
QATAR UNIVERSITY 

   COLLEGE OF ENGINEERING 

QUEUEING THEORY BASED KUBERNETES AUTOSCALER 

BY 

KHALED NABIL KADOURA 

A Project Submitted to 

the Faculty of  the  College of 

Engineering 

in Partial Fulfillment 

of the Requirements 

for the Degree of 

Masters of Science in Computing 

 January   2018 

© 2018 Khaled Nabil Kadoura. All Rights Reserved. 



ii 

COMMITTEE PAGE 

The members of the Committee approve the Project of Khaled Nabil Kadoura defended on 

27/12/2017. 

Dr. Abdelkarim Erradi 

 Thesis/Dissertation Supervisor 

Dr. Qutaibah Malluhi 

 Committee Member 

Dr. Osama Halabi 

Committee Member 

Dr. Khaled Khan 

Committee Member 



iii 

Abstract 

KADOURA, KHALED, K., Masters  : January  : 2018, Masters of Science in Computing

Title: QUEUEING THEORY BASED KUBERNETES AUTOSCALER 

Supervisor of Project: Abdelkarim, Erradi. 

The microservices architecture is emerging as a new architectural style for designing and 

developing applications by composing loosely coupled services that exchange standard 

messages using standard interfaces and protocols. Docker provides a platform to automate 

microservices deployment into isolated containers. Kubernetes automates the deployment, 

scaling and management of Docker containers. Unlike current virtual machines (VM) 

based deployment, containerization allows more effective scaling of resources to meet the 

requirements of varying workloads.  Benefiting from the research advances in VMs 

consolidation, placement and auto-scaling approaches, as well as the queueing theory, our 

work provides a custom queueing theory based auto-scaler for Kubernetes, which 

dynamically make vertical and horizontal scaling decisions. The auto-scaler goal is to 

achieve the desired Quality of Service (QoS) while optimizing the cloud resources usage. 

Keywords- Microservices; Docker; Container; Kubernetes; Auto-scaling; Queueing 

Theory 



iv 

Table of Contents 

List of Figures .................................................................................................................... vii 

List of Tables .................................................................................................................... viii 

List of Templates .............................................................................................................. viii 

List of Algorithms ............................................................................................................. viii 

Introduction ......................................................................................................................... 1 

Problem Statement ........................................................................................................... 4 

Contributions ................................................................................................................... 4 

Background ......................................................................................................................... 5 

Docker.............................................................................................................................. 5 

Kubernetes ....................................................................................................................... 7 

Pods.............................................................................................................................. 8 

Deployment................................................................................................................ 10 

Services ...................................................................................................................... 11 

Components and Architecture ................................................................................... 12 

Cluster Monitoring..................................................................................................... 13 

Horizontal Pod Auto-Scaler....................................................................................... 15 

Kubernetes API.......................................................................................................... 17 

Related Work .................................................................................................................... 21 

Kubernetes Testbed........................................................................................................... 23 

Testbed Architecture.................................................................................................. 23 



 

v 
 

Testbed Deployment .................................................................................................. 25 

Kubernetes Evaluation ...................................................................................................... 26 

Results Discussion ......................................................................................................... 27 

Problem Formulation ........................................................................................................ 34 

Queuing Theory ............................................................................................................. 34 

Problem Definition ........................................................................................................ 36 

Virtual Machines Auto-Scaling ................................................................................. 39 

Pods Auto-Scaling ..................................................................................................... 40 

Solution Architecture ..................................................................................................... 41 

QAS Internal Components......................................................................................... 43 

QAS External Components........................................................................................ 44 

Solution Implementation ............................................................................................... 44 

Pod Configuration...................................................................................................... 45 

Heapster and InfluxDB .............................................................................................. 45 

Reverse Proxy Agent ................................................................................................. 46 

Heapster Metrics Agent ............................................................................................. 47 

Decision Maker and Communicator .......................................................................... 48 

Experiments and Evaluation ............................................................................................. 51 

Evaluation Setup ............................................................................................................ 51 

Evaluation ...................................................................................................................... 52 



 

vi 
 

Conclusion and Future Work ............................................................................................ 54 

References ......................................................................................................................... 55 

  

  



 

vii 
 

List of Figures 

Figure 1 Virtual Machine vs Containers virtualization ...................................................... 3 

Figure 2 Container-based cluster architecture .................................................................... 6 

Figure 3 Sidecar, Ambassador, and Adapter containers in a pod....................................... 8 

Figure 4 Kubernets architecture diagram. ........................................................................ 13 

Figure 5 Heapster Monitoring within Kubernetes ............................................................ 15 

Figure 6 Kubernets Horizontal Pod Auto-Scaler.............................................................. 16 

Figure 7 AcmeAir basic Architecture............................................................................... 24 

Figure 8 Response Time for different deployments ......................................................... 28 

Figure 9 CPU utilization of Nodes running single application Pod ................................. 29 

Figure 10 CPU usage of Pods........................................................................................... 30 

Figure 11 Response time for optimal Pod size ................................................................. 30 

Figure 12 High resource availability cluster at 150 and 180 request threads................... 31 

Figure 13 Cumulative CPU usage in millicores by frontend application......................... 32 

Figure 14 Network throughput for 40, 100, 150 and 180 request threads........................ 33 

Figure 15 Response time as a function of utilization ....................................................... 36 

Figure 16 Simple Multi-Client to Multi-Server Architecture........................................... 37 

Figure 17 Queueing Theory Based-Auto Scaler Low Level Architecture ....................... 41 

Figure 18 Queueing Theory Based-Auto Scaler High Level Architecture ...................... 42 

Figure 19 Response time comparison between HPA and QAS ....................................... 52 

Figure 20 Number of Pods started by different auto scalers ............................................ 53 

 

 



 

viii 
 

List of Tables 

Table 1 Brief list of Kubernets Commands ...................................................................... 18 

Table 2 List of HTTP verbs available on Kubernetes Resful API.................................... 20 

 

 

List of Templates 

Template 1 Kubernetes Deployment descriptor file ......................................................... 11 

 

 

List of Algorithms 

Algorithm 1 Reverse Proxy Agent .................................................................................... 47 

Algorithm 2 Heapster Metrics Agent ................................................................................ 48 

Algorithm 3 Pods Migration.............................................................................................. 49 

Algorithm 4 Scale Up Algorithm ...................................................................................... 50 

 

  



 

1 
 

Introduction 

Cloud computing is the product of rapid development trend that is accompanied by 

advancements in storage, networking and processing power. Cloud providers are able to 

lease resources such as CPU, and storage in on demand fashion. Virtualization forms the 

foundation of the cloud computing by providing virtualized resources that can be 

dynamically acquired and releasing on demand [1]. 

The benefits of virtualization lie in the ability to dynamically map physical resources to 

virtual applications, this allows multi-tenancy of virtual applications within a single 

physical machine. Such consolidation reduces the operational and managerial costs on 

cloud providers and leasing prices on cloud consumers [2]. One type of virtualization that 

is common today on the cloud is Virtual Machines (VM), VMs runs hardware level 

virtualization [2] where every VM acts as a Guest OS. A system hypervisor (running either 

bare-metal or a part of an OS) allows multiple Guest OS to run a single physical machine, 

by virtualizing hardware for each VM, VMs are able to run independently and in isolation 

[3]. While VMs have long proved to be successful in optimizing the physica l resources, in 

practical cases the workload required from a VM cluster fluctuate, leading to either under-

provisioning or over-provisioning [4]. To accommodate such fluctuations in demand, 

different cloud providers such as Amazon Web Services AWS provide a cluster auto-scaler 

(e.g. Amazon Auto-Scaling AAS), which is a reactive auto-scaler that adjusts VM count 

according to current workload demands. While auto-scaling models do improve system 

availability, and optimizes cost, such models do not adequately address several challenges. 

In many cases, cloud users would experience variable traffic patterns, rapid demand spikes 

and outages with corresponding retry storms, such behavior is a burden on the Quality of 



 

2 
 

Service QoS, especially as initiating and running new instances of VM is a heavy task and 

would requires several minutes, according to a Netflix study, new instances require 10-45 

minutes to run [5]. Many researches and solutions suggest predictive and reactive-

predictive models to account for such fluctuations, such as Scryer [5] and Elastisys which 

provides algorithms for recurring workloads, irregular workloads and reactive provisioning 

[6], while such models lessens the burden, workload in different applications can be 

unpredictable, thus QoS would still suffer from the startup delay of VM instances. 

In addition to the delay caused by VMs startup time, Virtual Machines suffer greatly from 

an overhead as it must run a complete copy of an OS, this overhead, which in turn affects 

the startup time, degrades performance as machine instructions has to be translated for the 

VM to the Host OS, and require a relatively a big storage space. The isolation between 

different VMs within the same physical machine means that inter-VMs communication is 

feasible through networking only (e.g. Ethernet devices) [3]. 

