MRI human skull slice (a) original gray-scale image (b)
segmented image using graph cut technique

(a) (b)

Figure 2.8: 512× 512 3D RA CA slice (a) original gray-scale image (b)
segmented image using graph cut technique [lesion is contoured in red]

5. Model-based: These techniques delineate region boundaries using

closed parametric curves, in 2D domain, or surfaces, in 3D domain, that

deform under the influence of internal and external forces. The internal

forces aim to maintain the internal shapes constraints, as smoothness,

during the deformation process. While the external forces are designed
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to push or pull the model towards the captured boundaries [41]. These

models are built upon a strong mathematical background, where geom-

etry, physics, and approximation theory are combined all together to

provide information regarding the location, size, and shape of objects

where they integrate high-level knowledge with low-level image process-

ing information [7]. In addition, they can accommodate the variability

of anatomical shapes over time. Two main models exist, which are para-

metric models, known as snakes or explicit techniques, and geometric

models, known as level set or implicit techniques.

Models belonging to the first type move explicitly predefined contour

points based on energy minimization model. Their main disadvantage is

the dependency on the initial curve parametrization placed near to the

desired region boundaries aimed to segment. However, these techniques

are fast, accurate, and overcome the speckle induced error. Active

contours (in 2D domain), active surfaces (in 3D domain), and gradient

vector flow are examples of these models. In 2D, the methods are

computationally efficient and easy to implement, which is not the case

in the 3D domain as the parametrization becomes a harder task [49].

The second type of deformable models come to overcome the limitations

of the first type, as the energy here relies on the object’ s geometry instead

of the curve’ s parameters. These models add the time dimensionality

to the curve representation. They capture multiple objects, complex

boundaries, and handle topological changes. These advantages come

with an additional computational cost and lack in terms of accuracy [7].

Geometric active contour, in 2D or Geometric active surfaces, in 3D, are

examples of geometric models’ techniques. Techniques belonging to this

type are used intensively in modern MIS. Figure 2.9 and 2.10 illustrate

two segmentation examples of a MRI human skull slice and a 3D RA CA
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(a) (b)

Figure 2.9: 128× 128 MRI human skull slice of (a) original gray-scale image
(b) segmented image using active contour technique

(a) (b)

Figure 2.10: 512× 512 3D RA CA slice (a) original gray-scale image (b)
segmented image using active contour technique [lesion is contoured in red]

slice using active contour technique, where the image is partitioned into

foreground and background regions.

6. Classification-based: These techniques are derived from the pattern

recognition field and integrated into the image segmentation techniques.

They are known as supervised approaches since they partition images
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based on already trained/segmented data, where a manual segmentation

is carried out in some data to be used as a reference later on in the auto-

matic segmentation. Different classification algorithms, which are known

as classifiers, are adopted in MIS as Support Vector Machine (SVM), K-

Nearest Neighbors (KNN), Artificial Neural Network (ANN), Naive Bayes

(NB), Maximum Likelihood (ML), etc. The main limitation of this cate-

gory is the need to select and train data; and since MIS can be performed

for different modalities and diseases, the training process needs to be con-

siderate again whenever a modality or a disease is changed. Therefore,

they are considered as laborious and time-consuming techniques [34].

7. Clustering-based: This category is similar to the classification-based

techniques but no training data is needed here. This is known also as

unsupervised methods. Clustering techniques assume that the number of

classes is known in advance, where they group pixels, in 2D domain, or

voxels, in 3D domain, with same characteristics into the specified classes

trying to maximize the similarity of intra and inter classes. The similarity

here is defined by one of the distance measures as the Euclidean or Ma-

halanobis distance. K-means, Fuzzy C-Means (FCM), and Expectation

Maximization (EM) are some examples of these techniques. Their main

limitations are: requiring initial initialization, do not incorporate spatial

modeling, and their sensitivity to noise. On the other hand, they are

computationally fast. These techniques can be used as an initial/coarse

segmentation step before applying the sequence of other adopted com-

plementary segmentation techniques. For example, they can be used

to generate an initial contour for the deformable models [7]. Figure 2.11

and 2.12 illustrate two segmentation examples of a MRI human skull slice
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(a) (b) (c)

Figure 2.11: 128× 128 MRI human skull slice (a) original gray-scale image
(b) segmented image using k-means technique (k = 3) (c) segmented image
using k-means technique (k = 4)

(a) (b) (c)

Figure 2.12: 512× 512 3D RA CA slice (a) original gray-scale image (b)
segmented image using k-means technique (k = 2) (c) segmented image using
k-means technique (k = 3) [lesion is contoured in red]

and a 3D RA CA slice using the k-means technique, where the image is

partitioned into k regions.

In addition to the segmentation techniques, some pre or post-processing tech-

niques are used along the process to help in producing more accurate and

effective segmentation results. Some examples of these techniques are multi-
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Figure 2.13: MIS Techniques Categorization

modality fusion [44, 56], statistical approaches [50], multiresolution analysis

techniques [5, 69], etc.

Multi-modality techniques fuse complementary information of images acquired

from different modalities into one image and abandon the superfluous informa-

tion to obtain a better image representation. As for the statistical approaches,

they are used to incorporate prior shape information into the segmentation

process. While multiresolution analysis approaches are used to extract hidden

or distorted image features using different scales of the same image.

Up to now, no universal technique is available for all type of diseases and/or

modalities. For instance, a technique may work effectively for a specific dis-

ease and does not work at all for the others or differ in the performance (the

accuracy) of the segmentation. Therefore, researchers usually implement algo-

rithms which are optimized for a specific disease, using a specific modality, in

a specific domain (2D or 3D domain).

Table 2.1 presents some recent research works about different MIS algorithms

available in the literature. For each research work, the following factors are

specified: the adopted automation (automatic or semi-automatic algorithm),

the used dimensionality (2D or 3D domain), adopted application, the used seg-

mentation techniques without mentioning the pre and post-processing steps,

the adopted image modality, and the used performance metrics to evaluate the

proposed work quantitatively.
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Table 2.1: Overview of some recent MIS techniques in the Literature

Reference Type Dimensions Application Segmentation Technique Image Modality Evaluation

[13] Semi-automatic 2D Liver tumor multi Gabor feature map CTA MOE

and non-local active contour RDE

Execution time

[43] Automatic 2D General PCA and K-means clustering MRI PSNR

Compression rate

Execution time

[51] Automatic 2D General FCM and level set US ×

CTA

MRI

[54] Automatic 2D Hemorrhages Mathematical morphology Red lesions Sensitivity

and entropy-based thresholding Fundus images Specificity

[61] Semi-automatic 3D Adjacent hip joint Edge detection and graph-based Radiographic RMS ± STD

minimal path extraction images

[70] Automatic 2D General Haralick texture for feature extraction CTA Sensitivity

and KNN Specificity

Accuracy

Continued on next page
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Reference Type Dimensions Application Segmentation Technique Image Modality Evaluation

[75] Automatic 2D Blood cell k-means clustering, global threshold, Microscopic Accuracy

Sobel edge detector, Watershed transform, images

and mathematical morphology

[79] Automatic 3D Lung cancer Haar Wavelet Transform (HWT) and ANN PET ROC

ARE

[82] Automatic 3D Multiple sclerosis Atlas-based approach MRI DSI

using topological and statistical atlas VD

Sensitivity

[90] Automatic 2D Liver Diseases Energy-based region growing US TPR

FPR

FNR



2.2 Cerebral Aneurysm Segmentation

CA segmentation is tackled by many researchers in different ways: in 2D and

3D spatial domain, on different modalities (MRI, CTA, etc.), using automatic

or semi-automatic approaches, and using different segmentation techniques.

