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Abstract 

Type I galactosemia is a very rare autosomal recessive genetic metabolic disorder that occurs 

because of the mutations present in the galactose-1-phosphate uridyl transferase (GALT) gene, 

resulting in a deficiency of the GALT enzyme. The action of the GALT enzyme is to convert 

galactose-1-phosphate and uridine diphosphate glucose into glucose-1-phosphate (G1P) and 

uridine diphosphate-galactose, a crucial second step of the Leloir pathway. A missense mutation 

in the GALT enzyme leads to variable galactosemia’s clinical presentations, ranging from mild to 

severe. Our study aimed to employ a comprehensive computational pipeline to analyze the most 

prevalent missense mutations (p.S135L, p.K285N, p.Q188R, and p.N314D) responsible for 

galactosemia; these genes could serve as potential targets for chaperone therapy. We analyzed the 

four mutations through different computational analyses, including amino acid conservation, in 

silico pathogenicity and stability predictions, and macromolecular simulations (MMS) at 50 ns. 

The stability and pathogenicity predictors showed that the p.Q188R and p.S135L mutants are the 

most pathogenic and destabilizing. In agreement with these results, MMS analysis demonstrated 

that the p.Q188R and p.S135L mutants possess higher deviation patterns, reduced compactness, 

and intramolecular H-bonds of the protein. This could be due to the physicochemical 

modifications that occurred in the mutants p.S135L and p.Q188R compared to the native. 

Evolutionary conservation analysis revealed that the most prevalent mutations positions were 

conserved among different species except N314. The proposed research study is intended to 

provide a basis for the therapeutic development of drugs and future treatment of classical 

galactosemia and possibly other genetic diseases using chaperone therapy. 

Key Words: classical galactosemia, GALT, prevalent mutations, molecular dynamics, 

misfolding 
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Introduction: 

Classical galactosemia or Type I galactosemia (OMIM: 606999) is a rare genetic metabolic 

disorder that is passed down in an autosomal recessive manner [1]. The estimated frequency of 

galactosemia has been determined to be 1: 105,000 in France, 1: 23,500 in Ireland, 1: 45,000 in 

West Germany and 1: 20,000 in Brazil [2–6]. Incidence and prevalence in other countries, 

especially in India, have yet to be estimated [7–9]. In most organisms, the Leloir pathway is 

required for galactose metabolism, which is involved in the biological interconversion of glucose 

and galactose using three specific enzymes, namely, galactokinase (GALK1, EC 2.7.1.6, OMIM: 

604313), uridine diphosphate glucose 4-epimerase (GALE, EC 5.1.3.2, OMIM: 606953), and 

galactose-1-phosphate uridylyltransferase (GALT, EC 2.7.7.12, OMIM: 606999). The deficient 

enzymes that exist in the Leloir pathway are responsible for classical galactosemia, galactokinase 

deficiency, and galactose epimerase deficiency [10–12]. In the Leloir pathway’s second step, the 

GALT enzyme is necessary for the breakdown and transformation of UDP-glucose and gal-1P 

into G1P and UDP-galactose. 

Classical galactosemia mainly occurs due to reduced activity of the enzyme GALT owing to a 

single nucleotide change in the galactose-1-phosphate uridylyltransferase gene (GALT; 9p13.3). 

Low activity of the GALT enzyme results in increased accumulation of galactose-1-phosphate in 

a variety of tissues resulting in severe clinical representation [13], including liver dysfunction, 

cataract formation, vomiting, hepatomegaly, hypotonia, septicemia, weight loss, diarrhea, 

jaundice, lethargy, bleeding tendencies, and ovarian failure, which vary from patient to patient. 

Intellectual retardation, and developmental and cognitive defects are also observed in patients 

with galactosemia [13]. So far, galactosemia has no cure; however, some treatments such as liver 

transplantation and gene therapy are being pursued; however, these treatments are associated 

with failure risk inherent in each technique. In some GALT gene mutations, RNA-based 
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therapies, stop codon read-through and antisense-mediated exon skipping could be achieved, yet 

not in the most prevalent mutations that cause disease (p.S135L, p.K285N, p.Q188R, and 

p.L195P) [14]. Patients with galactosemia are prescribed to consume diets that are lactose and 

galactose-free to avoid severe neonatal and long-term complications, including premature 

ovarian insufficiency (POI) [15]. 

