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Abstract: Background: Norovirus (NoV) is recognized as the second most important etiological
agent leading to acute gastroenteritis globally. In order to determine the burden and characteristics
of NoV infections in children in Qatar, profiling of circulating genotypes and their correlation with
demographics and clinical manifestations were evaluated. Methods: A total of 177 NoV-positive fecal
samples were collected from children suffering from acute gastroenteritis (AGE) during two-year
period between June 2016 and June 2018. The age of the subjects ranged between 3 months and
12 years (median of 15 months). Genotyping was performed by amplifying and sequencing parts
of viral VP1 and RNA-dependent RNA polymerase (RdRp) regions. Phylogenetic analysis and
evolutionary relationships were performed using MEGA7.0. Fisher’s exact test was used to run
statistical analysis for the clinical and demographical characteristics of circulating strains. Results:
Overall, NoV infections were relatively higher in males than females with a ratio of 1.3:1 (p = 0.0073).
Most of the NoV infections were reported in children between 1 and 3 years old (49.7%), followed by
those <1 and >3 years of age (41.2% and 9.1%, respectively). NoV infections occurred throughout the
year, with a noticeable increase in summer (36.6%) and drop in winter (25.4%). Nearly all (98.8%)
NoV-infected children were positive for genogroup II (GII) compared to only two samples (1.2%)
being positive for genogroup I (GI): GI.3 and GI.4. NoV genotype GII.4 (62.2%), GII.2 (15.8%), and
GII.3 (13.5%) were predominant in our study. The detected strains shared >98% sequence homology
with emerging recombinant strain of GII.P16-GII.4/RUS/Novosibirsk/2017 (MG892929), GII.P16-GII.4
Sydney/2012 (KY887601), GII.4 Sydney/2012, recombinant GII.P4 New Orleans /2009/GII.4 Sydney
2012 (MG585810.1), and the emerging strain GII.P16-GII.2 CHN/2017 (MH321823). Severe clinical
illness (vesikari score >10) was reported in children infected with genotypes sharing homology with
the above emerging strains. While GII.4 was reported in all age groups, NoV GII.3 infections were
higher in children <1 year of age. Both genogroups (GII.4 and GII.3) in addition to GII.2 reported
higher incidence in Qatari subjects compared to other nationalities (p = 0.034). Conclusion: This
is the first report about NoV molecular epidemiology in Qatar. The most detected NoV strain was
genogroup GII, which is the dominant genotype in the Middle East region. Further, we report GII.4,
GII.2, and GII.3 as the most predominant NoV genotypes in our study. Moreover, disease severity
scores were higher among children genotyped with genogroup GI (GI.4) and genogroup GII (GII.4,
GII.2, GII.3, GII.6, and GII.7).
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1. Introduction

Noroviruses (NoVs) belong to the family Caliciviridae and are the leading cause of acute
gastroenteritis worldwide [1]. Transmission occurs through the fecal–oral route and is facilitated by
the virus environmental persistence and low infectious dose [2]. Following an average incubation
period of 24 to 48 h, signs of NoV infection start to appear, which include diarrhea, projectile vomiting,
fever, dehydration, and abdominal cramps.

Until recently, human NoVs were hard to grow in vitro. Recent reports have shown that NoVs
could be cultured in stem cell-derived enteroids [3] and in human B cells [4]. Moreover, a replication
model in zebrafish larvae was also recently developed [5]. Nonetheless, simpler cell culture models are
still not available. Accordingly, investigations of the etiologic role of NoVs in acute gastroenteritis (AGE)
are majorly based on the use of sensitive molecular techniques such as reverse transcriptase-polymerized
chain reaction (RT-PCR) [6]. Further, the widespread use of molecular techniques has provided better
knowledge on the diversity of NoV genotypes and strains circulating worldwide [2,6].

NoV has three open reading frames (ORF): ORF1 encodes the viral RNA-dependent RNA
polymerase (RdRp), ORF2 encodes the viral protein (VP1) and ORF3 encodes the minor capsid protein
(VP2) [7]. The VP1 consists of two main domains: the inner shell and the protruding arm, which is
further divided into the P1 and P2 subdomains [8]. The surface-exposed P2 subdomain is hypervariable
and it contains the main antigenic and histo-blood group antigen (HBGA) binding sites. These factors
play an integral role in determining susceptibility to NoV infection [9]. Since the mid-1990s, NoV
genotyping has been done based on RNA-dependent RNA polymerase (RdRp) and major viral capsid
protein (VP1) gene sequencing [10]. Genotypes are typically assigned with a threshold similarity
greater than 80% among viruses of the same genogroup [11]. However, the high rate of mutation and
recombination in NoV-VP1 region poses a particular challenge for molecular analysis [12–14]. Based
on the amino acid (AA) sequence of VP1, NoV is characterized genetically into genotypes I to V, which
are further divided into more than thirty genotypes [15]. In humans, genogroup II has the highest
circulating frequency worldwide, with genotype GII.4 being generally predominant and responsible
for the majority of annual outbreaks [6]. New strains of GII.4 are reported to emerge every 2 to 3 years
replacing the circulating pandemic strains, compared to the less frequently circulating GII.3, GII.6 and
GII.17 strains [16–19]. Furthermore, the GII.4 lineage had on average a 1.7-fold higher rate of evolution
within the capsid sequence compared to other genogroups, supporting the theory that it is undergoing
antigenic drift at a faster rate [20]. GII.3 and GII.6 are also reported as predominant genotype (ORF 2)
after GII.4, respectively [21,22]. NoV infection, mainly with GII.3 and GII.4, has also been reported in
nonsecretors phenotype due to the absence of HBGAs expression involved in the attachment of NoV
to intestinal cells [4].

