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ABSTRACT 

HOUCHATI MAHDI, Masters : June : 2018, Masters of Science in Electrical Engineering  

Title: Fault Detection and Localization in Modular Multilevel Converter 

efficiently Supervisors of Thesis: Lazhar Ben Brahim, Adel Gastli. 

 

 The Modular Multilevel Converter is gaining wide acceptance in both industrial 

and research communities for medium and high power applications. However, the 

increasing need for a higher number of active power switches raised more reliability issues. 

In this study, detection and localization of open circuit faults are studied in depth. Two 

multivariate statistical techniques, namely the principal component analysis and the kernel 

principal component analysis are proposed for fault detection and localization. To study 

the effectiveness of the proposed methodologies, two converters with different sizes and 

control techniques are considered in the simulations. The results show that both techniques 

are capable of accurately detecting the anomalies that can disrupt the normal behavior of 

the converter. However, only the kernel principal component analysis, can efficiently 

localize the faulty cells. 

 

 

 

 

 

 

 



  
   

iv 
 

ACKNOWLEDGMENTS 

 I would like to express my sincere gratitude to my supervisors Prof. Lazhar Ben-

Brahim and Prof. Adel Gastli for their continuous and endless support and patience during 

my Master thesis. Their comments and advice were very precious and inspiring. I would 

also like to seize this opportunity to express a special thanks to Dr. Nader Meskin for the 

provided help and support.  I am very grateful for his valuable guidance and advice. Many 

thanks for sacrificing their times and conveying their knowledge to contribute to my 

learning and success. Additionally, I would like to extend my gratitude to all the electrical 

engineering department faculty, and staff members for the supportive, encouraging and 

friendly environment. 

 

  



  
   

v 
 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ................................................................................................. iv 

LIST OF TABLES ........................................................................................................... viii 

LIST OF FIGURES ........................................................................................................... ix 

CHAPTER 1: INTRODUCTION ....................................................................................... 1 

1.1 Background .......................................................................................................... 1 

1.2 Problem Statement ............................................................................................... 5 

1.3 Thesis Objectives ................................................................................................. 6 

1.4 Thesis Organization.............................................................................................. 6 

CHAPTER 2: LITERATURE REVIEW ............................................................................ 7 

2.1 Modular Multilevel Converter ............................................................................. 7 

2.1.1 Topology of the Modular Multilevel Converter ........................................... 7 

2.1.2 Design of the Modular Multilevel Converter.............................................. 12 

2.1.3 Control of the Modular Multilevel Converter ............................................. 13 

2.2 Fault Detection and Localization in MMC ........................................................ 14 

CHAPTER 3: MMC CONTROL AND PROPOSED FAULT DETECTION AND 

LOCALIZATION METHODOLOGIES .......................................................................... 18 

3.1 Introduction ........................................................................................................ 18 

3.2 Mathematical Model of the MMC ..................................................................... 19 



  
   

vi 
 

3.3 Model Predictive Control ................................................................................... 21 

3.4 PWM-Based Voltage-Balancing Control ........................................................... 24 

3.4.1 Averaging Control ...................................................................................... 24 

3.4.2 Balancing Control ....................................................................................... 25 

3.5 Fault Formulation in MMC ................................................................................ 28 

3.6 Proposed Fault Detection Techniques ................................................................ 35 

3.6.1 Principal Component Analysis ................................................................... 35 

3.6.2 Kernel Principal Component Analysis........................................................ 44 

3.7 Fault Localization ............................................................................................... 56 

3.7.1 Approach 1 .................................................................................................. 57 

3.7.2 Approach 2 .................................................................................................. 59 

3.7.3 Approach 3 .................................................................................................. 60 

CHAPTER 4: SIMULATION RESULTS AND DISCUSSION ...................................... 63 

4.1 Model Predictive Control under Normal and Faulty States ............................... 63 

4.2 Pulse Width Modulation Control under Normal and Faulty States ................... 69 

4.3 Open Circuit Fault Detection ............................................................................. 74 

4.3.1 Fault Detection using PCA ......................................................................... 74 

4.3.2 Fault Detection using KPCA ...................................................................... 79 

4.4 Open Circuit Fault Localization ......................................................................... 82 



  
   

vii 
 

4.4.1 Approach1: Full State Variables ................................................................. 83 

4.4.2 Approach2: Data Preprocessing with Capacitor Voltages as State Variables

 90 

4.4.3 Approach3: Partial KPCA........................................................................... 95 

4.4.4 Performance Comparison............................................................................ 97 

CHAPTER 5: CONCLUSION AND FUTURE WORK ................................................ 101 

5.1 Conclusion ........................................................................................................ 101 

5.2 Future Work ..................................................................................................... 103 

REFERENCES ............................................................................................................... 104 

 

  



  
   

viii 
 

LIST OF TABLES 

Table 3.1: Cell voltage output in normal and faulty cases ................................................ 30 

Table 4.1: Simulation parameters for the MMC under predictive control ....................... 64 

Table 4.2: Simulation parameters for the MMC under voltage-balancing control ........... 69 

Table 4.3: Performance comparison between the three adopted approaches of KPCA ... 98 

Table 4.4: Comparison of localization speed for the three approaches under two control 

configurations ................................................................................................................... 99 

Table 4.5: Cells localization accuracy of different approaches under two control 

topologies ........................................................................................................................ 100 

 



  
   

ix 
 

LIST OF FIGURES 

Figure 2.1: Three phase Modular Multilevel Converter. .................................................. 10 

Figure 2.2: Put-in, Put-out operation modes of the submodules....................................... 12 

Figure 3.1: Topology of a four cells single phase MMC .................................................. 20 

Figure 3.2: Flowchart of the Predictive control algorithm ............................................... 23 

Figure 3.3: Block diagram of the averaging control ......................................................... 25 

Figure 3.4: Block diagram of the balancing control ......................................................... 26 

Figure 3.5: Output commands for (a) upper arm and (b) lower arm ................................ 27 

Figure 3.6: Flowchart of fault detection procedure using PCA: (a) offline training, (b) 

online monitoring .............................................................................................................. 43 

Figure 3.7: Control and fault detection in MMC using PCA technique ........................... 44 

Figure 3.8: Data processing for fault detection using KPCA algorithm ........................... 55 

Figure 3.9: Flowchart of KPCA training .......................................................................... 56 

Figure 3.10: Fault localization procedure using full state KPCA ..................................... 58 

Figure 3.11: Fault localization procedure using Partial KPCA ........................................ 61 

Figure 3.12: Overall fault detection and localization procedure ....................................... 62 

Figure 4.1: Waveforms of healthy state variables of the MMC under MPC control ........ 66 

Figure 4.2: Waveforms of faulty state variables of the MMC under MPC control .......... 68 

Figure 4.3: Waveforms of healthy state variables of the MMC under voltage-balancing 



  
   

x 
 

control ............................................................................................................................... 71 

Figure 4.4: Waveforms of faulty state variables of the MMC under voltage-balancing 

control ............................................................................................................................... 73 

Figure 4.5: Eigenvalues of the six state variables using MPC control and their importance

........................................................................................................................................... 75 

Figure 4.6: T2 and Q calculations using the same training set for the PCA and at different 

reference currents (a) iref =2A, (b) iref=4A ......................................................................... 76 

Figure 4.7: Eigenvalues of the ten state variables using voltage-balancing control and 

their importance ................................................................................................................ 77 

Figure 4.8: T2 and Q calculations using the same training set for the PCA and at different 

reference currents (a) iload =160A, (b) iload=150A ............................................................. 78 

Figure 4.9: Projection error calculated using KPCA on the MPC controller and at 

different reference currents (a) iref =2A, (b) iref=4A ......................................................... 80 

Figure 4.10: Projection error calculated using KPCA on the MPC controller and at 

different load currents (a) iload =160A, (b) iload=150A, (c) iload=100A ............................. 81 

Figure 4.11: Fault localization results using MPC control when the fault occurred at t=3s 

in cell 1 switch T1 and under load current iload=4A........................................................... 84 

Figure 4.12: Fault localization results using MPC control when the fault occurred at t=3s 

in cell 1 switch T2 and under load current iload=2A........................................................... 85 

Figure 4.13: Fault localization results using MPC control when the fault occurred at 

t=3.005s in cell 2 switch T2 and under load current iload=3A ............................................ 86 



  
   

xi 
 

Figure 4.14: Fault localization results using voltage-balancing control when the fault 

occurred at t=1.01s in cell 5 switch T2 and under load current iload=150A ....................... 87 

Figure 4.15: Fault localization results using voltage-balancing control when the fault 

occurred at t=1.015s in cell 6 switch T2 and under load current iload=160A ..................... 88 

Figure 4.16: Fault localization results using voltage-balancing control when the fault 

occurred at t=1.015s in cell 6 switch T2 and under load current iload=150A ..................... 90 

Figure 4.17: Fault localization results using MPC control when the fault occurred at 

t=3.02s in cell 4 switch T2 and under load current iload=2A .............................................. 92 

Figure 4.18: Fault localization results using MPC control when the fault occurred at 

t=3.02s in cell 3 switch T1 and under load current iload=2A .............................................. 93 

Figure 4.19: Fault localization results using voltage-balancing control when the fault 

occurred at t=1.02s in cell 8 switch T2 and under load current iload=160A ....................... 95 

Figure 4.20: Fault localization results using voltage-balancing control when the fault 

occurred at t=1.005s in cell 4 switch T1 and under load current iload=150A ..................... 96 

Figure 4.21: Fault localization results using voltage-balancing control when the fault 

occurred at t=1.05s in cell 5 switch T1 and under load current iload=160A ....................... 97 

 



  
   

1 
 

CHAPTER 1: INTRODUCTION 

1.1 Background 

“Everything that has a beginning has an end.” A very famous quote, which implies 

that all systems can malfunction and fail. A ‘fault’ is an error or a problem that drives the 

system outside its intended work boundaries. This problem can lead to total failure or 

unwanted behavior of the system so that an immediate intervention should be compelled 

to restore the normal working conditions. Faults can affect the actuators, sensors or the 

plant component, and the severity of the fault impact ranges from partial failure to total 

failure of the system. Failures are inevitable if the system in hand is real and under real 

environment stress. As simplicity is vital for reliability, the more complex the system is, 

the more reliability flags are raised. However, due to the increasing needs of our daily life, 

most of the technological systems nowadays are complex. This increasing need to render 

the systems more complex urged the scientific and industrial worlds to study faults and 

implement techniques that would prevent them, or at least to remediate their effect and 

rejoin the normal behavior of the system at the earliest, to avoid economic losses, 

environmental impacts, and even life hazards. Subsequently, this has led to the appearance 

of the fault detection and isolation area that is a subfield of control engineering and is 

concerned with the monitoring of the system behavior to detect abnormalities and identify 

their locations. Among the variety of applications of fault detection and diagnosis, 

electrical systems can be considered as one of the most interesting areas of application 

since electrical systems can be critical and their failures can cause devastating impacts.  
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Power electronic devices are considered as the backbone of several electrical 

applications. However, despite their great development since their invention in 1957 and 

the amount of research done to enhance their performance, they still present many 

reliability challenges. Due to their advances, power electronic applications have been 

integrated into a great variety of fields such as renewable energy, generation, transmission 

and distribution of power energy and even automotive and aerospace industries that 

brought more strict reliability constraints. The vulnerability of power electronic devices 

was tested in several field studies. For instance, a study conducted on photovoltaic 

generating plant revealed that inverters were responsible for 37% of the unscheduled 

maintenance events and had a share of 59% of the unscheduled maintenance costs [1]. 

Another study that used the reports from multiple manufacturers to identify the failure 

sources in wind turbines showed that the converters were responsible for 13% of overall 

failure rate and had a share of 18.4% of overall downtime[2]. Examples of the impact of 

power electronic failures can also be found in [3],[4],[5]. Therefore, even if the initial cost 

of the power electronic devices may not be high, the impact of their failure on the system 

and downtimes that they engender can increase the overall cost drastically. According to 

Wolfgang E.’s work that was cited in [6], there are two major failure causes for power 

electronic systems depending on application and design; the capacitors and the 

semiconductors with failure risk shares of 30% and 21% respectively. A questionnaire was 

carried out about the industrial power electronic converters reliability and concluded that 

the most fragile components are the power switches [7]. These studies pinpoint the 

importance of studying the failure of the power electronic devices and more specifically 

the failures in power switches. In this regard, the lifetime of a particular device can be 
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divided using the bathtub curve into three regions where the first period is characterized by 

high fault probability that decreases overtime to reach the second period, which represents 

the useful life of the device with constant failure risk that is mostly related to random 

failures and working conditions. Finally, during the last period, the device is subjected to 

wear out and aging factors, which increase the failure probability. The useful lifetime of 

the device can be reduced according to its working and overstress conditions. Stresses on 

electronic devices can be classified into four major sources, namely, steady state and 

cyclical temperature with a share of 55%, vibration and shock with a share of 20%, 

humidity and moisture with a share of 19% and contaminants & dust with a share of 6% 

[8]. Before proceeding to fault detection techniques, it is worth mentioning the types of 

faults and the mechanism of failures in power switches. To begin with, faults in general 

can be manifested in different forms; for instance they can be abrupt, incipient or 

intermittent [9]. The abrupt failure is a sudden failure that occurs and does not clear without 

outside interference whilst the incipient failure continues to build up over time and finally 

the intermittent failure occurs at irregular intervals. The failure mechanism differs between 

different power switches based on their physical properties. However, since the Insulated-

Gate Bipolar Transistor (IGBT) is the most used power switch in industrial applications[8], 

many researchers focused on the failure types and mechanisms of this particular model 

[10]–[15]. In fact, the power switch faults can be classified into two main categories, 

namely, the open circuit and the short circuit faults. Each of these two failures has its own 

failure mechanism and impact to other power devices and to the system in general. The 

root cause of failures in IGBTs can be a wear out or a catastrophic failure. Wear out is due 

to aging and degradation of the device over time. It includes bond wire lift-off, solder joint 
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fatigue, bond wire heel cracking, aluminum reconstruction, substrate cracking, 

interconnection corrosion, etc. All these factors are related to the durability of the device. 

The condition monitoring can be effective to identify abnormalities in the behavior of the 

system, and scheduled maintenance can help in preventing breakdowns and failures 

because of wear out. The catastrophic failures, on the other hand, happen suddenly and are 

mostly unpredictable. They can engender serious damage to the converter and to the overall 

system. According to [15], two failure mechanisms are related to open circuit failures, 

namely, the bond wire lift-off or rupture, which can be caused by a very high current, and 

external reasons such as disconnection caused by vibrations. Besides the absence of gate 

drive signals can lead to open circuit behavior in the system. As per the short circuit 

failures, four reasons can be accounted responsible based on the state of the IGBT, namely, 

the energy shocks caused by high power dissipation in short time during the on-state, the 

latch-up failures in which the collector current cannot be controlled by the gate signal, the 

second breakdown, which is caused by high current stress that stimulates local thermal 

breakdown, and the high voltage breakdown caused by the spikes of the voltage during 

turn-off. It should be mentioned that open circuit faults do not represent an immediate 

threat to the converter whereas the short circuit faults launch a chain reaction that can end 

up by causing the total failure of the system and fatal failures of other components [16]. 

Experts have always seen that dealing with short circuit faults is more challenging, since 

the IGBT cannot withstand the energy passing through for more than 10𝜇𝑠, consequently 

limiting the software based methods that may detect the fault but cannot take actions 

towards its removal within the time limit. Therefore, hardware techniques are more suitable 
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for detection and isolation of a short circuit fault. On the other hand, the open circuit fault, 

which imposes less restraint conditions, can be dealt with using algorithm-based methods 

without requiring additional hardware implementation. Open circuit faults induce a DC 

current offset that create uneven stresses on the switches, thus affecting the performance 

of the system and may generate more faults.  

1.2 Problem Statement 

Since the power switches are always susceptible to fail because of wear out and 

random faults, under given working conditions, fault detection and localization are crucial 

for preserving the integrity of the system. The choice of the optimal solution for fault 

detection and localization depends on the complexity and efficiency of the detection 

technique, its speed, and cost-effectiveness. In this regard, hardware solutions can be rolled 

out since the additional components can increase both the complexity and the cost of the 

converter. On the other hand, dealing with short circuit faults require infinitely fast 

detection and localization, which may not be an option for the software algorithms and, 

consequently, the focus of this research is limited to the detection and localization of open 

circuit faults in MMC’s power switches. The development of effective software-based fault 

detection and localization technique for the MMC presents considerable challenges given 

the redundancy in the structure and behavior of the MMC components. 

  



  
   

6 
 

1.3 Thesis Objectives 

The objectives of the present thesis are to explore the potential of two multivariate 

statistical techniques, namely, the Principal Component Analysis and the Kernel Principal 

Component Analysis in detecting and localizing the power switches’ open circuit faults in 

Modular Multilevel Converter. The ability of fault detection of each technique is 

investigated along with their ability to localize the faulty cells and the overall detection 

time. Besides, the thesis investigates the fault localization in terms of effectiveness, 

localization time and complexity of implementation under various conditions using 

different approaches. 

1.4 Thesis Organization 

  The remainder of the thesis is structured as follows: Chapter II is dedicated to the 

literature review. The Modular Multilevel Converter is introduced, including its principle, 

design, and control. Also, efforts done to perform the fault detection and localization (FDL) 

in MMC are provided. Chapter III is dedicated to providing the theoretical background and 

modeling of the converter in hand, two commonly used control designs, and different fault 

detection techniques used in this thesis. Chapter VI is dedicated to the simulation results 

and comparison between the different techniques under the adopted control procedures. 

Chapter V presents the conclusions and future work. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Modular Multilevel Converter  

2.1.1 Topology of the Modular Multilevel Converter 

Voltage source converters (VSC) are known mostly for their fast dynamic response 

and possibility to generate reactive power in both capacitive and inductive directions, 

which make them a preferable choice for medium and high voltage applications. VSCs are 

divided into two categories; a conventional two-level converter and multilevel converters. 

To achieve the voltage requirements using a two-level converter configuration and due to 

the physical limitations of the power electronic devices, the switches have to be connected 

in series. The issue that arises in this case is that the voltage change dv/dt is high when 

used in medium to high voltage applications, which necessitate the integration of 

interfacing transformers. Besides, the output voltage waveform contains more harmonics 

when compared to the multilevel converter case. In addition, switching losses and voltage 

stress on each switch is higher in the case of the two-level converters [17]. Due to the 

aforementioned reasons, the trend to use multilevel converters in industrial applications is 

rising rapidly. Along with the industrial interest, multilevel converters witnessed an 

increasing interest in the scientific world. One of which, the modular multilevel converter 

that is considered the state of the art in the multilevel converters family and which has 

found his way to industrial applications although  its late discovery in 2001 [18].The 

converter structure provides valuable features that allow diversity in usage and 

opportunities for improvement. Although its needs in terms of switching devices and 

capacitors are higher than other multilevel configurations such as Flying capacitor and 
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cascaded H-bridge converters, it can offer higher performance as the number of levels 

increases [19]. Advantages of the modular multilevel converter can be depicted as follows 

[20],[21]: 

 Modular structure 

 Ability to extend the number of modules to meet power and voltage requirements 

 Low voltage stress on switching devices 

 Small output filters and interface transformers 

 Low total harmonic distortion 

 High efficiency 

 Absence of dc-link capacitors 

 Transformer-less or standard transformer for grid connection  

On the other hand, the main disadvantage related to the MMC topology is the higher 

number of power semiconductors and gate units and high circulating current, which 

increase the probability of failures. 