Recently, the Yue et al. (2016) group crystallized the structure of the GALT (43 kDa) enzyme 

(PDB code: 5IN3 and 6GQD), which shows the zinc-binding residues Asn72, Cys75, Ser135, 

His184, uridylylation site or active site His186, surface-exposed loop from residues 49-63 tangled 

in uridine diphosphate-hexose binding. The binding site of Glu-1-P is formed by the residues 

Lys334, Phe335, Val337, Tyr339, Glu340, and Gln346 from one chain, accompanied by residues 

Asn173 and Gln188 from another chain [16]. As of January 2018, nearly 335 different mutations 

had been identified and disclosed in the Human Gene Mutation Database (HGMD®) and 

GALT database (GALTdb), with 214 missense, 18 nonsense, 28 silent, 6 insertion, 22 deletion, 

and 22 splice site mutations [13,17]. Missense mutations are reported to form the largest group 

worldwide, consisting of the most common mutations among classical galactosemia. Previous 

reports suggested that p.Q188R is the most common mutation in Caucasians (60% worldwide), 

p.L195P in Spanish, p.K285N in Europeans and is considered to be the second most repeated 

mutation, p.S135L in South Africans, and p.N314D is assumed to be the most common 

mutation in the Indian population [7,15]. In the current study, we have classified the most 

prevalent mutations that are responsible for classical galactosemia and demonstrated the 

potential use of a bioinformatics pipeline to observe the potential correlation of genotype and 

phenotype in patients with classical galactosemia. 

Methodology 

Datasets 
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We retrieved the reported missense mutation information from the UniProt 

(https://www.uniprot.org/uniprot/P07902) and Human Gene Mutation Database (HGMD, 

http://www.hgmd.cf.ac.uk/ac/index.php) databases [17–20]. Protein sequence data (accession 

no. P07902) were collected from the Swiss-Prot database [21]. The GALT human protein 

structure was acquired from the RCSB Protein Data Bank (https://www.rcsb.org/) with PDB 

code: 6GQD [16,22]. For further investigation, we selected the mutations namely p.S135L, 

p.K285N, p.Q188R, and p.N314D, which are most prevalent in this disorder for our analysis. 

Evolutionary conservation analysis 

We performed multiple sequence alignment (MSA) by implementing the Clustal Omega from 

EMBL-EBI (https://www.ebi.ac.uk/Tools/msa/clustalo/) to align sequences of GALT protein 

from different species to understand the evolutionary relationship between these sequences [23]. 

The result of MSA from Clustal Omega was manually plotted onto ESPript3.0 (Easy Sequencing 

in PostScript, http://espript.ibcp.fr), which helps to render multiple sequence alignments for 

easy analysis. In an ESPript rendering, it is possible to show the aligned sequences, similarities, 

hydropathy, secondary structure elements, and intermolecular contacts [24,25]. The secondary 

structure information of GALT was inferred from the PDB coordinates (PDB ID: 6GQD). 

Then, we calculated the hydropathy of amino acids as stated by the Kyte and Doolittle algorithm 

with an average window of 3-residue [26]. The GenBank accession numbers and the vertebrates 

of the GALT sequences used are Homo sapiens- NP_000146.2, Gorilla gorilla- XP_004048011.1 

(predicted), Pan troglodytes- XP_001163419.1, Canis lupus- XP_852579.1, Rattus norvegicus- 

NP_001013107.1, and Mus musculus- NP_057867.2. We also subjected the protein sequence to 

the ConSurf webserver to predict the level of conservation at a defined amino acid position [27]. 

Determination of pathogenicity and change in protein stability 

The retrieved prevalent GALT missense mutations were examined for their consequence on 

protein’s tertiary structure and function. Various in silico approaches were exploited to check the 
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detrimental nature of the missense mutations. For the analysis of protein stability and 

pathogenicity, we employed the iStable and PredictSNP algorithms, respectively [28][29]. For 

prediction, we provided a FASTA sequence of GALT protein and mutations as the input. 

Analysis of amino acid physicochemical properties 

To identify the biophysical characterization of the mutated amino acid, we used the Align-

GVGD tool, which integrates Grantham deviation (GD) and Grantham variation (GV) to check 

that the missense mutations in GALT ordered between least risk to highest risk [30,31]. 

