

QATAR UNIVERSITY

 COLLEGE OF ENGINEERING

A THREAT-SPECIFIC RISK EVALUATION TOOL FOR CLOUD ENVIRONMENTS

BY

ALAA SAYED AHMED HUSSEIN

A Project Submitted to

 the Faculty of the College of

Engineering

in Partial Fulfillment

of the Requirements

for the Degree of

Masters of Science in Computing

 June 2018

© 2018 Alaa Sayed Ahmed Hussein. All Rights Reserved.

ii

COMMITTEE PAGE

The members of the Committee approve the Project of Alaa Sayed Ahmed

Hussein defended on 23/05/2018.

Khaled Khan

 Thesis/Dissertation Supervisor

Qutaiba Malluhi

 Committee Member

 Jihad Jaam

Committee Member

Abdullatif Shikfa

Committee Member

iii

ABSTRACT

HUSSEIN, ALAA, S., Masters : June : 2018, Masters of Science in Computing

Title: A Threat-Specific Risk Evaluation Tool for Cloud Environments

Supervisor of Project: Khaled M. Khan.

With the spread of using cloud computing; both as organizations and individual, it

has become a target for attackers. The cloud environment has several weaknesses that pose

threats to its users’ assets. To assess any type of attacks, security administrators must

regularly apply threat modelling techniques and run risk evaluation on cloud

infrastructures. This allows them to identify risky assets and identify appropriate security

controls to mitigate the risks. One of the key challenges with current risk evaluation

approaches is that they do not distinguish the risks posed by different threats. The

computation of the risk value compounds all threats.

In this project, we propose a threat-specific risk evaluation tool for security

administrators. The tool allows security administrators to model topologies of their

organization’s networks. Then, using specific formulas, the tool will calculate the risk

values for the entire system and for each component of the system with respect to specific

threats based on Microsoft’s STRIDE threat categorization. The key features of the tool

are demonstrated through its application to cloud deployment example.

iv

DEDICATION

To my parents, sisters and best friends.

v

ACKNOWLEDGMENTS

 - وَآخِرُ دَعْوَاهُمْ أنَِ الحَْمْدُ لِلَّهِ ربَِّ الْعَالَمِين -

First, I want to thank my parents, for their prayers and infinite love and support, it is what

got me to this point. I am also grateful for my lovely sisters and best friends, I would not

have made it without their support and advices.

Second, I would like to express my great gratitude and appreciation to my supervisor Dr.

Khaled Khan and Dr. Armstrong Nhlabatsi for their unlimited efforts in assisting me in

this project

vi

TABLE OF CONTENTS
DEDICATION .. iv

ACKNOWLEDGMENTS ... v

List of Tables .. viii

List of Figures ... ix

Chapter 1: Introduction .. 1

Motivation .. 2

Problem Definition... 2

Project Significance ... 4

High-Level Description of Solution ... 5

Organization of The Report ... 6

Chapter 2: Background .. 7

What is Threat Modelling? .. 7

The STRIDE Threat Model ... 7

An Example ... 9

Literature Review... 9

Chapter 3: Requirement Analysis .. 15

Threat-Specific Risk Evaluation Approach ... 15

Risk Calculation ... 17

Functional Requirements ... 19

Use Case Diagram and Use Cases Specifications .. 20

Domain Model ... 22

CHAPTER 4: PROPOSED SOLUTION ... 23

System Architecture ... 23

Class Diagram .. 26

Design Sequence Diagrams ... 28

CHAPTER 5: IMPLEMENTATION .. 33

Tools and Frameworks ... 33

Design Pattern .. 33

Methodology .. 34

User Interface Design .. 41

CHAPTER 6: EVALUATION .. 50

Usability Study .. 50

Experiment Analysis .. 51

vii

Experiment Setup ... 51

Experiments Results ... 52

CHAPTER 7: DISCUSSION ... 55

Limitations ... 56

CHAPTER 8: CONCLUSION .. 57

REFERENCES .. 58

APPENDIX A: DRAW NODE USE CASE SPECIFICATION ... 61

APPENDIX B: DRAW EDGE USE CASE SPECIFICATIONS .. 63

APPENDIX C: EVALUATE TOPOLOGY USE CASE SPECIFICATIONS 64

APPENDIX D: OPEN TOPOLOGY USE CASE SPECIFICATION ... 65

APPENDIX E: SHOW ATTACK PATHS USE CASE SPECIFICATIONS 66

APPENDIX F: USABILITY QUESTIONNAIRE .. 67

viii

LIST OF TABLES

Table 1 Threat-specific risk calculations symbols and their definition. 17

Table 2 Mapping to STRIDE. ... 25

ix

LIST OF FIGURES

Figure 1. Screenshot of Microsoft Threat Modelling Tool ... 12

Figure 2. Screenshot of analysis report of Microsoft Threat Modelling Tool 13

Figure 3. System use case diagram. .. 20

Figure 4. Domain model of the system. .. 22

Figure 5. System architecture for risk evaluation tool. ... 24

Figure 6. Design class diagram. .. 28

Figure 7. Draw Node use case DSD. .. 29

Figure 8. Connect Nodes use case DSD. .. 29

Figure 9. Open Topology use case DSD. .. 30

Figure 10. Evaluate Topology use case DSD. .. 31

Figure 11. Show Attack Path use case DSD. .. 32

Figure 12. MVC design pattern. ... 34

Figure 13. Initial screen of the system. ... 41

Figure 14. Close-up of buttons panel. ... 42

Figure 15. System Assessment Panel.. 43

Figure 16. Node Risk Evaluation Panel. ... 43

Figure 17. Node Risk Severity Table. ... 44

Figure 18. Attacker Paths Table.. 44

Figure 19: screenshot of drawing node with form .. 45

Figure 20. Close-up shot of VM properties form. .. 46

Figure 21. Screenshot of filled form. .. 47

x

Figure 22. Screenshot of drawn topology. .. 48

Figure 23. Opening existing topology screenshot... 49

Figure 24. Usability scores for the study questions. ... 51

Figure 25. Topologies of set A. .. 52

Figure 26. Topologies of set B. ... 53

Figure 27. Topologies of set C. ... 53

Figure 28. Topologies of set D. .. 54

Figure 29. Time Vs. number of nodes. ... 54

1

CHAPTER 1: INTRODUCTION

Cloud computing is a model where storing, managing and processing data takes

place on remote servers, rather than on local servers. The exact definition is given by

National Institute of Standards and Technology (NIST) [1] as “Cloud computing is a model

for enabling ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management effort or

service provider interaction.” It is being more used nowadays for its various advantages,

including sharing resources, elasticity, on-demand access, and scalability [2]. Sharing

resources means having multiple virtual machines (VM) installed on a single host. In other

words, different users’ applications are using different VMs running on the same hardware

[3].

Resource sharing may impose some threats that represent potential violations of the

system’s security [4]. To overcome these threats, security administrators usually perform

risk analysis to determine which component is more vulnerable, or to what extent a

component is at risk. The existing tools provide a coarse-grained analysis of risk that gives

an overall risk evaluation. They usually either calculate the probability of a successful

attack, or the risk imposed at a specific component.

This project aims to create a threat-specific security risk analysis tool that provides

security administrators (SA) with accurate and relevant security risk assessment values for

the different threats that are considered in the STRIDE threat model, which are Spoofing,

Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation of

Privileges. Chapter 2 will explain the STRIDE threat model in detail. The tool developed

2

for this project will allow security administrators to model their organizations’ network as

a topology of virtual machines, connections, and attackers. Depending on the

characteristics of each virtual machine (VM) such as vulnerabilities, assets, and threats; the

tool will evaluate the security risk for the whole system and for each VM in the network.

More details about the computation of the risk will be explained later.

Motivation

The definition of cloud computing proposed by NIST carries several advantages of

cloud computing. First, cloud computing is ubiquitous; it is convenient because mainly the

user only has to host their application on the cloud, without worrying about how it is

deployed, as technical support is handled by the cloud service provider. Moreover, cloud

computing follows a pay-as-you-go model, namely only paying for exactly what you use,

which makes it even more accessible to start-ups and individuals [5].

Despite its numerous benefits, cloud computing has several shortcomings. Some of

the potential problems that could occur in the cloud environments include infrastructure

failure, difficulty of identifying the source of a problem, data transfer bottlenecks, and more

[5]. The multi-tenant model that enables serving multiple customers using the same

resources may expose the cloud environments to several security issues. These potential

issues in cloud security highly affect data confidentiality, integrity, and availability. The

threats range from unauthorized access to data corruption, and service unavailability [5].