Recently the three main segmentation techniques adopted for developing CA

segmentation algorithms are: threshold-based [46, 47, 59, 76, 94], region grow-

ing [46, 47, 58, 59, 94], and deformable models [15, 19, 31, 48, 58, 59, 76, 77, 95];

and even though it has been an active research area for a while, the challenge

remains in developing a fully automatic approach that is robust, reliable, and

reproducible to detect even small aneurysms.

Deformable models’ techniques are used extensively in CA segmentation due

to their advantages as they are built upon a strong mathematical background

where geometry, physics, and approximation theory are combined all together

to provide knowledge regarding the location, size, and shape of the objects.

These deformable models are combined with other segmentation techniques to

end up with the desired results. Firouzian et al. [31] use the Geometric Ac-

tive Surfaces (GAS) technique, which aims to minimize the energy function.

In this context, the energy is composed of three features: intensity, gradient

magnitude, and intensity variance. This energy is derived from the manu-

ally selected seed point. Moreover, the ROI is also extracted from this seed

point. In addition, a prior smoothing is performed using non-linear diffusion

to slightly improve their segmentation accuracy. The algorithm is trained us-

ing 10 CTA datasets and tested on 5 different CTA datasets. The accuracy

of their algorithm is acceptable, where the Dice Similarity Index (DSI) equals

to 0.811. However, it has two main limitations. First, the inclusion of the

bones in the segmentation of some cases, when an aneurysm is too close to

the skull base. Second, the need for a user interaction to select a seed point
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within an aneurysm, which exposes the algorithm to intra and inter-operator

variability. Sgouritsa et al. [77] select as well the ROI manually as a first step,

which includes the CA and some surrounding vascularity. Later, the vessels are

segmented using level set method while preserving the topology of the curves

and surfaces. Then, the aneurysm is separated from the surrounding parent

arteries using s-t minimum graph cut segmentation approach. This developed

algorithm is tested on 19 3D DSA datasets. One of its limitation is the heavy

dependency on the initialization of the level set function. In addition, the re-

sulted segmentation of the vessels does not guarantee always the anatomy of

the touching vessels, which may affect consequently on an CA segmentation.

Therefore, this algorithm excludes all datasets where the parent vessels are

very close to the CA. In order to evaluate the proposed algorithm, the Av-

erage Distance (AD) and the Standard Deviation (STD) of the neck length,

dome height, and maximum diameter of an aneurysm are calculated. Chen et

al. [15] propose a Lattice Boltzmann Model (LBM) to simulate the Geometric

Active Contour (GAC) to take advantage of its high efficiency and parallel pro-

cessing feature. The algorithm goes through the following steps: Anisotropic

diffusion based on LBM is applied first, as a pre-processing step, to reduce

the amount of noise in the CTA images. Second, the canny operator is used

to detect the edges. Finally, the Lattice Boltzmann Geodesic Active Contour

Method (LBGM) is performed. The main purpose of this algorithm is to esti-

mate the volume of both the aneurysm and the thrombus, which it has shown

to be effective and overcomes the noise sensitivity existing in the CTA images.

However, it is customized to detect mainly giant CAs, where their diameters

are larger than 2.5 centimeters. Both Aspect Ratio (AR) and Volume Ratio

(VR) are used to evaluate objectively the developed algorithm, where the first

one measures the dome neck and the second one measures the thrombus vol-

ume. Yang et al. [95] try to abandon the need for the user interaction by using
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shape information, as a prior knowledge, to adaptively configure the parame-

ters needed by the GAC method, where the obtained parameters are further

refined iteratively. The algorithm is tested on 8 CTA datasets, where the ob-

tained accuracy is perfect for some datasets (DSI = 0.99) and less accurate for

others (DSI = 0.86). Sen et al. [76] propose a threshold-based level set method.

They combine both models: GAC and Chan-Vese to integrate boundary and

regional information. The latter model, Chan-Vese, is used first to calculate

the appropriate threshold value. Later, this value is updated iteratively during

the segmentation process. The proposed method could be processed in two

modes: full-automatic or semi-automatic, depending on the shape complexity

of the aneurysm. In the semi-automatic approach, the seed point for the GAC

method is selected manually; as for the full-automatic approach, the threshold

value and gradient magnitude parameters are used to form the speed func-

tion automatically which affect directly the quality of the segmentation. The

algorithm is tested on 8 3D CTA datasets, where 6 performance metrics are

calculated to evaluate the developed algorithm, which are Volume Difference

(VD), Jaccard’s Measure (JM), False Positive Ratio (FPR), False Negative

Ratio (FNR), Hausdorff Distance (HD), and Mean Absolute Surface Distance

(MASD). As for Nikravanshalmani et al. [59], they combine both region grow-

ing and level set techniques. The first technique, region growing, is used to ex-

tract the cerebral arteries where the needed seed point is selected automatically

based on both the slice entropy and the prior anatomical knowledge. As for the

second technique, which is the level set method, it segments an aneurysm by

separating it from the parent vessels. This algorithm also requires manual in-

teraction to initialize the level set technique. The same authors improved their

algorithm in [58] by adding a 3D conditional morphology technique but still, a

manual interaction is needed. The improved algorithm goes through five steps.

First, region growing technique is used to segment cerebral arteries. Later,
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a seed point is selected manually within the aneurysm area. Next, a coarse

segmentation is obtained by applying a conditional morphological operation.

Then, an edge-based level set technique is implemented to get an exact and fine

segmentation of the aneurysm. Finally, a conditional morphological operation

is applied again to separate the aneurysm from the parent arteries. The pro-

posed algorithm is implemented mainly to detect saccular aneurysms, which

has specific aneurysmal shape. In both works [59, 58], 15 3D CTA datasets

are used to test the algorithms, where only a subjective evaluation is carried

out. Dakua et al. [19] combine the level set technique with a Multiscale Prin-

ciple Component Analysis (MS-PCA). The multiscale feature is implemented

here using the Gaussian pyramid to handle the variation of the vessels’ width.

The algorithm is performed on the manually selected ROI, where an aneurysm

is suspected to appear. The values of the free parameters in the algorithm

are determined by training 7 Phase Contrast Magnetic Resonance Angiogra-

phy (PC-MRA) datasets. These parameters greatly impact the segmentation

accuracy and selecting only 7 datasets may not be enough to guarantee the

algorithm’ s reliability to adopt it in the clinics. Law and Chung [48] use an

intensity-based algorithm in conjunction with the level set technique. Their

approach tries to handle the intensity variation of the vascularity and the low

contrast of the aneurysmal region(s). Therefore, they have used two types of

descriptors: boundary and regional ones. The first descriptor uses a multi-

range filter to handle the size variation of the vascularity. As for the second

descriptor, it reduces the effect of noise, suppresses the responses induced from

the high-intensity vessels, and avoids missing low-intensity aneurysms. The

algorithm is tested on a phantom volume and 4 PC-MRA datasets, where a

good accuracy is achieved (DSI = 0.8).

So far, all the above-discussed algorithms use the deformable models as one of

its methods to segment the CA. However, there are some other algorithms in
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the literature where deformable models are not considered in their implemen-

tation. Yang et al. [94] develop an algorithm using global threshold and region

growing techniques, where the values needed by both techniques (the thresh-

old and the seed point values) are selected automatically. These techniques

are used to segment the intracranial vessels and locate the Points of Inter-

est (POIs), which represent the aneurysm candidates. Later, the algorithm

goes on to collect more POIs and keep only the suspected aneurysms based on

some features calculations. The proposed approach is tested on 92 3D Time-

of-Flight Magnetic Resonance Angiography (TOF-MRA) datasets, where the

ones containing already treated aneurysms (e.g., clipped or coiled CAs) are

not considered, as they need more accurate detection rate. The results of the

developed algorithm vary too much depending on the selected operating point

and the size of the CA. As for both works proposed by Lauric et al. [47, 46],

they segment vascular vessels through thresholding and region growing. The

authors introduce for the first time the usage of the writhe number in CA seg-

mentation on 3D RA datasets. In [46], the writhe number is used to detect the

aneurysms, where non-tubular segmented regions are identified as aneurysms.