While the incidence and the molecular variability of NoV-associated AGE are well established in
many parts of the world, limited data exist on the disease burden and the circulating genotypes in the
Middle East and North Africa (MENA) region. So far, 25 studies reported the circulating genotype
associated with NoV gastroenteritis, in which only three studies were conducted on NoV among all age
groups in the MENA region. A recent review suggested that children less than 5 years old in the MENA
region bear the highest burden due to NoV infection [20]. NoV GII.4 was found to be the predominant
genotype among all age groups in the MENA region. According to the available data, NoV seems to
peak in the winter season in ~40% of the MENA countries (Egypt, Morocco, Tunisia, and Turkey), while
it still circulates during the fall and summer in 25% of the countries (Egypt, Libya, Morocco, Tunisia,
and Turkey) [23]. This differential seasonality is affected by variations in environmental conditions,
temperature cycles, as well as winds and humidity rain patterns [24].

Qatar is a multinational country where more than 85% of its population are expats arriving from
more than 60 countries around the globe [25]. This may present a threat for introducing various kinds of
pathogens into the country, and hence it is necessary to run active surveillance programs to understand
the epidemiology of these pathogens and prevent their spread locally. This becomes more important
considering Qatar is preparing for World Cup 2022. Although screening for AGE agents is regularly



Viruses 2019, 11, 400 3 of 17

performed in Qatar hospitals, little is known about their molecular characteristics and clinical outcomes.
A previous prospective study from Qatar in 2013 [26] identified NoV as the leading agent (28.5%)
of AGE among adult and young patients admitted to emergency departments. However, the study
was limited to one year and did not investigate the molecular and epidemographic characteristics of
identified agents. Here, we report the incidence of NoV and its genotype distribution among children
in Qatar during a two-year period. We also analyzed the correlation between circulating genotypes
and clinical manifestations as well as the demographics of the studied population.

2. Materials and Methods

2.1. Sample Collection, Characteristic, and Follow-Up

This is a two-year hospital-based study on NoV-associated AGE conducted between June 2016
and June 2018. Stool samples were collected from children admitted to Pediatric Emergency Center
(PEC) of Hamad Medical Corporation (HMC; the major hospital in Qatar), with signs of AGE (frequent
diarrhea (>2) and vomiting in last 24 h) and tested positive for NoV infections. IRB approval for the
study was obtained from Hamad Medical Corporation (#16173/16) and a written informed consent was
obtained from the parents of the children to use their samples in the study. In addition to the samples,
we also collected demographic (age, gender, and nationality) and clinical data of the enrolled children.
Clinical data sheet included information about duration/frequency of both diarrhea and vomiting, fever,
date of symptoms onset, admission and discharge dates, antibiotics and other treatments, rotavirus
vaccination, neurological symptoms, degree of dehydration, and underlying illnesses. All NoV-infected
patients (n = 177) were followed up to seven days and clinical manifestations were reported.