Problem Definition

Due to its various advantages, cloud computing is increasingly becoming an

attractive option for organisations as well as individual users to store data, use hardware

devices, and access to a wide choice of application systems. Because of its popularity, it

3

has also become a target for attackers. The cloud computing platform has various potential

security weaknesses that attackers could exploit, such as unauthorised data access, denial

of service, data corruption, etc. [5]. These weaknesses require users of cloud services to

have tools for performing risk/threat analysis and assessment as a prerequisite for using

cloud services.

One of the most effective ways to analyse threats is threat modelling [4]. It is an

approach used for analysing an application security - by identifying possible threats to the

assets such as sensitive data [6]. Once the probability and impact of threats has been

measured through a risk evaluation, appropriate security measures can be taken to mitigate

against the risk [6]. However, the existing tools for risk analysis mainly compute the

total/compound risk for the system, without detailing, in a fine-grained manner, the risk for

each possible threat. This makes it difficult for security administrators to decide about what

mitigation strategies to take against each threat.

There are several threat models, such as STRIDE [7] and CIA [8]. CIA categorises

threats according to their violation of the main security goals, which are Confidentiality,

Integrity, and Availability. The STRIDE threat model, that we are using in this project, is

a threat classification model developed by Microsoft. It classifies threats into six different

categories, depending on the attackers’ goals, namely: Spoofing, Tampering, Repudiation,

Information Disclosure, Denial of Service, and Elevation of Privilege [7].

To demonstrate the issue, a hospital system would make a good example. This is

because patients’ medical records must not be disclosed to unauthorized entities

(confidentiality), and they should not be tampered by unauthorized entities (integrity). In a

hospital system, leaking patients’ data or modifying them without authorization would do

4

huge damage to the patients, and to the reputation of the hospital.

With existing tools, it is not possible to tell the extent of the risk of a cloud deployment

with respect to specific security threats. Different organisation may care about different

threats depending on the nature of their business. For example, the hospital may care more

about confidentiality of medical records but for a banking institution the integrity of

financial transaction can be a high priority. Risk evaluation with respect to specific threats

would enable the two organisations address the threats that matter the most for their

respective businesses.

Project Significance

The development of a tool to support threat-specific risk evaluation is important in

the security risk assessment field for the following reasons:

• Security risk analysis is essential and a valuable exercise for every organization

in order to know in advance what risk they face for their data and applications

while using the Cloud services due to vulnerabilities in their network

infrastructure.

• It is also important for system administrators to understand which specific node

(e.g., VM) has which threat(s) and the degree of severity of the threat(s).

Knowing these types of risk help them decide more accurately the course of

action that must be taken to protect and mitigate against specific threats.

• As stated earlier, the STRIDE provides a framework for classifying threats.

However, currently there is a limited number of tools that take advantage of this

threat classification to evaluate risk with respect to each type of threat in the

5

STRIDE. Knowing the risk with respect to each threat has the potential to help

security administrators (SA) have a better understanding of their organizational

compound and individual security risk on their assets. This, in turn, will help a

security administrator to identify which threat is most critical, know how to

address it appropriately, and design more effective mitigation strategies.

• Lastly, it will help the management of the organization allocate appropriate

resources to mitigate against security threats that are most relevant according to

their business objectives, security requirements, and the specific threats they

face.

High-Level Description of Solution

The suggested solution to the problem defined earlier is a risk evaluation tool for

security administrators to create graphical models of their networks (nodes and edges), and

then evaluate the systems’ risk in terms of numerical values. The expected outputs of this

tool are:

• A set of values that include the risk of the entire system,

• The magnitude of risk for each virtual machine, and

• The degree of risk with respect to each threat category of the STRIDE.

The idea is to represent a network infrastructure of an organization by drawing a

set of virtual machines, one or more attackers, and a set of edges connecting the virtual

machines to the attackers. It should be possible for a security administrator to set detailed

properties of each virtual machine such as its name, function, type of operating system, and

the suitable impact weight for each of the STRIDE components.

6

In addition to the basic information about a virtual machine, more importantly, it

should be possible to capture information about the vulnerabilities it has. Each vulnerability

can be characterized by its impact and exploitability. Exploitability is the probability that

the vulnerability can be exploited successfully by an attacker to compromise the virtual

machine (component), and impact is a measure of the damage that can be suffered by the

organization if the vulnerability is exploited successfully.

Upon the completion of the system topology drawing, the evaluation takes place by

calculating the risk for each VM and for the whole system based on the vulnerabilities it

has. The computation should also show the risk for each threat category (STRIDE) for each

VM and for the entire system.

Organization of The Report

This report is structured as follows: chapter 2 discusses the background of the

problem and the existing solutions. Chapter 3 provides the requirement analysis of the

system. Chapter 4 presents the detailed design of the proposed solution and chapter 5

discuss the implementation details. In chapters 6 an evaluation of the tool on network

topologies is presented. Chapter 7 presents a discussion of some of the design rationale and

implementation alternatives. Finally, in Chapter 8, we conclude our project with a summary

of pointers for further work.

7

CHAPTER 2: BACKGROUND

 This chapter gives background information about threat modelling process and

specifically the STRIDE threat model. It also covers some of the related works.

What is Threat Modelling?

As mentioned in the introduction, threat modelling is one of the many ways that

help identifying and addressing security threats. Generally, threat modelling consists of

three main stages. First, identifying the assets of the system and their vulnerabilities.

Second, analyzing the possible threats to the system. Lastly, defining any countermeasures

that can be used to prevent the threats analyzed [9].

The STRIDE Threat Model

The threat model used for our proposed tool is the STRIDE classification model,

developed by Microsoft [7]. This model categorizes threats based on the motivation of the

attacker. The acronym is formed by taking the first letter of each of the following

categories:

• Spoofing Identity: where a person or a program masquerades to be another

legitimate person or program. An example would be a malicious person

illegally accessing a legitimate user’s credentials (i.e. username and password)

and using them as if they were the genuine user.

• Tampering with Data: that is malicious modifications of data. For example,

modifying persistent data in the database by unauthorized entities such as the

amount paid in a payment is modified to a higher value without the knowledge

of the payee.

8

• Repudiation or non-repudiation: is when a user denies performing an action

and other parties cannot prove otherwise. In such cases, the attacker performs

an illegal act but it is not traceable, so other parties will not be able to prove that

the attacker did the illegal act. For example, a client paid a bill of a merchant

using her credit card, but the merchant denied later that he received the

payment.

• Information Disclosure: this type of threats involves revealing information that

should not be revealed, whether revealing publicly (to everyone), or revealing

to a person that should not have access to that information. For example, a

legitimate user for a system reading a file that they should not have privilege to

read, or an intruder reading some data in transit between two computers.

• Denial of Service: these attacks result in service failures to valid users. For

example, a web server being temporarily unavailable due to the attacker

flooding the it with false requests such that it is too busy to respond to genuine

requests for service.

• Elevation of Privilege: where users with limited privileges gain higher

privileges that they should not otherwise have. Such privileges enable the

attacker to compromise the entire system hugely. For example, if an attacker

gains root access to a host he may delete, modify, or migrate virtual machine

hosted there – thus compromising the security of the cloud deployment.

9

An Example

To further illustrate the STRIDE threats, let us refer to the hospital example again.

A hospital system is a very sensitive system, and must always comply with the security

objectives of the hospital. Patients’ records must be confidential and accessible by only

authorized users. Data integrity must also be fulfilled to ensure that any modification is

authorized such as changes to prescriptions or ailments suffered by a patient. Lastly, the

availability of data is critical for such system, because in some cases, a patient’s life may

depend on the availability of their medical history in a critical situation. So, breaching any

of these three security goals does not only harm the patients, but can destroy the hospital’s

reputation as well.

For such security-aware critical systems, a security risk analysis tool is essential in

order to assess the security posture of the cloud deployment with respect to each of the

threats described above. Our tool would provide the needed analysis to support such risk

assessment activities. Since the patients’ medical records should maintain confidentiality,

integrity, and availability, it is logical for the security administrator using our tool to give

more weight to the threats affecting those three security objectives. Following the STRIDE

model, this hospital system may give the information disclosure, tampering, and denial of

service components high impact weights than the rest of the STRIDE elements to

correspond to the confidentiality, integrity and availability respectively.

Literature Review

Security risk assessment has been thoroughly studied in the literature, and several

metrics have been developed. However, a limited number of frameworks have been

implemented into risk assessment tools. We will discuss three well-known tools in this

10

section.