The main limitation of this algorithm is its reliance on having high-resolution

images. Therefore, there is a direct relationship between the accuracy of the

proposed segmentation algorithm and the modality used to acquire images. As

in [47], the authors go deeper and try to distinguish between ruptured and un-

ruptured aneurysms using geometric characteristics, where the writhe number

is used here to interpret these geometrical characteristics.

Almost all of the above-presented research works require a manual interaction

from a user to initialize some certain parameters. This interactivity is labori-

ous, prone to inter and intra operator variability, and depends heavily on the

experience of the operators which affects directly the final segmentation accu-

racy. However, when comparing the performance of full automatic algorithms
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with semi-automatic ones, the latter group wins the battle; as in automatic

approaches, the accuracy varies considerably across different datasets. For ex-

ample, in [95], the accuracy ranges from [86.1% − 99.2%] for 8 datasets. As

in [94], the accuracy also varies, where the sensitivity ranges from [80%− 95%]

for CAs larger than 5 millimeters (mm) and from [71%−91%] otherwise. While

in [76], the algorithm can only operate automatically if the images are not very

complex; otherwise, a semi-automatic path is taking over to reduce the com-

plexity of the task. To summarize, there is a trade-off between semi-automatic

and full-automatic approaches. The methods of the first category are easier

to implement and offer consistent accuracy; while the methods of the second

category offer reproducibility and reduce both the computational time and the

number of the needed labors since no interaction is required. Therefore, the

main challenge for the researchers, in the time being, is to implement a robust

and reliable full-automatic approach to segment CA regardless of its shape,

location, and size which is our target in this thesis. Table 2.2 summarizes all

the above-discussed CA segmentation algorithms, which represent the recent

state-of-the-art research works in this field.
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Table 2.2: Overview of some recent CA segmentation algorithms in the Literature

References Type Dimension Segmentation Techniques Image Modality Evaluation

Subjective Objective

[15] Semi-automatic 2D LBM based on anisotropy diffusion, CTA X AR = 3.36

canny operator, and LBGM method VR = 62.13%

[19] Semi-automatic 2D MS-PCA and level set technique PC-MRA X FPR = 1.9%

FNR = 0.75%

Specificity = 75%

HD = 2.79mm

[31] Semi-automatic 3D GAS with energy minimization CTA × DSI = 81.1%

ASD = 0.162mm

VD = 12.12mm3

[38] Automatic 3D Multiscale sphere-enhancing filter CE-MRA × Sensitivity = 95%

Semi-automatic and Linear discriminant function TOF-MRA FPR = [8.2%− 22.8%]

CTA

[46] Semi-automatic 3D Threshold, region growing, RA × FPR = [0.66%− 5.36%]

and writhe number CTA Sensitivity ' 100%

[47] Semi-automatic 3D Threshold, region growing, RA × Accuracy =

Continued on next page
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References Type Dimension Segmentation Techniques Image Modality Evaluation

Subjective Objective

and writhe number [71± 3%− 86± 2%]

[48] Semi-automatic 3D Intensity-based approach PC-MRA × DSI = 80.04%

with the level set technique Sensitivity = 83.65%

Specificity = 99.86%

[58] Semi-automatic 3D Region growing, edge-based level set, CTA X ×

and conditional morphology

[59] Semi-automatic 3D Region growing and level set technique CTA X ×

[77] Semi-automatic 3D Topology preserving Level set DSA × STD

and graph cut techniques AD

[76] Semi-automatic 3D Threshold-Based Level Set method CTA × VD = 2.51%

Automatic JM = 91.59%

FPR = 3.31%

FNR = 3.48%

HD = 0.89 pixel

MASD = 0.08 pixel

[94] Automatic 3D Thresholding, region growing TOF-MRA × Sensitivity = [80%− 95%]

and dot enhancement filter ( CA ≥ 5 mm )

Continued on next page
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References Type Dimension Segmentation Techniques Image Modality Evaluation

Subjective Objective

Sensitivity = [71%− 91%]

( CA ≤ 5 mm )

[95] Automatic 3D Adaptively-configured CTA × DSI = [86.1%− 99.2%]

geometry active contour



2.3 Multiresolution and Statistical Approaches for Med-

ical Image Segmentation

Multiresolution analysis techniques are introduced to overcome the

shortage of the segmentation process. As the latter one assumes that image

features, which are mainly the image contours, are already apparent; and

it attempts only to allocate image pixels into partitions according to these

apparent features using some segmentation techniques. However, due to the

introduced artifacts by the acquisition methods/scanners, these features are

usually hidden or distorted. Therefore, multiresolution analysis techniques

come to empower the segmentation algorithm by extracting features that

cannot be easily extracted from the normal image resolution/scale. The main

motivation to adopt multiresolution analysis techniques is the presence of

low and high contrast objects simultaneously in the image [33]. Their main

advantages are the high resistance to noise and high processing speed. In ad-

dition, they are built upon solid mathematical basis [72]. Different techniques

are used to implement the multiresolution analysis concept such as Wavelet,

Ridgelet, Curvelet, and Contourlet transforms. These techniques have been

already embraced in the MIS [5, 69].

As for the statistical approaches, they incorporate prior shape information

into the segmentation process, which increases dramatically the performance.

Some of these approaches are: Principle Component Analysis (PCA), Maxi-

mum a Posterior (MAP), Finite Mixture (FM) model, and Markov Random

Field (MRF). These approaches build models based on the distributions of an

image data and try to segment it by minimizing a defined cost function using

a set of mathematical equations that describes the behavior of an object of

study. This cost function is associated with each pixel in order to measure the

”cost” of giving a certain label to a certain pixel.
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The two above introduced techniques, multiresolution and statistical ap-

proaches, help in developing more accurate segmentation algorithms. In the

literature, different works are proposed based on these two approaches to

segment medical images [4, 6].

CT, which is a multiresolution analysis technique, and HMRF, which is

a statistical approach, are both surveyed in the literature in Section 2.3.1

and 2.3.2 respectively as they are the main adopted techniques in the proposed

CA segmentation algorithm.

2.3.1 Contourlet Transform

In the literature, CT is adopted for different medical images applications as

denoising [40, 42, 74], multimodality fusion [20, 56], compression [37], water-

marking scheme [27], and segmentation [52, 53, 55]. The general process for all

of these applications goes as follow: The medical image is decomposed using

CT. Then, the obtained coefficients are handled differently. Finally, the inverse

CT is applied to reconstruct the medical image. So, the main difference takes

place during the second step to realize the desired application aim.

In MIS, CT is used jointly with different techniques to segment medical images

in recent years. Moayedi et al. [55] try to automate the mass classification

problem of mammograms. Their proposed algorithm starts first by segmenting

the ROI. Later, CT is used for feature extraction. Next, the genetic algo-

rithm is applied for feature selection. Finally, different classifiers are used to

classify breast abnormalities. Liu et al. [53] decompose the image using CT.