The increase of the industrial sector interest can be manifested in the increasing 

integration of the MMC in high power applications such as the Trans Bay Cable project 

[22] and the fact that MMC is becoming one of the compelling candidates for High Voltage 

DC (HVDC) transmission projects [18]. The high features offered by this converter allow 

its usage in other application fields such as variable speed drives[23], electric ships [24], 

railway power supplies [25], [26], and so on. Besides, the German Transmission System 

operators showed their interest to use the MMC topology for their new HVDC power 

transmission projects.   
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The topology of the MMC is as depicted in Figure 2.1. For a three-phase topology, 

the converter comprises three legs, each containing two arms that are connected through 

two identical inductors, and each arm contains N submodules. The most common topology 

used in the submodules is the half bridge, also called the chopper-cell, which contains a 

capacitor and two switching devices, generally IGBTs, that are controlled by two 

complementary signals. The switches are unidirectional with antiparallel diodes. 

Accordingly, each IGBT can be either inserted or bypassed, which leads to two possible 

voltage output levels in the submodule;  Vout can be equal to the capacitor voltage (+Vc) or 

zero voltage depending on the switch states [27]. Hence, its simple structure renders the 

design and control simpler, and results in low power losses and high efficiency. Other 

configurations of the submodules can be applied to the MMC topology, such as the full 

bridge, which require twice the number of power switches to achieve the same voltage 

rating. However, its control and design are similar to the half bridge. Besides, it requires 

only the half of total dc-bus voltage to generate the same AC output voltage and has lower 

capacitor voltage ripples. Additional configurations of the submodules are the clamp 

double, the five-level cross-connected submodules, the three-level flying capacitor and the 

three-level neutral-point clamped. More details of the different configurations and their 

specifications can be found in [21],[27],[28]. The purpose of deploying the arm inductors 

is to protect the converter during short circuit faults. Also, they damp the rising currents in 

case of asymmetric operations. 
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Figure 2.1: Three phase Modular Multilevel Converter. 

 

 

In the current thesis, the conventional half bridge submodule is used in the study and 

simulations. The output voltage of the converter is synthesized through the number of 

inserted and bypassed of the series connected submodules in the upper and lower arms.   
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The submodules have three operating modes as shown in Figure 2.2: 

 Blocking or energizing mode: where both switches are turned off, and it is used 

to charge the capacitors depending on the direction of the current. This mode 

cannot exist under normal operating conditions since, as mentioned before, the 

two switches are inserted complimentarily. 

 Put-in or capacitor ON mode: where the upper switch is turned ON, and the lower 

switch is turned OFF. In this case, the IGBT conducts when the current flows out 

of the submodule and the capacitor discharges and when the current flows in the 

reverse direction the antiparallel diode conducts and the capacitor charges. The 

output of the cell is equal to Vc.   

 Put-out or capacitor OFF mode: where the upper switch is turned OFF, and the 

lower switch is turned ON. In this case, The IGBT conducts when the current 

flows inside the cell, and the antiparallel diode conducts when the current flows 

in the reverse direction, and within both cases, the capacitor maintains its previous 

state. The output of the cell is equal to zero. 
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Figure 2.2: Put-in, Put-out operation modes of the submodules 

 

 

2.1.2 Design of the Modular Multilevel Converter 

The capacitors and the inductors should satisfy specific criteria to achieve the optimal 

operational performance of the converter [29]. The capacitance of the submodule capacitor 

is selected such that an acceptable capacitor voltage ripples are obtained. As previously 

mentioned, the capacitors are charged and discharged based on the switching patterns and 

direction of the arm currents. The circulating currents that circulate the arms yield voltage 

ripples in the capacitor voltage, which cannot be suppressed however they can be reduced 

by proper choice of the capacitance.   
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The relationship between the capacitance and the voltage ripples is depicted in 

Equation (2.1) as follows: 

 𝐶 =
𝑆

3𝑁𝑚𝐸𝑎𝑣𝑔Δ𝑒𝑐𝜔𝑐
(1 − (

𝑚𝑐𝑜𝑠𝜙

2
)
2

)

3/2

 (2.1) 

Where S is the apparent power, N is the number of submodules per arm, m is the modulation 

index, Eavg is the average capacitor voltage, cosɸ is the power factor and 𝜔𝑐 is the control 

frequency. 

 The arm inductor is crucial for filtering the output current ripples and isolate the 

two arms of the leg. The inductance of the arm inductors should satisfy the relationship 

depicted in Equation (2.2).  

 𝐿𝑎𝐶 >
5𝑁

48𝜔2
 (2.2) 

2.1.3 Control of the Modular Multilevel Converter 

Several techniques were proposed in the literature to control the MMC [29]–[42] 

that can be broadly classified into Pulse Width Modulated (PWM) techniques and sorting 

techniques. The control strategy is a crucial task since, if not appropriately set, the 

imbalance between the arms can lead to severe results. Therefore, the goal of the control 

in the MMC is to assure the balancing of the capacitor voltages, reduce the circulating 

current along with assuring a proper output voltage and current waveforms. 

PWM controllers are widely accepted in the power converters control. The output 

signal is generated through controlling the duty cycle of the power switches. A multitude 

of schemes exists in the literature of the PWM techniques [43]–[48], which are designed 

to reduce the harmonic distortion, current ripples and the power losses along with 
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maintaining an acceptable capacitor voltage levels. They can be categorized into high 

switching frequency, fundamental switching frequency, and low switching frequency 

modulation schemes. The most used PWM schemes are the multicarrier modulation 

schemes, which are divided into two categories, namely, the phase-shifted carrier PWM 

and the level-shifted carrier PWM. A large variety of techniques are using either voltage 

oriented control, which is generally accepted in HVDC applications [49], or current 

oriented control such as the case of STATCOM to meet the reactive power requirements 

[50]. Other techniques are also used to control the MMC including the submodule capacitor 

voltage control, circulating current control and the model predictive control that have been 

extensively elaborated in the literature. Two control techniques are used in this thesis; a 

PWM-based voltage-balancing technique and a predictive control based technique. The 

usage of two different control schemes along with different converter size gives an insight 

into the robustness of each technique and the complexity of the fault detection in each case. 

2.2 Fault Detection and Localization in MMC 

The MMC specific structure allows the use of commercial switches and capacitors 

[19], which reduce the cost of the converter. However, the need for having a higher number 

of levels to satisfy the power and voltage requirements increases the number of cells, and 

consequently, the complexity of the converter and the control design, and the risk of 

malfunctions and failures.  

Power switches, as one of the most vulnerable components in MMC, are subject to 

different kind of deficiencies and faults, which can severely affect the system and lead to 

unstable working conditions and shutdowns [15].   
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Failures in power switches can occur in three forms: miscommunication between 

gate drives and switches, short circuit, and open circuit faults [16]. The loss of connection 

between gate drives and power switches can be seen as open circuit faults. To isolate them, 

smart gate drives capable of detecting the connection status have been widely used. On the 

other hand, short circuit faults are destructive and have to be detected and dealt with in a 

short time [51] since it leads to rapid discharge of the capacitor associated with the faulty 

switch, and thus the two complementary devices cannot be protected against the shoot-

through faults [52]. Similar to the gate drives misfiring, the most used techniques to address 

the short circuit faults is through hardware implementation. Nevertheless, some efforts 

were made in the detection of short circuit faults using software techniques [53],[54]. Open 

circuit faults occur when the power switch fails to change its state to be ON and acts as an 

open circuit. As a direct consequence, the corresponding capacitor voltage keeps 

increasing, which creates an unbalance between the upper and lower arm capacitor 

voltages, higher circulating current, and distorted output voltage. If the detection technique 

is fast enough, the detection and isolation of such faults can be assured. 

The detection of faults and their localization can be addressed by either hardware 

[55]-[56] or software implementations [42], [57]–[72]. In the hardware implementation, 

additional hardware components, such as redundant switches and sensors, are required to 

identify and mitigate the malfunctioning devices. Whereas software-based techniques can 

be broadly divided into two groups, namely, the model-based techniques [54], [56], [61]–

[64], [66], [67], [69], [73], [74] in which the mathematical model of the system is used, 

and data-driven techniques [53] that uses the general behavior of the system.  
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An extensive focus was given to the sliding mode observers (SMO) [64], [65], [69], 

[74]. In [66], estimated variables using Kalman filter are compared to the measured states 

to perform the fault detection. In [62] an extended state observer to track the arm current 

is used as fault detection indicator. In [72], a change in the measurement from the capacitor 

voltage to the cell output voltage along with the usage of an XOR unit is deployed to detect 

single and multiple open circuit and short circuit faults. In [53], a neural network technique 

is used for fault detection in a seven-level MMC. A voltage based detection approach to 

detect and localize single open circuit fault in MMC was introduced in [75], where a 

threshold defines the absolute error margin between the measured and the predicted values 

of the sum and difference between the upper and lower arm voltages, beyond which the 

system can be considered faulty if the fault persists for more than 0.5ms. Based on the signs 

of the normalized sum and difference, the faulty switch position can be narrowed to one 

quarter of the possible locations. The set of possible fault sites is then constructed and a 

counter that adds weight to the combination that results in estimation error and subtract it 

from the combination that results in low error is then used to identify the exact location of 

the faulty switch that eventually ends up by having the largest weight. It has been reported 

that this technique is able to isolate, on average, the faulty cell within 4.58 periods when 

the number of submodules is 10 and in 7.96 periods when 100 submodules are considered. 

This technique, however, can only detect one fault at a time and is only applicable to model 

predictive controls. Authors in [76] Suggest that correlating the output voltage level with 

the modulation index gives an insight of the faulty states of the system. Besides, the usage 

of additional submodules, such that the redundant cells are included in the control scheme 

and the working cells are grouped in rotating sequences, should eventually isolate the cell 
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with the faulty switch by finding the combination that correspond to the normal working 

conditions of the MMC. An Adaptive Linear Neuron (ADALINE) algorithm is introduced 

in [77]. It correlates the switching states by a linear combination with some weighting 

factor, which is updated with the Widrow-Hoff delta rule adaptation algorithm. A faulty 

state is detected if the per-unit voltage gets below 85%. The rate of change of the difference 

between the outputs estimated by the ADALINE and the Recursive Least Squares (RLS) 

algorithm is then compared to a predefined threshold and allows the fault localization. The 

algorithm is capable of detecting multiple faults. Another multiple fault detection method 

is used in [78], where a modification in the location of the sensors monitoring the capacitor 

voltages is proposed in order to measure the submodule terminals. The fault detection and 

localization is based on a combination between the sampling instance, arm current direction 

and the terminal voltage. Besides, the monitoring is local for each cell, and is done 

simultaneously in real time which decreases significantly the detection time. In [79], a 

multi-step prediction method is used to elaborate an improved circulating current 

prediction algorithm that is useful in eliminating the uncertainties and disturbances that can 

occur to the measurements. This current estimate is then compared to the measured value 

and a threshold is used to identify the normal operation conditions. The localization is 

performed using a threshold on the capacitor voltages. 
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CHAPTER 3: MMC CONTROL  

AND PROPOSED FAULT DETECTION AND LOCALIZATION 

METHODOLOGIES 

3.1 Introduction 

A large variety of control techniques has been proposed in the literature to control 

the MMC. As the primary concern of this thesis is to provide a fault detection and 

localization technique to monitor the open circuit faults in the power switches, the role of 

the control in the process of the fault detection and localization should be investigated since 

the stiffness of a control algorithm may interfere with the process of fault detection and 

localization. To this end, two popular control techniques that belong to two different 

control families have been adopted; the Model Predictive Control (MPC), which is a 

sorting technique that is set to optimize a cost function by inserting and bypassing the 

submodules of the MMC, and consequently gives the optimum combination that allows 

best tracking and balancing of the system. The second technique is based on the PWM-

based voltage-balancing control, which, in contrast to the current reference in the sorting 

technique, has a voltage reference and uses a phase shifted carrier to generate the switching 

signals. Detailed descriptions of the adopted approaches are given in the following 

sections.  
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3.2 Mathematical Model of the MMC 

Prior to the control design and formulation of fault detection procedures, the 

elaboration of the mathematical model of the system is crucial and to do so a single phase 

topology is used.  

Figure 3.1 shows a four half bridge cells, single phase MMC, where the two switches 

of each cell alter their state complementarily, the arms are equipped with inductors, and 

the load is an RL load. 

The relationship between different parameters of the converter can be elaborated using 

Kirchhoff’s law as stated by Equations (3.1)-(3.5), where  

 E1, E2, E3, E4 represent the capacitor voltages of the converter 

 𝑈1, 𝑈2, 𝑈3, 𝑈4, �̅�1, �̅�2, �̅�3, �̅�4  represent the switching states of the upper and lower 

switches of the cells, respectively.  

 𝑖𝑢𝑝, 𝑖𝑑𝑜𝑤𝑛 represent the upper and lower arms currents, respectively.  

 𝑉𝑑𝑐 is the dc source. 

 𝑖𝐿 , 𝑖𝑑𝑖𝑓𝑓 are the load and circulating currents, respectively. 

 L, R are the inductance and the resistance of the arm inductor 

 LL, RL are the inductance and resistance of the load 

 C is the cells’ capacitor 
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𝑉𝑑𝑐 = 𝑈1𝐸1 + 𝑈2𝐸2 + 𝐿
𝑑𝑖𝑢𝑝

𝑑𝑡
+ 𝑅𝑖𝑢𝑝 − 𝐿

𝑑𝑖𝑑𝑜𝑤𝑛
𝑑𝑡

− 𝑅𝑖𝑑𝑜𝑤𝑛 + 𝑈3𝐸3

+ 𝑈4𝐸4 

(3.1) 

1

2
𝑉𝑑𝑐 = 𝑈1𝐸1 + 𝑈2𝐸2 + 𝐿

𝑑𝑖𝑢𝑝

𝑑𝑡
+ 𝑅𝑖𝑢𝑝 + 𝐿𝐿

𝑑𝑖𝐿
𝑑𝑡
+ 𝑅𝐿𝑖𝐿 (3.2) 

1

2
𝑉𝑑𝑐 = 𝑈3𝐸3 + 𝑈4𝐸4 − 𝐿

𝑑𝑖𝑑𝑜𝑤𝑛
𝑑𝑡

− 𝑅𝑖𝑑𝑜𝑤𝑛 − 𝐿𝐿
𝑑𝑖𝐿
𝑑𝑡
− 𝑅𝐿𝑖𝐿 (3.3) 

𝑖𝑢𝑝 =
𝑖𝐿
2
+ 𝑖𝑑𝑖𝑓𝑓 , 𝑖𝑑𝑜𝑤𝑛 =

𝑖𝐿
2
− 𝑖𝑑𝑖𝑓𝑓 (3.4) 

𝑑𝐸1
𝑑𝑡

=
𝑈1
𝐶
(
𝑖𝐿
2
+ 𝑖𝑑𝑖𝑓𝑓) ,

𝑑𝐸2
𝑑𝑡

=
𝑈2
𝐶
(
𝑖𝐿
2
+ 𝑖𝑑𝑖𝑓𝑓) 

𝑑𝐸3
𝑑𝑡

=
𝑈3
𝐶
(−
𝑖𝐿
2
+ 𝑖𝑑𝑖𝑓𝑓) ,

𝑑𝐸4
𝑑𝑡

=
𝑈4
𝐶
(−
𝑖𝐿
2
+ 𝑖𝑑𝑖𝑓𝑓) 

 

 

(3.5) 

 

 

 

 

Figure 3.1: Topology of a four cells single phase MMC 
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The state space equation corresponding to the four cells MMC can be described by 

the following state-space equation (3.6) 

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑑𝑖𝑑𝑖𝑓𝑓

𝑑𝑡
𝑑𝐸1

𝑑𝑡
𝑑𝐸2

𝑑𝑡
𝑑𝐸3

𝑑𝑡
𝑑𝐸4

𝑑𝑡
𝑑𝑖𝑙𝑜𝑎𝑑
𝑑𝑡 ]

 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 −
𝑅

𝐿
−
𝑈1
2𝐿

−
𝑈2
2𝐿

−
𝑈3
2𝐿

−
𝑈4
2𝐿

0

𝑈1
𝐶

0 0 0 0
𝑈1
2𝐶

𝑈2
𝐶

0 0 0 0
𝑈2
2𝐶

𝑈3
𝐶

0 0 0 0 −
𝑈3
2𝐶

𝑈4
𝐶

0 0 0 0 −
𝑈4
2𝐶

0 −
𝑈1

𝐿 + 2𝐿𝐿
−

𝑈2
𝐿 + 2𝐿𝐿

𝑈3
𝐿 + 2𝐿𝐿

𝑈4
𝐿 + 2𝐿𝐿

−
𝑅 + 2𝑅𝐿
𝐿 + 2𝐿𝐿 ]

 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
𝑖𝑑𝑖𝑓𝑓
𝐸1
𝐸2
𝐸3
𝐸4
𝑖𝑙𝑜𝑎𝑑]

 
 
 
 
 

+

[
 
 
 
 
 
 
𝑉𝑑𝑐
2𝐿
0
0
0
0
0 ]
 
 
 
 
 
 

 (3.6) 

3.3 Model Predictive Control   

The ultimate goal of MMC control is to track an output reference signal. However, 

to do so, other challenges such as maintaining the capacitor voltages at a predefined level 

(
𝑉𝑑𝑐

𝑁
) and minimizing the circulating current should also be addressed. The circulating 

current is the current that flows between the converter and the dc source. Consequently, it 

does not reach the load. This current is caused by the unbalance between the two arm 

currents and, it affects the ripples in the capacitor voltages alongside the ratings of the used 

components.  

Therefore, the cost function to be optimized by the predictive control should take 

these constraints into account to obtain the best switching pattern. To alleviate the effect 

the large variance differences between different parameters, which would bias the output 

of the cost function, the measured data should be normalized.  
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Besides, additional weights are added to some parameters in order to achieve better 

tracking and stability [38].  Hence, the cost function to be optimized is as described in 

Equation (3.7); 

 
min√(

𝑖𝑑𝑖𝑓𝑓𝑟𝑒𝑓 − 𝑖𝑑𝑖𝑓𝑓

𝜆Δ𝑖𝑑𝑖𝑓𝑓
)

2

+ (
𝐸𝑘𝑟𝑒𝑓 − 𝐸𝑘

Δ𝐸𝑘
)
2

+ (
𝑖𝐿𝑟𝑒𝑓 − 𝑖𝐿

𝛽Δ𝑖𝐿
)
2

,

𝑘 = 1…4 

(3.7) 

Where  Δ𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = |max(𝑝𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑘 + 1)) − min (𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑘 + 1))|,

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = 𝑖𝑑𝑖𝑓𝑓 , 𝐸𝑘, 𝑖𝐿 , 𝑖𝑑𝑖𝑓𝑓𝑟𝑒𝑓 = 0, 𝐸𝑘 =
𝑉𝑑𝑐

𝑁
, 𝜆, 𝛽: 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 

The algorithm of the MPC control is illustrated in Figure 3.2 and is described as follows; 

 Measure the state variables described by the state space equation (3.6), which 

includes the capacitor voltages 𝐸1…𝐸𝑘, the circulating current 𝑖𝑑𝑖𝑓𝑓 and the load 

current 𝑖𝐿. 