Cyber Security Modelling Language (CySeMoL) [10] is a tool created to evaluate

the vulnerabilities of enterprise system architectures. It is designed to cover several attacks,

including but not limited to, flooding attacks, software exploits, and social engineering

attacks. It is built based on a Probabilistic Relational Model (PRM). The PRM specifies

how to create Bayesian network from a class diagram-like model, similar to the one

produced by UML. The classes in a PRM consist of two parts; attributes and reference slots

which are organized into templates. A security-risk analysis template defines abstract

classes, attributes, reference slots and conceptual-attribute parents. This template has the

classes: Asset, Owner, Threat, ThreatAgent, AttackStep, and Countermeasure. The

countermeasures are: Contingency Countermeasure, Preventive Countermeasure,

Detective Countermeasure, Reactive Countermeasure, Accountability Countermeasure.

Constructing a PRM according to this template, along with assigning the PRM’s

conditional probabilities allows using the PRM to perform an analysis that is used to

calculate reachability values for different attack paths, which is used by CySeMoL.

Assessing security risk with CySeMoL involves creating a Bayesian network for each

identified attack path – paving way to the calculation of the success probabilities of attack

for each attack step. The key limitation of CySeMoL is that it only focuses on calculating

the probability of an attack. Our tool complements CySeMoL as it is aimed at evaluating

risk from the perspective of specific threats, assuming that the probability of attacks is

already known.

Another risk assessment tool is defined in [11]. This tool provides a quantitative

risk assessment for each VM, physical hosts, and SLAs by using objective data to

11

determine the probability of events and associated risks. The risk assessment process has

6 stages, namely: Risk inventory, Vulnerability identification, Threat Identification, Data

monitoring, Event Analysis, Quantitative risk analysis. One limitation of this tool is that

although threats are identified, it does not provide a comprehensive risk assessment

mechanism detailing risk with respect to those threats.

Microsoft has developed a threat modelling tool called Microsoft Security Threat

Modelling Tool [12], which is the core of their Security Development Lifecycle. It allows

the software designers to identify possible security issues early, and mitigate them

properly. Figure 1 below shows a screenshot of the Microsoft Threat Modelling Tool. In

addition to the drawing canvas, this tool has the “Stencils” panel, where the different

system components are placed, such as database, web application, connection, browser,

and several other components. It also contains different types of connections like

“REQUEST” and “RESPONSE”.

12

Figure 1. Screenshot of Microsoft Threat Modelling Tool

After drawing the diagram, the analysis is done by asking to tool to generate an analysis

report. As Figure 2 illustrates, the report contains different pieces of information about the

potential threats. It gives details about the threat such as description, category, possible

mitigation strategy.

13

Figure 2. Screenshot of analysis report of Microsoft Threat Modelling Tool

There are several differences between the Microsoft Threat Modelling Tool and our

proposed tool. First, Microsoft Threat Modelling Tool gives a qualitative analysis to the

different components, rather than a quantitative analysis. It labels the components threats

severity as High and Low, but these two values have a wide range of severity that is not

captured using the qualitative analysis. Moreover, when evaluating the component risk,

Microsoft Threat Modelling Tool uses default impacts weights depending on the

component type, rather than the impacts weights defined by the organizations’ security

objectives. Lastly, Microsoft Threat Modelling Tool requires much deeper understanding

of the system components and their connections. It is very detailed in terms of diagrams

and it takes the components to the lowest level. On the other hand, our tool is more generic

in terms of components. It does not have numerous different types of components and

connections. This makes it easier to use by the software designers, as it does not require

14

deep understanding of how smaller components build big components or how the

components are linked using different types of connections.

In summary, the existing security risk analysis tools mainly provide either a

probability of a successful attack, like CySeMoL, or a specific risk value for the virtual

machine or the physical host, such as the tool in [11]. On the other hand, our security risk

analysis tool provides a more accurate risk value tailored to specific threats of the

component and security requirements of the organization. The key benefit of threat-based

risk analysis is that it will make it possible to tailor mitigation mechanism to specific

threats. Such customized design of mitigation strategies is not feasible with the current

existing risk evaluation tools.

15

CHAPTER 3: REQUIREMENT ANALYSIS

The proposed tool is built to calculate the risks based on a specific approach defined

in [13]. This chapter first explains in detail what these formulas are and how they are

defined. Then, the functional requirements of the tool are described. It also includes the

use case diagram and the use cases specifications. Lastly, it shows the domain model of

the system. This project mainly implements the risk evaluation tool and is not responsible

for the shortcomings of the approach.

Threat-Specific Risk Evaluation Approach

The risk assessment tool is developed based on the formulas defined in [13]. In

[13], Nhlabatsi et. al propose a threat-specific risk evaluation approach for cloud

computing, which can evaluate the risk associated with each threat category in the

STRIDE. After discovering a vulnerability in one of the cloud components (VMs), the

security administrator determines two things. First, the type of threats that could be posed

if the vulnerability is successfully exploited. Second, the impact of each of the determined

threats on the assets of the client. Assigning the impact weighting of each threat type

depends on the importance of the component. To use the hospital example one more time,

the web servers that run the hospital system should have more weight for denial of service

threats, since successful attacks on them would make the whole system unavailable.

However, the hospital database must have more weight for information disclosure threats,

as if it is compromised, the patients’ confidentiality would be violated.

This approach has several equations containing different variables. Table 1 defines all the

symbols and functions that are used in the risk computations. Each vulnerability (𝑣𝑗) has

16

an impact value (𝛼𝑣𝑗
) measuring the damage to an asset in case of successfully exploiting

the vulnerability and an exploitability value (𝛽𝑣𝑗
) measuring the probability of successfully

exploiting that vulnerability. The impact and exploitability of a node having several

vulnerabilities are calculated using equation (1) and equation (2), respectively.

𝜆(𝑛𝑖) = ∑ 𝛼𝑣𝑗
, 𝑣𝑗 ∈ 𝑉(𝑛𝑖), 𝑉(𝑛𝑖) ⊆ 𝕍

|𝑉(𝑛𝑖)|

𝑗=1

 (1)

𝜇(𝑛𝑖) = 1 − ∏ {1 − βvj
} , 𝑣𝑗 ∈ 𝑉(𝑛𝑖), 𝑉(𝑛𝑖) ⊆ 𝕍 (2)

|𝑉(𝑛𝑖)|

𝑗=1

In equation (1), 𝜆(𝑛𝑖) represents the total impact of node 𝑛𝑖, which is a summation

of all its vulnerabilities’ impacts. While in equation (2), 𝜇(𝑛𝑖) represents the exploitability

of node 𝑛𝑖 which is the combined probability of failing to exploit all the vulnerabilities.

Equation (3) below defines 𝛤(𝑛𝑖) as the total threats of component 𝑛𝑖 which are derived

from the threats posed by the component’s vulnerabilities. This set of threats is formulated

by taking each vulnerability from the set of vulnerabilities of component 𝑛𝑖, 𝑉(𝑛𝑖), and

then taking the threats posed by each vulnerability, 𝛤(𝑣𝑖).

𝛤(𝑛𝑖) = |
𝑉(𝑛𝑖)
𝑗 = 1

|
|𝛾𝑣𝑗

|

𝑡 = 1
𝜅 ← 𝑡, ∀𝑡 ∈ 𝛾𝑣𝑗

, ∀𝑣𝑗 ∈ 𝑉(𝑛𝑖) (3)

17

Risk Calculation

Component Risk Calculation:

Equation (4) shows the total threat risk of component 𝑛𝑖, which is a product of the

overall impact 𝜆(𝑛𝑖), combined probability 𝜇(𝑛𝑖), and the sum of all impacts of threats

imposed by the vulnerabilities in the component 𝑛𝑖.

𝑅𝑖𝑠𝑘(𝑛𝑖) = 𝜆(𝑛𝑖) ∗ 𝜇(𝑛𝑖) ∗ ∑ 𝜔(𝑛𝑖 , 𝑡)∀𝑡 𝑖𝑛 Γ(𝑛𝑖) | Γ(𝑛𝑖)

|Γ(𝑛𝑖)|

𝑡=1

∈ 2Φ (4)

Threat Risk Calculation:

𝑅𝑖𝑠𝑘(𝑛𝑖, 𝜅) = 𝜆(𝑛𝑖) ∗ 𝜇(𝑛𝑖) ∗ ∑ 𝜔(𝑛𝑖, 𝑡), ∀𝑡 ∈ 𝜅|𝜅 ⊆ Γ(𝑛𝑖) ⇒ 𝜅 ∈ 2Φ (5)

|𝜅|

𝑡=1

The component threat risk is calculated in a similar manner. Instead of taking the

whole set of threats Γ(𝑛𝑖) in component 𝑛𝑖, only the selected threats 𝜅 that are imposed

by the vulnerabilities in component 𝑛𝑖 are considered.

State Risk Calculation:

Lastly, to compute the total risk of the system, the risk values (𝑅𝑖𝑠𝑘(𝑛𝑖)) of all

system’s components are summed up, as shown in equation (6).