Furthermore, the physicochemical characteristics of the variants were distinguished using the 

Project ‘Have Your Protein Explained’ webserver (HOPE, http://www.cmbi.ru.nl/hope/). The 

tool utilizes several web servers, such as BLAST, FASTA, PDB (3D structure), DSSP, UniProt, 

YASARA, HSSP, DAS server, and ClustalW to identify the consequences of the missense 

mutation on the structure of a protein [32]. The protein sequence in FASTA format was used as 

an input to check the physicochemical properties across the amino acids of native and mutant, 

such as a change in charge, size, hydrophilicity, hydrophobicity, and loss of interactions between 

amino acids. 

Preparation of mutant protein models 

The wild-type protein structure was retrieved from PDB with the code 6GQD, and missense 

mutations were mapped to their corresponding amino acid positions using SPDB Viewer [33]. 

The PDB structure possessed A21Y, A22T, T23P, and R25L mutations during crystallization. 

These were reversed to their wild-type form before initiating the molecular dynamics simulation. 

The resulting mutant model was then energy minimized by applying the inbuilt force field 

GROMOS96 in SPDB Viewer [34]. The interactions, such as hydrogen bonds, hydrophobic, and 

other nearby interactions, between the native and mutant models were studied and visualized 

using the UCSF Chimera Molecular Modeling System [35,36]. 
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Macromolecular simulation (MMS) 

In this study, we used GROMACS version 4.6.5 to perform MMS for the mutant and native 

GALT proteins [37,38]. We used the AMBER99SB-ILDN force field parameter for energy 

minimizations, and it includes every atom explicitly [39]. To remove the local strains, we carried 

out energy minimization for native and mutant proteins present in the system. The solvation of 

native and mutant models were placed in a box, and the protein was centered in the box at least 

1.2 nm from the box’s edge. The water molecules were filled using the water models of SPC in 

the simulation boxes [40]. Our simulation system used the periodic boundary condition (PBC) to 

disregard the surface effect, and the cubic simulation box was replicated in space to create an 

infinite lattice. To neutralize our system, the GENION procedure was used from the 

GROMACS package to add required ions to the system. The energy was minimized for all atoms 

in native and mutants separately; then, the energy-minimized structure was obtained. To ensure 

that the energy minimization was successful, we checked whether the potential energy (Epot) 

had a negative value on the order of 105-106. Following the steepest descent minimization, 

equilibration of pressure was carried out under an NPT ensemble for 100 ps at 300 K. After 

NPT, the isothermal-isochoric or canonical ensemble was carried out under NVT for 100 ps at 

300 K by implementing the protein’s position restraints. The temperature was maintained at 300 

K in all MM simulations. The position restraints were released from the equilibrated system and 

a 50-ns MM simulation was run to produce data. For every 2.0 ps of the entire simulation, the 

velocities, coordinates, and energies were saved. 

MMS trajectory analysis 

We focused on predicting differences in the protein flexibility, differences in the compactness of 

protein, and stability lost by comparing models of native and mutant using files from the MMS 

trajectory. GROMACS utility commands namely g_hbond, g_gyrate, and g_rms were applied to 

investigate the MMS production from the trajectory files to examine the intermolecular hydrogen 
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bonds, the deviation in root mean square, fluctuation in root mean square and radius of gyration 

of the models of native and mutants. The resultant values were plotted for the native and mutant 

models with the help of Xmgrace[41] to show the structural deviations between them. 

Results 

SNP dataset 

The majority of nsSNPs are missense mutations, with approximately 211 mutations present in 

the GALT. Up-to-date information on human GALT mutations is represented in the 

http://www.arup.utah.edu/database/GALT/GALT_display.php database [13]. The most 

common mutations, including p.S135L, p.N314D, p.Q188R, and p.K285N from different 

ethnicities, were the focused of this computational study for further investigation. 