 Calculate the future states using all possible switching patterns and corresponding 

cost functions such that the update of the possible state is calculated in Equation 

(3.8) 

 𝑋𝑖(𝑘 + 1) = 𝑋(𝑘) + �̇�𝑖(𝑘)𝑇𝑠 (3.8) 

where i=1…number of possible switching pattern (sequences), Ts is the sampling 

period, and X(k) represents the vector of the measured variables. 

 Perform the optimization process to choose the switching pattern that corresponds 

to the minimum error between the references and the predictions. 
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Figure 3.2: Flowchart of the Predictive control algorithm 
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3.4 PWM-Based Voltage-Balancing Control  

Among the control goals are keeping the stored energy inside the cell capacitors at a 

certain level, or equivalently, the average capacitor voltage should be kept at the desired 

reference is one of the control goals. Besides, the voltage level for each cell capacitor 

should be kept around a reference value. To control the MMC using the PWM technique, 

a voltage-balancing approach is considered [33]. The selection of the switching sequence 

is based on the phase-shifted PWM, and the control design is based on two loops in which 

an averaging control and a balancing control are considered. Open loop control is used to 

track the AC voltage reference. 

3.4.1 Averaging Control 

In the averaging control, two PI controllers are used to control the average capacitor 

voltages and the circulating current as shown in Figure 3.3. The average capacitor voltage 

is given by Equation (3.9) 

 𝐸𝑎𝑣𝑔 =
1

𝑁
∑𝐸𝑘

𝑁

𝑘=1

 (3.9) 

The circulating current reference signal is obtained using the first PI command, and it is 

given by Equation (3.10) 

 𝑖𝑑𝑖𝑓𝑓𝑟𝑒𝑓 = 𝐾1(𝐸𝑟𝑒𝑓 − 𝐸𝑎𝑣𝑔) + 𝐾2∫(𝐸𝑟𝑒𝑓 − 𝐸𝑎𝑣𝑔)𝑑𝑡 (3.10) 
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The voltage command reference is given using the second PI output and it is given by 

Equation (3.11) 

 𝑉𝑎𝑣𝑔𝑟𝑒𝑓 = 𝐾3(𝑖𝑑𝑖𝑓𝑓 − 𝑖𝑑𝑖𝑓𝑓𝑟𝑒𝑓) + 𝐾4∫(𝑖𝑑𝑖𝑓𝑓 − 𝑖𝑑𝑖𝑓𝑓𝑟𝑒𝑓)𝑑𝑡 (3.11) 

The controller forces the circulating current to follow its reference, and ultimately the 

average control approaches its reference signal when the steady state is reached. 

 

 

 

 

Figure 3.3: Block diagram of the averaging control 

 

 

3.4.2 Balancing Control 

The role of the balancing control is to bring the individual cells’ capacitor voltages 

to the desired level. The sign of the difference between the capacitor voltage reference and 

the actual capacitor voltage of each cell gives an insight about whether or not a positive 

power should be taken from the dc source and injected in the cells. However, when the arm 

current changes its direction, the corresponding error should also change its sign to keep a 
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resulting positive power that will be injected into the cells. Therefore, the controller should 

consider the current direction to perform the balancing control.  

Figure 3.4 illustrates the balancing control block diagram. The output of the balancing 

control is represented as Equation (3.12) 

 𝑉𝑏𝑎𝑙𝑟𝑒𝑓 = {
𝐾5(𝐸𝑟𝑒𝑓 − 𝐸𝑘)           𝑖𝑢𝑝, 𝑖𝑑𝑜𝑤𝑛 > 0

−𝐾5(𝐸𝑟𝑒𝑓 − 𝐸𝑘)       𝑖𝑢𝑝, 𝑖𝑑𝑜𝑤𝑛 < 0
 (3.12) 

 

 

 

 

Figure 3.4: Block diagram of the balancing control 

 

 

For each cell, the voltage command resultant from the two control loops is added and 

compared with the output voltage reference signal (the upper arm is compared with the 

reference signal over the number of cells per arm (
𝑉𝑜𝑢𝑡𝑟𝑒𝑓

𝑁
) and the lower arm is compared 

with the opposite of the reference signal over the number of cells per arm (−
𝑉𝑜𝑢𝑡𝑟𝑒𝑓

𝑁
)) . 

Besides, a feedforward of the dc power supply (
𝐸

2𝑁
) is also added in order to compensate 

the dc disturbances as shown in Figure 3.5. 
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The output of the upper and lower arm commands are represented as Equations (3.13) 

and (3.14): 

 𝑉𝑢𝑝 = 𝑉𝑎𝑣𝑔𝑟𝑒𝑓 + 𝑉𝑏𝑎𝑙𝑟𝑒𝑓 −
𝑉𝑜𝑢𝑡𝑟𝑒𝑓

𝑁
+

𝐸

2𝑁
  (upper arm cells) (3.13) 

 𝑉𝑑𝑜𝑤𝑛 = 𝑉𝑎𝑣𝑔𝑟𝑒𝑓 + 𝑉𝑏𝑎𝑙𝑟𝑒𝑓 +
𝑉𝑜𝑢𝑡𝑟𝑒𝑓

𝑁
+

𝐸

2𝑁
  (lower arm cells) (3.14) 

Finally, to get the appropriate switching pattern, the resultant voltage commands are 

then normalized by each capacitor voltage Ek and compared to N triangular phase-shifted 

carriers with the same frequency and having a unity maximum and a minimum of zero.  

 

 

 

 

Figure 3.5: Output commands for (a) upper arm and (b) lower arm 

 

 

  

(a) 

(b) 
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3.5 Fault Formulation in MMC 

To understand the normal behavior and faulty states of the MMC, an in-depth look at 

the effect of open circuit faults on the system dynamics is needed. The normal operation 

conditions, as depicted in Table 3.1 [80], states that the capacitor is charged when the upper 

switch T1 of the submodule is inserted, and the arm current is flowing outward the cell 

(from the negative side to the positive side of the cell capacitor). Similarly, the capacitor is 

discharged when the upper switch T1 of the submodule is inserted, and the arm current 

flows inward. In the case, the lower switch of the submodule is inserted the cell is bypassed, 

and the capacitor keeps its previous status regardless of the arm’s current direction. When 

a single open circuit fault surges, two fault scenarios are considered. Namely, the faulty 

power switch is located either in the upper side of the submodule or the lower side. In the 

case of upper switch T1 open circuit fault, the cell capacitor keeps charging without any 

possibility of discharge since charging procedure occurs when the current is flowing 

outwards through the freewheel diode, that is supposed intact and still working correctly, 

while the open circuit fault prevents the capacitor from discharging. Besides, the 

submodule output voltage is equal to the capacitor voltage only when the switch T1 is ON, 

and the current is flowing inwards meaning that the capacitor voltage keeps increasing and 

subsequently each time this condition occurs the dynamic of the whole system is affected. 

In contrast, in case of lower switch T2 open circuit fault, the cell capacitor keeps charging 

regardless of the gating signal when the current is positive (the current is directed towards 

the submodule), and it works as expected when the current is negative. Similarly, the 

resultant behavior, in this case, forces the capacitor voltage to keep increasing since the 
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charging period is higher than the discharging period. Besides, the submodule output is 

equal to the capacitor voltage in three out of four cases which results in disrupting the 

normal operation of the converter. 

To further study the effect of the fault in the dynamics of the system, the state space 

equation derived earlier is rewritten and the analysis of fault impact is performed on a four 

cell MMC. 

In the normal working conditions, the state space equation can be formulated using 

Kirchhoff’s laws. For a four-cell system in normal conditions, the state space equation is 

as depicted in Equation (3.15).  

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑑𝑖𝑑𝑖𝑓𝑓

𝑑𝑡
𝑑𝐸1

𝑑𝑡
𝑑𝐸2

𝑑𝑡
𝑑𝐸3

𝑑𝑡
𝑑𝐸4

𝑑𝑡
𝑑𝑖𝑙𝑜𝑎𝑑
𝑑𝑡 ]

 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 −
𝑅

𝐿
−
𝑈1
2𝐿

−
𝑈2
2𝐿

−
𝑈3
2𝐿

−
𝑈4
2𝐿

0

𝑈1
𝐶

0 0 0 0
𝑈1
2𝐶

𝑈2
𝐶

0 0 0 0
𝑈2
2𝐶

𝑈3
𝐶

0 0 0 0 −
𝑈3
2𝐶

𝑈4
𝐶

0 0 0 0 −
𝑈4
2𝐶

0 −
𝑈1

𝐿 + 2𝐿𝐿
−

𝑈2
𝐿 + 2𝐿𝐿

𝑈3
𝐿 + 2𝐿𝐿

𝑈4
𝐿 + 2𝐿𝐿

−
𝑅 + 2𝑅𝐿
𝐿 + 2𝐿𝐿 ]

 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
𝑖𝑑𝑖𝑓𝑓
𝐸1
𝐸2
𝐸3
𝐸4
𝑖𝑙𝑜𝑎𝑑]

 
 
 
 
 

+

[
 
 
 
 
 
 
𝑉𝑑𝑐
2𝐿
0
0
0
0
0 ]
 
 
 
 
 
 

 (3.15) 

The equations that lead to the aforementioned state space are derived supposing that 

in the typical case the output voltage of the cell is always equal to 𝑈𝑘𝐸𝑘 where 𝑈𝑘 is the 

gate signal and it is equal to 1 when the upper switch of the cell is inserted and the lower 

switch is bypassed and equal to 0 in the inverse situation. 𝐸𝑘 is the voltage measured across 

the corresponding capacitor 𝐶𝑘. The normal working conditions of a power switch is 

depicted in Figure 2.2 where the cell’s output voltage is a function of the switch state and 

the crossing current direction. As shown in the Table 3.1 the cell’s output voltage is equal 

to the product of the switch input signal 𝑈𝑘 by the corresponding capacitor voltage. 
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In case of open circuit fault occurrence, the total system is affected, and the output voltage 

of the affected cells is no longer equal to the value 𝑈𝑘𝐸𝑘.  

 

 

Table 3.1: Cell voltage output in normal and faulty cases 

 
Status Current 

Direction iarm 

Gate signal 

Uk 

Output 

voltage 

Capacitor status 

Normal case 

+ 

1 𝐸𝑘 Charge 

0 0 Bypass 

- 

1 𝐸𝑘 Discharge 

0 0 Bypass 

Open circuit in T1 

+ 

1 𝐸𝑘 Charge 

0 0 Bypass 

- 

1 0 Bypass 

0 0 Bypass 

Open circuit in T2 

+ 

1 𝐸𝑘 Charge 

0 𝐸𝑘 Charge 

- 

1 𝐸𝑘 Discharge 

0 0 Bypass 

 

 

It can be seen, from Table 3.1, that the output voltage of the affected cell has two 

different Equations (3.16) and (3.17) depending on the fault location. Therefore, we can 

formulate the output voltage of the capacitor voltages based on additional terms that take 

fault effects into consideration. 
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The output voltage of the affected cell can be elaborated as; 

 Case 1: The open circuit fault affects the upper switch T1 of a given cell k  

 
𝑠𝑖𝑔𝑛(𝑖𝑥) + 1

2
𝑈𝑘 given that 𝑖𝑥 ≠ 0 (3.16) 

 Case 2: The open circuit fault affects the upper switch T2 of a given cell k 

 
𝑠𝑖𝑔𝑛(𝑖𝑥) + 1

2
+ 𝑈𝑘 −

𝑠𝑖𝑔𝑛(𝑖𝑥) + 1

2
𝑈𝑘 given that 𝑖𝑥 ≠ 0 (3.17) 

where 𝑖𝑥 represent the upper arm current or the lower arm current of the corresponding 

faulty cell. 

A faulty condition state space equation is derived using the Kirchhoff’s laws by 

replacing the faulty cell’s voltage by the corresponding expression stated above. In the case 

of a four-cell converter, the number of possible single fault conditions is eight. Thus eight 

additional equations are added to the original state space equation. 

The formulation of a faulty switch T1 in the upper cell E1 is derived as follows:   

According to Kirchhoff’s laws, we can elaborate the Equations (3.18)-(3.22). 

𝑉𝑑𝑐 =
𝑠𝑖𝑔𝑛(𝑖𝑢𝑝) + 1

2
𝑈1𝐸1 + 𝑈2𝐸2 + 𝐿

𝜕𝑖𝑢𝑝

𝜕𝑡
+ 𝑅𝑖𝑢𝑝 − 𝐿

𝜕𝑖𝑑𝑜𝑤𝑛
𝜕𝑡

− 𝑅𝑖𝑑𝑜𝑤𝑛 + 𝑈3𝐸3 + 𝑈4𝐸4 

(3.18) 

𝑉𝑑𝑐
2
=
𝑠𝑖𝑔𝑛(𝑖𝑢𝑝) + 1

2
𝑈1𝐸1 + 𝑈2𝐸2 + 𝐿

𝜕𝑖𝑢𝑝

𝜕𝑡
+ 𝑅𝐼𝑢𝑝 + 𝐿𝐿

𝜕𝑖𝐿
𝜕𝑡
+ 𝑅𝐿𝑖𝐿 (3.19) 

𝑉𝑑𝑐
2
= 𝑈3𝐸3 + 𝑈4𝐸4 − 𝐿

𝜕𝑖𝑑𝑜𝑤𝑛
𝜕𝑡

− 𝑅𝑖𝑑𝑜𝑤𝑛 − 𝐿𝐿
𝜕𝑖𝐿
𝜕𝑡
− 𝑅𝐿𝑖𝐿 (3.20) 

𝑖𝑢𝑝 =
𝑖𝐿
2
+ 𝑖𝑑𝑖𝑓𝑓                    𝑖𝑑𝑜𝑤𝑛 =

𝑖𝐿
2
− 𝑖𝑑𝑖𝑓𝑓 (3.21) 
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𝜕𝐸1
𝜕𝑡

=
(𝑠𝑖𝑔𝑛(𝑖𝑢𝑝) + 1)

2𝐶
𝑈1 (

𝑖𝐿
2
+ 𝑖𝑑𝑖𝑓𝑓) ;

𝜕𝐸2
𝜕𝑡

=
𝑈2
𝐶
(
𝑖𝐿
2
+ 𝑖𝑑𝑖𝑓𝑓) ; 

𝜕𝐸3
𝜕𝑡

=
𝑈3
𝐶
(
−𝑖𝐿
2
+ 𝑖𝑑𝑖𝑓𝑓) ;

𝜕𝐸4
𝜕𝑡

=
𝑈4
𝐶
(
−𝑖𝐿
2
+ 𝑖𝑑𝑖𝑓𝑓) 

(3.22) 

Using the Equations (3.18)-(3.22) the relation between the state variables can be 

constructed in the same manner as the normal case as illustrated in Equations (3.23)-(3.28). 

(1)&(4) ⇒ 

𝑉𝑑𝑐 =
(𝑠𝑖𝑔𝑛(𝑖𝑢𝑝) + 1)

2
𝑈1𝐸1 + 𝑈2𝐸2 + 2𝐿

𝜕𝑖𝑑𝑖𝑓𝑓

𝜕𝑡
+ 2𝑅𝑖𝑑𝑖𝑓𝑓 +𝑈3𝐸3 + 𝑈4𝐸4 

(3.23) 

𝜕𝑖𝑑𝑖𝑓𝑓

𝜕𝑡
=
𝑉𝑑𝑐
2𝐿
−
𝑅

𝐿
𝑖𝑑𝑖𝑓𝑓 −

𝑈1
4𝐿
(𝑠𝑖𝑔𝑛(𝑖𝑢𝑝) + 1)𝐸1 −

𝑈2
2𝐿
𝐸2 −

𝑈3
2𝐿
𝐸3 −

𝑈4
2𝐿
𝐸4  (3.24) 

(2) − (3) ⇒ 

0 =
(𝑠𝑖𝑔𝑛(𝑖𝑢𝑝) + 1)

2
𝑈1𝐸1 + 𝑈2𝐸2 + 2𝐿

𝜕𝑖𝑑𝑖𝑓𝑓

𝜕𝑡
+ 2𝑅𝑖𝑑𝑖𝑓𝑓 − 𝑈3𝐸3 − 𝑈4𝐸4

+ 2𝐿𝐿
𝜕𝑖𝐿
𝜕𝑡
+ 2𝑅𝐿𝑖𝐿 

(3.25) 

(2)&(4) ⇒ 

𝑉𝑑𝑐
2
=
(𝑠𝑖𝑔𝑛(𝑖𝑢𝑝) + 1)

2
𝑈1𝐸1 + 𝑈2𝐸2 +

𝐿

2

𝜕𝑖𝐿
𝜕𝑡
+ 𝐿

𝜕𝑖𝑑𝑖𝑓𝑓

𝜕𝑡
+
𝑅

2
𝑖𝐿 + 𝑅𝑖𝑑𝑖𝑓𝑓

+ 𝐿𝐿
𝜕𝑖𝐿
𝜕𝑡
+ 𝑅𝐿𝑖𝐿 

(3.26) 

(3)&(4) ⇒ 

𝑉𝑑𝑐
2
= 𝑈3𝐸3 + 𝑈4𝐸4 −

𝐿

2

𝜕𝑖𝐿
𝜕𝑡
+ 𝐿

𝜕𝑖𝑑𝑖𝑓𝑓

𝜕𝑡
−
𝑅

2
𝑖𝐿 + 𝑅𝑖𝑑𝑖𝑓𝑓 − 𝐿𝐿

𝜕𝑖𝐿
𝜕𝑡
− 𝑅𝐿𝑖𝐿 

(3.27) 
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(8) − (9) ⇒ 

0 =
(𝑠𝑖𝑔𝑛(𝑖𝑢𝑝) + 1)

2
𝑈1𝐸1 + 𝑈2𝐸2 + (𝐿 + 2𝐿𝐿)

𝜕𝑖𝐿
𝜕𝑡
+ (𝑅 + 2𝑅)𝑖𝐿 − 𝑈3𝐸3

− 𝑈4𝐸4 

 

(3.28) 

Proceeding in the same manner yields the below state space equation that includes all faults 
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[
 
 
 
 
 
 
 
 
 
 
 
 
𝑑𝑖𝑑𝑖𝑓𝑓

𝑑𝑡
𝑑𝐸1

𝑑𝑡
𝑑𝐸2

𝑑𝑡
𝑑𝐸3

𝑑𝑡
𝑑𝐸4

𝑑𝑡
𝑑𝑖𝑙𝑜𝑎𝑑
𝑑𝑡 ]