𝑅𝑖𝑠𝑘(Ω) = ∑ 𝑅𝑖𝑠𝑘(𝑛𝑖), ∀𝑛𝑖 ∈ ℕ

|ℕ|

𝑖=1

 (6)

18

Table 1

Threat-specific risk calculations symbols and their definition.

Symbol Definition

 ℕ The set of all components/nodes in the cloud system, ℕ = {𝑛1, 𝑛2, 𝑛3, … 𝑛𝑖}

 𝔼

Set of all connections between components in the cloud

system, 𝔼 ⊆ {ℕ × ℕ}

 Φ A set of STRIDE threats, Φ = {𝑆, 𝑇, 𝑅, 𝐼, 𝐷, 𝐸}

 𝑡 A single threat in the STRIDE threats, 𝑡 ∈ Φ

 2Φ The power set of Φ, 2Φ = {
{ }, {𝑆}, {𝑇}, {𝑅}, {𝐼}, {𝐷}, {𝐸},

{𝑆, 𝑇}, {𝑆, 𝑅}, … , {𝑆, 𝑇, 𝑅, 𝐼, 𝐷, 𝐸}
}

 Ω A cloud system consisting of a network of nodes and connections, Ω = {ℕ, 𝔼}

 𝑛𝑖 A component in a cloud system/sub-system, 𝑛𝑖 ∈ ℕ

 𝕍 The set of all vulnerabilities in the cloud system.

 𝑣𝑗 A 𝑗𝑡ℎvulnerability in a component of a cloud system, such that 𝑣𝑗 ∈ 𝕍

 𝛼𝑣𝑗
 Impact of a vulnerability 𝑣𝑗

 𝛽𝑣𝑗
 Probability of successful exploitation of vulnerability 𝑣𝑗

 𝛾𝑣𝑗
 Set of all threats that can exploit vulnerability 𝑣𝑗 , where 𝛾𝑣𝑗

∈ 2Φ

 𝜅 A set of selected threats for the risk evaluation given 𝜅 ∈ 2Φ

 𝜆(𝑛𝑖) Impact on component 𝑛𝑖 - calculated from the set of vulnerabilities in the component.

 𝜇(𝑛𝑖) Probability of a successful attack on component 𝑛𝑖 - calculated from the set of vulnerabilities.

 𝑉(𝑛𝑖) Set of vulnerabilities in component 𝑛𝑖, where 𝑉(𝑛𝑖) ⊆ 𝕍

 𝛤(𝑛𝑖) Set of threats in component 𝑛𝑖, where Γ(𝑛𝑖) ∈ 2Φ

 𝜔(𝑛𝑖 , 𝑡)
The impact weighting of component 𝑛𝑖 (as set by the security administrator) from the perspective of

one of the STRIDE threats, 𝑡 ∈ Φ. The impact weighting depends of user security requirements.

 𝑅𝑖𝑠𝑘(Ω) Computes the risk of a cloud system considering all threats.

 𝑅𝑖𝑠𝑘(Ω, 𝜅) Computes the risk of a cloud system considering a subset of threats k.

 𝑅𝑖𝑠𝑘(𝑛𝑖) Computes the risk of a cloud component considering all threats.

 𝑅𝑖𝑠𝑘(𝑛𝑖 , 𝜅) Computes the risk of a component in a cloud system considering a subset of threats 𝜅.

19

Functional Requirements

The main functional requirement of the proposed system is to evaluate risk.

However, to accurately calculate the different values of VM risk, threat risk and state risk,

a few requirements must be fulfilled first. This section covers in depth the system

functional requirements.

The first requirement is to create network topologies. Each topology is created

when the security administrator draws nodes (VMs and attackers) and connects VMs either

to each other or to an attacker. This network topology developed by the system

administrator represents the system of the organization.

Upon drawing a VM, the security administrator will be required to enter the

information of that VM, such as its name, functionality (e.g. host, firewall…etc.), the

operating system it runs and its version. The tool focuses on the operating system of the

virtual machine, but can be extended to include the list of applications running on that

virtual machine. The operating system and its version will provide us with a genuine list

of vulnerabilities existing on the specified operating system with the selected version. The

vulnerabilities are retrieved from the remote National Vulnerability Database (NVD) [14],

which is a huge repository for all the security-related software flaws from the year 1999 up

till 2018. The system administrator will get data directly from NVD.

Retrieving the list of vulnerabilities for each VM is crucial to calculate its impact value and

its exploitability (i.e. probability of attack) according to formulas (1) and (2).

After creating the network topology, the system will then evaluate the risk upon security

administrator’s request, using the equations (4), (5), and (6) to calculate VM risk, threat

risk, and state risk, respectively.

20

Use Case Diagram and Use Cases Specifications

Figure 3 below shows the use case diagram of our security risk analysis system.

There are four main use cases: Draw Node, Connect Nodes, Evaluate Topology, and Show

Attack Paths. The remaining use cases are Retrieve Vulnerabilities, Make Topology, and

Open Topology. An external system is also shown that represents the National

Vulnerability Database, that is by the Retrieve Vulnerability use case to download the

vulnerabilities.

Figure 3. System use case diagram.

21

The following section will elaborate on the specifications of each use case.

1. Draw Node: as the name suggests, it allows the security administrator to draw a

VM on a particular point on the screen, and then enter the information of this VM,

such as its name, functionality, operating system, and operating system version.

From the last two pieces of information, operating system and operating system

version, this use case retrieves the list of vulnerabilities from NVD that this version

has. Upon retrieving the VM vulnerabilities, the impact score and exploitability

score are automatically calculated based on equation 1 and equation 2 respectively.

A node can also represent an attacker, where all the information will be null, except

for the ID and name.

2. Connect Nodes: allows the security administrator to connect two VMs, or a VM to

an attacker. This use case along with Draw Node use case combined make the Make

Topology use case.

3. Open Topology: is used to retrieve a topology that has already been drawn and

saved.

4. Evaluate Topology: calculates the system risk, threat risk, and node risk and reports

them to the security administrator.

5. Show Attack Paths: prints the paths for a particular target VM from the attacker to

the VM.

The complete use case specifications can be found in Appendices A to E.

22

Domain Model

After defining the main use cases, the main entity classes that this system has are shown

in Figure 4, the domain model. This model shows the required classes which are Node,

Edge, Vulnerability, Path, and RiskReport. It also shows the cardinality between the

classes. For example, one node may have zero or many incoming edges; where zero

incoming edge means it is not a destination node from other nodes. A node may also have

zero or many outgoing edges, where zero outgoing edges means it is not connected as a

source node to other nodes. Moreover, a node can have from 1 to several vulnerabilities.

A node can also have zero to many attack paths. Finally, a RiskReport is generated from

the information gained from all the other classes.

Figure 4. Domain model of the system.

23

CHAPTER 4: PROPOSED SOLUTION

After explaining the system requirements, this chapter will talk about the proposed

tool in depth. It will illustrate the system architecture, design class diagram and system

sequence diagrams.

The proposed system is a risk assessment tool, that will be used by security

administrator to help them in evaluating their organization’s security risk. As explained

earlier, the tool provides a clear canvas for the security administrator to create their network

topology by drawing collection of virtual machines and the possible attackers, then

connecting them via edges. The security administrator will enter the properties of each VM,

such as its name, function, operating system, and the suitable impact weight for each of the

STRIDE components. As mentioned in Chapter 3, the impact and exploitability of each

VM is calculated based on its list of vulnerabilities. When the security administrator

completes the topology drawing, the tool will calculate the risk for each VM and the risk

of each of its threats (STRIDE), the state risk of the system, and the risk for each threat.

System Architecture

The architecture of the proposed tool is demonstrated in Figure 5 below. As

explained in the previous chapter, a database of vulnerabilities is needed in order to perform

the computations. Using the bash script provided in [15], 17 XML files are downloaded,

for the years 2002 to 2018. Each file contains information about the vulnerabilities

retrieved from the National Vulnerability Database, using CVSS v2.0.

24

Figure 5. System architecture for risk evaluation tool.

For the sake of this project, only the 2018 file is considered, but the tool can be

modified to include all the vulnerabilities files. Since the XML file contains all the

information about each vulnerability, it is very large. This makes accessing the desired

pieces of information a bit slower. Therefore, a Java parser called

“DocumentBuilderFactory” is used to extract the needed information from the XML file,

which are Vulnerability ID, Impact Score, Exploitability Score, and Impact Vector.

However, the Impact Vector stored does not follow the STRIDE model. It is stored as:

CVSS_vector="(AV:N/AC:L/Au:N/C:P/I:P/A:P)"

AV: Attack Vector

AC: Attack Complexity

Au: Authentication

C: Confidentiality

25

I: Integrity

A: Availability

‘N’ means None, ‘L’ means Low, ‘P’ means Partial, ‘H’ means High. We are mainly

interested in the latter four; authentication, confidentiality, integrity, and availability. To

match the Risk Evaluation Formulas (defined in Chapter 3), the categorizing model used

by NVD must be mapped to STRIDE model, this is illustrated in Table 2 below.