2.2. Processing and Extraction of Viral RNA

Samples from patients with AGE were initially screened with Film Array Gastrointestinal
(GI) Panel kit (BIOFIRE®, Cambridge, USA) at HMC and samples positive for NoV were then
transferred to Qatar University Biomedical Research Center for further molecular characterization.
Half a gram of stool sample was suspended in 4 mL of sterile 10% phosphate-buffered saline
(PBS) in water. The fecal suspension was then vortexed and centrifuged for 20 min at 4000× g.
The supernatant was collected and transferred into a new 15 mL tube before being centrifuged again at
1500× g for 10 min, following which, 240 µL of the supernatant was used for viral RNA extraction
using QIAamp Viral RNA extraction kit (QIAGEN, Hilden, Germany) according to manufacturer’s
instructions. Concentrations of extracted viral RNA were measured by Infinite 200 PRO NanoQuant
Plate™ - Tecan (NanoQuant, Woburn MA, USA). RT-PCR amplification comprising partial RdRp
and VP1 genes of the virus was generated using primers G1SKF (FP-CTGCCCGAATTYGTAAATGA)
and G1SKR (RP- CCAACCCARCCATTRTACA) for the GI genogroup; and COG2F (FP-
CARGARBCNATGTTYAGRTGGATGAG) and G2SKR (CCRCCNGCATRHCCRTTRTACAT) for
the GII genogroup [27]. Viral RNA that failed to generate a PCR product was
subjected to a separate round of PCR using G1SKF2 (ATGATGATGGCGTCTAAGGACGC)
and G1SKR2 (CCAACCCARCCATTRTACATYTG) for the GI genogroup: and G2SKR (FP-
CNTGGGAGGGCGATCGCAA) and G2SKR (RP-CCRCCNGCATRHCCRTTRTACAT) for the GII
genogroup [27,28]. Briefly, 2 µL of purified viral RNA was used as a template in a 20 µL total reaction
volume using Qiagen One-step RT-PCR Kit. An RT step was carried out at 50 ◦C for 30 min, followed
by initial PCR activation step at 95 ◦C for 10 min; denaturation at 95 ◦C for 30 s, annealing at 42 ◦C for
30 s, and extension at 72 ◦C for 30 s (35 cycles); and final extension at 72 ◦C for 10 min. The amplified
products were detected by gel electrophoresis on a 1.5% agarose gel, containing 4 µL of ethidium
bromide, using the BioRad gel documentation system (Bio-Rad, Hercules CA, USA). The expected
PCR product size for genogroup GI-, GII-, and GII- negative samples were 330 bp, 350 bp, and 387 bp,
respectively. PCR products were stored at −20 ◦C until further analysis.
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2.3. NoV Sequencing and Genotyping

Purification of the PCR products was performed using manual PCR clean up steps as previously
described [29]. Briefly, PCR products were mixed with 27.5% of 100% ethanol, 1.5 µL of sodium
acetate (3M, pH: 5.2), and 1.5 µL of EDTA (0.5 M, pH: 8), mixed by vortexing and centrifuged at
maximum speed for 30 min. The supernatant was discarded and first PCR purification was done by
adding 100 µL of 70% ethanol to each sample, vortex and centrifuged at maximum speed for 10 min.
The supernatant was discarded and samples were air dried at room temperature overnight before
resuspending with 15 µL of nuclease-free water. Nucleotide sequencing of the first purified product
was performed at MCLAB (South San Francisco, CA, USA) using the PCR primers. The obtained
sequences were utilized to determine the genotype using the web based Norovirus Genotyping
Tool Version 1.0 software [30]. Multiple sequence alignments were done using CLUSTALW 2
(https://www.genome.jp/tools-bin/clustalw) and phylogeny trees were constructed with Molecular
Evolutionary Genetics Analysis Version 7.0 (MEGA 7) software using the neighbor-joining approach
validated by replicating with 1000 bootstraps as previously reported [31]. The reference strains for
GI and GII were obtained from the GenBank and Noronet database to demonstrate the relationships
between NoV genotypes from the outbreaks and globally circulating strains.

2.4. Vesikari Score System for Severity of NoV Infection

We evaluated the disease severity of NoV AGE infected children by applying the Vesikari score
system [32] according to clinical manifestations: total score < 7 considered mild; 7–≤10 considered
moderate; and >10 (≤20) considered severe. The scoring system considered general AGE symptoms:
duration of diarrhea and vomiting episodes, temperature, and dehydration (mild dehydration: treat at
home; moderate dehydration: treat using oral rehydration salts, 1–5% loss body weight, and severe
dehydration: treat using IV therapy, ≥6% loss body weight) [32].

2.5. Statistical Analysis

All statistical data analysis was done using GraphPad (Prism version 5.04) (IBM, Armonk, NY,
USA). Fisher’s exact test was used to determine significant differences for comparisons of general
categorical variables. p-value < 0.05 were considered to be statistically significant.