Then, a watershed algorithm is applied on the coefficients. Next, an edge de-

tection method is applied. Finally, the image is reconstructed using the inverse

contourlet. Li and Li [52] decompose the image using the contourlet trans-

form. Next, the M-most significant coefficients are kept as they are, and the

remaining coefficients are set to zero. Later, a c-means clustering algorithm is
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Table 2.3: Overview of some recent uses of CT for MIS in the literature

Reference Disease Segmentation Techniques Image Modality Evaluation
Subjective Objective

[52] General CT with c-means clustering CTA X ×
[53] General CT with watershed algorithm CTA × Execution time

and edge detection
[55] Mass Classification CT with genetic algorithm Mammograms × Sensitivity

and classifiers Accuracy
Specificity

applied, where the coefficients are clustered into two categories. Finally, the

image is reconstructed. Table 2.3 summarizes all the above-discussed exam-

ples/applications.

2.3.2 Hidden Markov Random Field

Medical images consist of homogenous regions as the anatomical structures

consist most probably of more than one pixel. Hence, the neighboring pixels

have similar properties as the intensity, texture, color, etc. This characteristic

encourages the adoption of the HMRF model as it is designed to capture these

spatial contextual constraints, where the correlated neighboring pixels are cat-

egorized into the same partition/region.

HMRF model is a statistical approach, in the stochastic domain, used along

with the segmentation techniques introduced in section 2.1. This model pro-

vides prior knowledge which simplifies greatly the MIS process. It is a special

case of Hidden Markov Model (HMM), as it is generated by MRF instead

of Markov chain to handle 2D and 3D problems, since models derived from

Markov chains are designed for 1D problems [100].

HMRF model is used for different applications as image labeling [14], speech

recognition [83], handwriting recognition [29], gesture recognition [96], etc.

In MIS, HMRF is adopted differently in recent years. Abdulbaqi et al. [2] used

the HMRF-EM to diagnose brain tumor in CTA scans. They have first applied
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a canny operator to detect edges. Later, a Gaussian blur filter is applied to

smooth the performance. Next, a k-means clustering is applied to initialize

the segmentation and parameters. Then, the final segmentation and parame-

ters are obtained from HMRF-EM framework which maximizes the expected

likelihood function by iterating through the E-Step and E-Step. Finally, a

hard threshold is applied to obtain the final tumor region. As for Patra and

Pradhan [63], they incorporate the HMRF model into the Fuzzy Clustering Ex-

pectation Maximization (FCEM) segmentation algorithm to develop an unsu-

pervised framework, where the image class labels are estimated by maximizing

the fuzzy membership function. Here, the unknown model parameters, num-

ber of classes, and the image labels are initialized randomly/arbitrary without

affecting the final results. Zhang et al. [99] propose to incorporate the Clonal

Selection Algorithm (CSA) and Markov Chain Monte Carlo (MCMC) into the

HMRF model to segment kidney and liver in MRI images. This combination

overcomes the limitation of traditional HMRF-based segmentation approach

as the optimization is done globally instead of locally. On the other hand, the

proposed approach is computationally high. In addition, the MCMC requires

a large number of simulation draw and the CSA requires many parameters

estimation which questions its applicability to all cases. The proposed algo-

rithm goes through three iterative steps. First, class labels are estimated using

MCMC technique. Second, a bias field correction is employed. Third, the sta-

tistical parameters are estimated using the CSA algorithm. Said and Azaiz [73]

adopt the HMRF-EM framework as well to segment the liver tumor from CTA

images, but instead of adopting the normal version of EM, a Bootstrap version

is applied to enhance the computational complexity, where the segmentation

is applied on a sample instead of the entire image. A post-processing step is

required to refine the segmentation using morphological adjustment and active

contours. The accuracy of the proposed algorithm decreases in the following
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Table 2.4: Overview of some recent uses of HMRF model for MIS in the
literature

Reference Disease Segmentation Techniques Image Modality Evaluation
Modality Subjective Objective

[2] Brain tumor HMRF with EM, CTA × VD
k-means, canny edge, Accuracy
and hard-thresholding

[63] kidney and HMRF with FCEM × X MCE
liver tumor VD

[73] Liver tumor HMRF with EM CTA × VD
RAVD

[73] Liver tumor HMRF with EM CTA × VD
RAVD

[99] Brain HMRF with CSA MRI × DSI
liver and MCMC VD

two cases: First, if the tumor density value approaches the hepatic tissue den-

sity value. Second, if the tumor is close to the liver boundaries of the liver,

where its density value would be the same as the adjacent organs density value.

Table 2.4 summarizes all the above-discussed research works.

2.4 Summary

The presented material in this chapter explores the main concepts of this the-

sis in the literature starting first by the MIS; later some state-of-the-art CA

segmentation algorithms are investigated; and finally, the two main adopted

techniques, which are based on multiresolution and statistical approaches, are

studied in the MIS field.

In this work, HMRF model, which is a statistical approach, in conjunction with

CT, which is a multiresolution analysis technique, is used to model medical im-

age pixels in the contourlet domain to get better statistical information in order

to achieve a robust and accurate CA segmentation. In the next chapter, the

proposed CA segmentation algorithm is presented and explored in details.
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Chapter 3: Methodology

This chapter presents the proposed Cerebral Aneurysm (CA) segmentation

algorithm. Section 3.1 provides an overview of the general algorithm workflow.

Section 3.2 deals with the mathematical background of the two main adopted

techniques. Later, Section 3.3 discusses the details of the proposed algorithm.

3.1 Overview

The proposed CA segmentation approach consists mainly of two promising

methods, implemented in a Two-Dimensional (2D) domain. The first method

is the Contourlet Transform (CT), developed by Do and Vetterli [24]. As

for the second technique, it is the Hidden Markov Random Field model with

Expectation Maximization algorithm (HMRF-EM), introduced by Zhang et al.

[100] for brain MRI segmentation. Figure 3.1 depicts the complete flowchart

of the proposed CA segmentation algorithm.
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Figure 3.1: Flowchart of the proposed segmentation



3.2 Mathematical Background

In this section, the mathematical background of the two main adopted tech-

niques in the proposed CA segmentation algorithm are introduced in the fol-

lowing sub-sections 3.2.1 and 3.2.2.

3.2.1 Contourlet Transform

CT is a new true 2D transform [69]. It realizes the identified wish list of Do and

Vetterli in the discrete domain, which includes the following properties [25, 26]:

• Multiresolution: The ability to decompose an image, from coarse to

fine, into successively approximated scales/resolutions.

• Localization: The basis elements, which are image pixels, should be

localized in both spatial and frequency domains.

• Critical sampling: The basis or frame representation should be formu-

lated with a small redundancy.

• Directionality: The ability to apply different number of directions for

each different resolution, where the number of directions is much more

than the ones offered by the separable wavelets.

• Anisotropy: A variety of elongated shapes with different aspect ratio

should be used to represent the basis elements in order to capture the

smooth contours in an image.

In addition, this transformation provides a sparse representation which saves

a significant amount of memory and offers a simple and fast data processing.

This sparsity is obtained by applying first the multiresolution decomposition

function, followed by a local directional transform to gather the nearby basis

functions at the same resolution into linear structures. The decoupling of the
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Figure 3.2: LP process for one level of decomposition

multiresolution and directional decomposition stages offers a simple and flexi-

ble transform but at a cost of a small redundancy (up to 33%).

All the aforementioned CT properties are achieved by adopting the Pyramidal

Directional Filter Bank (PDFB) proposed by Do and Vetterli [23]. This dou-

ble filter bank combines Laplacian Pyramid (LP) and Directional Filter Bank

(DFB) to extract the fine desirable features.

Laplacian Pyramid

LP, introduced by Burt and Adelson [12], allows the multiresolution represen-

tation of an image a0[n] to capture points singularities (edges) by removing the

noise. This representation is obtained by going through the following process:

First, derive a coarse approximated image a1[n] by applying a lowpass filter (H)

and down-sampling (↓M). Second, derive a predicted image p1[n] from a1[n] by

applying on it a highpass filter (G) and upsampling (↑M). Third, derive a fine

detailed image b1[n] by calculating the difference between the original image

a0[n] and the predicted image p1[n]. The downsampling, as mentioned before,

is only applied to the lowpass channel, which ensures that images would never

have scrambled frequencies. This process can be iterated to get more resolution

representations by repeating the same workflow on the coarse image a1[n] [26].