The challenges and limitations of Virtual Machines has paved a way for further 

virtualization research areas. Operating system (OS) level virtualization creates a standard 

encapsulated OS processes and manages them through the OS kernel [2]. Virtualized OS 

containers has been gaining popularity recently due to their better performance and much 

lower overhead in comparison to their VM counterpart. Containers are meant to deliver a 

level of security and isolation similar to VMs while being tightly integrated with the host 

OS, such integration eliminates the need for hardware emulation, which enhances 

performance [3]. As shown in Figure 1(b), OS virtualization, namely container 

virtualization, greatly reduces overhead by eliminating the need to run multiple OS and 

creating virtual hardware. 



 

3 
 

 

Figure 1 Virtual Machine vs Containers virtualization 

 

 

The promising opportunities of OS virtualization brings a whole new set of challenges. 

Due to the similarity between the two types of virtualization, some hardware virtualiza t ion 

solutions can be applicable on OS virtualization. 

The reminder of the paper is organized as follows. In section 2 we provide an overview of 

Docker and its containerization technology and describe Kubernets and its components in 

depth. In section 3 we briefly introduce related work in VM consolidation and auto scaling 

approaches. In section 4 and 5 we implement a testbed on Kubernets which is used to 

evaluate Kubernetes system for a better understanding of its behavior. Later in section 6, 

we introduce queueing theory, define the paper’s problem and how our solution is applied. 

Lastly, sections 7 and 8 the solution is evaluated and compared with Kubernets native auto 

scaler, then we briefly conclude this paper. 



 

4 
 

Problem Statement 

The varying workload on cloud hosted services is a crucial to tackle issue in order to 

maintain a reliable Quality of Service QoS that meets clients’ Service Level Agreements 

SLA. The emergence of containerization platforms, poses new research areas includ ing 

containers’ auto scaling. Using Virtual Machine Auto Scaling techniques, we investigate 

if such models are applicable to Container-based deployments. 

Contributions 

The contributions of this paper are 1) present two open-source related evolving 

technologies, Dockers and Kubernetes, 2) present a Kubernets Auto-Scaler that, based on 

Queueing Theory dynamically scales a cluster vertically and horizontally, 3) Through 

evaluation of different versions of the Auto-Scaler, present a thorough discussion and 

possible future work.  

  



 

5 
 

Background 

Docker 

In OS virtualization, it’s the OS kernel’s responsibility to implement the container 

abstraction and allocate CPU, memory and network shares. Such shares follow allocation 

strategies similar to hardware virtualization, such as dedicated, shared and best effort. The 

containers reply rely on OS kernel for service instead of their own, in some cases a different 

OS kernel may be emulated to processes in a container in order to support backward 

compatibility or support different OS APIs [2]. 

Linux provides a lightweight Linux Containers (LXC) implementation offering an 

operating-system-level virtualization method for running multiple isolated Linux 

containers on a host using a single Linux kernel. Such implementation runs a single process 

inside each container that is assigned a unique PID. It uses Linux kernel cgroups 

functionality for limiting and prioritizing resources (CPU, memory, I/O, network) allocated 

to a container. Additionally, LXC uses Linux namespace isolation functionality to provide 

complete isolation of a container’s view of the operating environment, including process 

trees, networking, user IDs and mounted file systems [3]. This enables providing a private 

IP address for each container and ensures resource isolation. While LXC provides a 

container environment that runs at native speed through a lightweight implementation, it is 

limited to Linux environments, and sufferers in terms of secure containment environment  

[3]. 

Docker is a daemon that manages Linux containers as self-contained images [3]  and 

provides deployment services. By extending LXC, Docker provides an application- leve l 

unified API that runs processes in isolation [7]. To run processes in isolation, Docker 



 

6 
 

utilizes LXC namespaces concept [3], which uses a container specific user namespace to 

ensure that host root privileges are not permitted to a container’s root user. Furthermore, 

using LXC cgroups, Docker limits a container’s resource pool and monitors it [8]. A 

Docker container can be saved and created using a base image, such image can contain a 

prebuilt application or just OS fundamentals [7]. To speed up the deployment of new 

Docker images, simple text files (Dockerfiles) containing build commands are created to 

automate the build process [8]. 

Dockerfiles has many advantages in comparison to Virtual Machine images in terms of 

reproducibility, as a Dockerfile is a tiny text file, in comparison to a huge VM image, 

making transferring a Docker image build file more feasible. Dockerfiles are well 

documented, providing both instructions and human readable summary of software 

dependencies thus minimizing build errors. Version management systems (git and 

subversion) can easily exploit the benefits Dockerfiles by tracking changes and pushing 

versions [9]. 

 

 

 

Figure 2 Container-based cluster architecture 



 

7 
 

 

As shown in Figure 2, the interoperability of containers facilitates running applications 

over a cluster of container hosts. Such architecture could consist of a combination of 

several physical bare-metal and virtual machine host servers. A host, running several 

application containers, would also run common services such as load balancing and 

scheduling. Such application containers could run on different hosts for scaling purposes, 

where a logical grouping of Application services would allow the aforementioned scaling 

capability. Different hosts may mount different containers to volumes for data persistence, 

such volumes persist data post container termination [10]. Such container cluster 

management are beyond the capabilities of Docker, a cluster management solution should 

have the ability to deploy distributed applications automatically and enable a management 

API to manage container life cycles [10]. 

Kubernetes 

Kubernetes is an open-source cluster management platform for Docker containers [11]. 

Kubernetes enables Docker images deployment, scheduling, and containers management 

across machine clusters. Networking is one of the most important aspect of Kubernetes as 

it allows the discovery, communication and synchronization of containers in the cluster  

[11]. Kubernetes Control Plane consists of two types of nodes that run on a cluster, master 

and worker nodes [12]. A cluster is a collection of physical or virtual machines defined as 

nodes, within a cluster there exists typically a single master node and zero or more worker 

nodes; each node contains several Kubernetes pods [13]. A worker node runs services 

essential to run Pods, such services are managed by the master component. Node services 

include Docker, Kubelet, and Kube-proxy. The role of Docker service is to run the docker 



 

8 
 

images inside the pods, while Kubelet service handles the node’s communication with the 

master node, finally, a Kube-proxy service responsible for the networking services, which 

creates a virtual which clients can access [12]. 

Pods 

Docker containers run inside a Pod, which is the smallest deployable unit that Kubernetes 

creates and manages [14]. While the rule is not enforced, typically coexisting application 

containers within a Pod should serve different applications (two completely different 

application, or different services for the same application), to allow efficient scaling of 

cluster [13]. However, the golden rule is, only place tightly coupled application containers 

within the same Pod [11]. 

 

 

 

Figure 3 Sidecar, Ambassador, and Adapter containers in a pod 

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/architecture.md


 

9 
 

Grouping multiple containers in a single pod can be an advantage if done correctly, as 

containers would utilize the local communication using localhost within the same Pod; the 

decision-making can few general patterns of modular application development. Burns [15] 

identified three different patterns as shown in Figure 3: Sidecar containers, Ambassador 

Containers, and Adapter containers. Sidecar containers are deployed to enhance the main 

container, such as a web server container extended by container that synchronizes the file 

system with a git repository. Ambassador containers proxy local connection publicly, and 

acts as a separation of concern by abstracting the connection of the main application to a 

single localhost connection, while the ambassador takes control of exposing the requests 

publicly. As an example, the ambassador would handle sending the request to appropriate 

read or write servers in a cluster. Adapter containers enables an abstraction of the main 

application for normalizing and standardizing the output. An example use-case would be a 

monitoring application that would expect a standardized input of data from different 

servers. 

Docker containers within a pod would typically run a single microservice. The motivat ion 

behind the single microservice per container concept is to establish transparency that 

enables Kubernetes to provide container services such as process management and resource 

monitoring. Moreover, such architecture would efficiently decouple software dependencies 

allowing single containers to be updated and rebuilt independently [12]. 

Pods follows similar concept to Docker to provide isolation, which is through Linux 

namespaces, and cgroups. Within a pod, containers may communicate through standard 

inter-process communications. However, containers in different pods run on distinct IP 

addresses [12]. Pods provide a high-level abstraction for a group of containers that share 



 

10 
 

volumes and network namespace, at which the scheduling and replication are performed in 

Kubernetes rather than at the level of individual containers. Thus, it is essential to carefully 

group only tightly coupled containers within a pod [13]. 

Deployment 

In Kubernetes, container images are deployed into Pods using Deployments. A 

Deployment is a template that provides declarative description for Pods, and Replica Sets. 

Once created, Kubernetes master node schedules Pod replicas into worker nodes based on 

the template specifications. A Deployment controller manages, and monitors Deployment 

objects and assures that related Pods are meeting the desired state, by creating, and deleting 

Pods or rolling updates [12, 14]. 

Within the Deployment template, specification of the desired behavior of the Deployment 

are set in terms of labeling the Pods, setting number of replicas, the Pod description 

template and other Pod related values. The Pod template defines specification of the desired 

behavior of the Pod, and its containers.  

Below, is a Deployment template creating a Deployment name deployment-example that 

requests creating three Pods using the container image nginx: 1.10. 