3. Results

3.1. Demography and Clinical Outcomes of the Study Subjects

Between June 2016 and June 2018, 600 children were admitted to the emergency ward with AGE
symptoms, of which, 177 (29.5%) were positive for NoV infection. Table 1 denotes the demographic
characteristics of the study population. The proportion of males to females infected with NoV was 1.3:1.
Moreover, the highest rate of NoV infections was reported in children between 1–3 years of age (49.7%),
followed by < 1 year (41.2%) and > 3 years (9.1%) (Table 1). As expected, the majority of NoV-infected
children had symptoms of diarrhea (99%), dehydration (98%), vomiting (93.3%), and fever (39.5%). Only
4.5% of infected children showed severe dehydration, whereas approximately 43% and 50.2% showed
moderate to mild dehydration, respectively (Table 2). The duration of hospitalization of NoV-infected
children ranged from two to four days (average: 3 days, standard deviation (SD): 1.56). According to
the Vesikari score, 27 (21.2%) children reported mild symptoms (score < 7), 76 (60%) with moderate
(7 ≤ scores ≤ 10), and 24 (18.8%) with severe (score ≥ 10) symptoms. During the follow-up period for
about one to seven days, only 24 (13.6%) children were prescribed for treatment (ceftriaxone, paracetamol,
cefexime, electrolyte replacement solution, IVF, salbutamol, domperidone, NaCl, and ibuprofen). From
these, 22 (91.7%) children were fully recovered, while only two (8.3%) did not recover completely by the
end of the follow-up period. Moreover, both unrecovered children had one of their siblings affected with
AGE infection. As for children who did not receive treatment, 84.3% were fully recovered within 6 days,
while 15.7% did not recover completely during the follow-up period (7 days) (Table 2). Out of the total
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number of NoV-positive cases (177/600), 31 (17.5%) were detected during second half of 2016, 78 (44%) in
2017, and 68 (38.4%) during the first half of 2018 (Figure 1A). The NoV incidence rate was lesser among
Qatari subjects compared to other nationalities. The highest three rates of NoV infections were reported in
Qataris (40%), Indians (12%), and Egyptians (7%), respectively (p = 0.04) (Figure 1B).

Table 1. Demographic characteristics of study subjects.

Pediatric Profile NoV-Positive Cases No. (%) NoV-Negative Cases No. (%) p-Value

No. of Pediatric Patients 177 (29.5) 423 (70.5) -

Gender

Female 77 (43.5) 235 (55.5)
0.0070

Male 100 (56.5) 188 (44.5)

Age (years)

<1 year 73 (41.2) 97 (23)

<0.00011–3 years 88 (49.7) 209 (49.4)

>3 years 16 (9.1) 117 (27.6)

Table 2. Clinical observations of NoV-positive cases n = 177 (29.5 %).

NoV-Positive No. (%) GI No. (%) GII No. (%)

Fever

Yes 70 (39.5) 0 (0) 70 (40)

No 107(60.5) 2(100) 105(60)

Max reached fever (◦C) 40.6 38.6 39.9

Vesikari Score 7 ≤ scores ≤ 10 score < 7 score > 10

Vomiting

Yes 165 (93.2) 2(100.0) 163(93.1)

Frequency (per day) 2–11 2–6 3–11

Duration (days) 1–7 3–4 1–7

No 12(6.8) 0 (0.0) 12 (6.9)

Vesikari Score * score > 10 score < 7 score > 10

Diarrhea

Yes 176 (99.4) 2(100.0) 174 (99.4)

Frequency (per day) 2–10 2–5 3–10

Duration (days) 1–5 3–4 2–5

No Diarrhea 1 (0.6) 0 (0.0) 1 (0.6)

Vesikari Score * score > 10 (score < 7) (score > 10)

Dehydration

Severe 8 (4.5) 0 (0.0) 8 (4.6)

Moderate 76 (43) 0 (0.0) 76(43.4)

Mild 89 (50.2) 2(100.0) 87 (49.7)

No dehydration 4(2.3) 0 (0.0) 4 (2.3)

Vesikari Score * 7 ≤ scores ≤ 10 (score < 7) (score > 10)

Mean Duration of Hospitalization (days) 1–7 2–3 1–7

Treatment ** 24 (13.6) 0 (0.0) 24 (13.6)

Fully recovered 22 (91.7) 0 (0.0) 22 (91.7)

Partially recovered 2 (8.3) 0 (0.0) 2 (8.3)

Worsening 0 (0.0) 0 (0.0) 0 (0.0)

Recovered but became sick again 0 (0.0) 0 (0.0) 0 (0.0)

No treatment 153 (86.4) 2(100.0) 151 (85.3)

Fully recovered 129 (84.3) 2(100.0) 127 (82.3)

Partial recovered 24 (15.7) 0 (0.0) 24 (15.7)

Worsening 0 (0.0) 0 (0.0) 0 (0.0)

Recovered but became sick again 0 (0.0) 0 (0.0) 0 (0.0)

* Vesikari Score: mild symptoms (score < 7), moderate (7 ≤ scores ≤ 10), and severe (score > 10). ** Treatment:
Ceftriaxone, Paracetamol, Cefexime, Electrolyte replacement solution, IVF, Salbutamol, Domperidone, NaCl,
and Ibuprofen.
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3.2. Seasonality of NoV Infections

Stacked line chart denoting cumulative NoV infections during the study period, along with
records of temperature and humidity are shown in Figure 2. Although the number of NoV infection
occurred throughout the year, a drop in NoV infections was recorded between October and December
(the winter season, average temperature: 22 ◦C and average humidity: 66%) comprising 25.4% (45/177)
of the overall infections. Moreover, a rise in NoV cases was noticed in warmer months between May
and August (average temperature: 37 ◦C, average humidity: 48%). The NoV reported cases among
children during these four months represented 36.6% (64/177) of the total number. Such seasonal
patterns of NoV infection were the same during the study period from June 2016 and June 2018.
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3.3. Genetic Variability of NoV Infections