Figure 3.2 illustrates this process clearly for one level of decomposition.
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Figure 3.3: DFB decomposition, where l = 3 and there are 2l(23 = 8) wedge
shaped frequency bands [26].

Directional Filter Bank

DFB, introduced by Bamberger and Smith [8], decomposes an image into multi-

ple directions to capture high-frequency content, as smooth contours segments

and directional edges, by formulating the captured point singularity into a lin-

ear structure. DFB is implemented via an l-level binary tree decomposition that

leads to wedge-shaped frequency partitions of 2l subbands. This implementa-

tion is derived by the following process: First, apply two-channel quincunx

filter bank fan filters [87] to partition a 2D spectrum into two directions: hor-

izontal and vertical. Second, apply a shearing operator to reorder the image

samples. The key idea in DFB is to select the appropriate combination of quin-

cunx filter banks, at each node of the binary tree, and the shearing operator to

end up with the desirable 2D spectrum division. Figure 3.3, adapted from [26],

illustrates an example of applying DFB on an image.

Contourlet Transform Process

After introducing LP and DFB separately, this section presents their combina-

tion that formulates the PDFB, which realizes the CT properties. The general

process of the contourlet works as follow: First, the image a0[n] is passed to the

LP filter to produce two images as an output: a coarse/approximated/lowpass
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Figure 3.4: CT process for 512× 512 image, where Lj=2 and k = (8, 4)
respectively for each level

image a1[n] and a fine/detailed/bandpass image b1[n]. The latter image, the

bandpass one, is passed to the DFB to produce 2Lj bandpass directional

images c
Lj

j,k[n]. As for the first image, the lowpass image, it is passed again to

the LP to repeat the same process again until a certain predefined number of

decomposition levels Lj is reached. The final output of the CT is a lowpass

subband aj[n] and several bandpass directional subbands c
Lj

j,k[n], which are

called as the contourlet coefficients. Figure 3.4 illustrates the CT process to

decompose a 512 × 512 image into two levels, where 8 and 4 directions are

applied at each level respectively.

CT has different advantages defined hereafter: It has the adeptness at cap-

turing geometrical smoothness of 2D contours and anisotropy in the discrete

domain. In addition, it has a high degree of directionality as it allows to define

different directions for different scales, which is not possible in other multireso-

lution analysis techniques. In terms of complexity, it requires O(N) operations

for an image with N-pixels [69]. To summarize, the CT takes a 2D image a0[n]

as an input and decomposes it into coefficients
{
aj[n], c

Lj

j,k[n]
}

which can be

expressed mathematically by the equations 3.1 and 3.2 respectively.
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Algorithm 1 Contourlet Transform Algorithm

Lj ← initialize the number of decomposition level
K ← initialize the number of directions for each Lj

img ← initialize the input image a0[n]
for j ∈ {1, ..., Lj} do

[aj[n], bj[n]] ← apply LP decomposition on img
for k ∈ {1, ..., KLj

} do

c
Lj

j,k[n] ← apply DFB decomposition on bj[n]
end for
img ← initialize aj[n] as the new image to decompose

end for
return aj[n], c

Lj

j,k[n]

aj[n] = f, θ
(L)
j,k,n −→ θ

(L)
j,k,n =

∑
n∈Zd

gk[n]φj,k(t) (3.1)

c
Lj

j,k[n] = f, ρ
(L)
j,k,n −→ ρ

(L)
j,k,n =

∑
n∈Zd

gk[n]ϕj,n(t) (3.2)

, where θ
(L)
j,k,n is LP basis function for scale decomposition and ρ

(L)
j,k,n is DFB basis

function for directional decomposition. The parameters j, k, d, and n, used

in the equations 3.1 and 3.2, are defined respectively: number of levels/scales,

number of directions for each level, dimensionality (in our case it is equal to

2 since we are working in the 2D domain), and a scale parameter along the

frequency axis. [22, 25, 26] provide more detailed mathematical analysis of these

above illustrated equations. The CT pseudocode is provided in Algorithm 1.

3.2.2 Hidden Markov Model with Expectation Maximization

HMRF model tries to segment the medical images based on the spatial cor-

relation between neighboring pixels using two sets of random variables. Some

important notions about this model are:
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• Random field: It is a family of random variables, in which they can take

on different values randomly; in this context, the random variables are the

intensity levels in an image (i.e., in an 8-bit gray-scale image the random

variables can range from 0 to 255); and based on the Markov probability,

the probability of each random variable depends on its neighborhood

rather than all the remaining variables. In the HMRF model, two random

fields exist:

– Hidden random field: X = {x = (x1, x2, .., xN) | xi ∈ L, i ∈ S} is

a random field in a finite state space L and indexed by a set S with

respect to a neighboring system of size N .

The state of this field X is unobservable/hidden; and every xi is

independent of all other xj.

– Observable random field: Y = {y = (y1, y2, .., yN)|yi ∈ D, i ∈ S}

is a random field in a finite space D and indexed by a set S with

respect to a neighboring system of size N .

The random field Y is observable and it can only be defined with

respect to X, where yi follows a conditional probability distribution

given any particular configuration of xi = l: p(yi|l) = {f(yi; θl), ∀l ∈

L}, where θl is the set of the involved parameters.

• Parameters: The set of involved parameters, θl, are unknown. There-

fore, a model fitting is adopted to estimate them. In our context, the

parameters are mainly the mean and the standard deviation {µ, σ}.

• Conditional independence: The two random fields (X, Y ) are condi-

tionally independent

P (y|x) =
∏

i∈S P (yi, xi) = P (y|x) P (x) = P (x)
∏

i∈S P (yi, xi)
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(a) (b)

Figure 3.5: Different neighboring system in HMRF model (a) 1st order
neighboring system (N = 4) (b) 2nd order neighboring system (N = 8)

• Clique: It is a subset of pixels, where every pair of distinct pixels are

neighbors. A value is assigned to each clique (c) in order to define the

clique potential Vc(x), where the sum of all of these values results in the

energy function, U(x), that we aim to minimize it.

U(x) =
∑
c∈C

Vc(x) (3.3)

• Neighborhood system: It is a way to define some surrounding pixels

for a specific pixel, which reflects how far the contextual constraint is [14].

The two commonly used systems are: the first order and the second order

neighboring systems, where four and eight neighbors are defined respec-

tively for each pixel. Figure 3.5 depicts these two systems. Therefore, for

any pair (xi, yi), given the neighboring configuration xN of xi, their joint

probability is P (yi, xi|xN) = P (yi|xi) P (xi|xN)

As any model, HMRF model can only be complete when all of its parameters,

θl, are known. Therefore, different algorithms are incorporated to fit this model

and solve the incomplete data, class labels and parameters. Some examples of

these algorithms are: Clonal Selection Algorithm (CSA) [99], Gaussian Mixture
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Model (GMM) [89], Fuzzy C-Means (FCM) [16], and Expectation Maximiza-

tion (EM) [2, 100]. The latter approach is the one selected and adopted in this

work.

The HMRF-EM framework, which is first introduced by Zhang et al. [100], in-

corporates the EM algorithm with the HMRF model not only to estimate the

parameters but also to segment the medical images using iterative updates.

The framework starts first by initializing both: the segmentation and parame-

ters (means µ and standard deviations σ). Then, iteratively, it goes through the

Expectation Step (E-Step) and Maximization Step (M-Step) to update these

parameters and the initial segmentation until no development is observed or

until a certain pre-fixed number of iterations is reached.