Screening of missense mutations by in silico tools 

We retrieved the four most frequent missense mutations that are responsible for classical 

galactosemia in the GALT gene from the UniProt and HGMD databases. To predict their 

effects on the protein’s structural pattern and biological function, the retrieved missense 

mutations were incorporated into 10 in silico tools, which analyze their pathogenicity and 

structural significance. From these four missense mutations, PredictSNP, MAPP, PhD-SNP, and 

SIFT classified p.S135L and p.Q188R to be deleterious; PolyPhen-1, SNAP, and PolyPhen-2 

predicted p.S135L to be neutral and p.Q188R to be deleterious. Mutations such as p.K285N and 

p.N314D were classified as neutral by PredictSNP, MAPP, PolyPhen-1, SIFT, PhD-SNP, 

PolyPhen-2, and SNAP. Furthermore, these missense mutations were subjected to destabilizing 

activity by using iStable, MUpro, and i-Mutant2.0, which predicted a deterioration in protein 

stabilization in the case of the mutations p.Q188R and p.K185N. Stability tools such as iStable 

and i-Mutant2.0 projected a reduction in the protein’s stabilization for the mutation p.S135L, 

whereas MUpro showed an increase in stability. In the case of p.N314D, MUpro and iStable 
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showed a decrease in stability, while it predicted an increase in stability upon mutation by 

iMutant2.0 (Table 1). Collectively, two missense mutations (p.S135L and p.Q188R) were 

projected to be the most pathogenic, and all variants have negative consequences on the 

protein’s stability. Consequently, Align-GVGD and ConSurf were employed for all variants to 

check the biophysical characteristics and evolutionarily conservation of the amino acids. As a 

result, we predicted that mutations p.S135L, and p.Q188R were highly conserved, with a 

confidence score of nine, and p.K285N and p.N314D were the comparatively less conserved 

with confidence scores of 6 and 1, respectively. The Align-GVGD analysis revealed that 

mutations p.S135L and p.K285N impede protein function by falling in the class C65, whereas 

the lesser hindering effect was exhibited for the mutations p.Q188R and p.N314D with classes 

C35 and C15, respectively (Table 2). 

Physiochemical properties of amino acids 

We employed the HOPE web server to identify the physicochemical characteristics of amino 

acids for the mutations, which exhibited both destabilizing and pathogenic effects on the native 

GALT protein. Hydrophobicity, size, polarity, and charges are the amino acid’s unique 

properties, which play a crucial part in the protein’s primary structure and function due to 

disease-causing mutations. We included the prevalent mutations to predict their physiochemical 

properties of amino acids (Table 3). From this analysis, we predicted the amino acid residue 

p.K285N changed its charge from positive to neutral, followed by p.Q188R, and p.N314D had 

adapted from neutral to positive upon single amino acid substitution. It was found that serine 

amino acids, which are hydrophobic, were mutated to a hydrophilic amino acid, leucine; 

therefore, there was an increase in size, which leads to the loss of H-bonds in the protein’s core 

and interferes with the folding pattern of the native protein. For p.Q188R and p.K285N, a size 

increase and size reduction were observed, respectively. Overall, modifications that occurred due 

to mutations might result in critical differences in the structure of the protein. 
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Evolutionary conservation analysis 

Evolutionarily, conservation analysis was carried out using Clustal Omega and ESPript3.0 tools. 

We selected GALT vertebrate species for this analysis to show strict sequence conservation of 

amino acid residues between them. From this interpretation, it is evident that the most prevalent 

mutations are conserved across all organisms, except N314; at this residue p.N314D is the most 

frequent mutation in the Indian population at a rate of approximately 40% [7]. UDP-hexose 

binding sites (AA 49-63), Glu-1-phosphate binding sites (amino acids N173, Q188, K334, F335, 

V337, Y339, E340, Q346) and active site residues (H186) are highly conserved among 

vertebrates and are depicted in Fig. 1 [16]. Fig. 2(a) shows the graphical representation of the 

ConSurf analysis of galactose-1-phosphate uridylyltransferase protein. These conserved binding 

regions in proteins are crucial for proper functioning; any variations in the amino acid sequence 

in these positions would lead to disease phenotype in the patient. 