 

  



 

11 
 

Template 1 Kubernetes Deployment descriptor file 

01: apiVersion: apps/v1beta1 

02: kind: Deployment 
03: metadata: 
04:   name: deployment-example 

05:   spec: 
06:   replicas: 3 

07:   template: 
08:     metadata: 
09:   labels: 

10:     app: nginx 
11:   spec: 

12:     containers: 
13:     - name: nginx 
14:       image: nginx:1.10 

 

 

The replica value defined in the template defines the required number of running pods at a 

time; a Replication Controller manages the replication level of Pods [13]. By monitor ing 

the Pods, the Replication Controller will kill extra pods, replace failed pods, or start new 

pods [12]. The Replication Controller provides an interface to manually scale a cluster of 

Pods easily, or use an auto-scaler to adjust the size of the cluster horizontally. 

Pods are vulnerable for failure, failed Pods are deleted and replaced by new Pods by the 

Replication Controller, and furthermore scaling the cluster creates new pods or delete 

existing ones. 

Services 

In Kubernets, Pods are assigned IP addresses dynamically within the cluster; Services 

abstracts the access to the pods by logically grouping a set of pods under a single static IP 

address [12]. A Service provides the external interface for one or more pods, those pods 

are matched using their label selectors, which are a key-value pair that identify a group or 



 

12 
 

subset of resources in Kubernets. Such abstraction allows an external client to connect to a 

Pod using only the Service name and the port an application is exposed at. Internally, a 

Service directs the request to a Pod in a round-robin fashion or can further be used as a 

load-balancer [13].  

Components and Architecture 

Figure 4 demonstrates the high-level architecture of Kubernetes, at the top, a master node 

(or more if high-availability master is used). Each master node includes three main 

components, the Controller manager is responsible for cluster level operations such as 

nodes management, discovery and monitoring, and deployments scaling and updates. The 

scheduler assigns Pods across the Nodes cluster. Etcd stores the master configuration data 

and its persistent state. Finally, Kubectl API server provides the REST API for different 

Kubernets objects [16]. 

 



 

13 
 

 

Figure 4 Kubernets architecture diagram. 

 

 

The worker nodes contain a Kubectl agent responsible for interaction with the Master node; 

inside the nodes, zero or more Pods are located, where each Pod runs one or more 

containers. Services binds one or more Pods logically by creating an interface that abstracts 

and distributes client requests though a single internal IP address and optionally an external 

IP address. 

Cluster Monitoring 

In order for applications to provide a reliable quality of service, it is crucial to monitor an 

applications cluster and make scaling decisions based on the performance metrics. In a 



 

14 
 

cluster, it is essential to be able to monitor the resource usage at different levels, this 

provides deep performance insight and assists in discovering potential application 

bottlenecks; thus, Kubernetes allows resource monitoring at containers, Pods, Services and 

clusters levels [12].  

Heapster is a monitoring metrics and events processing tool that enables container cluster 

monitoring and performance analysis is integrated within Kubernetes to work with its 

clusters. Heapster consists of two components: (i) Eventer which records Kubernetes 

master events. (ii) Heapster core, which reads and records metrics from different nodes in 

a Kubernets cluster, and provides Heapster metric model through a REST API. The 

Heapster model allows extraction of historic metrics up to 15 minutes; the metrics are 

provided at different levels (Cluster, Node, Namespace, Pod, and Container levels) and are 

updated every 60 seconds by default [17]. 

In a Kubernets cluster, as shown in Figure 5, Heapster runs as a Pod, and discovers all 

nodes in the cluster to query their usage information through node’s specific Kubernetes 

agent Kubelets. By managing the Pods and containers on a node, Kubelets fetches each 

containers usage statistics from cAdvisor, aggregates them for each Pod and then exposes 

them via a REST API [12]. cAdvisor supports Dockers natively, it collects, aggregates, 

processes and exports resource usage and performance information about each running 

container [18]. Heapster stores all the different cluster usage and performance information 

in a configurable backend to allow visualization [17, 12].  

https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster/blob/master/docs/storage-schema.md
https://github.com/google/cadvisor/blob/master/docs/api.md


 

15 
 

 

Figure 5 Heapster Monitoring within Kubernetes 

 

 

Horizontal Pod Auto-Scaler 

The variability of a cluster’s load emphasizes the importance of scaling up or down the 

number of Pods of a deployment, and using Heapster’s metrics scaling decisions can be 

made, however user-intervened scaling model is unsuitable for a production-level cluster 

where high availability is key under a non-predictable load; thus, Kubernets provides a 

Horizontal Pod Auto-Scaler (HPA) [16]. 

Kubernetes Horizontal Pod Auto-scaler is implemented as a Kubernetes API resource and 

a controller. The HPA defines a CPU utilization threshold; by observing Heapster’s 

metrics, the Auto-Scaler is able to communicate scaling decisions through to the 

Replication Controllers, Deployments or Replica Sets that meets user specific criteria [12], 

as shown in Figure 6.  

 

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/horizontal-pod-autoscaler.md


 

16 
 

 

Figure 6 Kubernets Horizontal Pod Auto-Scaler 

 

 

The Auto-Scaler queries Pods periodically in a controlled loop fashion. The query collects 

per Pod metrics which are later aggregated to calculate the arithmetic mean of CPU 

utilization, the mean value is then compared to the user defined utilization target, and if 

needed the cluster is scaled accordingly while preserving the number of replicas within the 

user defined limits (MinReplicas <= Replicas <= MaxReplicas) [12, 19]. 

Scaling the cluster often is likely to introduce noise, thus the Auto-Scaler implements an 

algorithm with predefined values to minimize such noise. By default, the Auto-Scaler 

queries Pods every 30 seconds for utilization values, the per Pod utilization metric is 

defined by dividing the last 1 minute of CPU usage by CPU requested. The per Pod CPU, 

utilization value is then used to calculate the target number of Pods using this formula: 



 

17 
 

TargetNumOfPods = ceil(sum(perPodCPUUtil) / Target)   (1) 

Once a scale decision is made the Auto-Scaler would allow a grace period of 3 minutes or 

5 minutes before scaling-up or scaling down again, respectively. Moreover, a change in 

CPU utilization must exceed a 10% relative tolerance ratio before any scaling decision will 

be made [19]. 

Kubernetes API 

As illustrated in Figure 4, the API server carries out actions to worker nodes and facilita tes 

communication with other master components. Additionally, the API Server in Kubernetes 

allows end users to manage the cluster by providing two interfaces, RESTful, and 

Command-Line APIs through kubectl agent. Typically, the RESTful API is more suitable 

for requests through code and remote users, while kubectl CLI is appropriate for manual 

configurations directly on the server. 

Command-Line API 

Also known as kubectl, is the command-line interface to interact with Kubernetes cluster 

through terminal. The general syntax of kubectl is. 

kubectl [command] [TYPE] [NAME] [flags] 

The command indicates the operation type required, Kubernets provides a long list of 

different management operations, below is a subset of the most common operations: 

  

https://kubernetes.io/docs/user-guide/kubectl-overview/


 

18 
 

Table 1 Brief list of Kubernets Commands 

 

Operation Description 

run Run a specified image 

create Create one or more resources from a file 

delete Delete resources 

apply Apply a configuration change to a resource 

get List one or more resources 

label Add or update the labels of one or more resources 

expose 
Expose a replication controller, service, or pod as a new Kubernetes 

service 

rolling-update 

Perform a rolling update by gradually replacing the specified 

replication controller and its pods 

scale Update the size of the replication controller 

autoscale Define or set an auto-scaler 

describe Display the detailed state of resource(s) 

logs Print the logs for a container in a pod 

 

 

Further, TYPE specifies the resource type to run the command against, some of the more 

comment resource types in Kubernetes are deployments, nodes, pods, services, jobs, 

replicasets, and replicationcontrollers, however there are many other resource types. 

NAME attribute specifies the resource target, however, for some operations the name can 

be omitted, instead the operation is performed on all the resource type, and many names 



 

19 
 

can be used to select different resources in the same command. Finally, the last part is 

optional for flags [12]. 

REST API 

Kubernetes RESTful API enables managing objects via standard HTTP verbs such as 

POST, PUT, DELETE, and GET. Typically, the API accepts and returns JSON schemas 

defined by “kind” and “apiVersion” fields. 

The JSON schema consists of three terms, 1) Kind, the name of the object schema 

belonging to Kind categories, 2) API Group, being the set of resources exposed and the 

apiVersion, and 3) Resource, which can be either a single resource entity or a list of the 

homogeneous resources. There are three types of categories, 1) Object, which is defines a 

single resource such as a Pod, Service, or Namespace. 2) Lists, which is a list of resources 

of a single kind such as PodLists, ServiceLists, NodeLists, and 3) Simple, which is an 

action on a resource such as scale, or status [19]. 

Using standard HTTP verbs, the RESTful API allows different actions on resources: 

  



 

20 
 

Table 2 List of HTTP verbs available on Kubernetes Resful API 

Verb URI Description 

GET 

/ResourceName Retrieve a list of resource 

/ResourceName/EntityName Retrieve a resource entity by name 

POST /ResourceName Create a resource from JSON in body 

PUT /ResourceName/EntityName Update or create the resource by name 

PATCH /ResourceName/EntityName Modify specific field(s) of an entity  

DELETE /ResourceName/EntityName Delete specific resource entity 

 

  



 

21 
 

Related Work 

Resource management on the cloud is an area undergoing heavy research, however, most 

researches focus on Virtual Machines resource provisioning. 