The E-Step updates the segmentation by assigning to each pixel an estimated

class label x̂ from a set of labels L. The assignment is done based on the

MAP criterion which tries to minimize the posterior energy using the current

parameters estimate; during the energy maximization the conditional posterior

probability distribution P (Y |X) gets maximized. Equation 3.4 illustrates the

formula for the energy calculation.

x̂ = arg min( U(y|x) + U(x) ) (3.4)

, where U(x) is the energy function illustrated above in the equation 3.3 and

U(y|x) is the likelihood energy illustrated below in the equations 3.5.

U(y|x) =
∑
i∈S

[
(yi − µxi

)2

2σ2
+ log(σxi

) ] (3.5)

While the M-Step updates the parameters based on the ML criterion, which

tries to maximize the expected likelihood found in the E-Step. The formula 3.6
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Algorithm 2 HMRF-EM Algorithm

[θ(0),x̂(0)] ← initialize the parameters and segmentation
EM itr ← initialize the number of EM iterations
MAP itr ← initialize the number of MAP iterations
for i ∈ {1, ..., EM itr} do

for j ∈ {1, ...,MAP itr} do
x̂(j) ← Update the segmentation x̂(j−1) based on the MAP criterion

end for
θ(i) ← Update the parameters θ(i−1) based on the ML criterion

end for
return θ(EM itr), x̂(MAP itr)

and 3.7 illustrate the equations to calculate the parameters µ and σ respectively.

µ =

∑
i∈S P

(l)(l|yi)yi∑
i∈S P

(l)(l|yi)
(3.6)

σ =

√∑
i∈S P

(l)(l|yi)(yi − µ)2∑
i∈S P

(l)(l|yi)
(3.7)

[100] provides more detailed mathematical analysis of the HMRF-EM frame-

work; Algorithm 2 depicts the pseudocode of the HMRF-EM framework.

This framework works well for small data dimensions and small amount of miss-

ing data. Its main advantages are: easy to implement, provides an accurate

segmentation, and it is less sensitive to noise compared with other segmenta-

tion techniques, as clustering and classification, since it considers contextual

information [97]. On the other hand, it has two main limitations. First, it

is a time consuming algorithm, which prohibit its practical use [67]. Second,

the selection of the parameters controls the strength of the spatial interaction.

Therefore, an accurate selection is a must; otherwise an excessive smooth seg-

mentation would be obtained which would discard some important structural

details.
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3.3 Proposed Segmentation Algorithm

The proposed CA segmentation algorithm starts by feeding a series of 2D

images, of a certain patient, in the Digital Imaging and Communications in

Medicine (DICOM) format. These images represent the Region of Interest

(ROI), which consists of an aneurysm and some surrounding vessels; the selec-

tion of the ROI, from the entire cerebral vasculature, is done manually. Later,

the following two main phases are performed consecutively on each 2D image

separately.

During the first phase, CT is applied to extract features from an image by

decomposing an image into 6 pyramidal levels and different number of direc-

tions for each level, where the number of the directional decomposition at each

pyramidal level (from coarse to fine) are: 22, 22, 42, 42, 82, and 82 [40, 69, 85];

and as mentioned before in section 3.2.1, CT consists of two main filters to do

its job and reach its goal, which are LP and DFB. A ladder filter, known as

PKVA filter, is selected for the first filter. This filter, proposed by Phoonget

al. [68], is more effective than other filters (e.g., CD) to localize edge direction

as it reduces the inter-direction mutual information [69]. As for the second

filter, 9 − 7 bi-orthogonal Daubechies filter, known as 9 − 7 (or 9/7) filter, is

selected. This filter, introduced by Cohen and Daubechies [18], reduces signifi-

cantly all the inter-scale, inter-location, and inter-direction mutual information

of the contourlet; in addition, it is superior to other filters (e.g., the Haar fil-

ters) in terms of whitening the contourlet coefficients [69].

After the decomposition is done, using CT, only the lowpass subband image

is selected, which consists of the coarsest produced coefficients since they are

considered as the best representatives of all the produced coefficients to per-

form on them the remaining steps [69].

In order to apply the second phase of the segmentation algorithm, which is
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the HMRF-EM, two prior steps need to be performed. The first step is to

obtain a constrained image by applying a Canny edge detection operator to

highlight the image’s edges, since this operator produces thicker edges than

the second derivative edge detection operator (e.g., LP) [9]. As for the second

step, the initial segmentation and parameters, which are mainly the means and

standard deviations, need to be initialized. Due to the over-estimation of the

HMRF-EM framework [5], a technique with under-estimation is preferable to

complement it. Accordingly, a k-means clustering is selected and applied [5].

The equation 3.8 illustrates the mathematical formula of this adopted cluster-

ing technique;

k −means =
k∑

i=1

∑
xi∈Si

(xj − µi)
2 (3.8)

; and as we are targeting a full automatic approach, the selection of the num-

ber of clusters, k, is done automatically based on the image entropy. In this

context, the entropy is a statistical measure of randomness that can be used to

characterize the texture of a gray-scale image; in other words, it measures the

amount of disorder in an image, which helps to determine the number of the

needed clusters; equation 3.9 illustrates its formula.

entropy = −
n−1∑
i=0

P (xi)× log2 P (xi) (3.9)

The second main phase of the proposed algorithm, which is the HMRF-EM

technique, starts now after getting all the needed inputs which are: the initial

segmentation and the initial parameters obtained by the k-means clustering

technique, the constrained image obtained by the Canny edge operator, and

the lowpass subband image obtained by the contourlet decomposition. During

this phase, the algorithm iterates between the E-Step and M-Step to enhance

the initial segmented image, constrained by the canny segmented image, to
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Algorithm 3 Proposed Algorithm for Cerebral Aneurysm Segmentation

Read DICOM images of a dataset and store them in V1
Select ROI from V1 and store them in V2
for each img ∈ V 2 do

Apply CT to decompose img and extract the coarsest coefficients
Initialize the number of clusters k based on the image entropy
Apply k-means on the coarsest coefficients
Apply canny edge operator on the coarsest coefficients
Apply HMRF-EM algorithm to get the final segmentation
Reconstruct the image by applying the ICT

end for
Reconstruct the 3D segmented volume V3

end up with the final segmented 2D image by minimizing the posterior energy

function as explained in section 3.2.2.

As the last step, Inverse Contourlet Transform (ICT) is applied to reconstruct

the image and return it back to its original size. Here, the lowpass subband

image, which represents the coarsest contourlet coefficients, is replaced by the

final segmented image. The ICT is achieved using the same filters as in the

decomposition stage, where the 9 − 7 and PKVA filters are used for the LP

and DFB respectively. Here, we apply the stages in the reverse order where

the DFB phase is applied first followed later by the LP phase.

After completing these two main phases, a reconstruction, of all the segmented

2D images, is done to get the final segmented 3D volume of the ROI, which

will be analyzed by the radiologist(s). The pseudocode for the overall proposed

CA segmentation algorithm is presented in Algorithm 3; As in figure 3.6, the

resulted images of each intermediate step are illustrated.
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: The resulted images of each intermediate step in the proposed
algorithm: (a) 512x512 original 2D image (b) 8x8 lowpass subband 2D image
after applying the CT decomposition (c) 8x8 constrained 2D image after
applying the canny edge operator (d) 8x8 initial segmented 2D image after
applying the k-means clustering technique (e) 8x8 HMRF-EM (f) 512x512
final segmented 2D image after applying ICT reconstruction

3.4 Summary

This chapter focuses on the proposed CA segmentation algorithm using the CT

and HMRF-EM techniques, where a solid mathematical foundation is estab-

lished for both of them. In the following chapter, this algorithm is evaluated

objectively and subjectively on four datasets.