Macromolecular Simulations (MMS) 

MMS was performed for the native and mutant (p.S135L, p.N314D, p.Q188R, and p.K285N) 

models to understand the atomic-level changes concerning time. MMS were conducted for 50 ns, 

and GROMACS plugins, such as g_rms, were utilized to investigate the RMSD, g_gyrate was 

used to explain the change in compactness, and g_hbond was used to examine intramolecular 

hydrogen bond formation. Analysis of RMSD was considered a prime standard for measuring 

the confluence of the protein system simulation under study. The backbone RMSD values from 

the trajectory indicate substantial deviations in the case of mutants p.S135L and p.Q188R 

compared to the native protein, whereas the mutants p.K285N and p.N314D showed the least 

RMSD throughout the simulation and converged at ~0.28 and ~0.38 nm, respectively. The 

mutant (p. K285N) protein attained an average deviation range of ~0.22 to ~0.25 nm in the 32-

50 ns simulation period. Among the four trajectories, the p.Q188R mutant manifested the 

highest deviation from ~0.35 to 0.6 nm at 33 ns, which later converged to ~0.48 nm after the 50 
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ns simulation. In comparison with the native complex, at 35 ns the p.S135L mutant exhibited a 

larger RMSD spectrum of ~0.4 to ~0.53 nm and converged at 50 ns with an RMSD range of 

~0.43 nm (Fig. 3). To assess structural flexibility at the level of the residue, the RMSF value of 

amino acid residues was calculated from the 50 ns MMS trajectory file of the native GALT and 

mutant GALT proteins. From this analysis, a more significant fluctuation was observed in the N-

terminal region of p.Q188R and C-terminal region of the p.S135L mutants studied against the 

native GALT protein (Fig. 4). Furthermore, we interpreted the radius of gyration (Rg) from the 

MMS trajectory to identify the change in compactness of protein upon amino acid substitutions. 

From the Rg graph plot, we obtained a higher radius of gyration value for the p.S135L, Q188R, 

and p.N314D mutants when compared to that of native GALT. However, the p.K285N mutant 

maintained the pattern of Rg similar to the native GALT pattern (Fig. 5). To identify the change 

in the formation of an intramolecular hydrogen bond between native GALT and mutant 

proteins, we employed the g_hbond plugin to obtain the data from the MMS trajectory. From 

this analysis, we noticed that an increased amount of intramolecular hydrogen bonds from 245 to 

290 in the p.S135L mutant at 28 ns. In contrast, the p.Q188R and p.N314D mutants exhibited a 

decline in the amount of intramolecular H-bonds from 9 ns to the completion of the MMS 

against native GALT. The distinctions in intramolecular H-bonds are negligible between the 

native GALT and p.K285N proteins (Fig. 6). 

Discussion 

We used seven in silico prediction tools (PredictSNP, SIFT, MAPP, PolyPhen-1, PhD-SNP, 

PolyPhen-1, SNAP, PolyPhen-2 that predict the pathogenicity of the four mutants) and the 

stability predictors (i-Mutant2.0, iStable, and MUpro) to find the most deleterious mutations. 

The PredictSNP tool provides us with a prediction that is more accurate by integrating multiple 

algorithms of other pathogenicity testing tools [42]. We successfully used these in silico tools to 

examine the potential genotype and phenotype correlations in several genetic disorders in 
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combination with simulation modeling and structural bioinformatics pipelines [43,43–48]. Here, 

we used a combinatorial bioinformatics pipeline on the four missense mutations (Table 1 and Fig. 

2(b)) and found p.S135L and p.Q188R cause the most pathogenic mutations and reduce protein 

stability, whereas p.K285N and p.N314D disrupted only the stability (Fig. 3). 

Conservation analysis using the ConSurf server showed that S135 is a highly conserved 

functional residue and is exposed, and Q188 is a highly conserved structural residue and is buried, 

whereas K285 and N314 were moderately and least conserved, respectively (Supplementary Fig. 

1). However, N314 was not conserved among the vertebrates. This suggests that this p.N314D 

mutation is an evolutionary remnant because of the ancestral variant D314, which was identified 

in the pan-ethnic proportion of nearly 10% [49,50]. The mutation effect may cause differences in 

the protein’s physiochemical characteristics that may be disturbed by either stabilizing or 

destabilizing the protein [51]. In this context, it is vital to interpret the amino acid characteristics 

to describe their contribution to the functioning of the protein. The physicochemical features of 

the mutants (p.S135L, p.N314D, p.Q188R, and p.K285N) are shown in Table 3. The serine 

amino acid is hydrophilic, highly targetable and mutable; the replacement of serine with leucine 

by mutation, which is a hydrophobic small residue, might lead to depletion of H-bonds in the 

core of the protein and disrupt the correct folding [52]. The mutation of arginine at the site of a 

highly conserved glutamine residue located on the protein’s surface might disturb the 

interactions with other proteins. This could be the possible reason for the lesser catalytic activity 

observed in an enzymatic study conducted on this variant [16,53]. 