 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 −
𝑅

𝐿
−
𝑈1
2𝐿

−
𝑈2
2𝐿

−
𝑈3
2𝐿

−
𝑈4
2𝐿

0

𝑈1
𝐶

0 0 0 0
𝑈1
2𝐶

𝑈2
𝐶

0 0 0 0
𝑈2
2𝐶

𝑈3
𝐶

0 0 0 0 −
𝑈3
2𝐶

𝑈4
𝐶

0 0 0 0 −
𝑈4
2𝐶

0 −
𝑈1

𝐿 + 2𝐿𝐿
−

𝑈2
𝐿 + 2𝐿𝐿

𝑈3
𝐿 + 2𝐿𝐿

𝑈4
𝐿 + 2𝐿𝐿

−
𝑅 + 2𝑅𝐿
𝐿 + 2𝐿𝐿 ]

 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
𝑖𝑑𝑖𝑓𝑓
𝐸1
𝐸2
𝐸3
𝐸4
𝑖𝑙𝑜𝑎𝑑]

 
 
 
 
 

+ 

[
 
 
 
 
 
 
𝑉𝑑𝑐
2𝐿
0
0
0
0
0 ]
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 −(sign(𝑖𝑢𝑝) − 1)

𝐸1
4𝐿

(|𝑖𝑢𝑝| − 𝑖𝑢𝑝)
1

2𝐶
0
0
0

−(sign(𝑖𝑢𝑝) − 1)
𝐸1

2𝐿 + 4𝐿𝐿]
 
 
 
 
 
 
 
 

𝑈1𝑓1 +

[
 
 
 
 
 
 
 
 −(sign(𝑖𝑢𝑝) − 1)

𝐸2
4𝐿

0

(|𝑖𝑢𝑝| − 𝑖𝑢𝑝)
1

2𝐶
0
0

−(sign(𝑖𝑢𝑝) − 1)
𝐸2

2𝐿 + 4𝐿𝐿]
 
 
 
 
 
 
 
 

𝑈2𝑓2 

+

[
 
 
 
 
 
 
 
 −(sign(𝑖𝑑𝑜𝑤𝑛) − 1)

𝐸3
4𝐿

0
0

−(|𝑖𝑑𝑜𝑤𝑛| − 𝑖𝑑𝑜𝑤𝑛)
1

2𝐶
0

(sign(𝑖𝑑𝑜𝑤𝑛) − 1)
𝐸3

2𝐿 + 4𝐿𝐿]
 
 
 
 
 
 
 
 

𝑈3𝑓3 +

[
 
 
 
 
 
 
 
 −(sign(𝑖𝑑𝑜𝑤𝑛) − 1)

𝐸4
4𝐿

0
0
0

−(|𝑖𝑑𝑜𝑤𝑛| − 𝑖𝑑𝑜𝑤𝑛)
1

2𝐶

(sign(𝑖𝑑𝑜𝑤𝑛) − 1)
𝐸4

2𝐿 + 4𝐿𝐿]
 
 
 
 
 
 
 
 

𝑈4𝑓4 

 +

[
 
 
 
 
 
 
 
 −(sign(𝑖𝑢𝑝) + 1)

𝐸1
4𝐿

(|𝑖𝑢𝑝| + 𝑖𝑢𝑝)
1

2𝐶
0
0
0

−(sign(𝑖𝑢𝑝) + 1)
𝐸1

2𝐿 + 4𝐿𝐿]
 
 
 
 
 
 
 
 

(1 − 𝑈1)𝑓5 +

[
 
 
 
 
 
 
 
 −(sign(𝑖𝑢𝑝) + 1)

𝐸2
4𝐿

0

(|𝑖𝑢𝑝| + 𝑖𝑢𝑝)
1

2𝐶
0
0

−(sign(𝑖𝑢𝑝) + 1)
𝐸2

2𝐿 + 4𝐿𝐿]
 
 
 
 
 
 
 
 

(1 − 𝑈2)𝑓6 

+

[
 
 
 
 
 
 
 
 −(sign(𝑖𝑑𝑜𝑤𝑛) + 1)

𝐸3
4𝐿

0
0

−(|𝑖𝑑𝑜𝑤𝑛| + 𝑖𝑑𝑜𝑤𝑛)
1

2𝐶
0

(sign(𝑖𝑑𝑜𝑤𝑛) + 1)
𝐸3

2𝐿 + 4𝐿𝐿]
 
 
 
 
 
 
 
 

(1 − 𝑈3)𝑓7 +

[
 
 
 
 
 
 
 
 −(sign(𝑖𝑑𝑜𝑤𝑛) + 1)

𝐸4
4𝐿

0
0
0

−(|𝑖𝑑𝑜𝑤𝑛| + 𝑖𝑑𝑜𝑤𝑛)
1

2𝐶

(sign(𝑖𝑑𝑜𝑤𝑛) + 1)
𝐸4

2𝐿 + 4𝐿𝐿]
 
 
 
 
 
 
 
 

(1 − 𝑈4)𝑓8 

 

(3.29) 
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where 𝑓1, 𝑓2, 𝑓3, 𝑓4 represent the faults occurring in the upper switch 𝑇1 of each cell, and 

𝑓5, 𝑓6, 𝑓7, 𝑓8 represent the fault effect when occurring in the lower switch 𝑇2 in each cell. 

Meaning that if the fault is occurring in the upper switch of cell 1 located in the upper arm, 

𝑓1 will take the value 1 and the corresponding equation will be added to the system. As it 

can be seen from the Equation (3.29), the state space equation is written in the form of 

Equation (3.30) 

 �̇� = 𝐴(𝑈)𝑥 + 𝐷 +∑𝑙𝑓

8

𝑖=1

 (3.30) 

The state space equation (3.29) derived for open circuit faults shows that the fault 

affects the corresponding capacitor voltage along with the load current and the circulating 

current. However, the fault propagation to the remaining capacitor voltage is done via the 

dynamics of the system. Thus, indications about the converter pattern under single open 

circuit faults can be derived using either the full state variables or using only the capacitor 

voltages.  

3.6 Proposed Fault Detection Techniques 

3.6.1 Principal Component Analysis 

 

Principal component analysis (PCA) is a statistical technique that was invented in 

1889, but its research and applications are still used up to date in a variety of applications, 

including fault detection [81]–[83].  
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PCA is a dimensionality reduction procedure in which datasets with large dimension 

are reduced to lower dimension space by keeping the essential features, named as principal 

components that account for the largest variability of the data in the original higher 

dimension [84], [85]. In other words, the PCA approach eliminates the redundancy existing 

in the original data, and it creates a new artificial set of data, which does not have any 

physical meaning by itself, but it regroups the correlated variables and thus making the 

relations between variables more clear. In fact, it can be seen as the linear projection of the 

state variables into new lower dimensions to be better presented and more analyzable.  

The PCA procedure seeks the orthogonal axes that maximize the scatter of the data, 

which will allow the separation of the data when projected into this new dimension [86]. 

The main reason to use this data-driven technique in this thesis is that it does not require 

prior knowledge of the mathematical model of the system. Besides, the open circuit fault 

is abrupt, meaning that the system behavior after fault occurrence shows total divergence 

from the normal working conditions, and considering the capacity of the PCA to detect 

abnormalities in patterns, it can be effective for fault detection in MMC. In addition, once 

the training is performed, the online monitoring does not require extensive calculations, 

which makes it very fast in detecting faults.  

  



  
   

37 
 

Consider the dataset 𝑋 = [𝑥1 𝑥2… 𝑥𝑁]
𝑇, where 𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2… 𝑥𝑖𝑝]

𝑇
 a p-

dimensional vector. PCA will perform a projection into a lower dimension vector such that 

the projection would be as illustrated in Equation (3.31) 

 𝑦𝑖 = 𝐴𝑥𝑖 (3.31) 

where 𝐴 = [𝑢1
𝑇 𝑢2

𝑇…𝑢𝑝
𝑇], and 𝑢𝑘

𝑇𝑢𝑘 = 1, 𝑘 = 1, 2, … , 𝑝. The idea is to find the directions 

which maximizes the variance of the set {𝑦𝑖} that corresponds to the trace of the covariance 

matrix of {𝑦𝑖} 

 𝐴∗ = argmax
𝐴
 𝑡𝑟(𝐶𝑦) (3.32) 

where  

 𝐶𝑦 =
1

𝑁
∑(𝑦𝑖 − �̅�)(𝑦𝑖 − �̅�)

𝑇

𝑁

𝑖=1

 (3.33) 

and 

 �̅� =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

 (3.34) 

Let 𝐶𝑥 be the covariance matrix of the dataset {𝑥𝑖}. It is easy to show that 𝑡𝑟(𝐶𝑦) =

𝑡𝑟(𝐴𝑇𝐶𝑥𝐴). The goal is to maximize the variance, but to do this the focus should be limited 

to unit vectors as the maximization should be constrained (because if no constraint is 

chosen, a very large A can be used). Therefore, to maximize the variance additional 

constraints should be added, that is, the only acceptable solutions should satisfy 𝐴𝑘
𝑇𝐴𝑘 =

1. Now, we have a constrained optimization to resolve. A function 𝑓(𝐴𝑘) = 𝐴𝑘
𝑇𝐶𝑥𝐴𝑘 to 

maximize, along with an equality function 𝑔(𝐴𝑘) = 𝑐, where 𝑔(𝐴𝑘) = 𝐴𝑘
𝑇𝐴𝑘 and 𝑐 = 1. 
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Therefore, the Lagrange multiplier 𝜆𝑘 can be added to the equation, which would yield to 

the new objective function  

 𝐿(𝐴𝑘 , 𝜆)k = 𝑓(𝐴𝑘) − 𝜆𝑘(𝑔(𝐴𝑘) − 𝑐) = 𝐴𝑘
𝑇𝐶𝑥𝐴𝑘 − 𝜆𝑘(𝐴𝑘

𝑇𝐴𝑘 − 1) (3.35) 

Now, the constrained optimization problem can be solved through unconstrained 

optimization of L(Ak,λk). In order to find a global maximum of the optimization problem, 

the Kuhn-Tucker conditions can be used. These Kuhn-Tucker conditions state that: 

 Any 𝐴𝑘
∗  is a global minimum if and only if 𝐴𝑘

∗  is feasible and there exist 𝜆𝑘
∗ , 𝑘 =

1, … , 𝑝 such that 

o ∇𝐴𝑘𝐿(𝐴𝑘
∗ , 𝜆𝑘

∗ ) = 0 ∀𝑘 

o 𝜆𝑘
∗ ≥ 0, ∀𝑘 

o 𝜆𝑘
∗ (𝑔(𝐴𝑘) − 𝑐) = 0, ∀𝑘 

In the PCA case the Kuhn-Tucker conditions to solve the optimization yields 

 ∇𝐴𝑘𝐿(𝐴𝑘, 𝜆𝑘) = 0 ⇒
𝜕𝐿

𝜕𝐴𝑘
= 2𝐶𝑥𝐴𝑘 − 2𝜆𝑘𝐴𝑘 = 0 ⇒ 𝐶𝑥𝐴𝑘 = 𝜆𝑘𝐴𝑘 (3.36) 

 𝜆𝑗 ≥ 0, ∀𝑗 (3.37) 

 𝜆𝑘(𝑔(𝐴𝑘) − 𝑐) = 0 (3.38) 

Thus, 𝐴𝑘 is the eigenvector of the covariance 𝐶𝑥, which would satisfy the Kuhn-Tucker 

criteria. Therefore, the new space that gives a better insight of the data content and linearly 

separate them, is the space spanned by the eigenvectors of the covariance matrix. Most of 

the data variability lies in the eigenvectors that correspond to the largest eigenvalues.  
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Consequently, the data can be presented as 

 𝑥𝑖 =∑(𝑥𝑖
𝑇𝐴𝑘)𝐴𝑘

𝑝

𝑘=1

 (3.39) 

which can be approximated to 

 𝑥𝑖 =∑(𝑥𝑖
𝑇𝐴𝑘)𝐴𝑘

𝑀

𝑘=1

 (3.40) 

where 𝑀 < 𝑝. In this case, the number of eigenvectors is reduced and by consequence, the 

dimensions in which the data is represented are reduced.  

To summarize the procedure, the following steps can be used to apply the PCA on 

the fault detection: 

Step 1 

The raw dataset describing the dynamics of the system should be at a first stage 

normalized, i.e., subtract the mean and divide each data point by the standard deviation. 

The mean and the standard deviation are calculated respectively according to the following 

formulas 

 �̅� =
∑ 𝑥𝑘
𝑁
𝑘=1

𝑁
 (3.41) 

 𝑠2 =
∑ (𝑥𝑘 − �̅�)

2𝑁
𝑘=1

𝑁 − 1
 (3.42) 

where N represents the number of observations. 

The reason behind the normalization of the dataset is to not bias the result of the 

procedure since at its origin the PCA seeks to maximize the variance, and if no 

normalization has been used, the variable having the maximum variance in the original 
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data will be dominant, and the PCA will perform poorly.  

Step 2 

The second step is to find the covariance matrix, which represents the correlation 

between the variables of the normalized dataset. The stronger the correlation, the higher 

the values in the covariance matrix.  

 𝐶 = (

𝑐𝑜𝑣(𝑥, 𝑥) 𝑐𝑜𝑣(𝑥, 𝑦) 𝑐𝑜𝑣(𝑥, 𝑧)

𝑐𝑜𝑣(𝑦, 𝑥) 𝑐𝑜𝑣(𝑦, 𝑦) 𝑐𝑜𝑣(𝑦, 𝑧)

𝑐𝑜𝑣(𝑧, 𝑥) 𝑐𝑜𝑣(𝑧, 𝑦) 𝑐𝑜𝑣(𝑧, 𝑧)
) = (𝑁 − 1)−1𝑋𝑇𝑋 (3.43) 

where 𝑐𝑜𝑣(𝑥, 𝑦) =
∑ (𝑥𝑘−�̅�)(𝑦𝑘−�̅�)
𝑁
𝑘=1

𝑁−1
  and 𝑋 = [𝑥1𝑥2…𝑥𝑁]

𝑇 represents the dataset matrix. 

Step 3 

The eigenvalues and eigenvectors of the covariance matrix are calculated according 

to the Equation (3.44) 

 𝐶𝐴 = 𝜆𝐴 (3.44) 

where A and λ represent the eigenvectors and eigenvalues of the covariance matrix. In fact, 

the new dimension that the PCA seeks is the one spanned by the eigenvectors of the 

covariance matrix.  

Step 4 

Representing the spread of the data in each corresponding eigenvector direction, the 

eigenvalues are the keys to determine the reduced size and which of the eigenvectors should 

be kept. The higher the eigenvalue value, the more important the corresponding 

eigenvector. Therefore, sorting the eigenvalues and their corresponding eigenvectors forms 

the next step in the formulation of the principal components. The choice of the most critical 

eigenvectors is challenging considering that it will affect the residual space or what is 
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considered as the disturbance on the data. A bad choice of the number of eigenvectors will 

affect the performance of the procedure. If the number of eigenvectors is too high, a better 

representation of the raw dataset is guaranteed, but unnecessary information will be 

learned. On the other hand, if the number of the eigenvectors is too low, some critical data 

may get lost.  

Step 5 

To detect faults using the PCA procedure, two tools are usually considered, namely, 

the Hotelling’s 𝑇2 and 𝑄 statistics (also called the squared prediction error (SPE)). 𝑇2 and 

𝑄 represent the major variation and the random noise in the data respectively [87],[88]. 

Both techniques are based on statistical calculations that ensure a statistical limit on the 

projected data. 

T2 can be calculated as the sum of squares of a new process data vector 𝑥𝑘 as follows: 

 𝑇2 = 𝑥𝑘
𝑇𝐴𝜆𝑀

−1𝐴𝑇𝑥𝑘 (3.45) 

where 𝜆𝑀 is a squared matrix formed by the first 𝑀 rows and columns of 𝜆. 

The process is considered normal for a given significance level 𝛼 if: 

 𝑇2 ≤ 𝑇𝛼
2 =

(𝑁2 − 1)𝑀

𝑁(N −𝑀)
𝐹𝛼(𝑀,𝑁 −𝑀) (3.46) 

where 𝐹𝛼(𝑀, N − 𝑀) is the critic value of the Fisher-Snedecor distribution with 𝑁 and 𝑁 −

 𝑀 degrees of freedom and 𝛼 which takes values between 90% and 95% is the level of 

significance. 
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The scalar value 𝑄 is a measurement of goodness of fit of the sample to the model 

and is directly associated with the noise and can be obtained at the kth sample as: 

 𝑄 = 𝑟𝑇𝑟  (3.47) 

 𝑟 = (𝐼 − 𝐴𝐴𝑇)𝑥𝑘 (3.48) 

The upper limit of this statistic can be computed as  

 𝑄𝛼 = 𝜃1 [
ℎ0𝑐𝛼√2𝜃2

𝜃1
+ 1 +

𝜃2ℎ0(ℎ0 − 1)

𝜃1
2 ]

1
ℎ0

 (3.49) 

 𝜃𝑘 = ∑ 𝜆𝑗
𝑖

𝑁

𝑗=𝑀+1

      ℎ0 = 1 −
2𝜃1𝜃3

3𝜃2
2  (3.50) 

where 𝑐𝛼 is the value of the normal distribution with a α-level of significance. 

Both 𝑇2 and 𝑄 upper limits represent thresholds for the normal healthy data, above 

which the new state can be considered faulty. Steps 1 to 4 and the calculation of the upper 

limit of either  𝑇2 or 𝑄 are calculated off-line in the training phase. While during the on-

line phase the tasks to be performed are summed in acquiring the new data point, scale it 

according to step one in the training procedure, calculate the 𝑇2 or 𝑄 accordingly and 

compare the obtained value with the limit set in the training. The T2 and Q statistical tests 

are mainly developed for linear systems. Based on the fact that the modular multilevel 

converter is a nonlinear system, the boundaries for both statistical techniques are not 

respected under normal operation. To remedy this issue, a user-defined threshold should 

be selected instead. The threshold is obtained based on observations of the healthy data 

points during the training phase.  The fault detection algorithm using PCA is summarized 

in Figure 3.6 and the overall procedure is illustrated in Figure 3.7 
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                        (a)                      (b) 

 

Figure 3.6: Flowchart of fault detection procedure using PCA: (a) offline training, (b) 

online monitoring 
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Figure 3.7: Control and fault detection in MMC using PCA technique 

 

 

3.6.2 Kernel Principal Component Analysis 

The Modular Multilevel Converter is a nonlinear system, meaning that the variables 

are correlated nonlinearly, thus, weakening the performance of the PCA, which is designed 

to work with linear systems. To overcome the linearity issue, a nonlinear version of PCA 

can be introduced, which is the Kernel Principal Component Analysis (KPCA) [89]. The 

approach of KPCA takes advantage of the features presented by PCA and solves the 

linearity issue of the nonlinear systems [90]–[93]. The main idea of KPCA is to nonlinearly 

map the original data into a feature space, which is generally of higher dimension, before 

performing the PCA algorithm. Therefore, the mapped data can be viewed as linear in the 
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feature space [94], [95]. However, mapping each data point into a higher, possibly infinite, 

space would require additional calculation burden, which is a luxury that may not always 

be available, and it can be very costly in terms of computational time. To resolve this issue, 

KPCA offers a simple solution; the use of the kernel trick which allows the execution of 

PCA in the feature space without the explicit calculation of the projected data points. 