While predictive models predict patterns ahead of time, wrong predictions can lead to over 

or under provisioning which may lead to serious drawbacks. Moreover, prediction requires 

samples of data to learn from and work effectively, deeming it unsuitable for new 

applications [22]. 

Different researches describe models either by using only queueing theory, which serving 

mostly as real-time reactive model, or in a hybrid providing further predictive capabilit ies.  

A simple queue model based on web applications is experimented in [22], the models 

decides on scaling VMs up and down while avoiding live migration. The model works by 

allocating an equal amount of resources for all VMS, arguably, by doing so, the system 

will avoid wasting resources while guaranteeing easy placement VMs. A Cloud Controller 

which acts as the entry point for all requests, records the response time of requests and 

length of the waiting queue. Periodically, the aforementioned Cloud Controller will check 

system status and decide on changing the number of VMs for a select application on the 

cloud. The dynamic reallocation is based on calculating the average length of the waiting 

queue, average waiting time, and average arrival time. Using user defined error grace range 

and number of consequent error repetitions, if the queue metrics doesn’t meet Service 

Level Agreement values, a scale up or down of number of VMs is triggered. 

In an older paper, a file transfer web server is deployed in a queueing network model. The 

network consisted of two nodes for the web server and two more for the internet 

communication, each with its single queue. Jackson’s Network Model was used to 



 

22 
 

determine the response time using eight variables were used, namely, Network Arrival 

Rate, Average File Size, Buffer Size, Initialization Time, Static and Dynamic Server 

Times, and Server and Client Network Bandwidths. Different scenarios were evaluated in 

the study, increasing server power, increasing bandwidth and adding additional servers. 

When the network bandwidth was the bottleneck, only increasing the bandwidth was found 

beneficial, however, when servers are experiencing high arrival rates, increasing server 

power performed best. In the latter scenario, increasing the network’s bandwidth performed 

as second best up until a certain arrival rate where it increases exponentially, giving the 

second best to adding additional servers [21]. It is worth noting that while extra servers 

where added the network bandwidth remained constant. 

In the cloud, many researches propose models to improve live VM migration, however, 

VM migration causes problems related to resource sharing; as VMs compete for shared 

resources. Thus, an optimal model must consider the migration’s impact on VMs located 

at the source and destination Physical Machines. In [23], queueing theory is employed to 

evaluate the relationship between the residual resource bandwidth and performance of a 

VM, later, a bandwidth allocation algorithm improves live migration and balances the 

impact on VMs. Similarly, in [24] an algorithm based on queueing theory calculates an 

optimal distribution probability vector which proposes a scheme that minimizes and 

controls the number of active servers, from which the algorithms consolidate VMs into 

optimal Physical Machines. 

 



 

23 
 

Kubernetes Testbed 

In order to evaluate Kubernetes behavior when experiencing high-load of requests, as well 

as to develop and evaluate the Queueing-Theory based Auto-Scaler, a testbed is required. 

The testbed used a Docker image AcmeAir. AcmeAir is a Nodejs based web application 

that provides Airline querying and booking service. The developers provided the 

application in two different architectures, monolithic and microservices. 

For our purpose, the microservices version is deployed to fit Kubernetes deployment 

architecture. 

Testbed Architecture  

The AcmeAir microservices version consist of three components: 1) AcmeAir frontend, 

which provides the web interface for user interaction through port 9080. 2) AcmeAir 

Authentication service, which handles users’ authentication (login and logout). 3) and 

MongoDB Database, which stores all the records of users and flights. 

Through creating YAML Deployment files that deploys each component in a separate Pod, 

and then exposing each Pod through a Service to facilitate communication between Pods. 



 

24 
 

 

Figure 7 AcmeAir basic Architecture 

 

 

As shown in Figure 7, each Pod is exposed via a Service (load-balancer endpoint), however 

except AcmeAir Front-end; all Pods are only exposed locally for Pod-to-Pod 

communication. Furthermore, Mongo Service Pod is connected to a persistent storage disk 

for storing the database. The moFrontend Pods are responsible for receiving incoming 

requests and then either respond directly (for static requests e.g. webpage, image, css or JS 

files), create a user session through Authentication Pods, or query MongoDB and retrieve 

results. 

  



 

25 
 

Testbed Deployment 

Google Cloud Platform allows developers to create Kubernetes clusters through 

Kubernetes Engine (GKE) which creates VMs preconfigured with Kubernets (Nodes). The 

GKE provides developers with many VM options, from shared VMs providing little 

memory and CPU resources, to VMs with huge pool of resources. 

For experimental purposes, the testbed is deployed upon shared VMs, where each Node is 

a single core vCPU, and 0.6GB of memory. The testbed has a minimum of three Nodes in 

all experiments. Additionally, a second testbed with higher CPU and memory capacities’ 

is experimented, this testbed uses 2 vCPU, and 3.75GB of memory, with a minimum of 

three Node. 

AcmeAir Deployments didn’t specify any resource limits on its Pods, thus every Pod is 

free to utilize its Node’s resources. 

  



 

26 
 

Kubernetes Evaluation 

Before designing an Auto-Scaler for Kubernetes, it is essential to understand how 

Kubernetes utilizes resources (CPU, Memory, and Network). Such understanding will 

draw the roadmap towards designing an effective Auto-Scaler by exploiting bottlenecks, 

and default behaviors experimentally. 

Treating Kubernetes clusters similarly to Virtual Machine clusters by mapping a Pod to 

VM behavior will result in an inadequate resource and cluster management. Thus, in this 

section, a series of load testing experiments are conducted to better evaluate and understand 

Kubernetes Pod behavior. 

In purpose to exploit all different possibilities, the AcmeAir cluster is deployed in different 

architecture derived from the basic architecture described in Figure 7, and is exposed to 

heavy load using Apache JMeter. Each architecture is evaluated over 10 cycles, 10 minutes 

each, where JMeter logs each request’s response time. Response time is later aggregated 

and averaged for each period of 30 seconds, lastly the results of each cycle are aggregated 

over the 30 seconds period to normalize results and neglect any outliers. Moreover, to 

better understand the bottlenecks, Heapster metrics are recorded during the load-testing 

cycles, representing Node (CPU and Memory Utilization, and Network throughput) and 

Pod (CPU, Memory and Networking usage) related metrics.  

Initially, dozens of different architectures are evaluated, however only eight are represented 

due to their key differences, and insights they represent about the cluster. The  eight 

architectures are varied in terms of number of Pods for each microservice (frontend, 

authentication, and MongoDB), their placement, and the Nodes’ resources capacity. Most 



 

27 
 

of the experiments were exposed to 100 JMeter threads that send requests continuous ly 

over the 10 minutes period, unless stated otherwise. 

Nodes with small resources pool (1 vCPU, 0.6 Memory) 

1. Single Pod for each microservice, one application Pod per Node (1.1f 1.1a 1.1db). 

2. Two frontend Pods, two authentication Pods and single database, each two application 

Pods share one Node (2.1f 2.1a 1.1db). 

3. Two frontend Pods, two authentication Pods and two databases, each Pod runs on single 

Node (2.2f 2.2a 1.1db). 

4. Two Pods of each application, each on a single Node (2.2f 2.2a 2.2db). 

5. Three of each frontend and authentication and single database, on single Nodes (3.3f 

3.3a 1.1db) 

6. Three of each frontend and authentication and two databases, on single Nodes (3.3f 3.3a 

2.2db) 

Nodes with big resources pool (2 vCPU, 3.75 Memory) 

7. Single Pod on a Node of each application, 4 runs at different number of threads (40, 

100, 150, 180). (1.1f 1.1a 1.1db - big). 

8. Two of each frontend and authentication Pods on a single Node each, and single 

database, 4 runs at different number of threads (40, 100, 150, 180). (2.1f 2.1a 1.1db - 

big ). 

Results Discussion 

It is essential to evaluate how high loads affect different deployment architectures, from 

the JMeter results, the response time averages are described in the following graph. 



 

28 
 

 

Figure 8 Response Time for different deployments 

 

 

From the graph, it’s clear that the single Pod architecture (1.1f 1.1a 1.1db) show’s a steady 

growth in response time, moreover using a replication set of databases does increase the 

response time and introduce unstable response time; this can be explained by the need of 

database synchronization between the different replicas, and in our application, a single 

database is capable enough to handle all requests, thus using a replication set is a drawback.  

 From Figure 8 it’s evident that using an appropriate amount of Pods results in the smallest 

response time (2.2f 2.2a 1.1db), even in comparison to overprovisioning. However, 

collocating two application Pods in the same Node dramatically worsen performance, that 

is also indicated in the amount of error responses and timeouts received by such 

architecture (2.1f 2.1f1 1.1db). The latter behavior is explained by considering resources 

utilization. 