Furthermore, we performed MMS to distinguish the effect of four missense mutations in GALT 

protein at the atomistic level, which will help us to better understand the detailed structural 

differences of the four mutants against native GALT. We applied MMS technology to assess the 

impact of missense mutations in different genetic diseases to elucidate the molecular mechanism 

of mutations and the potential genotype-phenotype correlations [44,47,54–57]. We performed a 
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run of MMS for 50 ns. MMS trajectories revealed that the mutation influences the local 

conformation at the region or site of mutations, which also alters the GALT protein’s overall 

stability and flexibility. The MMS study carried out by Tang, M et al. (2012) through homology 

modeling of GALT protein suggested that the static model did not bring out any perturbation 

[58]. In the current study, the X-ray crystallography structure was used to perform the MMS; this 

enables us to unravel the structural differences compared with the existing homology models. 

Furthermore, we analyzed MMS trajectories using the inbuilt GROMACS package utilities, such 

as RMSD, the Rg, RMSF, and intramolecular H-bonds. For analysis of RMSD, we plotted a 50 

ns graph and at the completion of the MMS to observe a convergence pattern of the native 

GALT and mutant GALT proteins. The mutants p.S135L and p.Q188R manifested greater 

deviation in comparison with the native protein, indicating higher structural instability of these 

mutants. In contrast, both the mutants p.K285N and p.N314D showed a lower deviation pattern 

than the native protein. At the completion of the simulation, these mutants manifested 

convergence at ~0.28 and ~0.38 nm, respectively, indicating that the system acquired stability 

(Fig. 3). Our results were consistent with Coelho et al. (2014), who suggested that p.N314D has 

an enzymatic activity identical to the native protein [50]. In addition, the study by Singh et al. 

(2012) observed that p.N314D showed milder phenotypes in the homozygous condition and 

intermediate phenotypes in the heterozygous condition, and GALT enzyme activity was 

observed ≤50% in the patients (Fig. 3) [7]. 

To explore the overall fluctuations, we calculated the native GALT and mutant protein’s RMSF. 

The RMSF graph from the 50 ns simulation shows a more significant fluctuation for p.Q188R at 

amino acid residues 29-45 and 119-134. The beta sheets (β1, β2, and β5, β6) are located in this 

region (Fig. 4). These regions might be crucial for the formation of beta sheets, and the affected 

region would lead to GALT protein unfolding. Additionally, this mutant does not affect the 

metal-binding residues, as mentioned by McCorvie et al. (2016). The Rg was evaluated to 

recognize the difference in protein structural rigidity due to the mutation, producing a greater 
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radius of gyration resulting in reduced compactness [59]. Fig. 5 depicts the mutations p.S135L, 

p.Q188R, and p.N314D, which demonstrated higher Rg than the native and mutation p.K285N. 

These findings indicate that the protein’s compactness was lost prior to the change in positions 

135, 188, and 314 from serine to leucine, glutamine to arginine, and asparagine to aspartic acid, 

respectively. However, at the completion of the 50 ns simulation, the variant p.K285N achieved 

lower Rg, thus maintaining the protein’s compactness. Additionally, we spotted the formation of 

hydrogen bonds between proteins to perceive their stability reduction. This is because the 

function of hydrogen bonds is crucial for the protein’s stability [60]. As shown in Fig. 6, the 

amount of hydrogen bonds was lowered in the mutations such as p.Q188R and p.N314D but 

increased in p.S135L variant against the native and mutant p.K285N. This significant loss 

occurred because of limited contacts with the neighboring amino acids in mutants p.Q188R and 

p.N314D, thus reducing its stability (Fig. 6). As observed through our radius of gyration results, 

loss of surrounding amino acid interactions might be a possible reason for compactness loss in 

the mutant structures. 