Therefore, instead of working with the projected data points in the feature space, the 

procedure makes all the necessary calculations in the original space using the kernel 

function since, in fact, the projections are not needed but instead the inner product, 

represented by the kernel function, between the data points. Consequently, the kernel trick 

allows the usage of the inner products in the feature space without the need to project the 

original dataset. Thus, the algorithms that use only the inner product can be performed 

implicitly in the feature space. The nonlinear mapping into the feature space and executing 

linear operations can be seen as performing nonlinear operations in the original space. 

Thus, performing PCA in the feature space is seen as performing nonlinear PCA in the 

original space, and consequently, the eigenvectors in the original space are no longer linear. 

Therefore, KPCA performs a nonlinear transformation into a much higher feature space ℱ 

followed by a dimensionality reduction that allows performing a data compression while 

keeping the most valuable information. The choice of a convenient kernel function, which 

is a function that satisfies Mercer’s theorem, is crucial to enhance the performance of the 

KPCA.  
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 The most popular kernel functions used in the literature are:  

 The polynomial kernel 

 𝑘(𝑥𝑖 , 𝑥𝑗) = 〈𝑥𝑖 , 𝑥𝑗〉
𝑑 (3.51) 

 The Radial basis function (RBF) 

 𝑘(𝑥𝑖 , 𝑥𝑗) = exp (−
‖𝑥𝑖 − 𝑥𝑗‖

2

2𝜎2
) (3.52) 

where  2𝜎2 represent the width of the Gaussian kernel. 

 The sigmoid kernel 

 𝑘(𝑥𝑖 , 𝑥𝑗) = tanh(𝐺〈𝑥𝑖, 𝑥𝑗〉 + 𝜃) (3.53) 

for convenient gain G and threshold 𝜃. 

Assuming that the function defined by Φ:𝑅𝑁 → ℱ is the function used to map the 

data from the original space 𝑅𝑁 into the feature space ℱ, the covariance matrix in the 

feature space is: 

 𝐶 = 1/𝑁∑𝜙(𝑥𝑖)𝜙
𝑇(𝑥𝑖)

𝑁

𝑖=1

 (3.54) 

where ɸ(xi) is the ith component in the feature space, N is the data size and suppose that the 

projected points have zero mean and unity variance. Similar to the PCA case, the idea is to 

find the eigenvectors and eigenvalues of the covariance matrix in the feature space [96] 

and to do so one should resolve the following Equation (3.55) 

 𝐶𝑣 = 𝜆𝑣 (3.55) 

where 𝜆 and 𝑣 represent the eigenvalues and eigenvectors of the covariance matrix in the 

feature space, respectively. The 𝑣 corresponding to the largest 𝜆 is considered the first 
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principal component (PC) and the one corresponding to the lowest eigenvalue is the last 

PC. Based on the equation of the covariance matrix in (3.54), Equation (3.55) can be 

rewritten as 

 𝜆𝑣 =
1

𝑁
(∑𝜙(𝑥𝑖)𝜙

𝑇(𝑥𝑖)

𝑁

𝑖=1

)𝑣 =
1

𝑁
∑⟨𝜙(𝑥𝑖), 𝑣⟩𝜙(𝑥𝑖)

𝑁

𝑖−1

 (3.56) 

where ⟨𝑥, 𝑦⟩ denotes the dot product between 𝑥 and 𝑦. Before proceeding, let’s show that 

the inclusion of the inner product is justified in the Equation (3.56) and to do so let’s show 

that 𝑥𝑥𝑇𝑣 = 〈𝑥. 𝑣〉𝑥𝑇: 

  

(𝑥𝑥𝑇)𝑣 = (

𝑥1𝑥1 𝑥1𝑥2
𝑥2𝑥1 𝑥2𝑥2

⋯
𝑥1𝑥𝑀
𝑥2𝑥𝑀

⋮ ⋱ ⋮
𝑥𝑀𝑥1 𝑥𝑀𝑥2 ⋯ 𝑥𝑀𝑥𝑀

)(

𝑣1
𝑣2
⋮
𝑣𝑀

)

= (

𝑥1𝑥1𝑣1 + 𝑥1𝑥2𝑣2 +⋯+ 𝑥1𝑥𝑀𝑣𝑀
𝑥2𝑥1𝑣1 + 𝑥2𝑥2𝑣2 +⋯+ 𝑥2𝑥𝑀𝑣𝑀

⋮
𝑥𝑀𝑥1𝑣1 + 𝑥𝑀𝑥2𝑣2 +⋯+ 𝑥𝑀𝑥𝑀𝑣𝑀

)

= (

(𝑥1𝑣1 + 𝑥2𝑣2 +⋯+ 𝑥𝑀𝑣𝑀)𝑥1
(𝑥1𝑣1 + 𝑥2𝑣2 +⋯+ 𝑥𝑀𝑣𝑀)𝑥2

⋮
(𝑥1𝑣1 + 𝑥2𝑣2 +⋯+ 𝑥𝑀𝑣𝑀)𝑥𝑀

)

= (𝑥1𝑣1 + 𝑥2𝑣2 +⋯+ 𝑥𝑀𝑣𝑀) (

𝑥1
𝑥2
⋮
𝑥𝑀

) = (𝑥. 𝑣)𝑥 

(3.57) 

Thus, the equality mentioned in (3.56) is valid, and this result implies that all eigenvectors 

that correspond to non-null eigenvalues lie in the span of the set 𝜙(𝑥1), 𝜙(𝑥2),… , 𝜙(𝑥𝑁). 

By consequence, Equation (3.55) can be written as 

 𝜆⟨𝜙(𝑥𝑘), 𝑣⟩ = ⟨𝜙(𝑥𝑘), 𝐶𝑣⟩,   𝑘 = 1, 2, … , 𝑁 (3.58) 
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In addition, the eigenvector 𝑣 can be written in function of 𝜙(𝑥) 

 𝑣 =∑𝛼𝑖  𝜙(𝑥𝑖)

𝑁

𝑖=1

 (3.59) 

where 𝛼𝑖 represent the weighting coefficients. Replacing 𝑣 in Equation (3.58) by its 

expression in Equation (3.59) yields 

 𝜆∑𝛼𝑖⟨𝜙(𝑥𝑘), 𝜙(𝑥𝑖)⟩

𝑁

𝑖=1

=
1

𝑁
∑∑𝛼𝑖

𝑁

𝑗=1

〈𝜙(𝑥𝑘), 𝜙(𝑥𝑗)〉

𝑁

𝑖=1

〈𝜙(𝑥𝑗), 𝜙(𝑥𝑖)〉 (3.60) 

 for 𝑘 = 1…𝑁 

Determining the value of each mapped point in the feature space is both costly and 

inefficient. So, to avoid this drawback, the kernel trick can be used. Let us define the Gram 

kernel matrix 𝐾 as 

 [𝐾]𝑖,𝑗 = 〈𝜙(𝑥𝑖), 𝜙(𝑥𝑗)〉 = 𝐾(𝑥𝑖, 𝑥𝑗), 𝑖, 𝑗 = 1…𝑁 (3.61) 

Integrating the new concept into the Equation (3.60), yields 

(3.62) 𝑁𝜆𝐾𝛼 = 𝐾2𝛼  

for nonzero 𝜆 and as K is a positive definite matrix, Equation (3.62) can be rewritten in the 

form 

 𝑁𝜆𝛼 = 𝐾𝛼 (3.63) 

Therefore, instead of dealing with the covariance matrix 𝐶 directly, the final problem is to 

diagonalize the Gram kernel matrix 𝐾. 

Suppose the eigenvalues of the matrix 𝐾 are denoted by 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑁, and 

𝛼1, 𝛼2, … , 𝛼𝑁 their corresponding eigenvectors. Each eigenvector needs to be normalized 

in the feature space as required by the PCA. 
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Therefore, the eigenvectors should satisfy  

 ⟨𝑣𝑘 , 𝑣𝑘⟩ = 1, 𝑘 = 1, . . , 𝑝 (3.64) 

 Given that the number of retained eigenvalues after applying the PCA in the feature space 

is 𝑝. This leads to  

 

〈∑𝛼𝑖
𝑘𝜙(𝑥𝑖)

𝑁

𝑖=1

,∑𝛼𝑗
𝑘𝜙(𝑥𝑗)

𝑁

𝑗=1

〉 = 1 ⇒∑∑𝛼𝑖
𝑘𝛼𝑗

𝑘𝐾𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

= 1 

⇒ 〈𝛼𝑘 , 𝐾𝛼𝑘〉 = 1 ⇒ 𝜆𝑘〈𝛼𝑘, 𝛼𝑘〉 = 1 

(3.65) 

which means that each 𝛼𝑘 should be divided by √𝑁𝜆𝑘. 

As in PCA, the data points in KPCA are projected onto the eigenvectors 𝑉𝑘 of the 

covariance matrix  

 〈𝑣𝑘  , 𝜙(𝑥)〉 =∑𝛼𝑖
𝑘〈𝜙(𝑥𝑖), 𝜙(𝑥)〉

𝑁

𝑖=1

=∑𝛼𝑖
𝑘𝐾(𝑥𝑖 , 𝑥)

𝑁

𝑖=1

 (3.66) 

Equation (3.66) is valid when the projection is made over the whole range of 

eigenvectors. However, if a linear relationship can be achieved in the feature space then 

projecting on the first p eigenvectors is sufficient to present the data accurately. Hence the 

needed eigenvectors and eigenvalues are limited to the first p largest ones, and the projected 

principal component can be calculated as 

 〈𝑣𝑘  , 𝜙(𝑥)〉 =∑𝛼𝑖
𝑘〈𝜙(𝑥𝑖), 𝜙(𝑥)〉

𝑝

𝑖=1

=∑𝛼𝑖
𝑘𝐾(𝑥𝑖 , 𝑥)

𝑝

𝑖=1

 (3.67) 

The mapped data in the feature space were supposed to be centered when formulating 

the KPCA procedure [97]–[100]. However, this might not be guaranteed in most cases even 

if the original dataset was centered in the original space.  
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In addition since, 𝜙(𝑥) is not known explicitly, the centering procedure shall be done 

by centering the kernel matrix instead [81], [101]. So, suppose the centered points in the 

feature space is defined as 

 �̃�(𝑥𝑘) = 𝜙(𝑥𝑘) −
1

𝑁
∑𝜙(𝑥𝑖)

𝑁

𝑖=1

 (3.68) 

Then, the centered kernel matrix in the feature space would have the form 

 

�̃�𝑖𝑗 = 〈�̃�(𝑥𝑖), �̃�(𝑥𝑗)〉

= 〈𝜙(𝑥𝑖) −
1

𝑁
∑𝜙(𝑥𝑙)

𝑁

𝑙=1

, 𝜙(𝑥𝑗) −
1

𝑁
∑𝜙(𝑥𝑛)

𝑁

𝑛=1

〉

= 𝐾𝑖𝑗 −
1

𝑁
∑𝐾𝑖𝑘

𝑁

𝑙=1

−
1

𝑁
∑𝐾𝑗𝑛

𝑁

𝑛=1

+
1

𝑁2
∑∑𝐾𝑛𝑙

𝑁

𝑛=1

𝑁

𝑙=1

 

(3.69) 

This yields that  

 �̃� = 𝐾 − 1𝑁𝐾 − 𝐾1𝑁 + 1𝑁𝐾1𝑁 (3.70) 

where 1𝑁 =
1

𝑁
[
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

] represent an 𝑁 × 𝑁 matrix. 

The goal is to find matching parameters (the value of p that determines the most 

significant eigenvectors, and the kernel parameters) that would, to the best extent, describe 

the pattern of the training set.  

Now, to evaluate the fitness of a new data point to the pattern set by the training 

phase, assume that the new m-dimensional vector of measurable variables is denoted 

by 𝑥𝑡𝑒𝑠𝑡 = [𝑥1 𝑥2… 𝑥𝑚]. The new set is normalized, with respect to the mean and standard 

deviation used in the training phase, prior to the calculation of the kernel matrix.   
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The formulation of the new kernel matrix is done by evaluating the test point against 

each training point 

 𝐾𝑡𝑒𝑠𝑡 = [𝑘(𝑥𝑡𝑒𝑠𝑡, 𝑥𝑡𝑟𝑎𝑖𝑛1) 𝑘(𝑥𝑡𝑒𝑠𝑡, 𝑥𝑡𝑟𝑎𝑖𝑛2)…𝑘(𝑥𝑡𝑒𝑠𝑡, 𝑥𝑡𝑟𝑎𝑖𝑛𝑁)] (3.71) 

The new kernel needs to be centered in the feature space with respect to the training set, 

and it is done by 

 �̃�𝑡𝑒𝑠𝑡 = 𝐾𝑡𝑒𝑠𝑡 −
1

𝑁
(1 1…1)⏟      
(1×𝑁)

𝐾 −𝐾𝑡𝑒𝑠𝑡1𝑁 +
1

𝑁
(1 1…1)⏟      
(1×𝑁)

𝐾1𝑁 (3.72) 

On the other hand, the kernel function between each test point and itself can be calculated 

as 𝐾𝑒 = 𝑘(𝑥𝑡𝑒𝑠𝑡, 𝑥𝑡𝑒𝑠𝑡) and it is centered through 

 �̃�𝑒 = 𝐾𝑒 −
2

𝑁
𝐾𝑡𝑒𝑠𝑡 (1 1…1)⏟      

(𝑁×1)

𝑇
+
1

𝑁
(1 1…1)⏟      
(1×𝑁)

𝐾 (1 1…1)⏟      
(𝑁×1)

𝑇
 (3.73) 

Taking into consideration that if the data points are projected into all the 

eigenvectors, the data is preserved and the PCA is in this case just a change of coordinates. 

Performing PCA in the feature space means that only a few most significant eigenvalues 

are considered for the data projection. The resulting error from both projections can be 

evaluated, and a threshold can be elaborated based on the healthy data during the training 

phase. 

The squared error between data projection on the full eigenvector space and principal 

component space can be evaluated as [102]  

 𝑒𝑝𝑟𝑜𝑗 = ‖𝑒‖
2 = ‖𝑋𝑝𝑟𝑜𝑗‖

2
− ‖𝑋𝑝𝑟𝑜𝑗(𝑝)‖

2
 (3.74) 
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The evaluation of the projection on the p principal component can be evaluated using 

the Equation (3.67) such that  

 𝑋𝑝𝑟𝑜𝑗(𝑝) =∑𝛼𝑖
𝑘〈�̃�(𝑥𝑖), �̃�(𝑥)〉

𝑝

𝑖=1

=∑𝛼𝑖
𝑘�̃�(𝑥𝑖, 𝑥)

𝑝

𝑖=1

 (3.75) 

whereas, the projection onto the whole eigenvectors space can add more 

computational load. To mitigate this, one should consider that the data in the feature space 

are centered, which means that the new basis is a pure rotation of the old basis and no 

translation is involved. Besides, only the squared distance between the data point and the 

origin is needed. Consequently, the data projection on the whole eigenvector space can be 

evaluated 

 ‖𝑋𝑝𝑟𝑜𝑗‖
2
= 〈�̃�(𝑥), �̃�(𝑥)〉 (3.76) 

which is, in fact, the kernel function calculated above and denoted as �̃�𝑒. 

Therefore, it is possible to construct a threshold between the projection of the data 

points into the whole eigenvector space, and their projection into space spanned by the 

principal components in the feature space. This threshold is established based on the 

maximum allowable error calculated from the observations errors during the training phase 

and taking into account the effect of possible disturbances. Similarly, during the online 

phase, the error between the two projections is monitored and compared with the 

established threshold. A fault is detected if the projection errors of the new data points 

exceed the threshold for a specified period.  
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To recapitulate, KPCA can be applied to the system by executing selected actions 

during the off-line phase, or what is called the training phase, and others during the 

online operations, or what is called the monitoring phase. The procedure to perform the 

KPCA algorithm is illustrated in Figure 3.8, and the tuning of the KPCA parameters can 

be performed using the steps described in the flowchart illustrated in Figure 3.9. 

The steps to formulate the error contours that delimit the healthy operation and the 

monitoring process using KPCA are described in the next subsection. 

3.6.2.1 Off-line training 

Step 1.  

The raw dataset should be at a first stage normalized, and the kernel matrix should 

be calculated 𝐾(𝑥𝑖, 𝑥𝑗)  

Step 2.  

Perform the centering procedure of the image according to Equation (3.70)  

�̃� = 𝐾 − 1𝑁𝐾 − 𝐾1𝑁 + 1𝑁𝐾1𝑁 

Step 3. 

Solve the eigenequation 𝑁𝜆𝛼 = �̃�𝛼 and normalize the 𝛼𝑘, by dividing each 𝛼𝑘 

by √𝑁𝜆𝑘. 

Step 4. 

Choose the number of principal components based on user-defined criteria (e.g. 

∑𝜆𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑

∑𝜆𝑘
∗ 100 ≥ 80%). 
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Step 5.  

Calculate the threshold of the normal data by calculating the error between the 

projection of the data points into the whole eigenvector space and their projection into the 

principal component space. 

3.6.2.2 On-line training 

Step 1.  

Acquire new data point and scale it using the mean and standard deviation used in 

step 1 in the training phase. 

Step 2.  

Calculate the kernel matrix 𝐾𝑡𝑒𝑠𝑡 between the new data point and the all the training 

points then perform the centering procedure with respect to the training set. 

Step 3. 

Calculate the kernel matrix 𝐾𝑒 between the new data point and itself then perform 

the centering procedure. 

Step 4. 

Calculate the projection error of the new data point on the whole eigenvector space 

and its projection on the principal components space. 
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Figure 3.8: Data processing for fault detection using KPCA algorithm 
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Figure 3.9: Flowchart of KPCA training 

 

 

3.7 Fault Localization 

As mentioned previously, the fault localization using PCA with a nonlinear system 

such as the MMC, which incorporates a high number of redundant submodules connected 

in series, is somewhat challenging and the simulation results revealed high rate of 

misclassifications (over 70%) of the fault locations, and that is the reason behind the use 

of, solely, the KPCA for fault identification. Three approaches were considered in the fault 

identification using the KPCA that are detailed in the below subsections. 
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3.7.1 Approach 1 

The set of variables considered in this approach are the capacitor voltages of different 

cells, the circulating current, and the load current. Note that these parameters are already 

available for control purposes in both MPC and voltage-balancing controls. Other variables 

may be considered such as the output voltage, which is used in the literature to evaluate 

the faults and their locations. However, this would require additional sensors, and thus it 

increases the cost of the converter, and it is not a preferable practice in the industry since 

it contains high-frequency components. As stated before, the fault dynamics in MMC affect 

all the state variables and create a new pattern that can be identified uniquely for that 

specific open circuit fault. Therefore, the proposed technique for fault isolation in this 

approach is to learn the different fault scenarios related to different power switches. 

Consequently, in the case of four cells MMC, eight power switches are considered, and 

eight fault scenarios have to be learned. The concept of the fault localization is to learn the 

fault scenarios related to different switches at a given sampling time for a given arm current 

direction, and a given load, which would lead to eight projection error thresholds and thus 

eight fault classes are constructed. In the monitoring phase the projection error of the new 

faulty data points is calculated. Due to the transient phase in the system dynamics after the 

fault occurrence,  the KPCA is susceptible to make some misclassifications. One way to 

mitigate this drawback is to calculate the accumulative projection errors over a specific 

period and the final fault location is then identified based on the accumulated error. 