We were able to sequence and subsequently genotype all 177 NoV-positive samples included in
our study. In order to analyze the circulating genotypes among NoV-infected children, we inferred the
phylogenetic analysis along with the reference sequences from GenBank and Noronet. Two samples
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were documented as GI based on their clustering in the phylogenetic analysis; of which, one was
designated as GI.3 and the other as GI.4. Identified G1.3 strain was closely related to the South
Africa/2016 (MF182349.1) strain (95% nucleotide identity) [33], while GI.4 shared sequence similarity
(98% nucleotide identity) to the Venda/2015 (KY012280.1) strain [34] (Supplementary Figure S1). On
the other hand, nine different NoV GII genotypes were identified among the infected children, of
which 62.2% were identified as GII.4. GII.4 strains clustered closely with emerging recombinant
strain GII.P16-GII.4/RUS/Novosibirsk/2017 (MG892929), followed by GII.P4 New Orleans/2009/GII.4
Sydney/2012 (MG585810.1), GII.P4-GII.4/Rotterdam/2014 (MF140697.1), GII-4 /South Korea/2016
(EU003949.1), and GII.P16-GII.4 Sydney/2012 (KY887601), with 98% nucleotide identity (Figure 3A).Viruses 2019, 11, x FOR PEER REVIEW 8 of 17 
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(A) Phylogeny analysis of NoV GII.4 circulating strain in children in Qatar. (B) Phylogeny analysis of
NoV GII.2 circulating strains (C) Phylogeny analysis of NoV GII.3 circulating strains. The evolutionary
tree was constructed by using Neighbor-Joining method with 1000 bootstrap with MEGA7 [32]. The
evolutionary distances were computed using the Poisson correction method and are in the units of the
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Likewise, based on the phylogeny analysis, GII.2 strains were closely related GII.2/Pingtung/

10-28/2017 (KY596003.1) and emerging strain GII.P16-GII.2 CHN/2017 (MH321823), with 98% nucleotide
identity (Figure 3B). GII.3 was the third most predominant genotype in our study and strains from
this genotype were closely related (98% nucleotide identity) to the viral strains from Brazil/2008
(KY702113.1), United Kingdom/2016 (KY887606.1), and Spain/2012 (KJ504419.1) (Figure 3C). The
number of amino acid substitution per sequenced site in NoV GII.4, GII.3 and GII.3 identified were
0.05, 0.02, and 0.1, respectively. However, all of the RdRp sequenced in our study for GII.3 and GII.2
are of the GII.P16 genotype.

3.4. NoV Genotypes and Age of Children

We identified the association of specific NoV genotypes and the age of infected children. GII.4
was detected at higher rates among children from 1 to 3 years of age (55%) compared to other age
groups (Table 3). Likewise, GII.3 was detected in high level among children of age group 1 to 3 years
representing 67.9% of the infected children (Table 3). On the other hand, most of the detected GII 2
occurred in children younger than one year of age (75%). Furthermore, NoV uncommon genotypes
GII.6 and GII.17 were detected among all three age groups with no significant differences. GII.7 was
detected in one child in the age group of 1 to 3 years, whereas GII.21 was reported in one child > 3 years
of age. GII.13 was detected in two patients <1 year and > 3 years (Table 3).

Table 3. Age-stratified NoV genotype detected in children with acute gastroenteritis (AGE) in Qatar.