The mutation p.S135L is highly prevalent in patients of African descendant with impaired GALT 

activity; the biochemical analysis showed slower aggregation kinetics, which is consistent with 

our MMS result [61,62]. The p.Q188R is considered to be the most prevalent mutation 

worldwide, primarily among Caucasian patients with classical galactosemia, resulting in a faster 

aggregation rate and/or lower catalytic activity of the GALT enzyme [50,63], consistent with our 

prediction findings (Table 1 and Fig. 3). However, our bioinformatics approach was unable to 

predict the significant structural or functional impact of p.K285N, which is the most commonly 

reported mutation among European descendants. However, the patients exhibited severe 

phenotypes, such as learning difficulties, ovarian dysfunction, delayed milestones, speech 

impairment, and lack of professional training in several compound heterozygous genotypes, 

including p.R51L/p.K285N, p.H114P/p.K285N, p.Y209S/p.K285N, p.P325L/p.K285N, 

p.N314D/p.K285N, and p.G338G/p.K285N [62,63]. The enzyme kinetics study showed that 
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the aggregation rate of this mutation is similar to that of native GALT, and this might undergo 

alternative events in the cell to disrupt the function of a protein. It was reported that p.N314D 

was very common in the Indian population, with reduced GALT activity and slower aggregation 

rate; this could be associated with Duarte-2 variants [7–9]. This is well correlated with our results 

from intramolecular hydrogen bonds and Rg interpretation by reducing the protein’s stabilization 

(Figs. 5 and 6). Thus, the mutations p.S135L, p.N314D, and p.Q188R indicate impeded function 

and/or conformational stability. Taken together, the computational findings from our study were 

consistent with previous experimental observations indicating that all four mutations were most 

deleterious, causing mild and severe phenotypes in patients [7,58]. 

Conclusion 

To our greatest understanding, the present study is the first attempt to use a computational 

pipeline to explore the crystal structure and effects due to the most prevalent mutations in the 

GALT protein. Among them, we observed that the p.S135L and p.Q188R mutations were 

extremely pathogenic and had destabilizing effects compared to the native and the other 

mutations. Our in silico assessment revealed that the mutations p.K285N and p.N314D, located 

in the protein’s alpha helix region (α4) and loop region, respectively, are less pathogenic, whereas 

the p.S135L and p.Q188R pathogenic mutations are located at the loop region and the beta-sheet 

eight regions (β8). This location of the p.Q188R mutation could be the cause of the mutation’s 

potential pathogenicity. Therefore, our study showed a clear understanding of the structural 

consequences that occurred due to mutations at specific sites by analyzing the RMSD, RMSF, 

and Rg plots along with intramolecular hydrogen bond formation. MMS trajectory analysis 

showed a more significant deviation and fluctuation in the p.Q188R mutation with a loss in 

compactness reduced the amount of intramolecular hydrogen bonds, while p.S135L 

demonstrated reduced compactness and increased intramolecular hydrogen bonds. Taken 

together, our MMS and computational tools results conclude that p.S135L and p.Q188R are 
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most deleterious among the prevalent mutations that disrupt the overall functioning of the 

protein. Computational pipelines are a promising tool to assist in understanding the plausible 

correlation of genotype and phenotype correlation in genetic disorders. Our study is anticipated 

to provide a platform for developing targets for chaperone therapy for genetic disorders due to 

missense mutations, particularly classical galactosemia. 
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Figure Legends 

Fig. 1. Multiple sequence alignment of galactose-1-phosphate uridylyltransferase. MSA of 

GALT of a vertebrate species including Homo sapiens was performed by using Clustal Omega and 

plotted using ESPRIPTv3.0. The bold black font represents strictly conserved amino acid 
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residues, while those in red have 70% or more identity. The hydropathy plot is shown in the bar 

below the sequence block. Hydrophobic regions are marked in pink, hydrophilic in cyan, and 

intermediate regions are marked in gray. A brown star represents the UDP-hexose binding site, a 

blue circle denotes glucose-1-phosphate binding sites, and a black triangle indicates the H186 

active site. The most prevalent mutations are highlighted in green. The secondary structure 

presented on top of the sequence alignment is inferred from the crystal structure of human 

GALT (PDB ID: 6GQD). 

Fig. 2. (a) ConSurf results demonstrating the conservation of the native residues based on 

conservation grades and conservation levels. The enlarged portion depicts the location of native 

residues. Residues p.S135 and p.Q188 are evolutionarily conserved and shown in maroon, 

whereas p.K285 and p.N314 are conserved average and least are shown in white and turquoise, 

respectively. (b) The prevalent mutations were mapped on the three-dimensional structure of 

GALT protein. A few alpha helices and beta sheets of the secondary structure of GALT protein 

were labeled. The red sphere represents the native amino acids p.S135, p.Q188, p.K285, and 

p.N314. An enlarged graphical image shows the superimposition of native and mutant models. 