Table 2

Mapping to STRIDE.

Security Objectives Security Threat

Authentication Spoofing

Integrity Tampering

Confidentiality Information Disclosure

Availability Denial of Service

Then, a Java SQL Driver creates a local database, having a table for all the vulnerabilities

consisting of six columns: Vulnerability ID, Impact Score, Exploitability Score, Operating

System, OS Version, and STRIDE Elements. Another database is linked to the tool where

the previously created network topologies are stored.

26

Class Diagram

As outlined in the Domain Model (Chapter 3), the main entities of the risk

evaluation tool are Node, Path, Edge, Vulnerability, and Risk Report. This section will

elaborate on each entity and what is captured by the objects of these classes. The Node

class represents a virtual machine or an attacker, having these attributes:

- ID: a unique identifier for each node.

- X: an integer value representing the x-coordinate of the center of the node.

- Y: an integer value representing the y-coordinate of the center of the node.

- Radius: an integer value to represent the size of the node on the screen.

- Name: the name provided by the security administrator when entering the VM

properties.

- Type: the type of the node, either VM or attacker. The following attributes are set

to null if the type is ‘attacker’.

- Function: the role of the VM, (e.g. firewall, host...etc.).

- Operating system; the operating system that is running on the VM.

- OS version: the operating system version.

- Impact: the impact of the VM after considering its list of vulnerabilities.

- Probability: the exploitability score of the VM after considering its list of

vulnerabilities.

- STRIDE: a list of 6 doubles, where each value represents the impact weighting of

each threat of the STRIDE.

- Risk: the component risk, that is calculated using formula (4).

27

The class Edge represents the connection between the nodes (i.e. VM to VM or Attacker

to VM), and it has the attributes: Source Node and Destination Node.

Each node (if it is a VM) has a set of vulnerabilities, that are represented in the class

Vulnerability. This class has the attributes:

- ID: the vulnerability CVE ID.

- Impact: the impact score of the vulnerability (retrieved from local CVE database).

- Probability: the exploitability score of the vulnerability (retrieved from local CVE

database).

- Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service and

Elevation of Privileges: Boolean values that represent whether the vulnerability

poses the specified threat or not.

Lastly, the class Risk Report captures the risk report for the evaluation process. It has the

attributes State Risk and STRIDE Risks, where the system’s risk and each threat risk are

calculated. The class diagram of the system can be found in Figure 6 below.

28

Figure 6. Design class diagram.

Design Sequence Diagrams

It is important to use design sequence diagrams (DSD) to show the interaction

between the security administrator and the different components of the system. This section

will illustrate the DSDs for the main use cases:

Figure 7 below shows the DSD of Draw Node use case. The user interacts with the system

solely through the user interface. The interface then interacts with the controller, that

handles everything else. It gives the order for object creation and initializing.

29

Figure 7. Draw Node use case DSD.

After drawing nodes, the user should connect them. Figure 8 shows the DSD of Connect

Nodes use case. The user first clicks on the nodes to be connected, the controller will then

create an Edge, and will order the Drawing class to draw a line between the two nodes.

Figure 8. Connect Nodes use case DSD.

30

Figure 9 illustrates the DSD of Open Topology use case. The user selects an existing

topology file, and the controller will then read the file, extracts the nodes information and

the edges information. Lastly, it orders the Drawing to paint all the components.

Figure 9. Open Topology use case DSD.

When the topology is completed, the evaluation begins once the user clicks the “Evaluate”

button. The DSD of this use case is shown in Figure 10. The controller will gather all the

nodes’ risk values, and their threat risk values (STRIDE). It will then calculate the threat

risk values for all STRIDE elements, and the state risk of the system. All the calculated

values will be shown to the user.

31

Figure 10. Evaluate Topology use case DSD.

Figure 11 below shows the DSD of the “Show Attack Paths” use case. When drawing the

topology is complete, each node automatically stores its attack paths as an attribute. When

the user click on one virtual machine to view its information, the controller gets all the

paths for the selected virtual machine, along with each path’s risk value. Then, the paths

and the risk values will be shown to the user.

32

Figure 11. Show Attack Path use case DSD.

After analyzing the system and its requirements, the implementation details are explained

in the next chapter.

33

CHAPTER 5: IMPLEMENTATION

This chapter will cover the main implementation aspects, such as tools used, pattern

used, and screenshots of the user interface.

Tools and Frameworks

The IDE used to develop the Risk Analysis Tool is NetBeans IDE 8.1. with Java

Derby Database to store the needed tables. Moreover, a VM running Ubuntu was used to

run the bash script files that downloads the vulnerabilities information and stores them as

XML files.

The user interface of the tool is designed using mainly Java Swing Toolkit [16]. It

is an Application Programming Interface (API) that implements a set of components for

designing graphical user interfaces (GUIs). The toolkit enhances Java applications with

rich graphics interactivity and functionality. Another important component that was used

is the “DocumentBuilder”. It defines an API that help programmers obtain a Document

Object Model (DOM) instance from an XML document. The method parser(File f) of this

class was used to obtain a Document object of the vulnerabilities XML file.

Design Pattern

The implementation of this project somewhat follows the Model-View-Controller

deign pattern. It was chosen because it is known as one of the most appropriate design

patterns for desktop applications with graphical user interface. In the Risk Analysis tool,

the model is represented by the entity classes, the security administrator interacts with the

system via its GUI, which is the view. The controller will then use the security

administrator input and perform the required operations that will result in changes in the

34

model. However, as a result of using Swing, it is difficult to split the view and controller,

as they require tight coupling [17]. Hence, the implementation is based on MVC, but the

view and controller components are collapsed into one entity. Figure 12 shows the

structure of the MVC pattern used. The “View/Controller” component represents the

combined View and Controller. The user interacts with the View, which then executes the

Controller events. The controller then updates the Model.

Figure 12. MVC design pattern.

Methodology

As explained in Chapter 3, the tool computes each node’s impact score,

exploitability score and risk values based on specific equations. The calculations of a

node’s impact score and exploitability score depend on the list of vulnerabilities of that

node. Algorithm 1 explains how the vulnerabilities are extracted from the XML file. The

first step in this algorithm is to parse the XML file to a Document object. Each vulnerability

35

in the XML file is called “entry”. After parsing, the tool loops through each entry to get

its information. The extracted information from each vulnerability are the vulnerability’s

name, impact score, exploitability score, CVSS vector, affected operating systems, and all

the versions of the affected operating systems. As mentioned in Chapter 3, the CVSS vector

is mapped to STRIDE. Each vulnerability is then inserted to the local Vulnerabilities

Database.

Algorithm 1 Extracting and Inserting Vulnerabilities to Database

extractVulnerabilities(xmlFile, insertStatement)

Input: An XML File containing vulnerabilities details and an SQL PreparedStatement to

insert the vulnerability in the database

Output:

01: document = parse(XML File)

02: for each entry in document do

03: name = entry.getName()

04: impactScore = entry.getImpactScore()

05: exploitabilityScore = entry.getExploitabilityScore()

06: CVSS_vector = entry.getCVSS_vector()

07: STRIDE = mapToSTRIDE(CVSS_vector)

08: operatingSystems = entry.getOperatingSystems()

09: for each operatingSystem in operatingSystems do

10: OSVersions = operatingSystem.getVersions()

11: for each version in OSVersions do

12: insertStatement(name, impactScore, exploitabilityScore, STRIDE,

operatingSystem, version)

13: end for

14: end for

15: end for

36

When the security administrator draws a virtual machine in the drawing canvas, a form

collecting the information of the virtual machine is displayed. Algorithm 2 represents

adding a virtual machine, where the virtual machine is created by retrieving the information

entered in the form. The list of vulnerabilities is then retrieved depending on the operating

system and its version, and used to calculate the impact and probability. After creating the

virtual machine, it is added to the list that holds all the system’s virtual machines.

Algorithm 2 Creating a Virtual Machine

drawVM(point)

Input: A Point object that contains the x and y coordinates of the virtual machine to be drawn

Output:

01: showVMinfoForm()

02: user fills form with name, operatingSystem, OSVersion, and STRIDE impact weights

03: RetrievedVulnerabilities = retrieveVulnerabilties(operatingSystem, OSVersion)

04: vm.vulnerabilities = RetrievedVulnerabilities

05: impact = calculateVMImpact()

06: probability = calculateVMProbabilirty()

07: vm = VM(point, name, operatingSystem, OSVersion, STRIDE, impact, probability)

08: vmList.add(vm)

After retrieving the vulnerabilities of the virtual machine, the impact and probability of the

virtual machine are calculated according to Equations (1), and (2), respectively. Algorithms

3 and 4 show the details of calculating these two variables.