Consequently, the KPCA module which results in minimum error corresponds to the faulty 

switch. The proposed procedure to perform the fault localization using the full state 

variables is as illustrated in Figure 3.10, where the KPCA models are created using the data 
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generated by applying open circuit faults to each switch in the converter. Considering that 

the number of submodules in MMC is 2N, the generated number of KPCA models is 4N. 

The residual generated in the output of each KPCA model corresponds to the instantaneous 

projection error, and this residual is then accumulated over a period of time, and the fault 

localization is finally based on the residual generating the minimum error. 

 

 

 

 

Figure 3.10: Fault localization procedure using full state KPCA 
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3.7.2 Approach 2 

In this subsection, the same principle adopted in the first approach is used to establish 

the fault localization with one single modification; Instead of using the state variables 

directly as inputs to the localization procedure, data preprocessing is performed before the 

analysis using KPCA. Hence, instead of using the capacitor voltages along with the 

circulating and load currents, the focus is maintained only on the capacitor voltages since 

the fault impact is more distinguishable using the capacitor voltages behavior as illustrated 

in the elaboration of the system dynamics under open circuit faults. The idea behind the 

data preprocessing is to enlarge the error when the corresponding switch is healthy. Based 

on the dynamic behavior under faulty states, the new variables used as inputs to the KPCA 

module include the corresponding capacitor voltage 𝐸𝑘, the sum of the capacitor voltages 

belonging to the same arm ∑ 𝐸𝑘𝑎𝑟𝑚 , which would increase rapidly if the faulty switch is 

located within the same arm and it helps to differentiate between the faults occurring in the 

upper and lower switches since the fault pattern is different in each case, which reflects on 

the voltage sum. Also, the difference between the upper and lower arm capacitor voltages 

is used as an indication about the faulty arm ∑ 𝐸𝑘 − ∑ 𝐸𝑘𝑙𝑜𝑤𝑎𝑟𝑚𝑢𝑝𝑎𝑟𝑚 , taking into account 

that that the capacitor voltage increase in the faulty cell creates an unbalance between the 

two arms that is in favor of the arm containing the faulty power switch. Besides, the cubic 

difference between the corresponding capacitor voltage and its reference signal is also 

used (𝐸𝑘 − 𝐸𝑟𝑒𝑓)
3
, which represents a direct indication about the status of the 

corresponding cells switches considering that this difference should increase substantially 

when the corresponding cell contains the faulty switch. The cubic power would accentuate 
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the rate of voltage difference increase for the faulty cell compared to other cells with 

keeping the difference sign. The last two inputs include the Euclidean distance of the 

corresponding capacitor voltage to the remaining capacitor voltages √∑ (𝐸𝑗 − 𝐸𝑘)
22𝑁

𝑘=1,𝑘≠𝑗  

and the sum of the normalized capacitor voltage with respect to the other ones ∑
𝐸𝑗

𝐸𝑘

2𝑁
𝑘=1,𝑘≠𝑗 . 

Note that this input change enhances the segregation between the projection errors 

corresponding to different cells, however, it does not guarantee the proper localization 

within the cell and misclassifications between the upper and lower power switches that 

belongs to the same submodule can occur. Nevertheless, the proper localization of the 

faulty cell is acceptable since the fault tolerant control will bypass the whole submodule 

anyway, once the localization is achieved and later on the proper localization within the 

faulty cell can be performed. 

3.7.3 Approach 3 

In this approach, a partial KPCA, which is a KPCA performed on a reduced number 

of input parameters, is used to perform the fault localization. The idea behind the use of 

partial KPCA is that removing a state variable from the calculations of the projected error 

reduces the latter by a quantity that is proportional to the state variable effect i.e. if the 

removed variable is healthy the error reduction should be small and contrarily if the 

removed variable is faulty then a substantial reduction can be seen. The procedure of the 

partial KPCA is to construct a set of 2N KPCA modules, where N represents the number 

of submodules in each arm. Each of these modules contains m-1 inputs such that each of 

the state variable, the capacitor voltage, in this case, exists only in m-1 KPCA modules. 

Note that the number of submodules considered in this case 2N is equal to the number of 
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state variables m, used as input to the KPCA algorithm. The resultant output of the module 

that does not use the input corresponding to the faulty cell would result in the lowest error. 

The advantage of this approach is that it does not require to train the modules on the faulty 

behavior and it is sufficient to train the KPCA on the healthy data. However, the fault 

location can only be traced back to the submodule level, and exact faulty switch cannot be 

identified. The proposed algorithm for fault localization using the partial KPCA is 

illustrated in Figure 3.11, and the overall process is illustrated in Figure 3.12 

 

 

 

 

Figure 3.11: Fault localization procedure using Partial KPCA 
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Figure 3.12: Overall fault detection and localization procedure 
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CHAPTER 4: SIMULATION RESULTS AND DISCUSSION 

In this section, the focus is to validate the proposed methodology using two 

converters with different sizes, ratings and using two different control approaches. The 

simulation results of the two converters under normal and faulty behavior are presented at 

first stage followed by the presentation of the fault detection results using the PCA and 

KPCA under various working conditions, and finally, the fault localization results using 

the different approaches are tackled. 

4.1 Model Predictive Control under Normal and Faulty States 

The simulations of the first adopted technique, model predictive control, are carried 

using Matlab/Simulink. The considered MMC is a four cells converter, and the used 

parameters are listed in Table 4.1 below [38] 
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Table 4.1: Simulation parameters for the MMC under predictive control 

 
Parameters Values 

Load resistor RL 19 Ω 

Load inductor LL 50 mH 

Arm resistor R 0 Ω 

Arm inductor L 1 mH 

Cells capacitor C 1000 μF 

Fundamental frequency f 50 Hz 

Sampling frequency Fs 10 KHz 

Input voltage Vdc 300 V 

Number of submodules per arm N 2 

Reference load current Iloadref 3 A 

 

 

Note that the adopted technique uses weighting factors on the circulating current and 

the load current during the calculation of the cost function, which should be tuned in order 

to achieve better performance. The used weighting factors during the simulation are 

λ=10×β=2×10-2. The simulation results under normal operating conditions are illustrated 

in Figure 4.1. As it can be seen, after a transient that occurs in the starting of the converter 

after which all the capacitors are charged, and the system is stabilized, the tracking of the 

load current is achieved with minimal error, the circulating current is kept in low values 

around zero, and the capacitor voltages are oscillating around their reference value 
𝑉𝑑𝑐

2
 with 

a small error margin. However, the introduction of an open circuit fault in any of the power 
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switches disrupts the normal behavior of the converter as illustrated in Figure 4.2, which 

shows the system behavior when an open circuit fault is injected in the upper switch T1 of 

cell 1. The Figures 4.2 (a)-(e) represent the capacitor voltage, the upper and lower arms 

currents, the circulating current, the reference and actual load currents, and the output 

voltage variations under normal and faulty conditions, respectively. As it can be seen all 

the parameters have diverged from their initial, stable states as a result of the fault 

occurrence. As shown in Figure 4.2 (a), the fault effect is not only limited to the faulty cell 

but it propagates to the other cells via the dynamics of the system and the control effects 

(upon the fault occurrence, the controller tries to bring the system back to stability by 

changing the switching pattern). The fault propagation in this case resulted in total 

unbalance between the upper and lower arms’ currents (Figure 4.2 (b)), a very high 

circulating current with peaks over 20A while the rated load current is just 3A and the 

output current and voltage were zeroed after the fault occurrence by 4.2s. 
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Figure 4.1: Waveforms of healthy state variables of the MMC under MPC control 
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Note that upon the fault occurrence, the system goes into a transient period where 

the controller tries to achieve the needed balance by adjusting the switching signals and 

considering that the fault is just a disturbance, however, with the fault expansion, the 

controller cannot handle the system and this leads eventually to total instability. 
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Figure 4.2: Waveforms of faulty state variables of the MMC under MPC control 

 

  

(a) 

(b) 

(c) 

(d) 

(e) 
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4.2 Pulse Width Modulation Control under Normal and Faulty States 

In this section, an eight cells MMC is considered. The converter is controlled through 

a PWM-based voltage-balancing controller that uses a phase shifted carrier. The controller 

design and properties are discussed in Section 3.4, and the used simulation parameters 

along with the gain values of the PI controllers are as depicted in Table 4.2 

 

 

 Table 4.2: Simulation parameters for the MMC under voltage-balancing control 

 
 Parameters Values 

Load resistor RL 26 Ω 

Load inductor LL 40 mH  

Arm resistor R 0 Ω 

Arm inductor L 3 mH 

Cells capacitor C 1900 μF 

Fundamental frequency f 50 Hz 

Carrier frequency Fc 2 KHz 

Input voltage Vdc 9 kV 

Number of submodules per arm N 4 

Reference load voltage Voutref 4.5 kV 

Proportional gain K1 0.5 

Integral gain K2 150 

Proportional gain K3 1.5 

Integral gain K4 150 

Proportional gain K5 0.35 
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Similarly to the case of MPC, the simulation waveforms shown in Figure 4.3 show 

that the voltage-balancing controller is capable of effectively tracking the voltage reference 

signal. Although this reference signal is tracked using an open loop control, the usage of 

PI controller to control the average and individual capacitor voltage along with circulating 

current reduction can achieve great tracking performance. 
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Figure 4.3: Waveforms of healthy state variables of the MMC under voltage-balancing 

control  
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In addition, it can be noticed that the divergence of the capacitor voltages in case of 

open circuit faults presented in Figure 4.4, shows shorter transient when compared to the 

MPC control case, which is an indicator of the low involvement of the controller in this 

case when a major fault occurs to the system. This low involvement is due to the existence 

of the open loop control in the case of the voltage-balancing control.   

According to the presented simulations, the impact of an open circuit fault may 

deteriorate the waveforms of all the parameters and may result in components failure and 

even total shutdown if not detected and isolated in the earliest. In the next subsections, the 

fault detection using PCA and KPCA in both configurations is discussed, followed by fault 

localization using different approaches. 

 

 

  



  
   

73 
 

 
 

Figure 4.4: Waveforms of faulty state variables of the MMC under voltage-balancing 

control 
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4.3 Open Circuit Fault Detection 

The performance of the two adopted fault detection techniques is tested using the 

two MMC configurations and simulation results are illustrated in the following 

subsections. 

4.3.1 Fault Detection using PCA 

The circulating current, capacitor voltages and load current are chosen to be the state 

variables for the PCA monitoring procedure. Two hundred observations, which represent 

one full cycle, are used to train the PCA in the off-line phase. On the other hand, during 

the on-line monitoring phase, the fault detection using PCA requires the use of one of the 

two statistical tests T2 and Q to evaluate the new data points in comparison to the healthy 

ones. Since PCA makes a dimensional reduction, it is essential to choose the eigenvalues 

that represent the original dataset to the best extent while removing the effect of noises and 

disturbances. For the case of PCA with the MPC control, where six state variables are 

presented and as shown in Figure 4.5, three of the six eigenvalues can explain 95% of the 

original data, which would be sufficient to represent the data with adequate accuracy. Thus, 

the data is projected on the three eigenvectors corresponding to the three largest 

eigenvalues. 
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Figure 4.5: Eigenvalues of the six state variables using MPC control and their importance 

 

 

Another important parameter to be considered in PCA is the threshold seperating the 

healthy from the faulty cases. As shown in Figure 4.6, the T2 and Q tests diverge rapidly 

when the fault occurs, which represent an adequate indicator of the faulty states. The 

threshold that separates the normal behavior from the faulty one is user-defined and since 

the load of the MMC may vary over time the values of the statistical tests will also vary 

accordingly. However, using the fact that the divergence of both tests is rapid, the threshold 

can be set at high values that assure fast fault detection and proper operation in the ordinary 

case. In the simulated case, the thresholds of the T2 and Q are set to 100 and 20 respectively, 

which is much higher than the normal operation variations. Nevertheless, these thresholds 

guarantee false alarm free operation and fast detection in case of faulty state when PCA 

control is considered. Consequently, the variation of the reference current did not affect the 

fault detection time and both have detected the fault after 13ms from its occurrence. Note 

that both T2 and Q are considered in the simulations, and the fault detection is based on the 

fastest test to detect the anomaly, which in this case represented by the T2.  
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(a) 

 

 

(b) 

 

Figure 4.6: T2 and Q calculations using the same training set for the PCA and at different 

reference currents (a) iref =2A, (b) iref=4A 
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Similarly to the case of the MPC control, three eigenvalues can explain more than 

95% of the data variation, as shown in Figure 4.7. Hence the new space in which the data 

is projected is composed of the three eigenvectors corresponding to the chosen three 

eigenvalues. The state variables considered in this case are the eight capacitor voltage along 

with the circulating and load currents. On the other hand, in the case of the voltage-

balancing controller, the divergence of the two statistical tests is rather slow, and thus a 

trade-off between the threshold level and the fault detection speed is observed. As can be 

seen in Figure 4.8, for lower current values, the deviation of the T2 and Q is slower and 

thus, the detection time is increased. Consequently, the apriori knowledge about the 

working range (load variation) of the converter can help to establish proper threshold level. 

In fact, when considering the control of the MMC, the boundaries of the converter 

operations should be established in order to maintain the stability and the normal operation 

of the system. 

 

 

 
 

Figure 4.7: Eigenvalues of the ten state variables using voltage-balancing control and their 

importance 
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(a) 

 
(b) 

 

Figure 4.8: T2 and Q calculations using the same training set for the PCA and at different 

reference currents (a) iload =160A, (b) iload=150A  
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4.3.2 Fault Detection using KPCA 

Similarly to the PCA case, the KPCA is capable of detecting faulty operating 

conditions. The KPCA algorithm is developed and tested under the same simulation 

conditions. However, the elaboration of the KPCA model is more complicated than the 

PCA model. An additional parameter, the kernel width σ of the kernel matrix, has to be 

tuned to provide the best performance of the KPCA procedure. As the most popular 

function and due to its high calculation efficiency, the Radial Basis Function (RBF) is used 

as the kernel function. Similarly, the choice of the data reduction in the feature space is 

also challenging, since they should be appropriately chosen to guarantee the exploitation 

of the essential features of the data and neglect the disturbances that can affect the 

performance of the technique. The choice of the number of retained eigenvalues can be 

chosen using the following criteria 

 
∑𝜆𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑
∑𝜆𝑘

∗ 100 ≥ threshold  (4.1) 

In this study, the threshold value is chosen equal to 99% based on 4-fold cross-

validation, which allows good performance and noise reduction. In contrast, the choice of 

the kernel width is made through grid search and k-fold cross-validation. The grid search 

included values ranging from 2-12 up to 212, and for each selected value 4-fold cross-

validation is done. The best performance in the fault detection corresponds to σ = 2-8.       

The simulation results shown in Figure 4.9 depicts that the projection error using the KPCA 

procedure under MPC control can be an effective way to detect the novelties accurately in 

the converter with an acceptable detection time and also depending on the working 

conditions. 
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(a) 

 
(b) 

 

Figure 4.9: Projection error calculated using KPCA on the MPC controller and at different 

reference currents (a) iref =2A, (b) iref=4A 

 

 

The same remarks can be drawn in the KPCA case using the voltage-balancing 

control. The same threshold can be used to detect open circuit faults within a small range 

of current variation without loss of much detection time. As shown in Figure 4.10 (a) and 

(b), the load current varied from 160A to 150A, however, the variation in the detection 

time remained small (from  26ms to 27ms). Nevertheless, when the variation is significant 

(Figure 4.10 (c)), the detection time is affected, and the fault detection could only sense the 

iref=2A 

iref=4A 
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fault at tfault=48ms. 

 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 4.10: Projection error calculated using KPCA on the MPC controller and at different 

load currents (a) iload =160A, (b) iload=150A, (c) iload=100A 
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According to the observations regarding the choice of the best threshold that would 

allow false alarm free operations and fast fault detection time, the best option is to consider 

a range of thresholds that depends on the working conditions of the converter. This range 

can be built based on the apriori knowledge of the system load and its variations, and in a 

way that would cover the normal operations without false alarms and detect the faults in 

the needed time.  

4.4 Open Circuit Fault Localization  

The localization procedure is a crucial task in MMC, to keep the normal operations 

of the system. Usually, the fault detection procedure is followed by a fault tolerant control, 

which requires the exact location of the faulty cell in order to isolate it.  

While the PCA is capable of accurately detecting the faults when they surge, the 

procedure is not capable of determining their locations. This is because this technique was 

designed to work with linear systems. The KPCA on the other hand, have excellent 

capabilities to deal with nonlinear systems. In this subsection, the fault localization using 

KPCA is discussed. The simulation results of fault localization presented in this subsection 

are the cumulative error over a period of 200ms, the capacitor voltages during this period 

and the instantaneous projection error.   
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4.4.1   Approach1: Full State Variables 

In this approach, the full states considered in the previous subsections (capacitor 

voltages, circulating and load currents) are used to perform the fault localization.  

4.4.1.1 Fault Localization under MPC Control 

The simulation parameters for both MPC and voltage-balancing control techniques 

are as depicted in subsections 4.1 and 4.2. The kernel parameter is chosen as σ =2-8, and 

the training set is generated under load current iload =5A. As previously mentioned, the fault 

localization models are created using faulty data corresponding to each power switch. 

Thus, the resultant KPCA models are eight when the MPC with four cells is considered. 

The simulation results are shown in Figure 4.11 and Figure 4.12 using a load current of 4A 

and 2A, respectively, indicate that the procedure can effectively detect the faulty switch 

within the cell under load variation.  The Figure 4.11 (a) represents the cumulative 

projection error in the feature space for each KPCA model designed (in this case there are 

eight KPCA models corresponding to eight susceptible faults), the line with the lowest 

cumulative error corresponds to the faulty cell (in this case the cumulative error 

corresponding to switch T1 in cell E1 has the lowest error, thus identified as the faulty 

switch). The Figure 4.11 (b) represents the corresponding capacitor voltage variations of 

each cell, and the Figure 4.11 (c) represents the instantaneous projection error, which is 

accumulated over time to provide the fault location. Note that the exact fault location is 

measured as the minimum cumulative error after fault detection by 200ms.   
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Figure 4.11: Fault localization results using MPC control when the fault occurred at t=3s 

in cell 1 switch T1 and under load current iload=4A 

 

 

(a) 

(b) 

(c) 



  
   

85 
 

 
 

Figure 4.12: Fault localization results using MPC control when the fault occurred at t=3s 

in cell 1 switch T2 and under load current iload=2A 

 

 

Similarly, Figure 4.13 shows that the fault localization procedure can effectively 

localize the faulty switch within the faulty cell. It can be noted that the capacitor voltage 

can take a long time to reach the same level that was reached in Figure 4.11, hence, the 

usage of a fixed threshold to monitor the capacitor voltage levels can show poor 

performance compared to the adopted KPCA technique. 