Genotype Total Number <1 Year 1–3 Years <1 Year

Genotype I

GI.4 1 (0.56%) 1 0 0

GI.3 1 (0.56%) 0 1 0

Genotype II

GII.4 110 (62.2%) 45 60 5

All non-GII.4 GII 65 (36.7%) 27 27 11

GII.1 1 (0.56%) 1 0 0

GII.3 28 (15.8%) 5 19 4

GII.2 24 (13.5%) 18 4 2

GII.6 3 (1.69%) 1 1 1

GII.7 1 (0.56%) 0 1 0

GII.13 2 (1.1%) 1 0 1

GII.17 5 (2.8%) 1 2 2

GII.21 1 (0.56%) 1 0 0

3.5. NoV Genotype-Associated Clinical Outcomes

The prevalence of various NoV genotypes in children suffering from AGE between June 2016
and June 2018 in Qatar is represented in Figure 4A. Genotypes were also detected among hospitalized
children during the study period: GII.1 (1/65, 1.5%), GII.6 (3/65, 4.6%), GII.7 (1/65, 1.5%), GII.13 (2/65,
3%), GII.17 (5/65, 7.7%), and GII.21 (1/65, 1.5%). We evaluated the association of clinical outcomes
in hospitalized patients with circulating genotypes detected in Qatar using the Vesikari clinical
severity scoring system (Figure 4B). Among genogroup GI, patient infected with GI.4 exhibited severe
symptom with the highest Vesikari score (score ≥ 10), compared to the patient genotyped with GI.3
(score < 7). Among GII genotypes, we recorded higher severity score in patients infected with an
uncommon genotype NoV GII.6 (score ≥ 10). Moderate disease severity (score: 7 < score < 10) was
also observed among children infected with genotypes GII.4, GII.3, GII.2, GII.13, GII.17, and GII.7
(Figure 4B). On the other hand, disease severity (score ≥ 10) was higher among children infected with
GII.4 viral strains closely related to recombinant GII.P16-GII.4/RUS/Novosibirsk/ 2017 (MG892929),
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GII.P4 New Orleans/2009/GII.4 Sydney/2012 (MG585810.1), GII.P16-GII.4 Sydney/2012 (KY887601),
and GII.P16-GII.2 CHN/2017 (MH321823).
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3.6. Seasonal Distribution of NoV Genotypes

Overall, GII.4 was the dominant genotype throughout the study period and accounted for 62.2%
(110/177) of all NoV cases. We observed that GII.4 was higher in summer (May–August) and lower in
winter (October–December) in Qatar during 2016. However, in 2017, we observed sudden surge in
GII.4 in winter, which lasted until February 2018. Notably, GII.2 was sporadically detected during the first
year of the study (June 2016–June 2017), but then continuously detected during the second part of the
study, almost in all months. On the contrary, GII.3 was detected throughout the year during the whole
study period, with dominant peaks in June 2016 and December 2017 (Figure 5). It is worth noting that
uncommon genotypes such as GII.6, GII.7, GII.17, GII.13, and GII.21 were observed at the end of summer
(August–September) and winter (December–January) breaks in Qatar (Figure 5). Genogroups GI.3 and
GI.4 were detected only once during the winter season (October–December) in 2016 and 2017.
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3.7. NoV Genotypes Associated with the Nationality of Children

Qatar is a multinational country where expats represent more than 85% of its population. Therefore,
we investigated the correlation of circulating genotypes and nationality of patients. All dominant
genotypes in this study (GII.4 (62.2%), GII.2 (15.8%), and GII.3 (13.5%)) had higher incidence in Qatari
children (Figure 6). The top three populations infected with GII.4 were Qatar (46%), Egypt (12%), and
Pakistan (9%). GII.2 NoV infection was more circulating among children from Qatar (28%), Pakistan
(17%), and The Philippines (16%). GII.3 was detected at higher rates among children from Qatar (54%),
Yemen (12%), and Sudan (11%) (Figure 6). Uncommon GII genotypes were detected among both Qatari
subjects (53.3%, 8/15) and expatriates (46.4%, 7/15) (Figure 6).
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Figure 6. Pie chart representing the percentage of dominant NoV genotypes among top three
nationalities. (A) Distribution of GII.4 (n = 110) among children from Qatar (orange color), Egypt (blue
color), Pakistan (yellow color), and other nationalities (pink color). (B) GII.3 (n = 28) distribution among
children from Qatar (orange color), Yemen (gray color), Sudan (brown color), and other nationalities
(pink color). (C) GII.2 (n = 24) distribution among children from Qatar (orange color), Pakistan (yellow
color), Philippine (light green color), and other nationalities (pink color). (D) Distribution of less
prevalent genotypes (n = 15) in percentage with respect to their nationality. Qatar (orange color), Indian
(green color), Tunisia (purple color), Belgium (marron color), Yemen (dark blue color), and Philippines
(yellow color).

4. Discussion

In this current work, we report on the clinical, epidemiological, and molecular characterizations
of NoV infections among children suffering with AGE in Qatar between June 2016 and June 2018.
Several studies from the MENA region had evaluated the prevalence of NoV in pediatric population,
including studies from Libya [35,36], Israel [37,38], Jordan [39], Yemen [39], Egypt [40], Tunisia [41,42],
Iran [43], Morocco [44], Lebanon [45], and Turkey [44,46]. This study updates the knowledge obtained
from other studies in the region; yet, it includes samples from mixed populations and correlates the
findings to clinical manifestations.

Our analysis revealed the dominance of the GII genogroup, specifically the GII.4 (62.2%) genotype,
which is consistent with previous reports from MENA region [23]. This observation is also in agreement
with the global distribution of NoV, where GII.4 represents 68% of reported NoV cases worldwide [47].