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1.1f 1.1a 1.1db 2.1f 2.1a 1.1db 2.2f 2.2a 1.1db

2.2f 2.2a 2.2db 3.3f 3.3a 1.1db 3.3f 3.3a 2.2db



 

29 
 

 

Figure 9 CPU utilization of Nodes running single application Pod 

 

 

The CPU utilization indicated in Figure 9 shows that a single Pod of Web frontend along 

with Kubernets system components under a high load yield high utilization, this is further 

cleared when looking at Figure 10 indicating the CPU usage (in millicores of total 1000 

millicores). Noticeably, the frontend Pod is struggling for CPU resources, and thus placing 

two Pods on a single Node results in throttling CPU usage, which causes Pod failure that 

results in errors and timeouts. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Web Frontend Node Auth Node Mongo Node



 

30 
 

 

Figure 10 CPU usage of Pods 

 

 

 

Figure 11 Response time for optimal Pod size 

 

 

The results present the importance of understanding a Pod’s CPU requirements when 

scheduling it on a Node. Figure 11 further compares the difference in response time 

between the case where CPU is throttled (2.2f 2.2a 1.1db) due to insufficient Node 

resources and when there are sufficient allocable CPU resources. Moreover, collocating 

Pods in a Node with sufficient resources produced the same response time as a single Pod. 

0

100

200

300

400

500

600

700

800

06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Web Frontend Authentication Mongo

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2.2f 2.2a 1.1db 1.1f 1.1a 1.1db - big 2.1f 2.1a 1.1db - big



 

31 
 

To further understand the behavior, the cluster is exposed to different number of JMeter 

request threads. 

 

 

 

Figure 12 High resource availability cluster at 150 and 180 request threads 

 

 

When the number of request threads increased to 150 instead of 100, the response time 

increased by roughly 50% correspondingly. While the average response time between the 

single Pod and two Pod architectures is marginally neglectable (765ms vs 755ms), the latter 

appears more stable, however when the load increased by using 180 request threads, using 

two Pods did destabilize response time and marginally increased it (850ms vs 890ms), as 

shown in Figure 12. 

 

500

600

700

800

900

1000

1100

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1.1f 1.1a 1.1db 150 Threads 2.1f 2.1a 1.1db 150 Threads

1.1f 1.1a 1.1db 180 Threads 2.1f 2.1a 1.1db 180 Threads



 

32 
 

 

Figure 13 Cumulative CPU usage in millicores by frontend application 

 

 

Unlike the earlier case with small resource pool, the collocated Pods had low CPU 

utilization even at highest load, Figure 13 indicated the CPU usage (millicores) of a single 

Pod compared to two Pods at different number of request threads. As shown, the two Pods 

combined has roughly utilized the same amount of CPU as a single Pod. Moreover, the 

CPU usage didn’t represent the increasing number of requests, but rather declined due to 

the high number of requests failures. 

The data in Figure 13 indicate that CPU utilization is not effective enough to represent the 

high load for web applications, nor that allocable CPU is the bottleneck. Network 

throughput provides a deeper insight about the amount of requests, as shown in Figure 14, 

at 40 request threads the network throughput was lower and steadier than higher number 

of requests, at 100 threads, the single Pod had was steadier, conforming with Figure 11, 

however we can see a throughput decrease at fluctuation on 150 threads and above, 

indicating the failures. 

 

200

300

400

500

40 100 150 180

Single Pod Two Pods



 

33 
 

 

Figure 14 Network throughput for 40, 100, 150 and 180 request threads 

 

 

Typically, CPU and Memory resources are definite for each Node, however Network 

Bandwidth is not stated nor customizable. Moreover, there exists a virtual limit on the 

Network throughput either on the OS level, or the application level, thus for web 

applications, it is important to consider the incoming number of requests before considering 

other resources as the bottleneck. From the evaluation, it’s understandable that increasing 

CPU or memory resources doesn’t always improve the performance of an application 

where the network is the bottleneck, thus it is of high importance to detect the source of 

throttling and optimize based on such factors. 

  

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Single Pod Sent Kb Single Pod Received Kb

Two Pods Sent Kb Two Pods Received Kb



 

34 
 

Problem Formulation 

Kubernetes offers a built-in Horizontal Pods Auto-Scaler (HPA) that is reactive, and 

threshold driven based on CPU utilization. However, the HPA has different drawbacks, as 

setting a fixed threshold can be application ignorant, in addition to CPU utilization not 

being an effective metrics for all applications, specifically when other constrains exist , 

moreover, HPA calculates Utilization as Pod’s request versus usage, which doesn’t indicate 

if a Pod is being throttled as indicated in our evaluation and require users to manually 

define resource request which is a task requiring expertise. 

Queueing theory based Auto-Scaler provide a mean for a more accurate scaling decisions 

that are determined based on queue performance metrics. Queueing metrics such as queue 

length, arrival rate, service time and waiting time are effective in creating decisions based 

on short-term estimates [25]. 

Queueing Theory promises a great potential for Pods Auto-Scaling in Kubernets, thus we 

derived a Queueing Theory Auto-Scaler based on model described in [25, 26] which 

creates scaling decisions for Virtual Machines on a cloud system, the model is adjusted to 

meet our Kubernetes evaluations in section 0 as an improvement of the existing built- in 

Auto-Scaler. 

Queuing Theory 

Queueing Theory focuses on analyzing mathematical models of systems that experiences 

random request patterns. Fundamentally, three components make up the queueing model. 

Input process, which generally describes the distribution of inter-arrival times of requests. 

Service mechanism is concerned with the duration an ongoing request being served blocks 

other requests from the service, this is defined as service time. Queue discipline describes 



 

35 
 

the behavior of incoming requests at a blocked system, which is a system busy serving 

other requests at the time a new request arrives. A request arriving at a blocked system may 

leave unserved, or get pushed into a waiting queue. Selecting requests from the waiting 

queue can be done through different algorithms, however first-in first-out algorithm (FIFO) 

provides a simple yet sufficient solution to systems subject to random request patterns [20]. 

Our model is based on web servers, which inhibits queueing-based scheme. Typically, in 

a web server architecture, multiple requests compete over shared resources; such shared 

resources are only accessible by one request at a time. As more requests arrive 

simultaneously, a request queue is formed, from which each request is responded to and 

then removed from the queue. Different heuristics based on the queue give an idea of a 

server load and ability to satisfy such requests. 

From Queueing Theory’s perspective, there exists a single queue feeding requests to a set 

of service system, namely the web servers (a Kubernetes service). Queueing Theory model 

will monitor each queue in terms of average arrival rate (𝜆), average service time (𝑇𝑠) and 

average queuing time (𝑇𝑞). 

The queue metrics determines the server’s utilization, utilization (𝑈) is defined as a product 

of average arrival rate and average service time. 

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝑈) = λ ∗ 𝑇𝑠 

Utilization value is bound between 0 and 1, where a utilized system approaches 1. 

According to Queueing Theory, a stable system experiences an average arrival rate less 

than the service rate. A system which experiences random arrival rate of requests exhibits 

an Poisson distribution, such system is known as an M/M/c queue, where M and c 

represents the memoryless fashion of arrival rates and number of servers, respectively. 



36 

Such system’s response time grows sharply as it approaches utilization value of 1, as 

demonstrated in Figure 15Error! Reference source not found.. Using Little’s Law, an 

average number of requests in the waiting queue (𝑁) is calculated 𝑁 = λ ∗ 𝑇, where 𝑇 =

𝑇𝑠 + 𝑇𝑞  or 𝑇 =
𝑇𝑠

1−𝑈
 for M/M/1 queue [21, 20, 22]. 

Figure 15 Response time as a function of utilization 

Problem Definition 

Consider a system using M/M/c queue, which consists of 𝑐 VMs experiencing requests 

arrival at Passion distribution of at rate 𝜆 and service rate 𝜇. At such systems, clients’ 

requests are received at the Load Balancer as an entry point, from which the load is 



37 

distributed across the servers as showing in Figure 16. In such system, server 𝑖 at time 𝑡 

has a 𝜇𝑖 ,𝑡 service time, with 𝑐 servers in the system.