52



Chapter 4: Evaluation

This chapter establishes and reports everything related to the evaluation step

to verify the robustness of the proposed algorithm to segment a Cerebral

Aneurysm (CA), where different methods may be followed. In this thesis,

an objective and subjective evaluation are carried out.

Section 4.1 introduces the used datasets in this thesis. Section 4.2 presents

the environmental setup to implement and evaluates the proposed algorithm.

Section 4.3 reports the final obtained results.

4.1 Datasets

The algorithm’ s input is a dataset/series of images of a specific patient in the

Digital Imaging and Communications in Medicine (DICOM), where DICOM

is a standard format to store and manage medical images. This format groups

much information about the image as the patient information and pixel data.

The source of these images is one of the available acquisition scanners (or

modalities). These scanners slice an object in a Two-Dimensional (2D) phys-

ical sectioning and stack them in parallel to form a Three-Dimensional (3D)

volume. In our work, the datasets are acquired from a 3D Rotational Angiog-

raphy (RA) modality.

3D RA technique depicts considerably small aneurysms (≤ 3 millimeters) as it

produces images with a very high contrast between blood vessels and the sur-

rounding environment (bony or dense soft tissue environment). This contrast
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is obtained by subtracting two images: The first image is acquired by injecting

a contrast agent through a catheter into one of the vessels that leads to the

brain vessels; while the second one is obtained before injecting this agent. Its

accurate detection affects positively the choice of treatment technique; there-

fore, it is recommended to adopt 3D RA to detect and plan for the treatment

accordingly [86].

Four 3D RA datasets are provided by Hamad Medical Corporation (HMC) to

apply the proposed segmentation on them; each dataset consists of 385 2D

slices of size 512 × 512 each. In addition, each dataset comes along with its

ground truth data, which is a manual segmentation done by some experts in the

field, to evaluate the segmentation performance. The provided ground truth

data is in STL format, which is a widely used format for rapid prototyping,

3D printing, and computer-aided manufacturing [17]. STL describes only the

surface geometry of a 3D object without any representation of texture, color, or

other common CAD model attributes and it can be represented in both ASCII

and binary encoding.

4.2 Environmental Setup

In order to implement the proposed algorithm, MATLAB R2017b is the soft-

ware used running on a 64-bit Windows operating system machine with an i7

Intel core and a 16 GB RAM. Particularly, the following three toolboxes are

used in the MATLAB environment:

1. Image Processing Toolbox: This toolbox extends MATLAB to help in

working interactively with images by providing a set of functions and ap-

plications as segmentation, quality enhancement by noise removal, trans-

formation to detect and measure features, and registration of multiple

images into a common view to enable comparison or integration.
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2. Contourlet Transform Toolbox: It is a free available toolbox in the MAT-

LAB central developed by Do [21]. This toolbox provides a set of func-

tions related to the contourlet process.

3. Hidden Markov Random Field with Expectation Maximization Tool-

box: It is a free available toolbox in the MATLAB central developed by

Wang [88], which provides the implementation of the HMRF-EM frame-

work in the 2D domain.

4.3 Results

In order to obtain the results, a preliminary step is crucial to allow/permit

the comparison between the segmented volume and the ground truth data.

This step, which is the registration, is discussed in subsection 4.3.1. Later,

the quantitative and qualitative results, obtained by comparing between the

registered segmented volume and the ground truth volume, are elaborated in

Section 4.3.2 and 4.3.3 respectively. Figure 4.1, 4.2, 4.3, and 4.4 depict each

dataset before and after applying the segmentation.
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(a)

(b)

(c)

(d)

Figure 4.1: From ROI of dataset 1: Left column depicts three slices (a) before
segmentation (b) after segmentation. Right column depicts the ROI’s volume
(c) before segmentation (d) after segmentation

(a)

(b)

(c)

(d)

Figure 4.2: From ROI of dataset 2: Left column depicts three slices (a) before
segmentation (b) after segmentation. Right column depicts the ROI’s volume
(c) before segmentation (d) after segmentation
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(a)

(b)

(c)

(d)

Figure 4.3: From ROI of dataset 3: Left column depicts three slices (a) before
segmentation (b) after segmentation. Right column depicts the ROI’s volume
(c) before segmentation (d) after segmentation

(a)

(b)

(c)

(d)

Figure 4.4: From ROI of dataset 4: Left column depicts three slices (a) before
segmentation (b) after segmentation. Right column depicts the ROI’s volume
(c) before segmentation (d) after segmentation
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4.3.1 Registration

Registration is process of aligning two (or more) images of the same scene, in

2D or 3D spatial domain, taken in different conditions: different sensors, at

different times, different depths, or different viewpoints, etc. These differences

prevent the possibility of comparing these images [101]. Therefore, image reg-

istration is an important step to allow the comparison or the integration of

different datasets. Figure 4.5 depicts the difference between the coordinate

system of the original dataset and the ground truth data. Therefore, the regis-

tration is crucial in this work to enable the comparison between the segmented

volume, in the DICOM format, and the ground truth volume, in the STL for-

mat.

In this process, one of the images is defined as the target (or the subject),

which we wish to apply a transformation on it. While the other image is de-

fined as the reference (or the source) against, which we aim to register the

other image it. In our case, the target image is the segmented ROI volume;

while the reference image is the ground truth ROI volume. The target image

is transformed by means of the selected mapping functions to align it with

the reference image [101]. Different mapping functions exist (e.g., affine, rigid,

translation, similarity transformations [1]), where each one offers different ge-

ometric deformations/transformations or local displacements. Therefore, the

selection should be selected according to the desired deformation. In this work,

an affine transformation is selected as it satisfies the need for the translation

and scaling. Figure 4.6 illustrates, for one dataset as an example, the similarity

between the coordinate systems of the segmented volume and the ground truth

data after registration and the ground truth data.
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(a) The whole volume

(b) X —Y axis

(c) X —Z axis

(d) Y —Z axis

Figure 4.5: Coordinate system of dataset 1 before registration. The right
column is related to the ground truth data. The left column is related to the
original segmented ROI volume
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(a) The whole volume

(b) X —Y axis

(c) X —Z axis

(d) Y —Z axis

Figure 4.6: Coordinate system of dataset 1 after registration. The right
column is related to the ground truth data. The left column is related to the
registered segmented volume
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4.3.2 Objective Evaluation

Six performance metrics are used to measure the proposed CA segmentation

quantitatively which are: accuracy, Dice Similarity Index (DSI), False Positive

Ratio (FPR), False Negative Ratio (FNR), sensitivity, and specificity. The

value of these metrics ranges between 0 and 1. Table 4.1 depicts the definition

and the formula of each metric.

In all the illustrated equations in Table 4.1, four measures are used: True

Positive (TP) and True Negative (TN) which indicate a correct segmentation.

While False Positive (FP) and False Negative (FN) indicate an incorrect seg-

mentation. Figure 4.7 depicts the meaning of each measure more clearly.

These introduced performance metrics are calculated and reported in Table 4.2

for each dataset.

4.3.3 Subjective Evaluation

Each dataset is accessed visually by five observers, where one of them is an

expert in the domain and the rest have some medical background. A rate,

ranging between 0 and 5, is assigned by each observer, where 5 means that

the ground truth volume and the segmented volume are identical. While 0

means completely the opposite. Table 4.3 reports the observations for the four

datasets.