The native amino acids are shown in green and mutants in a red ball and stick model, 

respectively. 

Fig. 3. Backbone RMSD of native and mutant GALT protein structures. In this graph, the 

running averages of 50 ns MMS of native and mutants were plotted using the Xmgrace plotting 

tool. The colors black, red, green, blue, and violet indicate native, S135L, Q188R, K285N, and 

N314D, respectively. The abscissa is time (ns), and the ordinate is RMSD (nm). 

Fig. 4. Backbone RMSF of native and mutant GALT protein structures. In this graph, the 

native was plotted with actual RMSF values along with the running averages of all mutants 

during 50 ns molecular dynamics simulation using the Xmgrace plotting tool. The colors black, 

red, green, blue, and violet indicate native, S135L, Q188R, K285N, and N314D mutant 

structures, respectively. The abscissa portrays the residues, and the ordinate is RMSF (nm). 

Fig. 5. Analysis of the radius of gyration of native and mutant GALT protein structures 

for 50 ns MMS. The colors black, red, green, blue, and violet indicate native, S135L, Q188R, 

K285N, and N314D mutant structures, respectively. The abscissa is time (ps), and the ordinate is 

Rg (nm). 

Fig. 6. Differences in a number of intramolecular H-bonds between native and mutant 

GALT protein structures for 50 ns MMS. The colors black, red, green, blue, and violet 
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indicate native, S135L, Q188R, K285N, and N314D mutant structures, respectively. The abscissa 

is time (ps), and the ordinate is a number of intramolecular H-bonds formed in the GALT 

protein. 

 

Table 1 Pathogenicity and stability prediction of the retrieved GALT protein mutations using 

PredictSNP and the iStable server 

Table 2 Biophysical characterization and evolutionarily conservation prediction using Align-

GVGD and ConSurf 

Table 3 Amino acid physicochemical features are tabulated by using HOPE webserver. 



Table 1: Pathogenicity and stability prediction of the retrieved GALT protein mutations using PredictSNP and iStable server 

Variants 
PredictSN

P 
MAPP PhD-SNP PolyPhen-1 PolyPhen-2 SIFT SNAP 

i�
Mutant2.0 

MUpro iStable 

S135L Deleterious 
Deleteriou

s 
Deleterious Neutral Neutral Deleterious Neutral Decrease 

Increas

e 

Decreas

e 

Q188R Deleterious 
Deleteriou

s 
Deleterious Deleterious Deleterious Deleterious Deleterious Decrease 

Decreas

e 

Decreas

e 

K285N Neutral Neutral Neutral Neutral Neutral Neutral Neutral Decrease 
Decreas

e 

Decreas

e 

N314D Neutral Neutral Neutral Neutral Neutral Neutral Neutral Increase 
Decreas

e 

Decreas

e 

 



Table 2: Biophysical characterization and evolutionarily conservation prediction using 

Align GVGD and ConSurf 

Accession 
Number 

Variants Align GVGD ConSurf 

VAR_002571 S135L Class 65 Cons.score 9 

VAR_002587 Q188R Class 35 Cons.score 9 

VAR_002609 K285N Class 65 Cons.score 6 

VAR_002613 N314D Class 15 Cons.score 1 

 



Table 3 Amino acid physicochemical features are tabulated by using HOPE webserver. 

 

S.No Variants 
Change in 

charge 
Change in 

hydrophilicity/hydrophobicity 
Change in 

size 
Mutation effect 

1. S135L Unchanged Hydrophilic to hydrophobic Increase 
The mutation will cause loss of hydrogen bonds in the core of 

the protein and as a result disturb correct folding 

2. Q188R 
Neutral to 
positive 

Unchanged Increase 
The residue is located on the surface of the protein, mutation 
of this residue can disturb interactions with other molecules 

or other parts of the protein 

3. K285N 
Positive to 

neutral 
Unchanged Decrease 

The mutation will cause an empty space in the core of the 
protein 

4. N314D 
Neutral to 
negative 

Unchanged Unchanged 
The mutation introduces a charge at this position, this can 

cause repulsion between the mutant residue and neighbouring 
residues 
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