Figure 16 Simple Multi-Client to Multi-Server Architecture 

In total, 𝜇𝑡 describes the total amount service time of the system at time 𝑡, such that

𝜇𝑡 = ∑ 𝜇𝑖,𝑡

𝑛

𝑡=1

Equation 1 System service time 

In a steady-state system with 𝑐 independent and identical servers, service rate 𝜇 is 

dependent on number of servers such that for 𝑖 number of requests at moment time 



38 

𝜇 = {
𝑖(1

𝑇𝑠
⁄ )

𝑐(1
𝑇𝑠

⁄ )

1 ≤ 𝑖 ≤ 𝑐

𝑖 ≥ 𝑐

Equation 2 Service Time 

From Equation 2 we can draw system utilization value as a factor of arrival rate 𝜆, which 

is a calculated from interarrival time 𝜆 = 1/𝑋(𝑡), in addition to service time 𝜇 and number 

of servers 𝑐 as 

𝜌𝑡 =
𝜆𝑡

𝑐𝑡𝜇𝑡

Equation 3 System Utilization 

The latency 𝐿 of such system is a factor of execution time 𝑇𝑠 and waiting time 𝑇𝑞. 𝑇𝑠 is

given from Pod monitoring values, however to draw waiting time in the queue 𝑇𝑞 we

calculate the size of the queue 𝐿 𝑞 which a factor of idle probably of the system 𝑃0 and

system utilization, then calculate 𝑇𝑞 from the queue size 𝐿𝑞 and arrival rate 𝜆 [27, 28]

𝑃0 = 1 [ ∑
(𝑐𝑡𝜌𝑡 )𝑛

𝑛!
+

(𝑐𝑡𝜌𝑡)𝑐𝑡

𝑐𝑡!   (1 − 𝜌𝑡 )

𝑐𝑡−1

𝑛=0

]⁄  

Equation 4 Idle system probability 

𝐿 𝑞 =
𝑐𝑡

𝑐𝜌𝑡
𝑐+1

𝑐! (1 − 𝜌𝑡 )2
𝑃0

Equation 5 Expected Queue Size 

𝑇𝑞 =
𝐿𝑞

𝜆

Equation 6 Queue Waiting Time 



 

39 
 

Resultantly, latency 𝐿 is factor of arrival rate, service rate, and number of server 

𝐿(𝜆, 𝜇, 𝑐) = 𝑇𝑞 + 𝑇𝑠 

Equation 7 System latency 

The objective is to minimize response time while maximizing utilization by minimizing 

the cluster size, thus, our goal is to find 𝑐 servers where 𝐿 < 𝑇 , where 𝑇is the desired 

response time. Firstly, to discover if the system requires scaling, by using Equation 7 

calculate the system’s current latency under 𝑐 servers, then we normalize latency 

𝐺 = 𝐿
𝑇⁄  

Equation 8 Latency normalization 

Where an under provisioned system exhibits 𝐺 > 1, and an overprovisioned server 

exhibits 𝐺 < 1, in order to stabilize the system, a threshold 𝜃 is defined to determine if 

latency is out of acceptable range, in which case an exhaustive search algorithm calculate 

𝐿 for an increasing 𝑚 number of servers, where 𝑚 starts at 𝑚 = 𝑐 if 𝐺 > 1, or 𝑚 = 1 

where 𝐺 < 1. 

Virtual Machines Auto-Scaling 

Considering the number of VMs 𝑐 at time 𝑡, using the queueing theory models, the Auto-

Scaler can define resource requirements at 𝑐𝑡+1 such that, 𝑐𝑡 > 𝑐𝑡+1  invokes Scaling-Down 

while 𝑐𝑡 < 𝑐𝑡+1  invokes Scaling-Up. 

Generally, Virtual Machines have a hard-predefined limit of resources on a Physical 

Machine (PM), and since initiating and destroying VMs is a time and resource consuming 

task, an Auto-Scaler is to preferably consider Vertically Scaling decisions, by adding more 

resources to current nodes if feasible. Thus, for Scaling-Up the Auto-Scaler considers 



40 

calculating the remaining resources at 𝑃𝑀𝑖 for each 𝑉𝑀𝑖, while setting a maximum limit

of resources a VM make benefit of. The Up-Scaling algorithm works in three stages: 

1) Defining resource requirements as 𝑉𝑡+1
` = 𝑉𝑡+1 − 𝑉𝑡 , where 𝑉 is amount of resources

required, derived from 𝑐. 

2) Vertical Up-Scaling by add  𝑉𝑡+1
`  resources to zero or more VMs.

3) If Vertical Up-Scaling fails to accommodate 𝑉𝑡+1
` , then start one or more VMs.

 On the other hand, Down-Scaling was only defined horizontally as Vertical Down-Scaling 

may cause VM failure. The Down-Scaling algorithm seeks to select one or more VMs to 

destroy, where the total of closed resources is less or equal to minimum resources. 

Pods Auto-Scaling 

The model proposed by [25, 26]  does offer an improvement over HPA, however due to 

key differences between VMs and Pods, and according to our Kubernetes evaluation, the 

algorithm needs redefining. 

VMs have well-defined resource limits, however in Kubernetes, setting resource limits for 

Pods is optional, and while such limits assist Kubernets’ Scheduler in Pod placement, the 

QAS will be responsible for optimally placing Pods within available Nodes. Limit- free 

Pods in Kubernets compete for available resources on a Node, thus; it is of high importance 

to detect resource throttling before making scaling decisions, once throttling is detected, 

QAS will seek freeing up resources by migrating Pods, if no migration is possible then 

scaling will occur. 

QAS will utilize two key variables that affects the model, Γ and 𝜏 will define the queue 

latency monitoring cycle and resource throttle monitoring cycle in seconds, respectively, 



 

41 
 

where typically Γ > 𝜏, while ∅ is the Node utilization threshold which invokes possible 

migration. 

Solution Architecture 

The Queueing Theory Based Auto-Scaler (QAS) will use Heapster metrics through REST 

API to query current cluster status and enable decision-making. The QAS will run on the 

cluster as a Pod that queries Pods service time and retrieve resource allocation of a Pod 

through Heapster. 

Currently, Kubernetes’ Services do not provide any metrics about incoming requests 

through the API, and Heapster is only able to provide metrics regarding resource allocation. 

Thus, by default the cluster does not log or provide any metrics regarding incoming 

requests. A workaround is to deploy a reverse proxy as an ambassador container co-

existing at each Pod we wish to auto scale. 

 

 

 

Figure 17 Queueing Theory Based-Auto Scaler Low Level Architecture 

 

 



 

42 
 

As illustrated in Figure 17,  QAS itself consists of three main components that work 

together to retrieve and aggregate metrics, and then update the cluster. The three main 

components of QAS are a reverse proxy agent, Heapster metrics agent and the main 

decision-making component. 

Moreover, QAS will require three external components that provides important metrics, 

namely Heapster, a query-able metrics database, and a reverse proxy container on each Pod 

that requires auto scaling as showing in Figure 18. 

 

 

 

Figure 18 Queueing Theory Based-Auto Scaler High Level Architecture 

 



43 

QAS Internal Components 

QAS is implemented in NodeJS, and while the three internal components are running under 

one container, it is possible for such components to be deployed on different containers or 

Pods while communicating through localhost. 

Decision Maker and Communicator 

DMC is the main component of QAS, as described in Figure 17, it receives different cluster 

metrices from both the Heapster and Reverse Proxy agents. The DMC then uses the 

Queueing Theory Algorithm described in the previous section to create scaling or 

migration decisions. Once a decision is made, the DMC will communicate cluster updates 

to Kubernets API Agent through REST API. The API agent in turn communicates with 

Kubernets Replication/Deployment Controller to apply such updates on the selected 

Deployments or Replication Set. 

Heapster Metrics Agent 

Despite the name, HMA does not communicate directly with Heapster to retrieve resource 

utilization metrics, but rather with a metrics datastore agent that provides a REST service 

to query Heapster’s recorded metrices in the Backend Storage. Moreover, HMA will 

calculate residual resources at each Node and each application’s Pod average resources. 

Reverse Proxy Agent 

RPA will communicate with the reverse proxy container on all the Pods selected for auto 

scaling. Additionally, it will compute the average response time (service time) within the 

specific cycle period for an application. Lastly, RPA will communicate those metrics to the 

DMC for decision making. 



44 

QAS External Components 

Heapster Metrics Database 

While Heapster provides a REST API for recorded metrics, it however rotates the logs 

every 15 minutes, thus limiting the Auto-Scaler cycle to no more than that time; to 

overcome such limits a metrics datastore is deployed to use Heapster’s backend storage 

showing in Figure 5 . 

InfluxDB is an open-source time-series database, that is capable of recording Heapster 

metrics and exposing them over a HTTP API in a SQL-like query language. InfluxDB will 

return resource metrics to HMA in a JSON format. 

Reverse Proxy 

Traefik is a HTTP reverse proxy and load balancer that supports several microservices 

frameworks such as Docker, and Kubernets [29]. Traefik provides metrics through a REST 

API, and it logs different requests and responses. 

While Traefik is deployable in the Kubernets environment as a Pod that works on top of 

ingress Services, currently it provides service time metrics for all associated Pods within 

the cluster in an aggregated form, thus to get more detailed metrics about each single Pod, 

Traefik is deployed as an ambassador container within a Pod, and exposing the REST API 

at port 8080 that provides number of requests, total response time, and average response 

time. However, the RPA will query such data and calculate metrics only related to the 

defined auto-scaling cycle. 

Solution Implementation 

In this section we will describe the algorithm implementation of the different components, 

and Pod configurations to enable auto scaling. 



45 

Pod Configuration 

In Kubernetes Pods are deployed using a Deployment or a Replication Set as described in 

section 0. A Deployment describes the template of a Pod by configuring different attributes 

and most importantly specifying container images. 

To retrieve a container’s service time, Traefik reverse proxy is deployed as an ambassador 

container as mentioned in section 0. Traefik requires special configuration to enable routing 

to a specific container and its exposed port. There are different ways to configure Traefik 

routing, however File Backend is the most suitable configuration for our use case, File 

Backend allows Traefik to establish routing configurations using a configure.toml file [30]. 