37

Algorithm 3 Calculate Impact

calculateImpact(vm)

Input: A Node object

Output:

01: impact = 0;

02: for each vulnerability in vm.getVulnerabilities() do

03: impact += vulnerability.getImpact()

04: end for

05: vm.setImpact(impact)

06: return impact

Algorithm 4 Calculate Probability

calculateProbability (vm)

Input: A Node object

Output:

01: product = 1;

02: for each vulnerability in vm.getVulnerabilities() do

03: product *= (1 – vulnerability.getProbability())

04: end for

05: vm.setProbability(1-product)

06: return probability

Creating an attacker is simply creating a node that has only an ID and a name, other values

are set to null.

After drawing the virtual machines and the attackers, the security administrator must

connect them to create the final topology. Algorithm 5 shows in detail how the connection

is formed. The source and destination nodes are captured from the mouse clicks. An Edge

object, connection, is then created with the retrieved nodes as source and destination. To

38

link the nodes to each other, the connection is added to the source’s outgoing edges list,

and to the destinations’ incoming edges list.

Algorithm 5 Connecting Two Nodes

connectNodes(source, destination)

Input: Two Node object representing the source and the destination of the Edge

Output:

01: source = getNodeFromClick()

02: destination = getNodeFromClick()

03: connection = Edge(source, destination)

04: source.getOutgoingEdges().add(connection);

05: destination.getIncomingEdges().add(connection);

06: connectionsList.add(connection)

After completing the drawing of the topology, the security administrator starts the

evaluation. The evaluation takes place in four steps. The first step is calculating the risk of

each threat of each node. This is further explained in Algorithm 6. The input of this

algorithm is the node and threat (out of the STRIDE threats) to be evaluated. An iterator

loops through all the vulnerabilities of the input virtual machine and verifies if each of the

vulnerabilities might cause the threat defined as input. If the vulnerability does cause the

threat, then the threat risk value will be calculated by multiplying the threat weight (entered

by user), the virtual machine impact, and the virtual machine probability.

39

Algorithm 6 Calculate Node Threat Risk

calculateNodeThreatRisk(vm, threat)

Input: The Node to be evaluated and a Character specifying which threat to calculate its risk

Output: Threat risk value

01: for each vulnerability in vm do

02: if vulnerability.STRIDE contains threat then

03: nodeThreatRisk = threat weight × VM Probability × VM Impact

04: end if

05: end for

06: return nodeThreatRisk

The output of Algorithm 6, nodeThreatRisk, is used in calculating the total risk of the virtual

machine. Algorithm 7 gives the steps to how it is done. The total risk of the virtual machine

is calculated by adding the risk values of all its threats.

Algorithm 7 Calculate Node Total Risk

calculateNodeRisk(vm)

Input: The Node to be evaluated

Output: Node risk value

01: nodeRisk = 0;

02: for each threat in STRIDE do

03: nodeRisk += calculateNodeThreatRisk(vm, threat)

04: end for

05: return nodeRisk

40

Similar to Algorithm 7, Algorithm 8 uses the output of Algorithm 6, nodeThreatRisk, in

calculating a threat risk. Algorithm 8 takes as input a character specifying with threat risk to

calculate (out of the STRIDE Threats). The output is the summation of the specified threat risk of

all the nodes.

Algorithm 8 Calculate Threat Risk

calculateThreatRisk(threat)

Input: A character specifying with threat risk to calculate

Output: Threat risk value

01: threatRisk = 0;

02: nodes; // list of all virtual machines of the system

03: for each node in nodes do

04: threatRisk += calculateNodeThreatRisk(node, threat)

05: end for

06: return threatRisk

Lastly, the system state risk defined as the summation of risk values of all of the virtual

machines of the system. This is illustrated in Algorithm 9.

Algorithm 9 Calculate State Risk

calculateStateRisk(nodes)

Input: A List of Nodes representing all the virtual machines of the system.

Output: State risk value

01: stateRisk = 0;

02: for each node in nodes do

03: stateRisk += calculateNodeRisk(node)

04: end for

05: return stateRisk

41

 User Interface Design

This section includes screenshots of all system components that shows how each

use case work. Figure 13 below shows the first screen that appears when running the tool.

The white area is the drawing canvas where the security administrator draws the virtual

machines, attackers, and edges.

Figure 13. Initial screen of the system.

Figure 14 shows the buttons panel. The first button is used to draw a virtual machine. When

the user clicks this button and clicks on any point on the white canvas, a virtual machine

will be drawn and a form will appear on the screen asking to fill the VM’s properties. After

drawing at least two nodes (two virtual machines or one virtual machine and one attacker)

the second button is used to connect the nodes. The user will have to click on the source

node first, and then click on the destination node. The third button is used to draw an

42

attacker. Similar to the first button, the user clicks this button and then click any point on

the canvas. This will create an “attacker” node, with an ID and a name only, and all other

information are null values. Lastly, the cursor button is used to put the mouse in the

“cursor” state, so the user can click on a node and get its information.

Figure 14. Close-up of buttons panel.

The System Level Risk Assessment panel in Figure 15 shows different text fields for the

different STRIDE components. When the topology is evaluated, the threat risk values and

the state risk value will appear in the corresponding text fields which are not editable.

43

Figure 15. System Assessment Panel.

The next panel as shown in Figure 16 is the Node Level Risk Evaluation panel. It has text

fields for the node information, Node Name, Node Risk, Spoofing Risk, Tampering Risk,

Repudiation Risk, Information Disclosure Risk, Denial of Service Risk, and Elevation of

Privileges Risk. Similarly, these text field are not editable. After the evaluation is

completed, and when the user clicks on a virtual machine, the text fields will have the

mentioned values.

Figure 16. Node Risk Evaluation Panel.

44

Figure 17 shows Node Risk Severity. This panel holds a table of all the nodes and

their risk values, sorted descending such that the riskiest virtual machine is at the top of the

list.

Figure 17. Node Risk Severity Table.

The last panel shown in Figure 18 is the Attacker Paths panel. In this panel, when the user

clicks on a virtual machine. The paths leading the attacker to this virtual machine are shown

in this table. Each path has a risk value, that is the summation of the risk values of the

nodes constructing the path.

Figure 18. Attacker Paths Table.

45

When the user clicks on the screen to draw a virtual machine, a form will appear to be

filled with the virtual machine properties, as shown in Figure 19. A clearer shot of the

form is shown in Figure 20.

Figure 19: screenshot of drawing node with form

Figure 20 shows the VM information form, it consists of five panels. The first panel is for

the VM basic information, which include ID (auto-generated), Name, Function (firewall,

host…etc.) Operating System Type, OS Version. The Vulnerabilities panel has a table of

the vulnerabilities retrieved from the database, depending on the operating system and its

version. In the Impact Weighting Panel, the security administrator must enter the STRIDE

values that their organization prefers. The summation of these values must be exactly 1.

The last panel is the Calculated Impact and Probability panel. This panel shows the

46

calculated impact of the virtual machine and the calculated probability, according to its list

of vulnerabilities. The “Cancel” button will cancel the node drawing operation, and the

“Save Info” button will store the virtual machine details.

Figure 20. Close-up shot of VM properties form.

The security administrator should then enter the information of the virtual machine. When

the operating system and OS version are selected, the list of vulnerabilities will be updated

depending on the selected values, as shown in Figure 21. The impact and probability will

be calculated upon the selection of operating system and its version, because they are

calculated based on the retrieved vulnerabilities.

47

Figure 21. Screenshot of filled form.

Figure 22 shows 3 virtual machines which are a Firewall, Database, and a Web Server and

an attacker. After clicking the “Evaluation” button, the text fields of the System Level Risk

Assessment panel will be filled with the corresponding values. When the user clicks on one

of the virtual machines, its information is shown in the appropriate fields in the Node Level

Risk Assessment panel. The Attack Path table is also updated to show the different paths

from the attacker to the clicked node. It also shows the Risk value of the path, which is the

summation of the paths’ nodes’ risk values.

48

Figure 22. Screenshot of drawn topology.

The tool can also allow the user to open an existing topology. Figure 23 shows a screenshot

of opening an existing topology.

49

Figure 23. Opening existing topology screenshot.

The next chapter presents the evaluation of our risk evaluation tool.

50

CHAPTER 6: EVALUATION

This chapter focuses on the evaluation of two quality attributes, usability and

scalability. The chapter includes a usability study and an experimental analysis.