In the MENA region, NoV is reported in both, winter and summer seasons, in countries such
as Egypt, Morocco, Tunisia, and Turkey [23,48]. Similarly, NoV infections in Qatar were reported
throughout the year, with a trend of lower infections in spring. We also assessed the variability of
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NoV infections in various age groups: Infants (< 1 year), toddlers (1–3 years), and young children
(4–15 years). We reported higher NoV infections among children between 1–3 years of age compared
to the other age groups. These observations are in contrast to previous report from Libya [35] where
higher NoV rates were identified among children <1 year old. However, our report is in agreement
with a previous study done by Oldak et al. (2012) in Northeastern Poland, in which higher NoV
infection was detected in children between 1 and3 years of age [49]. The higher NoV infection rate
in children between 1 and 3 years of age could be attributed to commingling of children in daycares,
where children at this age have minimal immunity to the virus [50].

Nucleotide sequencing and phylogenetic analysis of partial polymerase and capsid proteins
revealed that GII.4 (62.2%), GII.2 (15.8%), and GII.3 (13.6%) were predominant in our study. Circulating
GII.4 strains shared homology with emergent recombinant strain GII.P16-GII.4/RUS/ 2017 (MG892929),
GII.P16-GII.4 Sydney/2012 (KY887601) and GII.P4 New Orleans/2009/GII.4/Sydney 2012 (MG585810.1)
(52). The Novosibirsk-2017 strain harbors several AA changes within the main epitope of the P2 capsid
domain and shares a common ancestor with the NoV GII.4 variants Apeldoorn 2008 and New Orleans
2009 [51]. On the other hand, the Sydney-2012 strain was also isolated in the United States, Denmark,
Japan, and Scotland [52–55]. The emergence of new NoV strains could be possibly due to the antigenic
adaptation, which exerts a positive pressure as other studies, had suggested [53]. Such NoV GII.4
variants are known for their sudden emergence and quick outbreaks in communities, and have been
associated with 65–80% of cases of NoV AGE worldwide [56].

GII.2 genotype was identified as the second most predominant cause of NoV infections in children
in our study (16%). This genotype was detected at much lower rate in a recent study from Lebanon [45],
where the it represented only 1.3% (1/76) of all NoV cases. Further, this genotype has been recently
reported in Iran also at low frequency (2.8%), but not elsewhere in MENA region [45]. Most of
GII.2 sequences in our study were closely related to the emerging strains GII.P16–GII.2 CHN/2017
(MH321823) from China. Moreover, GII.P16-GII.2 was reported to be the most predominant strain
with a sudden increase in cases in Germany, France, and China in the period between 2016 and 2017
(winter) [57–59]. In China, this strain was the cause of 79% (44/56) of the outbreaks in 2016 [60].
Full-length analysis of GII.2 VP1 and RdRp region indicated that amino acid (AA) substitutions in
partial RdRp in the GII.P16 are responsible for enhanced polymerase kinetics and thus, have been
shown to be circulating at high frequencies predominating during the 2016–2017 season [61].

GII.3 was reported to be the most predominant genotype in Jordan in year(s) 2006 and 2007,
contrasting reports from other countries around the globe [39]. This genotype ranked third in our study,
with a similar trend of its prevalence in the study from Lebanon in 2016 [45]. The identified sequences
showed closeness to the viral strains from Russia/2012 (KY596003.1), Brazil/2008 (KY702113.1), United
Kingdom/2016 (KY887606.1), Johannesburg/ 2010 (KR904306.1), and Spain/2012 (KJ504419.1).

Other non-GII.4 genotypes were also detected in our study, including GII.1 (1/65, 1.5%), GII.6 (3/65,
4.6%), GII.7 (1/65, 1.5%), GII.13 (2/65, 3%), GII.17 (5/65, 7.7%), and GII.21 (1/65, 1.5%). These non-GII.4
genotypes were previously reported in the MENA region in Lebanon [45], Tunisia [62], Libya [35],
Egypt [40], and Turkey [63]. Further genotypes GI.1, and GI.3, GII.1, GII.6, GII.7, GII.13, GII.17, and
GII.21 were detected only once throughout the study. The low frequency of these genotypes did not
allow any analysis to study their trend in the population.

A recent systematic review had shed light on the seasonality of NoV genotype circulation in the
MENA region [23]. Among GI genotypes, GI.3 and GI.4 predominated, albeit that their prevalence was
less than GII genotypes and were mainly observed circulating in winter season. Amid genogroup II, new
GII.4 variants have been reported to emerge with unusual seasonality (spring/summer) [64], along with
an increase during the winter season (average temperature: 22 °C and average humidity: 66%). In the
MENA region specifically, dominance of GII.4 was reported in summer seasons in Morocco [44] and
Libya [35]; and in winter season in Egypt (2006–2007) [65] and Tunisia (2011–2012) [62]. Interestingly,
all of these four countries are North African countries that share similar climates. Moreover, the
weather in Qatar is broadly grouped in two seasons: hot (May to October) and cool (December to
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February). March, April, and November are considered as warm transitional months [66]. Although
GII.4 was predominant throughout our study period, its prevalence varied between seasons, with
noticeable increase in the winter season of 2018. GII.2 was sporadically detected in the first year of
our study, but then in almost all months starting from May 2017. No reports have been published
about this genotype elsewhere from MENA region. On the other hand, GII.3 was predominantly
reported during the winter season in Jordan (2014–2015) [39] and Tunisia (2011–2012) [62,67], but
not in our study. It is worth noting that uncommon strains such as GII.6, GII.17, GII.13, and GII.21
emerged during the end of summer breaks in Qatar. This coincides with the return period of expats
traveling to their native countries and Qatari nationalities prefer traveling to tourist places, explaining
the introduction of different and new viral strains to Qatar yearly. It is not well understood why these
strains do not widely circulate in the community, which requires further investigation.