To maintain modularity and keep the Traefik Docker image unchanged, the configura t ion 

file is passed to the container image through a ConfigMap attribute in the Deployment 

template. The ConfigMap will specify the content Traefik configuration file by specifying 

Traefik entry point, a backend (i.e. application container’s address and port), and a frontend 

which specifies the routing rule. By default, the backend should point to “localhost” or 

“127.0.01” address, since both containers exist in the same Pod, and the frontend rule will 

be routing from the root path “Path:/”. 

Heapster and InfluxDB 

As described on section 0, Heapster metrics will be retrieved through a metrics database, 

namely InfluxDB. The current version of Kubernetes deploys a Heapster Deployment by 

default, thus the default Deployment must be configured by defining InfluxDB as the 

storage sink at Heapster container. 



46 

Reverse Proxy Agent 

The goal of this component is to estimate the arrival rate, and system service time, this is 

achieved by retrieving the request rate and service time for each Pod of a Deployment. 

Querying Traefik, the RPA retrieves the total service time in seconds 𝜇𝑖
𝑇  and the total

requests count λ𝑖
T. However, we’re only interested in a specific period, thus RPA will keep

track of the previous total service time and total requests count, then calculate the 

difference. By aggregate, all the Deployment’s Pods service time and requests count 

values, the RPA outputs the system’s average service time and requests arrival rate. 



47 

Algorithm 1 Reverse Proxy Agent 

Input: 𝜇𝑖
𝑇 , λ𝑖

𝑇 ,Γ, 𝜇𝑖,𝑡−1
𝑇 , λ𝑖,𝑡−1

𝑇

Output: 𝑎𝑟𝑟𝑎𝑦 < 𝜇𝑡 , λt >

1:𝑖 ← 1, λ𝑡
T ← 0, 𝑢𝑡

T ← 0

2: while 𝑖 <= 𝑐𝑡 do

3: if 𝜇𝑖,𝑡−1
𝑇 == 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 then

4:  𝜇𝑖,𝑡−1
𝑇 ← 0, 𝜆𝑖.𝑡−1

𝑇 ← 0

 5:  endif 

6: 𝑢𝑡
T ← 𝑢𝑡

T + (𝜇𝑖
𝑇 − 𝜇𝑖 ,𝑡−1

𝑇 )

7: 𝜆𝑡
T ← 𝜆𝑡

T + (𝜆𝑖
𝑇 − 𝜆𝑖,𝑡−1

𝑇 )

 8: end while 

9: return 𝑎𝑟𝑟𝑎𝑦 < 𝑢𝑡
T

𝜆𝑡
T⁄ , 𝜆𝑡

T

Γ⁄ >

Heapster Metrics Agent 

The HMA is composed of three parts, the first part queries Node resource utilization at the 

defined Γ cycle at each Node deployment the monitored Pod, while second part queries the 

every Pod resource allocation at certain Node where utilization passed threshold ∅, the 

third parts queries every Node allocable resources for the nominated list of Pods to be 

migrated. 

Definitions: 𝑉𝑖𝑗 is the resource allocation of Pod 𝑖 placed on Node 𝑗, 𝑈𝑗 is the utilization of

Node 𝑗 hosting the monitored Pod, 𝑝𝑗  is number of Pods other than monitored on Node 𝑗,

𝑛𝑝𝑗  are nominated Pod for migration, 𝑁 is all Nodes on the system, 𝜒 is a list of Pods with

candidate Node to migrate to, all metrics are for cycle Γ. 



48 

Algorithm 2 Heapster Metrics Agent 

Input: 𝜒 

Output: 𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑁𝑜𝑑𝑒 − 𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑃𝑜𝑑 𝑎𝑟𝑟𝑎𝑦 

01: if (𝑈𝑗 > 𝜙) then

02:   𝑖 ← 0 

03:   for (𝑖 . . 𝑝𝑗) do //find 𝑛𝑝𝑗  with most resources

04:     𝑛𝑝𝑗 = 0

05:     if 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑛𝑝𝑗 ) < 𝑉𝑖𝑗 && 𝑛𝑜𝑡_𝑖𝑛(𝑛𝑝𝑗 , 𝜒) then

06:       𝑛𝑝𝑗 = 𝑖

07:     endif 

08:   endfor 

09:   𝑛 ← 1 

10:   for (𝑛 . . 𝑁) do //find Node with sufficient resources 

11:     if (𝑎𝑙𝑙𝑜𝑐𝑎𝑏𝑙𝑒(𝑛) ≥ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑛𝑝𝑗 ) && 𝑛𝑜𝑡_𝑖𝑛(𝑛, 𝜒))

12:       𝑎𝑝𝑝𝑒𝑛𝑑(𝜒, 𝑎𝑟𝑟𝑎𝑦 < 𝑛𝑝𝑗 , 𝑛 >)

13:       bearkforloop() 

14:     endif 

15:   endfor 

16:   return 𝜒 

17: endif 

Decision Maker and Communicator 

The main component will receive the custom metrics defined by the RPA and HMA, then 

run an algorithm defined in section 0. The DMC will run at two different cycles, at Γ for 

scaling, and at τ for migration. 

The following algorithm receives a list of Pods and Nodes to migrate at cycle 𝜏 from 

Heapster Metrics Agent described in section  0. 



49 

Algorithm 3 Pods Migration 

Input: 𝜒 

Output: the migration process 

01:  if 𝑛𝑜𝑡_𝑒𝑚𝑝𝑡𝑦(𝜒) then 

02:    foreach (𝑥 𝑜𝑓 𝜒) do 

03:      𝑠𝑡𝑎𝑟𝑡(𝑛𝑝𝑗 , 𝑛)

04:      𝑑𝑒𝑠𝑡𝑟𝑜𝑦(𝑛𝑝𝑗 , 𝑗)

05:    endfor 

06:  endif 

The start and destroy algorithms are a logical grouping of micro actions to define the 

cluster. Kubernets allows selecting a set of Nodes on which to deploy specific Pods using 

labels, in order to sustain QAS of migrated Deployment’s Pod, the new Node will be 

labeled according to the Deployment Node selector, then the Deployment will be scaled 

up, Kubernetes Scheduler prefers handles starting the new Pod on the most suitable Node, 

being the new labeled Node. Once the new Pod is up and running, QAS will scale down 

the Deployment after removing the label from the old Node to ensure that it’s the one being 

destroyed. 

The second algorithm of DMC will handle scaling up or down the cluster based on latency, 

this algorithm will run less often that the preceding to ensure that the system is at its most 

feasible steady state, where all Pod’s throttling is eliminated, as possible. 



 

50 
 

 

Algorithm 4 Scale Up Algorithm 

Input: 𝜆 − 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒,𝜇 − 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒,  

𝑇 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑛 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑜𝑑𝑠, 𝜃 − 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

Output: //scaling the cluster 

01: 𝐿 = 𝑔𝑒𝑡_𝑙𝑎𝑡𝑒𝑛𝑐𝑦(𝜆, 𝜇, 𝑛) //using equation (7) 

02: 𝐺 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒_𝑙𝑎𝑡𝑒𝑛𝑐𝑦(𝐿, 𝑇) //using equation (8) 

03: if (𝐺 >  1 + 𝜃) then //scale up 

04:   𝑚 ← 𝑛  

05:   for (𝑚. . 𝑁) do 

06:    𝐿 𝑚 = 𝑔𝑒𝑡_𝑙𝑎𝑡𝑒𝑛𝑐𝑦(𝜆, 𝜇, 𝑚) 

07:    if (𝐿𝑚 < 𝑇) then 

08:      𝑠𝑐𝑎𝑙𝑒(𝑚) 

09:    endif 

10:   endfor 

11: else if (𝐺 < 1 − 𝜃) then //scale down 

12:     𝑚 ← 1  

13:   for (𝑚. . 𝑛) do 

14:    𝐿 𝑚 = 𝑔𝑒𝑡_𝑙𝑎𝑡𝑒𝑛𝑐𝑦(𝜆, 𝜇, 𝑚) 

15:    if (𝐿𝑚 < 𝑇) then 

16:      𝑠𝑐𝑎𝑙𝑒(𝑚) 

17:    endif 

18:   endfor 

19: endif 

  



51 

Experiments and Evaluation 

In order to evaluate the effectiveness of the Queuing Based Auto-Scaler (QAS), we have 

conducted a series of tests a high workload, in this section we draw out the outcome such 

results, further we compare QAS with HPA as a baseline Auto-Scaler to compare such 

performances. 

Evaluation Setup 

Just like the elementary evaluation, such workload is carried by Apache JMeter which 

produces flight queries, user’s login, logout, information change, and flight check-in tests 

that keeps the three different components of AcmeAir application closely coupled. 

The evaluation used big servers’ setup (2 vCPU, 3.75 Memory), as QAS was unable to pull 

metrics from Heapster agent on low settings servers due to high utilization values, which 

deemed Heapster unable to communicate with Pods effectively. 

As discussed, HPA requires defining a value of requested resources for a Pod to draw Pod’s 

utilization, to get realistic data, a set of initial experiments were set to draw Pod’s CPU 

usage under high load. From the results, two HPA experiments are defined, using the upper 

and lower mean values, namely (300CPU millicores) and (400CPU millicores). 