Usability Study

To evaluate the tool’s usability, three cyber security researchers were asked to test

tool. Due to the time limit, we were unable to reach actual security administrators to

evaluate the tool, hence our choice of security researchers. The evaluators were asked to

draw a topology with specific features. The Usability Questionnaire can be found in

Appendix F. The questionnaire studied five aspects; the difficulty of creating a new virtual

machine the difficulty of connecting two nodes, the difficulty of evaluating the network

topology, the organization of the user interface, and how beneficial the tool is to security

administrators. The rationale behind the first three questions come from the point that the

proposed tool takes as input the network topology. So, it is of a great importance to ensure

that drawing the topology nodes and connecting them is easy. In addition, the user interface

is similarly significant, because this is the only method of interaction. Lastly, the evaluators

were asked about their opinions of how beneficial the tool is for security administrators, as

the security administrators are the main users of the tool. Figure 24 illustrates the usability

scores for the study questions. The usability score was calculated by taking the average

scores for each question.

51

Figure 24. Usability scores for the study questions.

The simplicity of Drawing a VM is of a score of 4.667 out of 5. This shows that creating a

new virtual machine and setting its properties is straightforward. Connecting Nodes and

Evaluating Topology both scored 4.333 on the scale. This is mainly because the edges

connecting the nodes do not have arrows. The evaluators agreed that the lack of directional

arrows causes confusion. User Interface Organization of the tool has a score of 4.667 out

of 5. This indicates that the tool is highly user friendly. Lastly, the Helpfulness of the tool

scored 4.667, which shows a real need for such a tool in the field.

Experiment Analysis

Experiment Setup

The experiment analysis was conducted on an HP laptop running Windows 10. The

machine has an Intel(R) Core i7-6500U processor of speed 2.60 GHz, and an 8GB RAM.

The experiment was done by plotting the number of virtual machines in the topology

against the time to evaluate the topology. The next section presents the result in detail.

1

1.5

2

2.5

3

3.5

4

4.5

5

Drawing VM Connecting
Nodes

Evaluating
Topology

Organization
of UI

Helpfulness

U
sa

b
ili

ty

52

Experiments Results

To perform this experiment, four sets of topologies were evaluated; A, B, C, D. The

sets consist of 3, 6, 12, and 20 virtual machines, respectively. To obtain more accurate

results, three topologies were evaluated for each set. The figures below illustrate the

topologies used for the experiment. Figure 25.a, b, and c show three 3-node topologies

connected with 3, 4 and 5 edges, respectively.

Figure 25. Topologies of set A.

Figure 26.a, b, and c show three 6-node topologies connected with 9, 12 and 15 edges,

respectively.

53

Figure 26. Topologies of set B.

Figure 27.a, b, and c show three 12-node topologies connected with 18, 21 and 25 edges,

respectively.

Figure 27. Topologies of set C.

Figures 28.a, b, and c show three 20-node topologies connected with 30, 35 and 40 edges,

respectively.

54

Figure 28. Topologies of set D.

The average evaluation time of each set was calculated and then used in plotting Figure

29. The figure illustrates the evaluation time against the number of nodes in the topology.

Figure 29. Time Vs. number of nodes.

The evaluation time of the tool is of a linear curve; it increases as the number of nodes in

the topology increases. This growth is rational because the tool will take more time

processing each node to calculate its risk values.

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

Ti
m

e
(m

s)

Number of Nodes

55

CHAPTER 7: DISCUSSION

This chapter explores the rationale for the choice of programming language and the

method of the vulnerability extractor. Moreover, the chapter discusses the limitations of

this version of the risk evaluation tool.

In this project, we propose a risk analysis tool that uses the STRIDE threat model

in categorizing the different types of threats. The tool will help security administrators

understand the risk of the specific threats posed on their assets. As a result, security

administrator will be able to accurately predict and identify the VMs causing higher risk to

the organization, and then address it properly by choosing the appropriate mitigation

strategy.

The programming language used to implement our risk analysis tool is Java, and it

is chosen for several reasons. First, Java is significantly more powerful than many other

languages in terms of portability, it is known to be cross-platform. Another justification for

using Java is its libraries. Languages such as JavaScript and Python are similarly powerful,

but for our tool where the focus is on the graphical user interface, Java is much richer with

libraries for that purpose that makes it more suitable.

Another critical decision of our tool was how to extract vulnerabilities. One option

was retrieving the vulnerabilities from the National Vulnerability Database using the tool

provided in [18], which is a tool used to perform local searches for known vulnerabilities.

However, the database created from this tool lacks important attributes that we are

interested in. The vulnerabilities table created has attributes such as Vulnerability ID,

CVSS, Impact Vector, but it lacks significant attributes that our calculations are based on,

56

like Impact Score and Exploitability Score.

Hence, we decided upon the vulnerabilities downloader provided in [15] because it

extracts all the vulnerability’s details in an XML file. Then, the Java SQL Driver takes the

attributes of interest and creates a local database for all the vulnerabilities.

Limitations

Due to the time constraint, this version of the risk evaluation tool has some

limitations. The first limitation of this tool is that it does not print the attack paths properly

in case of multiple attackers. Another limitation is the lack of directional arrows between

the nodes when drawing the topology. This results in confusion and possibility of

misunderstanding the topology. Moreover, the drawn items (i.e. nodes and edges) are not

movable, once the user clicks on a point to draw a node, it is fixed there. The feature of

moving the drawn items would make the tool more usable. Lastly, this version of the tool

does not retrieve the vulnerabilities in real-time. To get updated list of vulnerabilities, we

will have to run the Vulnerability Downloader to download the XML files of the most

recent vulnerabilities. A real-time vulnerability scanner that runs automatically when

starting the tool would be much more convenient for this tool. Hence integrating its risk

evaluation features with real-time vulnerability scanner could enrich the tool and the

practicality of deploying it in a real-world risk assessment environment.

57

CHAPTER 8: CONCLUSION

In the scope of this project, a threat-specific risk evaluation tool was developed.

The developed tool varies from the existing tools in several aspects. First, it gives a numeric

representation of the evaluated risk for the entire system, and for each virtual machine. This

will allow the security administrator to easily identify the assets at risk. Second, the tool’s

evaluation provides the security administrator with the degree of severity for each of the

STRIDE threat, for the system as a whole, and for each virtual machine. The usability study

results reveal that the proposed tool is highly user friendly, and there is a need for such a

tool. In addition, the experimental analysis of the tool gives satisfactory results for the

scalability.

The current risk evaluation tool can be improved in several ways. First, addressing

the limitations relevant to the user interface will greatly enhance the usability of the tool.

Second, the implementation of a real-time vulnerability scanner will provide the tool with

up-to-date vulnerabilities database. As a result, this will deliver more accurate risk values

to the security administrators for their networks. Moreover, the tool can be improved by

giving the security administrator the option of evaluating a subsystem within the

organization’s network topology. Selecting the nodes of the subsystem from a drawn

topology will save the security administrators’ time and efforts of drawing a different

topology for each subsystem.

58

REFERENCES

1. Mell, P. M., & Grance, T. (2011). The NIST Definition of Cloud Computing.

doi:10.6028/nist.sp.800-145

2. Curran, K. (2013). Pervasive and ubiquitous technology innovations for ambient

intelligence environments. Hershey, PA: Information Science Reference.

3. Gariba, Z. P., & Poll, J. A. (2017). Security Failure Trends of Cloud Computing.

2017 IEEE 3rd International Conference on Collaboration and Internet

Computing (CIC). doi:10.1109/cic.2017.00041

4. Saripalli, P., & Walters, B. (2010). QUIRC: A Quantitative Impact and Risk

Assessment Framework for Cloud Security. 2010 IEEE 3rd International

Conference on Cloud Computing. doi:10.1109/cloud.2010.22

5. Efozia, N. F., Ariwa, E., Asogwa, D. C., Awonusi, O., & Anigbogu, S. O. (2017).

A review of threats and vulnerabilities to cloud computing existence. 2017

Seventh International Conference on Innovative Computing Technology

(INTECH). doi:10.1109/intech.2017.8102448

6. Application Threat Modelling. (n.d.). Retrieved January 21, 2018, from

https://www.owasp.org/index.php/Application_Threat_Modeling

7. The STRIDE Threat Model. (n.d.). Retrieved February 16, 2018, from

https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx

8. (Cybersecurity), H. G. (n.d.). STRIDE, CIA and the Modern Adversary. Retrieved

January 21, 2018, from

59

https://blogs.msdn.microsoft.com/heinrichg/2016/06/07/stride-cia-and-the-

modern-adversary/

9. Kazim, M., & Evans, D. (2016). Threat Modelling for Services in Cloud. 2016

IEEE Symposium on Service-Oriented System Engineering (SOSE).

doi:10.1109/sose.2016.55

10. Sommestad, T., Ekstedt, M., & Holm, H. (2013). The Cyber Security Modeling

Language: A Tool for Assessing the Vulnerability of Enterprise System

Architectures. IEEE Systems Journal, 7(3), 363-373.

doi:10.1109/jsyst.2012.2221853

11. Djemame, K., Armstrong, D., Guitart, J., & Macias, M. (2016). A Risk

Assessment Framework for Cloud Computing. IEEE Transactions on Cloud

Computing, 4(3), 265-278. doi:10.1109/tcc.2014.2344653

12. Santos R. (2017). Microsoft Threat Modeling Tool - Azure. Retrieved from

https://docs.microsoft.com/en-us/azure/security/azure-security-threat-modeling-

tool

13. Nhlabatsi, A., Hong, J., Kim, D., Fernandez, R., Hussein, A., Fetais, N., Khan, K.,

(2018). Threat-specific Security Risk Evaluation in the Cloud. Submitted to IEEE

Transactions on Cloud Computing.