 

(a) 

(b) 

(c) 
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Figure 4.13: Fault localization results using MPC control when the fault occurred at 

t=3.005s in cell 2 switch T2 and under load current iload=3A 

 

 

4.4.1.2 Fault Localization under voltage-balancing Control 

Similar to the MPC controller case, the KPCA with full state variables using a higher 

number of cells and a different control technique shows good performance in fault 

localization as depicted in Figure 4.14 and Figure 4.15. Note that the instantaneous and 

accumulated errors are much lower than the ones generated by the other KPCA models and 
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that the faulty switch can be identified in brief time.  

 

 

 
 

Figure 4.14: Fault localization results using voltage-balancing control when the fault 

occurred at t=1.01s in cell 5 switch T2 and under load current iload=150A 
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Figure 4.15: Fault localization results using voltage-balancing control when the fault 

occurred at t=1.015s in cell 6 switch T2 and under load current iload=160A 

 

 

Numerous simulations have been conducted at different instants to evaluate the 

performance of the selected procedure. The simulated testing times correspond to different 

current levels, and directions, e.g., t =1s correspond to arm current iarm =0, t =1.005s 

correspond to the positive peak of the arm current, and t =1.015s correspond to the negative 

peak. The current levels used to test the different approaches are iload = 2A and iload = 4A 
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for the MPC controller case and iload = 150A and iload = 160A for the voltage-balancing 

case. The fault localization procedure showed similar performance under the different 

current levels.  

However, the procedure has misclassified some cells as shown in Figure 4.16. It can 

be seen that the variation of the capacitor voltage corresponding to the faulty cell is slow 

and, similarly, other capacitor voltages have raised above their normal values in the same 

rate which prevents the KPCA, in this case, to correctly identify the fault location. The 

misclassifications correspond to the case of upper switches open circuit faults. According 

to the Table 3.1, in case of upper switch open circuit fault, the cell is bypassed when the 

arm current is negative and the upper switch is inserted, whereas in case of lower switch 

open circuit fault, the cell capacitor charges when the arm current is positive regardless of 

the status of the switch (inserted or bypassed). From the aforementioned observations, the 

reason behind the misclassification of the faulty cells is due to the controller interference 

in case of upper switch faults since the controller can in some cases, when trying to balance 

the capacitor voltages, force the faulty cell to be bypassed when the current is negative, 

which result in slow variation of the state variables and requires longer time for localization 

in case full state raw variables are considered as input to the KPCA procedure. This 

behavior is not seen in the case of lower switches faults because the rate of capacitor 

voltage increase is independent of the gate signal. 
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Figure 4.16: Fault localization results using voltage-balancing control when the fault 

occurred at t=1.015s in cell 6 switch T2 and under load current iload=150A 

 

 

4.4.2  Approach2: Data Preprocessing with Capacitor Voltages as State Variables 

In contrast to the direct measurement and utilization of the data variables, data 

preprocessing can accentuate the discrepancy between the behaviors of different capacitor 

voltages under various faulty conditions. The capability to correctly localize the faulty cells 

can be increased by providing additional information that deems useful in differentiating 

the various states of the capacitor voltages. The fault impact alters the normal behavior of 

the system and impacts the sequence of the inserted and bypassed submodules generated 
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by the controller, which render some cases harder to identify. The involvement of the 

controller can be used to narrow the error location and as it can be seen from the different 

simulations, the controller tends to lower the capacitor voltages of the healthy arm in order 

to keep the balance between the two arms, which in consequence leads to the increase of 

the capacitor voltages of the faulty arm (the arm containing the faulty switch) since the 

total power received by the converter remained unchanged. Hence, the sum of the capacitor 

voltages of the faulty arm increases and the difference between the faulty and the healthy 

arm is always positive. Therefore, the attitude of the controller when the open circuit fault 

occurs provides a hint about the faulty arm. In contrast, the usage of the Euclidian distance, 

the cubic distance, and the normalization with regards of other capacitor voltages reduce 

the difference in behavior between the upper and lower switches of the faulty cell.  

4.4.2.1 Fault localization under MPC control 

In Figure 4.17, the simulation results of the fault localization using data 

preprocessing on a four cells converter using MPC controller at t= 3.02s under load current 

of 2A. It can be seen that the cumulative error corresponding to the faulty switch E4 T2 is 

the lowest and the closest curve is the one corresponding to the upper switch of the same 

cell.  
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Figure 4.17: Fault localization results using MPC control when the fault occurred at t=3.02s 

in cell 4 switch T2 and under load current iload=2A 

 

 

In Figure 4.18, an open circuit fault is injected in the upper switch T1 of cell 3, at 

t=3.02s and the identified power switch is the lower switch of the same cell, which confirms 

the notes made earlier about misclassification within the same cell. This misclassification 

is acceptable in general, considering that the isolation procedure disengages or bypass the 

whole cell containing the faulty switch. The analysis of exact faulty switch can be done 

offline at a later stage when the cell is disconnected from the converter. 
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The success rate, in this case, is much higher that than the direct usage of full state 

variables case. All the simulations done using this technique achieved 100% accuracy in 

faulty cell localization but a lower accuracy if the exact faulty switch is considered.  

 

 

 
 

Figure 4.18: Fault localization results using MPC control when the fault occurred at t=3.02s 

in cell 3 switch T1 and under load current iload=2A 
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4.4.2.2 Fault Localization under voltage-balancing Control 

To test the performance of the adopted technique, a converter with a higher number 

of cells (eight cells) and with different control scheme is used. The same accuracy (100%) 

is achieved when considering the faulty cell localization. In contrast, lower accuracy is 

obtained in faulty switch localization since the data preprocessing enlarges the discrepancy 

between the faulty cell and the other cells and, in contrast, it reduces the differences 

between the upper and lower cell switches within the faulty cell. Figure 4.19 showcases 

the simulation results of the KPCA using preprocessed data as input when an open circuit 

fault occurs in cell 8 switch T2 at t=1.02s under load current iload=160A. As it can be seen, 

the projection error corresponding to the faulty switch is much lower than the projection 

errors produced by the other healthy capacitor voltages. 
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Figure 4.19: Fault localization results using voltage-balancing control when the fault 

occurred at t=1.02s in cell 8 switch T2 and under load current iload=160A 

 

 

4.4.3 Approach3: Partial KPCA  

The partial KPCA (PKPCA) has a significant advantage over the two previous 

approaches, that is, the training phase is performed on the healthy data solely, that means 

there is no need to acquire the faulty data corresponding to each switch, which may deem 

hard to get. The PKPCA, on the other hand, can only verify the status of the cells, not the 

switches, which is acceptable considering what has been stated before; post localization 

procedure, the whole cell would be isolated. Simulation results of the PKPCA in the case 
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of voltage-balancing control are illustrated in Figure 4.20 and Figure 4.21. Although 

PKPCA managed to correctly locate most of the open circuit faults in case of voltage-

balancing control, it failed to spot these faults in the case of MPC control and the success 

rate in identifying the faulty switch was low. Thus, it can be concluded that the PKPCA is 

not suitable for this type of control.      

 

 

 
 

Figure 4.20: Fault localization results using voltage-balancing control when the fault 

occurred at t=1.005s in cell 4 switch T1 and under load current iload=150A 
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Figure 4.21: Fault localization results using voltage-balancing control when the fault 

occurred at t=1.05s in cell 5 switch T1 and under load current iload=160A 

 

 

4.4.4 Performance Comparison 

To recapitulate the simulation results of the presented approaches, their overall 

performance, in terms of speed, complexity, computational time and effectiveness, should 

be compared. Table 4.3 illustrates the overall performance of the three approaches based 

on the aforementioned criteria. It should be noted that the terms Low, Medium and High 

are used to compare the performance of approaches between each other.  
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It may seem that the complexity to design the second approach is higher than the first 

one given that there will be a data preprocessing, but in fact, tuning the KPCA parameters 

in the first approach requires much more effort and time since a much smaller range of the 

kernel width σ allow good performance. The complexity of the third approach is lower 

since the data used to train and test the KPCA is the data corresponding to the normal 

behavior of the system, which is always available even in practical work. 

The computational time required by the second approach is higher than the both the 

first and the third approaches given the data preprocessing requirement. In contrast, the 

first approach works only on the cell level, which decreases the number of KPCA modules 

to half and thus requires much less time to execute. 

 

 

Table 4.3: Performance comparison between the three adopted approaches of KPCA 

 
 Approach1 Approach2 Approach3 

Complexity High Medium Low 

Computational time Medium High Low 

Localization speed High High High 

Success rate (Cell level) Medium High Low 

 

 

Although the design of the three approaches imposes the utilization of fixed 

localization time instead of the usage of a threshold, it is always good to quantify the 

performance of the presented approaches in terms of average and highest localization time 
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for both MMC configurations. Table 4.4, illustrate the localization performance of different 

approaches in terms of localization speed. It is clear that all the approaches have close 

localization speed in overall. However, the largest localization time recorded in case of 

voltage-balancing control is 200ms using, which is much higher than the average 

localization time. In fact, most of the faults were localized in brief time, which is an 

indication that the procedure is indeed capable of fast localization. On the other hand, the 

localization time of the third approach using MPC was rolled out of the calculations 

because of the low success rate in fault localization. 

 

 

Table 4.4: Comparison of localization speed for the three approaches under two control 

configurations 

 
  MPC Voltage-Balancing 

Approach1 

Average 45ms 25ms 

Highest 140ms 200ms 

Approach2 

Average 21ms 35ms 

Highest 88ms 200ms 

Approach3 

Average NA 41ms  

Highest NA 200ms 
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The success rate is one of the most critical features that fault localization procedure 

has to offer since misclassifications lead to catastrophic results that can disrupt the normal 

operation of the whole system and can cause a total blackout. In this context, the 

performance of the three techniques is evaluated. As shown in Table 4.5, the accuracy of 

the localization procedure differs from one approach to the other. The most efficient 

approach is the second one that takes into account data preprocessing before performing 

the KPCA procedure. On the other hand, the lowest accuracy is associated with the third 

approach, which has a reasonable misclassification rate in the case of voltage-balancing 

control but the performance degrades drastically when the MPC control is deployed. One 

reason that can explain the low localization rate of the PKPCA is that the MPC controller 

has more significant interference with the fault behavior, which prevents the proper 

localization process. Besides, the training set of the two first approaches is a faulty set, 

which allows the KPCA to implicitly learn the converter behavior and thus, enhancing the 

localization performance.  

 

 

Table 4.5: Cells localization accuracy of different approaches under two control topologies 

 
 MPC Voltage-Balancing 

Approach1 100% 97.5% 

Approach2 100% 100% 

Approach3 50% 92.5% 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

Modular Multilevel Converter is gaining significant interest in both industrial and 

scientific world. However, its specific structure and ability to address a significant amount 

of power require the integration of a considerable number of power switches, the most 

vulnerable component in multilevel converters. Therefore, to ensure the proper operation 

of the system, faults and abnormalities have to be detected and cleared at the earliest. This 

thesis has investigated the fault detection and localization of open circuit faults in power 

switches based on two multivariate statistical techniques, namely, the Principal Component 

Analysis and its nonlinear counterpart the Kernel Principal Component Analysis. The 

leverage of such techniques lies in the fact that they do not need the mathematical model 

of the system, that is, they are data-driven techniques. To ensure the optimum performance 

in fault detection, both procedures have to be trained on the normal operation of the 

converter, in order to extract the most valuable information and create a model that can 

separate the healthy and the faulty patterns. To test the performance of the adopted 

methodologies, two different control strategies are used along with two MMCs with 

different sizes and ratings. Both techniques showed high performance in detecting the 

abnormalities that alter the normal behavior of the converter. Nevertheless, working under 

a broad range of power rating may either render the detection slower or rise the probability 

of false alarms. However, the working boundaries of the converter are already known for 

proper operations of the converter and stability of the system, which allow the use of 

different thresholds for specific working ranges.  
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The advantages of PCA over its nonlinear counterpart is the simple formulation and 

the low computational effort in the monitoring phase along with a lower number of 

parameters to be tuned. Nevertheless, the KPCA strength lies in dealing with nonlinear 

systems. Therefore, while PCA failed to perform fault localization, three approaches were 

proposed using KPCA to overcome the limitations of PCA. The first approach considered 

the state variables of the system, namely, the capacitor voltages, and the circulating and 

load currents as inputs to the KPCA models, and the training is performed on the faulty 

data corresponding to each of the power switches. The second approach considered data 

preprocessing before proceeding to the KPCA models, in order to accentuate the 

discrepancy between the residuals of each model, which allow better localization 

performance. The third approach is the partial KPCA, which omits one state variable from 

the entry of each KPCA model and has the advantage to use the healthy data as the training 

set. The simulation results showed that data preprocessing enhances the classification 

procedure and tracks the fault back to its originating cell. However, this procedure revokes 

the difference between the behavior of the upper and lower switches of the faulty cell, 

which results in misclassifications within the same cell. Besides, this approach has the most 

considerable computational burden in comparison to the standard full state KPCA and the 

partial KPCA. On the other hand, partial KPCA had recorded a low success rate 50% and 

92.5% for fault detection in MMC using MPC and voltage-balancing respectively, in 

comparison to 100% and 97.5% for the standard full state KPCA and 100% for both control 

techniques using data preprocessing. The localization time for all the approaches was 

similar that is less than or equal to 200ms. Hence, if an overall assessment can be made, 

one can conclude that if given the needed computational resources, the data preprocessing 
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before KPCA modeling is the best option for proper localization. 

5.2 Future Work 

The models presented in this thesis can be taken to the next step to explore more 

potentials under real situations. For instance, if a real system is considered, in the fault 

detection procedure, the relationship between the threshold and the working range can be 

neatly presented such that faults can be detected at an optimum time for both PCA and 

KPCA. Besides, considering other state variables as input to the standard KPCA can 

enhance its localization speed and accuracy especially that the KPCA does not depend on 

the size of input parameters but the number of samples considered. Similarly, finding more 

relationships between the input data in the preprocessing phase if the approach 2 for fault 

localization is considered, can reduce the localization time and avoid misclassifications 

within the faulty cell. Finally, upon fault occurrence, the controller tries to bring back the 

system to stability and thus affects the dynamics of the fault propagation, thus, finding a 

way to avoid the controller interference with the fault effect can enhance the overall 

performance of every data-driven localization procedure.   



  
   

104 
 

REFERENCES 

[1] L. M. Moore and H. N. Post, “Five Years of Operating Experience at a Large , 

Utility-scale Photovoltaic Generating Plant z,” no. December 2007, pp. 249–259, 

2008. 

[2] P. Tavner, “SUPERGEN Wind 2011 General Assembly,” SUPERGEN Wind 2011 

General Assembly, no. March, 2011. 

[3] H. Wang and M. Liserre, “Toward Reliable Power Electronics,” no. june, pp. 17–

26, 2013. 

[4] W. Energy, “Reliability of Different Wind Turbine Concepts with Relevance to 

Offshore Application,” no. April, 2008. 

[5] S. Sheng and NREL, “Report on Wind Turbine Subsystem Reliability - A Survey of 

Various Databases,” NREL/PR-5000-59111,National Renewable Energy 

Laboratory, 2013. 

[6] H. Wang and F. Blaabjerg, “Design for Reliability of Power Electronic Systems,” 

2012. 

[7] S. Yang et al., “An Industry-Based Survey of Reliability in Power Electronic 

Converters,” vol. 47, no. 3, pp. 1441–1451, 2011. 

[8] ZVEI, Handbook for Robustness Validation of Automotive Electrical / Electronic 

Modules. 2008. 

[9] D. Miljković, “Fault Detection Methods: A Literature Survey,” Proceedings of the 

34th International Convention MIPRO, pp. 750–755, 2011. 

[10] S. Yang, D. Xiang, A. Bryant, P. Mawby, and S. Member, “Condition Monitoring 



  
   

105 
 

for Device Reliability in Power Electronic Converters : A Review,” vol. 25, no. 11, 

pp. 2734–2752, 2010. 

[11] V. K. Sundaramoorthy, E. Bianda, and G. J. Riedel, “A study to improve IGBT 

reliability in power electronics applications,” 2015 International Semiconductor 

Conference (CAS), no. March, pp. 19–26, 2015. 

[12] Z. Sarkany et al., “Failure Prediction of IGBT Modules Based on Power Cycling 

Tests,” vol. 2013, pp. 270–273, 2013. 

[13] C. Busca, “Modeling Lifetime of High Power IGBTs in Wind Power Applications 

– An overview,” pp. 1408–1413, 2011. 

[14] M. Ciappa and W. Fichtner, “Lifetime Prediction of IGBT Modules for Traction 

Applications,” pp. 0–6, 2000. 

[15] R. Wu, F. Blaabjerg, H. Wang, M. Liserre, and F. Iannuzzo, “Catastrophic failure 

and fault-tolerant design of IGBT power electronic converters - An overview,” in 

IECON Proceedings (Industrial Electronics Conference), 2013, pp. 507–513. 

[16] B. Lu, S. Member, and S. K. Sharma, “A Literature Review of IGBT Fault 

Diagnostic and Protection Methods for Power Inverters,” IEEE Transactions on 

Industry Applications, vol. 45, no. 5, pp. 1770–1777, 2009. 

[17] G. P. Adam, T. C. Lim, S. J. Finney, and B. W. Williams, “Voltage source converter 

in high voltage applications: multilevel versus two-level converters,” 9th IET 

International Conference on AC and DC Power Transmission (ACDC 2010), pp. 

P03–P03, 2010. 

[18] A. Lesnicar and R. Marquardt, “An innovative modular multilevel converter 

topology suitable for a wide power range,” 2003 IEEE Bologna PowerTech - 



  
   

106 
 

Conference Proceedings, vol. 3, pp. 272–277, 2003. 

[19] G. P. Adam, O. Anaya-Lara, G. Burt, S. J. Finney, and B. W. Williams, 

“Comparison between flying capacitor and modular multilevel inverters,” 2009 35th 

Annual Conference of IEEE Industrial Electronics, pp. 271–276, 2009. 

[20] S. Rohner, S. Bernet, M. Hiller, and R. Sommer, “Modulation, losses, and 

semiconductor requirements of modular multilevel converters,” IEEE Transactions 

on Industrial Electronics, vol. 57, no. 8, pp. 2633–2642, 2010. 

[21] S. Debnath, J. Qin, B. Bahrani, M. Saeedifard, and P. Barbosa, “Operation, Control, 

and Applications of the Modular Multilevel Converter: A Review,” IEEE 

Transactions on Power Electronics, vol. PP, no. 99, pp. 1–1, 2014. 

[22] S. P. Teeuwsen, “Modeling the trans bay cable project as voltage-sourced converter 

with modular multilevel converter design,” IEEE Power and Energy Society 

General Meeting, pp. 1–8, 2011. 

[23] S. Sau, S. Karmakar, and B. G. Fernandes, “Reduction of Capacitor Ripple Voltage 

and Current in Modular Multilevel Converter based Variable Speed Drives,” IECON 

2017 - 43rd Annual conference of the IEEE, pp. 1451–1456, 2017. 

[24] Y. Chen, Z. Li, S. Zhao, X. Wei, and Y. Kang, “Design and Implementation of a 

Modular Multilevel Converter with Hierarchical Redundancy Ability for Electric 

Ship MVDC System,” IEEE Journal of Emerging and Selected Topics in Power 

Electronics, vol. 5, no. 1, pp. 189–202, 2017. 