We also analyzed NoV genotype correlation with the age of the infected children. The two GI
strains were detected in children younger than three years of age. Regarding genogroup GII, GII.4 was
detected at marginally higher rates among children aged 1 to 3 years reaching 55% (60/100) of the cases.
GII.3 was clearly higher in toddlers (1–3 years of age), accounting for 67.5% (19/28) of reported cases.
Contrarily, GII.2 was detected at higher rates in children <1 year of age compared to other groups,
reaching 75% (18/24). All other uncommon GII genotypes were sporadically detected in all age groups.

Importantly, we investigated the correlation between circulating genotypes and clinical outcomes
using the Vesikari Clinical Severity Scoring System. Such clinical association was previously reported
in a NoV outbreaks in Taiwan (during 2006 and 2007, and 2011 and 2012), but not in the MENA region
countries. In Taiwan, severe clinical symptoms were associated with different GII.4 variants (GII.4 2012a
and GII.4 2012b) [68]. Hospitalized children infected with these genotypes presented a significantly
higher incidence of intestinal hemorrhage, occult blood in feces, as well as high fever >39 ◦C compared
to earlier outbreaks with GII.4 Sydney 2012 and GII.4 2006b [68]. Among genogroup GI, the severity
score was higher among the patient infected with GI.4 (score ≥ 10), compared to patient infected with
GI.3 (score < 7). Moderate disease severity (score: 7 < score < 10) was also recorded among children
infected with genotypes GII.4, GII.3, GII.2, GII.13, GII.17, and GII.7. Increased frequency of diarrhea
and vomiting (average frequency: 4–5 times/day) were reported in children infected with certain
GII.4 strains, specifically those similar to GII.P16-GII.4/RUS/2017 (MG892929), GII.4 Sydney/2012,
GII.P4 New Orleans/2009/GII.4 Sydney 2012 (MG585810.1), GII.P16-GII.4 Sydney/2012 (KY887601),
and GII.P16-GII.2 CHN/2017 (MH321823) (score ≥ 10). On the other hand, infection with NoV GII.3 in
children <1 year of age resulted severe clinical illness (score ≥ 10) compared to other age groups/other
genotypes. In fact, only limited number of reports had correlated the serenity of NoV infection with
the genotype among children. Few studies suggested that NoV GII-4 genotype has a greater virulence
compared to other NoV genotypes [69,70].

We also investigated whether the circulating NoV genotypes were correlated to the country of
origin of the subjects. The current work showed that the prevalence of NoV infection with GII.4
(43%), GII.3 (28%), and GII.2 (14%) were higher among Qatari children compared to other nationalities.
Concerning uncommon genotypes, they were detected among both Qatari subjects (53.3%, 8/15) and
expatriates (46.4%, 7/15).

Although GII.4, GII.2, and GII.3 genotypes have a significant role in NoV infections,
reports have identified the epidemiological differences between these genotypes based on genetic
polymorphism [20,71]. It has been suggested that the predominance of NoVs GII.4 may be due to
higher evolution rate that enabled emergence of strains with better affinity binding to HBGAs [72,73].
In contrast, it was suggested that NoVs GII.2 and GII.3 had an evolutionary hindrance compared to
NoVs GII.4 due to less processive polymerase and lower rate of evolution [20].

In conclusion, the results from this study are in line with global reports regarding the dominance
of NoV GII, representing 98.8% of NoV infections [74]. Continuous surveillance for the circulating
genotypes and their epidemiological and clinical significance is necessary, especially the country is
preparing for World Cup 2022. Our study focused on a pediatric population and further studies
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including other population groups are required. Moreover, foodborne illness caused by NoV infection
has been documented in Qatar previously [75] which stipulates the need of similar studies on food
products, as more than 80% of vegetables/fruits being imported [76]. Furthermore, investigations
focusing on whole genome sequencing of the circulating variants will give better insight about
their evolution in the community, and thus will shed light on their potential source and how to
eradicate them.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/5/400/s1,
Figure S1: Phylogeny analysis of NoV circulating strains in children in Qatar.
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