14. NIST - National Vulnerability Database. (n.d.). Retrieved from

https://nvd.nist.gov/

15. Galsterer, C. NVD Download Script. Retrieved from

https://gist.github.com/christiangalsterer/5f55389b9c50c74c31b9

60

16. Swing. (n.d.). Retrieved from

https://docs.oracle.com/javase/8/docs/technotes/guides/swing/

17. Fowler, A. (n.d.). A Swing Architecture Overview. Retrieved from

http://www.oracle.com/technetwork/java/architecture-142923.html

18. Dulaunoy, A., et. al. CVE-Search. Retrieved from

https://gist.github.com/christiangalsterer/5f55389b9c50c74c31b9

61

APPENDIX A: DRAW NODE USE CASE SPECIFICATION

Name Draw Node

Actor Security Administrator

Description Allows the security administrator to draw a virtual machine or an

attacker on a particular point on the drawing canvas, and enter the

node information in case it is a virtual machine

Pre-conditions None

Post-conditions The security administrator successfully creates a node (VM/attacker)

Basic flow When the security administrator clicks on the draw node button and

then clicks on the canvas, a node icon will appear on the clicked

point of the canvas. If the node is a VM, a form will pop up for the

security administrator to fill the information of the virtual machine

which are:

1. Name

2. Functionality

3. Operating System

4. OS Version

With the changes of the Operating System and OS Version values,

the table of vulnerabilities will change dynamically. When the

security administrator clicks the button “Save Info”, the node

information will be updated with the entered values.

62

If the node is an attacker, no form will appear and the node

information will be stored as null values, except for the attacker ID

and attacker name.

63

APPENDIX B: DRAW EDGE USE CASE SPECIFICATIONS

Name Draw Edge

Actor Security Administrator

Description This use case links two virtual machines to each other, or links an

attacker to a virtual machine.

Pre-conditions At least two virtual machines or one virtual machine and an attacker

are drawn.

Post-conditions Two virtual machines or one virtual machine and an attacker are

successfully connected with an edge.

Basic Flow after the security administrator draws at least two virtual machines

or one virtual machine and an attacker, the button “Draw Edge” is

clicked to link the two nodes together. The security administrator

should click on the source node first, and then click on the

destination node.

64

APPENDIX C: EVALUATE TOPOLOGY USE CASE SPECIFICATIONS

Name Evaluate Topology

Actor Security Administrator

Description This use case performs all the risk calculations.

Pre-conditions A system’s topology exists.

Post-conditions The risk of the system is evaluated and the different risk values are

shown to the security administrator.

Basic Flow When the construction of the topology is completed, and the security

administrator clicks on “Evaluate” button, the calculations to

compute the system state risk, threat risks (STRIDE), each node

risk, and each node threat risks (STRIDE).

65

APPENDIX D: OPEN TOPOLOGY USE CASE SPECIFICATION

Name Open Topology

Actor Security Administrator

Description This use case allows the user to open an existing topology.

Pre-conditions A system’s topology exists.

Post-conditions The existing topology is

Basic Flow After constructing and evaluating a topology, the user clicks on the

desired VM to view its attack paths. A table on the tool window will

be updated with the paths to the selected VM, along with the risk

value of the path.

66

APPENDIX E: SHOW ATTACK PATHS USE CASE SPECIFICATIONS

Name Show Attack Paths

Actor Security Administrator

Description This use case prints to the user the attack paths of the selected

virtual machine.

Pre-conditions A system’s topology exists.

Post-conditions The attack paths of a virtual machine are shown to the user, with

their risk values.

Basic Flow After constructing and evaluating a topology, the user clicks on the

desired VM to view its attack paths. A table on the tool window will

be updated with the paths to the selected VM, along with the risk

value of the path.

67

APPENDIX F: USABILITY QUESTIONNAIRE

Thank you for testing of my Threat-Specific Risk Evaluation Tool – a tool developed as

part of my Masters project. The main objective of the tool is supporting Security

Administrators in evaluating risk with respect to specific threats in network-based

information systems in their organizations. Your feedback will help me in evaluating and

improving the usability of the tool.

Using the Tool

The tool provides a clear canvas for you to create a network topology by drawing collection

of virtual machines and the possible attackers, then connecting them via edges. To calculate

the risk of a virtual machine, we first need to calculate its impact and exploitability values.

These values are calculated from the virtual machine’s vulnerabilities list. The three key

steps in using the tool are addition of nodes, reachability edges, and risk evaluation. These

are explained in detail below.

1. Adding Virtual Machine Nodes

To add a virtual machine, click on the virtual machine button.

When you draw a virtual machine, a form will pop up asking you to provide the virtual

machine details, which are:

1. Name

2. Function

3. Operating System

68

4. OS Version

When you select the operating system and its version:

the vulnerabilities of the selected operating system will be shown:

and the impact and the probability of the virtual machine are calculated accordingly:

69

Next, you’ll have to enter the STRIDE Impact Weights.

Give more weight to the components you are concerned about1. For example, if you value

the Confidentiality of your system more than you evaluate the Availability, give more

weight to Information Disclosure. Or if you run an online newspaper agency, and you may

care more about the Integrity of news articles than their disclosure and in that case, you

give more weighting to Tampering, and so on. Make sure that the STRIDE Weighting

values add up to 1.

1 The weighting depends on security requirements.

70

After entering the desired impact weighting, pressing the “Down Arrow ↓” key in your

keyboard to exit editing mode.

After filling the form, save the virtual machine information by clicking the “Save Info”

button:

When you finish drawing your virtual machines, you can add an “Attacker” by pressing

the “Attacker” button:

Then, click on where you want to place it in the canvas.

2. Adding Reachability Edges

After placing all the virtual machines and the attacker on the canvas, click on the “Arrow”

button to connect nodes:

 To create a connection, click the source node first, then the destination node. A solid line

71

will appear indicating that a connection has been established between the nodes. The

connection indicates that the destination node is reachable from the source node.

3. Risk Evaluation

After you complete drawing the topology, you can start the evaluation by pressing

“Evaluate” button at the top of the screen:

 All the risk values of the system will be calculated and displayed. To view the risk details

for each virtual machine, click the “Cursor ” button and select the node you want to

view.

To evaluate the tool, create the following topology with the provided data. Then, answer

the evaluation questions.

Firewall Node Information

Name Firewall

Function Firewall

72

OS Type Ubuntu

OS Version 16.04

Spoofing 0.0

Tampering 0.1

Repudiation 0.3

Information Disclosure 0.0

Denial of Service 0.4

Elevation of Privileges 0.2

Database Node Information

Name Database

Function Host

OS Type Windows_10

OS Version 1511

Spoofing 0.1

Tampering 0.4

Repudiation 0.0

Information Disclosure 0.2

Denial of Service 0.1

Elevation of Privileges 0.2

Web Server Node Information

73

Name Web Server

Function Host

OS Type Windows_8.1

OS Version “”

Spoofing 0.15

Tampering 0.1

Repudiation 0.05

Information Disclosure 0.2

Denial of Service 0.4

Elevation of Privileges 0.1

Evaluation Questions:

Please answer the following questions based on your experience of using the tool. On a

scale from 1 to 5:

1. How would you describe the difficulty of creating a new virtual machine? [1 to 5 (1:

“very difficult”, 5: “very easy”)]

2. How would you describe the difficulty of connecting two nodes? [1 to 5 (1: “very

difficult”, 5: “very easy”)]

3. How would you describe the difficulty of evaluating the network? [1 to 5 (1: “very

difficult”, 5: “very easy”)]

4. How did would you describe the organization of the user interface? [1 to 5 (1: “Poorly

Organized”, 5: “Well Organized”)]

74

5. How beneficial would be this tool be to security administrators? [1 to 5 (1: “not useful

difficult”, 5: “very useful”)]