[25] M. Vasiladiotis, A. Christe, T. Geyer, and A. Faulstich, “Decoupled Modulation 

Concept for Three-to-Single-Phase Direct AC / AC Modular Multilevel Converters 

for Railway Interties The decoupled modulation concept,” pp. 1–9. 



  
   

107 
 

[26] L. Liu and N. Dai, “Hybrid railway power conditioner based on half-bridge modular 

multilevel converter,” ECCE 2016 - IEEE Energy Conversion Congress and 

Exposition, Proceedings, 2016. 

[27] A. K. Sahoo, R. Otero-De-Leon, and N. Mohan, “Review of modular multilevel 

converters for teaching a graduate-level course of power electronics in power 

systems,” 45th North American Power Symposium, NAPS 2013, 2013. 

[28] S. Madichetty and A. Dasgupta, “Modular Multilevel Converters Part-I : A Review 

on Topologies , Modulation , Modeling and Control Schemes,” International 

Journal of Power Electronics and Drive System (IJPEDS), vol. 4, no. 1, pp. 36–50, 

2014. 

[29] M. M. Harin, V. Vanitha, and M. Jayakumar, “Comparison of PWM Techniques for 

a three level Modular Multilevel Inverter,” Energy Procedia, vol. 117, pp. 666–673, 

2017. 

[30] A. Ghazanfari and Y. A. R. I. Mohamed, “A Resilient Framework for Fault-Tolerant 

Operation of Modular Multilevel Converters,” IEEE Transactions on Industrial 

Electronics, vol. 63, no. 5, pp. 2669–2678, 2016. 

[31] V. Najmi, H. Nademi, and R. Burgos, “An Adaptive Backstepping Observer for 

Modular Multilevel Converter,” pp. 2115–2120, 2014. 

[32] M. Rejas, L. Mathe, P. D. Burlacu, H. Pereira, M. Bongiorno, and R. Teodorescu, 

“Performance Comparison of Phase Shifted PWM and Sorting Method for Modular 

Multilevel Converters II Description of PSC-PWM technique and sorting algorithm 

Different strategies have been proposed in the literature to control the switches 

from,” 2015 17th European Conference on Power Electronics and Applications 



  
   

108 
 

(EPE’15 ECCE-Europe), no. Cd, pp. 1–10, 2015. 

[33] M. Hagiwara and H. Akagi, “PWM control and experiment of modular multilevel 

converters,” Power Electronics Specialists Conference, vol. 24, no. 7, pp. 154–161, 

2008. 

[34] B. J. Wei, “Review of Current Control Strategies in Modular Multilevel Converter,” 

no. 4409124, 2016. 

[35] A. Al-wedami, K. Al-hosani, and A. R. Beig, “Sliding Mode Observer of 

Submodular Capacitor Voltages in Modular Multilevel Converter,” no. Mmc, 2015. 

[36] G. P. Adam, O. Anaya-Lara, G. M. Burt, D. Telford, B. W. Williams, and J. R. 

McDonald, “Modular multilevel inverter: pulse width modulation and capacitor 

balancing technique,” IET Power Electronics, vol. 3, no. 5, p. 702, 2010. 

[37] F. Martinez-Rodrigo, D. Ramirez, A. Rey-Boue, S. de Pablo, and L. Herrero-de 

Lucas, “Modular Multilevel Converters: Control and Applications,” Energies, vol. 

10, no. 11, p. 1709, 2017. 

[38] L. Ben-Brahim, A. Gastli, M. Trabelsi, K. A. Ghazi, M. Houchati, and H. Abu-Rub, 

“Modular Multilevel Converter Circulating Current Reduction Using Model 

Predictive Control,” IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 

3857–3866, 2016. 

[39] S. Almasabi, N. Nguyen, and J. Mitra, “Control of a Multilevel Modular Converter 

using a state observer,” 12th IEEE International Conference Electronics, Energy, 

Environment, Communication, Computer, Control: (E3-C3), INDICON 2015, 2016. 

[40] A. Lachichi and L. Harnefors, “Comparative analysis of control strategies for 

modular multilevel converters,” 2011 IEEE Ninth International Conference on 



  
   

109 
 

Power Electronics and Drive Systems, no. December, pp. 538–542, 2011. 

[41] X. Zhang, J. Huang, Y. Sun, X. Tong, and Y. Rong, “Backstepping Controller for 

Modular Multilevel Converter,” pp. 1–7. 

[42] M. Abdelsalam, M. I. Marei, and S. B. Tennakoon, “An Integrated Control Strategy 

with Fault Detection and Tolerant Control Capability Based on Capacitor Voltage 

Estimation for Modular Multilevel Converters,” IEEE Transactions on Industry 

Applications, vol. 53, no. 3, pp. 2840–2851, 2017. 

[43] J. R. Lebre, R. F. Dias, and E. H. Watanabe, “POD-PWM applied to circulating 

current control in HVDC-MMC based system,” 2015 IEEE 13th Brazilian Power 

Electronics Conference and 1st Southern Power Electronics Conference, 

COBEP/SPEC 2016, 2015. 

[44] J. Li, G. Konstantinou, H. R. Wickramasinghe, J. Pou, and X. Jin, “Offset PWM in 

Modular Multilevel Converters for Capacitor Voltage Reduction under Grid 

Imbalances,” pp. 4538–4543, 2017. 

[45] Y. Sun, C. A. Teixeira, D. G. Holmes, B. P. McGrath, and J. Zhao, “Low Order 

Circulating Current Suppression of PWM based Modular Multilevel Converters 

Using DC-link Voltage Compensation,” IEEE Transactions on Power Electronics, 

vol. 33, no. 1, pp. 1–1, 2017. 

[46] F. Simon, S. Fuchs, and S. Beck, “High Output Voltage Precision PWM for Modular 

Multilevel Converters.” 

[47] D. Li, Y. Sun, J. Zhao, and Z. Ji, “A Modified Voltage Measurement Technique for 

the Converters Using Module Grouping,” pp. 589–594, 2017. 

[48] P. I. R. U. Ulg, E. Sl, and D. F. Dh, “$q ,psuryhg 6sdfh 9hfwru 3:0 iru *ulg 



  
   

110 
 

&rqqhfwhg 00&,” vol. 5, pp. 3–8. 

[49] M. Saeedifard and R. Iravani, “Dynamic performance of a modular multilevel back-

to-back HVDC system,” IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 

2903–2912, 2010. 

[50] M. Winkelnkemper, A. Korn, and P. Steimer, “A modular direct converter for 

transformerless rail interties,” IEEE International Symposium on Industrial 

Electronics, pp. 562–567, 2010. 

[51] M. Salehifar, R. S. Arashloo, M. Moreno-Eguilaz, V. Sala, and L. Romeral, “A 

simple and robust method for open switch fault detection in power converters,” 2013 

9th IEEE International Symposium on Diagnostics for Electric Machines, Power 

Electronics and Drives (SDEMPED), pp. 461–468, 2013. 

[52] A. Yazdani, H. Sepahvand, M. L. Crow, and M. Ferdowsi, “Fault Detection and 

Mitigation in Multilevel Converter STATCOMs,” IEEE Transactions on Industrial 

Electronics, vol. 58, no. 4, pp. 1307–1315, 2011. 

[53] S. Sedghi, A. Dastfan, and A. Ahmadyfard, “Fault detection and reconfiguration of 

a modular multilevel inverter using histogram analysis and neural network,” 

International Review on Modelling and Simulations, vol. 4, no. 5, pp. 2057–2065, 

2011. 

[54] M. Alavi, D. Wang, and M. Luo, “Short-circuit fault diagnosis for three-phase 

inverters based on voltage-space patterns,” IEEE Transactions on Industrial 

Electronics, vol. 61, no. 10, pp. 5558–5569, 2014. 

[55] G. T. Son et al., “Design and control of a modular multilevel HVDC converter with 

redundant power modules for noninterruptible energy transfer,” IEEE Transactions 



  
   

111 
 

on Power Delivery, vol. 27, no. 3, pp. 1611–1619, 2012. 

[56] R. Picas, S. Member, J. Zaragoza, J. Pou, S. Member, and S. Ceballos, “Reliable 

Modular Multilevel Converter Fault Detection with Redundant Voltage Sensor,” 

vol. 8993, no. c, pp. 1–13, 2016. 

[57] Q. Yang, J. Qin, and M. Saeedifard, “SubModule Failure Detection Methods for the 

Modular Multilevel Converter,” pp. 3331–3337, 2015. 

[58] S. Shao, A. J. Watson, J. C. Clare, S. Member, P. W. Wheeler, and S. Member, 

“Robustness Analysis and Experimental Validation of a Fault Detection and 

Isolation Method for the Modular Multilevel Converter,” vol. 31, no. 5, pp. 3794–

3805, 2016. 

[59] H. Liu, P. C. Loh, F. Blaabjerg, L. Hui, L. Poh Chiang, and F. Blaabjerg, “Review 

of fault diagnosis and fault-tolerant control for modular multilevel converter of 

HVDC,” Industrial Electronics Society, IECON 2013 - 39th Annual Conference of 

the IEEE, pp. 1242–1247, 2013. 

[60] R. Picas, S. Member, J. Zaragoza, J. Pou, S. Member, and S. Ceballos, “Reliable 

Modular Multilevel Converter Fault Detection With Redundant Voltage Sensor,” 

vol. 32, no. 1, pp. 39–51, 2017. 

[61] H. Salimian, H. Iman-eini, and S. Farhangi, “Open-Circuit Fault Detection and 

Localization in Modular Multilevel Converter,” no. February, pp. 3–4, 2015. 

[62] X. Hu, J. Zhang, S. Xu, and Y. Jiang, “Fault Diagnosis of Modular Multilevel 

Converters Based on Extended State Observer,” vol. 0, no. c, 2016. 

[63] B. Li, S. Shi, B. Wang, G. Wang, W. Wang, and D. Xu, “Fault diagnosis and tolerant 

control of single IGBT open-circuit failure in modular multilevel converters,” IEEE 



  
   

112 
 

Transactions on Power Electronics, vol. 31, no. 4, pp. 3165–3176, 2016. 

[64] S. Shao, P. W. Wheeler, J. C. Clare, and A. J. Watson, “Fault Detection for Modular 

Multilevel Converters Based on Sliding Mode Observer,” vol. 28, no. 11, pp. 4867–

4872, 2013. 

[65] K. Li, Z. Zhao, L. Yuan, S. Lu, and Y. Jiang, “Fault detection and tolerant control 

of open-circuit failure in MMC with full-bridge sub-modules,” ECCE 2016 - IEEE 

Energy Conversion Congress and Exposition, Proceedings, 2016. 

[66] F. Deng, Z. Chen, S. Member, and M. R. Khan, “Fault Detection and Localization 

Method for Modular Multilevel Converters,” vol. 30, no. 5, pp. 2721–2732, 2015. 

[67] S. Haghnazari, M. Khodabandeh, and M. R. Zolghadri, “Fast fault detection method 

for modular multilevel converter semiconductor power switches,” pp. 165–174, 

2015. 

[68] X. Hu, J. Zhang, S. Xu, and J. Hang, “Extended State Observer based Fault 

Detection and Location Method for Modular Mu l tilevel Converters,” pp. 0–5, 

2016. 

[69] S. Shao, J. C. Clare, A. J. Watson, and P. W. Wheeler, “Detection and isolation of 

multiple faults in a modular multilevel converter based on a sliding mode observer,” 

2014 IEEE Energy Conversion Congress and Exposition (ECCE), no. 3, pp. 3491–

3495, 2014. 

[70] Q. Yang, J. Qin, and M. Saeedifard, “Analysis, Detection, and Location of Open-

Switch Submodule Failures in a Modular Multilevel Converter,” IEEE Transactions 

on Power Delivery, vol. 31, no. 1, pp. 155–164, 2016. 

[71] M. Abdelsalam, S. B. Tennakoon, A. L. Griffiths, and M. I. Marei, “A smart fault 



  
   

113 
 

detection and localization strategy of modular multi-level converters for HVDC 

networks,” IET Conference Publications, vol. 2016, no. CP694, pp. 1–6, 2016. 

[72] S. Haghnazari, M. Shahbazi, and M. R. Zolghadri, “A new fault detection method 

for modular multilevel converter semiconductor power switches,” in IECON 2015 - 

41st Annual Conference of the IEEE Industrial Electronics Society, 2015, pp. 50–

55. 

[73] S. Haghnazari and M. Shahbazi, “A New Fault Detection Method for Modular 

Multilevel Converter Semiconductor Power Switches,” pp. 50–55, 2015. 

[74] S. Shao, P. W. Wheeler, J. C. Clare, and A. J. Watson, “Open-circuit fault detection 

and isolation for modular multilevel converter based on sliding mode observer,” 

2013 15th European Conference on Power Electronics and Applications (EPE), pp. 

1–9, 2013. 

[75] D. Zhou, S. Yang, and Y. Tang, “A Voltage-Based Open-Circuit Fault Detection 

and Isolation Approach for Modular Multilevel Converters with Model Predictive 

Control,” IEEE Transactions on Power Electronics, vol. 8993, no. c, pp. 1–9, 2018. 

[76] M. M. Abdallah, “Fault Detection and Isolation of MMC under Submodule Open 

Circuit Fault,” no. December, pp. 19–21, 2017. 

[77] M. Abdelsalam, H. Diab, S. Tennakoon, A. Griffiths, and M. I. Marei, “Detection 

and diagnosis of sub-module faults for modular multilevel converters,” in 2016 51st 

International Universities Power Engineering Conference (UPEC), 2016, pp. 1–6. 

[78] S. Yang, Y. Tang, and P. Wang, “Open-circuit fault diagnosis of switching devices 

in a modular multilevel converter with distributed control,” in 2017 IEEE Energy 

Conversion Congress and Exposition (ECCE), 2017, pp. 4208–4214. 



  
   

114 
 

[79] K. Xu, S. Xie, Y. Yan, Z. Zhang, B. Zhang, and Q. Qian, “Fault detection method 

for IGBT open-circuit faults in the modular multilevel converter based on predictive 

model,” in 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 2017, 

no. 2, pp. 4190–4195. 

[80] J. Wang, H. Ma, and Z. Bai, “A Submodule Fault Ride-Through Strategy for 

Modular Multilevel Converters with Nearest Level Modulation,” IEEE 

Transactions on Power Electronics, vol. 33, no. 2, pp. 1597–1608, 2018. 

[81] D. Garcia, “Fault detection using Principal Component Analysis (PCA) in a 

wastewater treatment plant (WWTP),” 2009. 

[82] T. Villegas, M. J. Fuente, and M. Rodríguez, “Principal component analysis for fault 

detection and diagnosis. experience with a pilot plant,” Proceedings of the 9th 

WSEAS International conference on computational intelligence, man-machine 

systems and cybernetics, pp. 147–152, 2010. 

[83] G. R. Halligan and S. Jagannathan, “PCA-based fault isolation and prognosis with 

application to pump,” International Journal of Advanced Manufacturing 

Technology, vol. 55, no. 5–8, pp. 699–707, 2011. 

[84] S. M. Holland, “Principal components analysis.,” Methods in molecular biology 

(Clifton, N.J.), vol. 930, no. May, pp. 527–47, 2013. 

[85] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdisciplinary 

Reviews: Computational Statistics, vol. 2, no. 4, pp. 433–459, 2010. 

[86] D. Mining, “Principal Components : Mathematics , Example , Interpretation,” no. 

September, 2009. 

[87] M. Ahmed, M. Baqqar, F. Gu, and A. D. Ball, “Fault detection and diagnosis using 



  
   

115 
 

Principal Component Analysis of vibration data from a reciprocating compressor,” 

Proceedings of the 2012 UKACC International Conference on Control, CONTROL 

2012, no. September, pp. 461–466, 2012. 

[88] A. Alkaya and I. Eker, “Wavelet - Based principal component analysis for process 

monitoring with experimental application,” International Conference on Electrical 

and Electronics Engineering, pp. 634–638, 2013. 

[89] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear Component Analysis as a 

Kernel Eigenvalue Problem,” Neural Computation, vol. 10, no. 5, pp. 1299–1319, 

1998. 

[90] M. Navi, M. R. Davoodi, and N. Meskin, “Sensor fault detection and isolation of an 

industrial gas turbine using partial kernel PCA,” IFAC-PapersOnLine, vol. 28, no. 

21, pp. 1389–1396, 2015. 

[91] B. Scholkopf,  a J. Smola, and K. R. Muller, “Kernel Principal Component 

Analysis,” Computer Vision And Mathematical Methods In Medical And Biomedical 

Image Analysis, vol. 1327, pp. 583–588, 2012. 

[92] M. H. Nguyen and F. De Torre, “Robust Kernel Principal Component Analysis,” 

pp. 1–8. 

[93] M. Z. Sheriff, M. N. Karim, M. N. Nounou, H. Nounou, and M. Mansouri, “Fault 

detection of nonlinear systems using an improved KPCA method,” 2017 4th 

International Conference on Control, Decision and Information Technologies 

(CoDIT), pp. 0036–0041, 2017. 

[94] J. M. Lee, C. K. Yoo, and I. B. Lee, “Fault detection of batch processes using 

multiway kernel principal component analysis,” Computers and Chemical 



  
   

116 
 

Engineering, vol. 28, no. 9, pp. 1837–1847, 2004. 

[95] S. W. Choi, C. Lee, J. M. Lee, J. H. Park, and I. B. Lee, “Fault detection and 

identification of nonlinear processes based on kernel PCA,” Chemometrics and 

Intelligent Laboratory Systems, vol. 75, no. 1, pp. 55–67, 2005. 

[96] R. Osadchy, “Kernel PCA - Unsupervised Learning 2011,” 2011. 

[97] J. M. Lee, S. J. Qin, and I. B. Lee, “Fault Detection of Non-Linear Processes Using 

Kernel Independent Component Analysis,” The Canadian Journal of Chemical 

Engineering, vol. 85, no. 4, pp. 526–536, 2007. 

[98] V. H. Nguyen and J. C. Golinval, “Fault detection based on Kernel Principal 

Component Analysis,” Engineering Structures, vol. 32, no. 11, pp. 3683–3691, 

2010. 

[99] P. Cui, J. Li, and G. Wang, “Improved kernel principal component analysis for fault 

detection,” Expert Systems with Applications, vol. 34, no. 2, pp. 1210–1219, 2008. 

[100] M. A. Bin Shams, “Fault Identification using Kernel Principle Component 

Analysis,” The 18th IFAC World Congress, pp. 4320–4325, 2011. 

[101] M. Navi, M. Davoodi, and N. Meskin, “Sensor Fault Detection and Isolation of an 

Autonomous Underwater Vehicle Using Partial Kernel PCA,” in IEEE Conference 

on Prognostics and Health Management (PHM), 2015, pp. 1–9. 

[102] A. Nowicki, M. Grochowski, and K. Duzinkiewicz, “Data-driven models for fault 

detection using kernel PCA: A water distribution system case study,” International 

Journal of Applied Mathematics and Computer Science, vol. 22, no. 4, pp. 939–949, 

2012. 