4.4 Summary

This chapter reports the objective and subjective evaluation results of the pro-

posed CA segmentation algorithm. In the following Chapter 5, a discussion of

these results is elaborated, where some future works are pointed out.
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Table 4.1: Six adopted performance metrics for the quantitative evaluation

Performance Metric Definition Equation

Accuracy Correctness of the overall segmentation
TP + TN

TP + TN + FP + FN

DSI Amount of overlap between the two segmentation
2× TP

2× TP + FP + FN

False Positive Rate Number of pixels incorrectly segmented
FP

FP + TN
= 1− Specificity

False Negative Rate Number of pixels incorrectly rejected
FN

FN + TP
= 1− Sensitivity

Sensitivity Number of pixels segmented correctly
TP

TP + FN

Specificity Number of pixels excluded correctly
TN

TN + FP

Figure 4.7: Four measures used in the six adopted performance metrics

Table 4.2: Objective evaluation results

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Average
Accuracy (%) 99.99 99.92 99.78 99.75 99.86
Sensitivity (%) 98.84 96.42 97.20 86.44 94.73
Specificity (%) 99.99 99.94 99.83 99.92 99.92
DSI (%) 97.46 93.15 94.13 89.56 93.58
FPR (%) 0.01 0.06 0.17 0.08 0.08
FNR (%) 1.16 3.58 2.8 13.56 5.27
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Table 4.3: Subjective evaluation results

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Average
Observer 1 5 4 4 3 4
Observer 2 5 4 5 3 4.25
Observer 3 5 4 5 4 4.5
Observer 4 5 4 4 4 4.25
Observer 5 5 4 5 3 4.25

4.25
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Chapter 5: Conclusion

5.1 ’Revisited’ Research Objectives and Contribution

The objectives of this thesis presented in section 1.3, are revisited again to

determine if it is addressed successfully.

1. Has an intensive literature review of different Medical Image

Segmentation (MIS) techniques and different existing Cerebral

Aneurysm (CA) segmentation algorithms been carried out?

Chapter 2 has successfully satisfied this objective. Section 2.1 has pre-

sented and reviewed different MIS techniques, which have been catego-

rized into seven groups. As in Section 2.2, different recently developed

CA segmentation algorithms have been presented and discussed in terms

of their methodology, the needed user intervention, their limitations, the

adopted modalities etc.

2. Has an automatic CA segmentation algorithm been developed?

A new promising and robust automatic CA segmentation algorithm has

been developed using multiresolution and statistical approaches in Two-

Dimensional (2D) domain. CT, which has been selected as a multireso-

lution analysis technique, extracts image’ s features not apparent in the

normal scale. As the HMRF-EM framework, which has been selected

as a statistical approach, models the relationship of neighboring pixels

in the contourlet domain to capture the spatial contextual constraints,
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where correlated neighboring pixels are categorized into the same par-

tition/region. Chapter 3 discusses in details the methodology of this

proposed algorithm.

3. Has the developed CA segmentation algorithm been evaluated

objectively and subjectively?

Chapter 4 has successfully satisfied this objective. Section 4.3.2 has re-

ported the quantitative results of six adopted performance metrics. As

Section 4.3.3 has reported the qualitative results of five visual observa-

tions, where the observers have been selected as follow: one expert in

the domain (a neuroradiologist) and four observers with some medical

background.

5.2 Research Discussion and Future Work

Sub-Arachnoid Hemorrhage (SAH), caused by a ruptured CA, is a serious

condition associated with high rates of morbidity and mortality. Therefore,

detecting and diagnosing CAs at an early stage is imperative. In this work,

an automatic CA segmentation algorithm is developed using CT, as a mul-

tiresolution technique, and HMRF-EM, as a statistical approach. In addition,

Canny edge-based and k-means clustering-based segmentation techniques are

used along with the main adopted ones.

This developed algorithm reveals promising quantitative and qualitative re-

sults on the four tested Three-Dimensional Rotational Angiography (3D RA)

datasets. For the quantitative evaluation, an average of 99.86% accuracy,

93.58% Dice Similarity Index, 0.08% False Positive Ratio, 5.27% False Neg-

ative Ratio, 99.92% specificity, and 94.73% sensitivity were achieved. As for

the qualitative evaluation, an average of 4.25 over 5 is obtained. However,

as illustrated in the Tables 4.2 and 4.3, the last dataset has the worst results
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(a) (b)

Figure 5.1: Dataset 4 (a) Segmented volume from the original DICOM
dataset (b) Ground truth volume delineated by the experts

compared to the remaining datasets in both the quantitative and qualitative

evaluation. These results are obtained due to the fact that the provided ground

truth data does not involve the complete brain vessels tree and only a delin-

eated ROI is provided, where some surrounding vessels are cutout. This fact

affects the evaluation, as some visible vessels in the segmented ROI are cropped

by the experts in the ground truth ROI. Figure 5.1 illustrates more clearly the

above-explained condition of the last dataset.

Therefore, more datasets need to be involved in the evaluation phase in order

to confirm the robustness and the reliability of the proposed CA segmentation

algorithm in the clinical practice. In addition, the qualitative evaluation would

most probably be better if more experts are engaged in this process to avoid

the bias results.

The computational time needed to segment is considerably fast, knowing that

HMRF suffers from its intensive computation [67]; but adopting the multires-

olution analysis technique, CT, helps in overcoming this downside as it de-

composes the image into different resolutions and HMRF is only applied on a
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Table 5.1: Time consumption to segment CA using the proposed approach

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Average
Segmenting ROI in sec 32.12 28.56 93.46 57.56 52.93

(51 slices) (51 slices) (161 slices) (80 slices) (86 slices)
Segmenting the whole volume in min 4.38 3.21 3.3 5.31 4.05

(385 slices) (385 slices) (385 slices) (385 slices) (385 slices)

reduced scale. Table 5.1 reports the running time of the proposed segmentation

algorithm for the whole volume, in minutes, as well as for the ROI, in seconds.

However, an acceleration can be adopted to increase the efficiency of the de-

veloped algorithm, to guarantee its applicability in real-time clinical practices,

using Field-Programmable Gate Array (FPGAs) or Graphics Processing Unit

(GPUs) which are adopted already in different works and proved their feasibil-

ity [28, 36, 78, 84].

Moreover, since the algorithm is tested only on 3D RA datasets, different

modalities can be used to check their compatibility (e.g., CTA and MRA)

since they are commonly used to detect and diagnosis CAs. Furthermore, the

algorithm can be tested on datasets with a treated CA (e.g. after placing the

blood flow diverters, clip, or coil) to examine the treated aneurysm and assess

the success of the surgery to act accordingly.
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Appendix: Visualization Tools

This section depicts a number of tools used to visualize the medical images

data considered in this thesis.

• Matlab: MATLAB is a fully featured development environment for

building sophisticated applications and user interfaces to execute models

and algorithms and visualize and explore results. Therefore beside using

Matlab for the algorithm implementation, it is used also to visualize the

data in 2D and 3D as illustrated in figure 5.2. All figures reported in

sections 4.3 and 4.3.1 are generated from Matlab.

• Image Segmentation Application: This application comes with the

image processing toolbox in Matlab. It is used to investigate and preview

different segmentation techniques (i.e, threshold-based, region growing,

graph-cut, etc.) in one place as illustrated in figure 5.3. This application

helped in generating the figures in section 2.1.

• Gmsh: It is a 3D mesh generator with built-in pre and post processing

facilities. This software is used for the subjective evaluation phase in or-

der to asses the segmentation performance. The main reason to use Gmsh

instead of Matlab UI, is its 360◦ rotation feature. Figure 5.4 provides a

screen shot from Gmsh software.
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(a) (b)

Figure 5.2: A screen shot from the Matlab user interface (a) 2D slice (b) 3D
volume

Figure 5.3: A screen shot from image segmentation application

Figure 5.4: A screen shot from Gmsh software
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