On the other hand, QAS metrics (expected latency and threshold) were defined based on 

response time of the system at a normal work load. Apache JMeter provides response time 

at client end of 350ms, however QAS measures latency internally (neglecting network 

latency between the client and servers), thus the desired latency was defined at 200ms, 

however two tests were run with different grace threshold value (0.6 and 0.4). Grace 

threshold allows response rate deviation at such value before provoking the auto scaler. 



52 

Evaluation 

Horizontal Pod Autoscaler HPA provides an effective autoscaling capability upon CPU 

utilization metrics, from the results indicated in Figure 19, while HPA-300 performs better 

than HPA-400, the difference is barely noticeable, and the system indicates peaks in 

response time reflecting a rather unsteady behaviour. QAS at a threshold of 0.6 performed 

only a little better than both HPA, however it also indicates peaks in response time as the 

cluster latency must diverge substantially (60%) before auto scaling is invoked. However, 

when QAS threshold is minimized to 40% divergence, the cluster provides a steadier 

performance and lower response times. 

Figure 19 Response time comparison between HPA and QAS 

300

400

500

600

700

800

900

1000

1100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

NO SCALER HPA300 HPA400 QAS-0.4 QAS-0.6



53 

To better understand the results, Figure 20 plots the number of Pods each auto scaler setup 

has started to correspond to the workload, expectedly, QAS with low latency threshold 

started the most number of Pods when needed as per high load of incoming requests. This 

indicates the importance of defining the threshold adequately to reflect cost to performance 

ratios. 

Figure 20 Number of Pods started by different auto scalers 

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

HPA300 HPA400 QAS-0.4 QAS-0.6



 

54 
 

Conclusion and Future Work 

The microservice architecture reflects more accurately on the separation of micro -

application concerns by providing means to discover bottlenecks and correctly adjust 

applications on the cloud based on microservice metrics as an independent system. 

Kubernetes provides a promising platform for microservice deployment architecture, 

however more research and development are required in the field. Microservice auto 

scaling is a growing field that while shares similarities with Virtual Machines, which 

provides the basic concepts for microservices auto scaling while requiring adjustments to 

meet architecture, while considering the application underlined. 

Queueing theory is a well established and researched model that translates well into the 

web application architecture by providing a more context aware metrics, yielding more 

accurate decisions. 

In this work, we’ve proven that using queueing theory provides a great mean for scaling 

application that requires little resources (CPU or Memory), however move thorough 

research and evaluation is required to, with a great extinct, define the uses cases of such a 

model. Moreover, in our implementation, the auto scaler doesn’t provide an actual live 

migration due to Kubernets current limitation.  Benefiting from advances in other areas 

within Kubernets, an Auto Scaler should be able to lively migrate Pods by sharing status 

and affinity if any. Lastly, a more in-depth research is required to set migration policies in 

relation to CPU and Memory utilization. 

  



 

55 
 

References 
 

[1]  Q. C. L. &. B. R. Zhang, "Cloud computing: state-of-the-art and research challenges, " 

Journal of internet services and applications, vol. 1, no. 1, pp. 7-18, 2010.  

[2]  P. C. L. S. P. &. T. Y. C. Sharma, "Containers and Virtual Machines at Scale: A 

Comparative Study," in In Proceedings of the 17th International Middleware 

Conference, 2016.  

[3]  R. R. A. R. &. K. D. Dua, "Virtualization vs containerization to support paas," in 

Cloud Engineering (IC2E), 2014 IEEE International Conference, 2014.  

[4]  A. A. &. A. S. A. Bankole, "Cloud client prediction models for cloud resource 

provisioning in a multitier web application environment," in Service Oriented System 

Engineering (SOSE), 2013 IEEE 7th International Symposium, 2013.  

[5]  J. Daniel , Y. Danny and J. Neeraj , "Scryer: Netflix’s Predictive Auto Scaling 

Engine," http://techblog.netflix.com/2013/11/scryer-netflixs-predictive-auto-

scaling.html, 5 November 2013. [Online]. Availab le : 

http://techblog.netflix.com/2013/11/scryer-netflixs-predictive-auto-scaling.html. 

[Accessed 21 March 2017]. 

[6]  "Predictive auto-scaling in elastisys cloud platform," Elastisys, [Online]. Availab le : 

https://elastisys.com/cloud-platform-features/predictive-auto-scaling/. [Accessed 21 

March 2017]. 

[7]  D. Bernstein, "Containers and cloud: From lxc to docker to kubernetes," in IEEE 

Cloud Computing, IEEE, 2014, pp. 81-84. 



56 

[8]  D. Merkel, "Docker: Lightweight Linux Containers for Consistent Development and 

Deployment," Linux Journal, vol. 2014, no. 1075-3583, p. 239, 2014. 

[9]  C. Boettiger, "An introduction to Docker for reproducible research," SIGOPS Oper. 

Syst. Rev., vol. 49, no. 0163-5980, pp. 71-79, jan 2015. 

[10] C. Pahl, "Containerization and the PaaS Cloud," IEEE Cloud Computing, vol. 2, no. 

3, pp. 24-31, 2015. 

[11] V. Marmol, R. Jnagal and T. Hockin, "Networking in Containers and Container 

Clusters," in netdev 0.1, Ottawa, 2015. 

[12] "Kubernetes Concepts," Kubernetes, [Online]. Availab le : 

https://kubernetes.io/docs/concepts/. [Accessed 25 March 2017]. 

[13] D. Vohra, Kubernetes microservices with Docker, British Columbia: Apress, 2016. 

[14] "Kubernetes Tutorials," Kubernetes, [Online]. Availab le : 

https://kubernetes.io/docs/tutorials/. [Accessed 26 March 2017]. 

[15] B. Burns, "The Distributed System ToolKit: Patterns for Composite Containers, " 

Google, 29 June 2015. [Online]. Available: http://blog.kubernetes.io/2015/06/the -

distributed-system-toolkit-patterns.html. [Accessed 4 April 2017]. 

[16] D. Vohra, Kubernetes Management Design Patterns, Springer, 2017, pp. 299--308. 

[17] V. Kannan, "Compute Resource Usage Analysis and Monitoring of Container 

Clusters," Heapster, [Online]. Available: https://doi.org/10.5281/zenodo.574110. 

[Accessed 10 May 2017]. 



 

57 
 

[18]  V. Marmol, "Analyzes resource usage and performance characteristics of running 

containers.," cAdvisor, [Online]. Available: https://doi.org/10.5281/zenodo.574111. 

[Accessed 10 May 2017]. 

[19]  M. Noorali, "Kubernetes," Google, [Online]. Availab le : 

https://doi.org/10.5281/zenodo.803408. [Accessed 6 June 2017]. 

[20]  R. Cooper, "Queueing theory," in Handbooks in Operations Research and 

Management Science, vol. 2, Elsevier, 1990, pp. 469-518. 

[21]  K. Elleithy and A. KOMARALINGAM, "Using a queuing model to analyze the 

performance of web servers," in International Conference on Advances in 

Infrastructure for e-Business, e-Education, e-Science, and e-Medecine on the 

Internet, Rome, Italy, 2002.  

[22]  H.-p. Chen and S.-c. Li, "A queueing-based model for performance management on 

cloud," in Advanced Information Management and Service (IMS), 2010 6th 

International Conference on IEEE, 2010.  

[23]  C. Zhu, B. Han, Y. Zhao and B. Liu, "A Queueing-Theory-Based Bandwidth 

Allocation Algorithm for Live Virtual Machine Migration," in Smart 

City/SocialCom/SustainCom (SmartCity), 2015 IEEE International Conference, 

2015.  

[24]  C. Pham, N. H.Tran, C. T. Do and C. S. Hong, "Live consolidation for data centers 

in cloud environment," in Proceedings of the 9th International Conference on 

Ubiquitous Information Management and Communication, 2015.  



58 

[25] G. Huang, S. Wang, M. Zhang, Y. Li, Z. Qian, Y. Chen and S. Zhang, "Auto scaling 

virtual machines for web applications with queueing theory," in Systems and 

Informatics (ICSAI), 2016 3rd International Conference, 2016. 

[26] J. Jiang, J. Lu, G. Zhang and G. Long, "Optimal Cloud Resource Auto-Scaling for 

Web Applications," in 13th IEEE/ACM International Symposium on Cluster, Cloud, 

and Grid Computing, Delft, 2013. 

[27] R. B. Cooper, Introduction to queueing theory, Second Edition ed., Boca Raton, 

Florida: North Holland, 1981. 

[28] S. &. C. Y. Nahmias, Production and operations analysis, New York: McGraw-

Hill/Irwin, 2009. 

[29] E. Vauge, "Træfik, a modern reverse proxy," traefik.io, 13 September 2015. [Online ]. 

Available: https://doi.org/10.5281/zenodo.1058976. [Accessed 18 November 2017]. 

[30] "Configuration Backend: File," Containous, [Online]. Availab le : 

https://docs.traefik.io/configuration/backends/file/. [Accessed 19 November 2017]. 

[31] Y. Lu, T. Abdelzaher, C. Lu, L. Sha and X. Liu, "Feedback control with queueing-

theoretic prediction for relative delay guarantees in web servers," in Real-Time and 

Embedded Technology and Applications Symposium, 2003. Proceedings, 2003. 


