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In this paper, we investigate the multiple soliton solutions and multiple singular soliton solutions of a
class of the fifth order nonlinear evolution equation with variable coefficients of t using the simplified
bilinear method based on a transformation method combined with the Hirota’s bilinear sense. In addi-
tion, we present analysis for some parameters such as the soliton amplitude and the characteristic line.
Several equation in the literature are special cases of the class which we discuss such as Caudrey-Dodd-
Gibbon equation and Sawada-Kotera. Comparison with several methods in the literature, such as
Helmholtz solution of the inverse variational problem, rational exponential function method, tanh
method, homotopy perturbation method, exp-function method, and coth method, are made. From these
comparisons, we conclude that the proposed method is efficient and our solutions are correct. It is worth
mention that the proposed solution can solve many physical problems.

� 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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Introduction

In recent years studies on fifth-order nonlinear evolution equa-
tions have received considerable attention because these equations
have many applications in physics such as nonlinear optics and
Bose-Enstein. Choudhuri et al. [23] studies the following class of
equations

wt þ awwxxx þ bwxwxx þ cw2wx þwxxxxx ¼ 0 ð1:1Þ
where a; b, and c are constants. They used the Helmholtz solution of
the inverse variational problem to derive its solution. conditions
under which this equation admits an analytic representation. They
studied only the case when A ¼ aðtÞ;B ¼ bðtÞ, and C ¼ cðtÞ are con-
stants. Mia et al. [18] discussed the Caudrey-Dodd-Gibbon equation
(CDGE) of the form
wt þ 30wwxxx þ 30wxwxx þ 180w2wx þwxxxxx ¼ 0 ð1:2Þ
by tanh-method. Wazwaz [19] solved the solved the same equation
using the coth-method. Abdollahzadeh et al. [20] solved (CDGE)
using the rational exponential function method. Ghasemi et al.
[21] used the homotopy perturbation method for solving the
Sawada-Kotera (SK) Equation

wt þ 15wwxxx þ 15wxwxx þ 45w2wx þwxxxxx ¼ 0: ð1:3Þ
Naher et al. [22] studied the solution of the SK Eq. (4.2) using the
exp-function method. In this paper, we consider the following class
of the fifth order nonlinear evolution equation (FNEE) with variable
coefficients of t:

wt þ aðtÞwwxxx þ bðtÞwxwxx þ cðtÞw2wx þwxxxxx ¼ 0 ð1:4Þ
where w ¼ wðx; tÞ and the coefficients aðtÞ; bðtÞ and cðtÞ are function
of the variable t. Eqs. (1.1)–(1.3) are special cases of Problem (1.4).
Thus, we compare our results with the solutions of Choudhuri et al.
[23], Mia et al. [18], Abdollahzadeh et al. [20], Ghasemi et al. [21],
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and Naher et al. [22] and we find that the proposed method gener-
ate their solitons. For this reason, we consider their problems as
special case of the problem under discussion. More details about
this problem can be found in [4–7,12–14,8–10].

Bilinear forms is one of the tools that usually used to solve non-
linear problems. More details about this method can be found in
[1–3]. In this paper, we study the multiple soliton solutions and
multiple singular soliton solutions of Eq. (1.4) without using the
bilinear forms. The proposed technique depends on the simplified
bilinear method based on a transformation method combined with
the Hirota’s bilinear sense. In the literature, when ða; b; cÞ are
ð30;60;270Þ; ð20;40;120Þ and ð10;20;30Þ; Eq. (1.4) becomes the
fifth order KdV equation (FKdV) which satisfy the conditions

2aðtÞ ¼ bðtÞ; cðtÞ ¼ 3a2ðtÞ
10

:

When ðaðtÞ; bðtÞ; cðtÞÞ are ð30;30;180Þ; ð5;5;5Þ; ð15;15;45Þ and
ð�15;�15;45Þ, Eq. (1.4) is called the Sawada-Kotera equation (SK)
which satisfy the conditions

aðtÞ ¼ bðtÞ; c ¼ a2ðtÞ
5

:

In this paper, we find that the corresponding conditions to deter-
mine single soliton solution on Eq. (1.4) are

cðtÞ ¼ a2ðtÞ þ aðtÞbðtÞ
10

;

aðtÞ– � bðtÞ;
bðtÞ ¼ �aðtÞ þ a:

We organize this paper as follows. In Section ‘‘Multiple soliton
solutions for (FNEE)”, we present the multiple soliton solutions
for Eqs. (1.4) while in Section ‘‘Multiple singular soliton solutions
for (FNEE)”, we derive the multiple singular soliton solutions for
the problem under discussion. In Section ‘‘Analysis of the parame-
ters and discussion”, we present some analysis of the parameters
and we make discussion about our results. Finally we conclude
with some comments in the last section.

Multiple soliton solutions for (FNEE)

In this section, we apply the simplified bilinear method to con-
struct the soliton solutions of Eq. (1.4). Substituting

wðx; tÞ ¼ e�i ; ð2:1Þ
�iðx; tÞ ¼ rix� siðtÞ;
into the linear terms of Eq. (1.4), we obtain

siðtÞ ¼
Z t

0
r5i ds: ð2:2Þ

Then, the dispersion relation is given by

�iðx; tÞ ¼ rix�
Z t

0
r5i ds: ð2:3Þ

Let

wðx; tÞ ¼ q ln dðx; tÞð Þxx ð2:4Þ
where the auxiliary function dðx; tÞ of single soliton solutions is
given by

dðx; tÞ ¼ 1þ e�1ðx;tÞ ¼ 1þ er1x�
R t

0
r51ds: ð2:5Þ

Substituting Eqs. (2.4) and (2.5) into Eq. (1.4) and solving the new
equation for q to obtain

q ¼ 60
aðtÞ þ bðtÞ ð2:6Þ
subject to

cðtÞ ¼ a2ðtÞ þ aðtÞbðtÞ
10

; aðtÞ – � bðtÞ; bðtÞ ¼ �aðtÞ þ a; ð2:7Þ

where a is arbitrary nonzero constant.
Now, we can obtain the single soliton solution by

wðx; tÞ ¼ 60
aðtÞ þ bðtÞ r

2
1

e�1ðx;tÞ

1þ e�1ðx;tÞð Þ2

¼ 15
aðtÞ þ bðtÞ r

2
1 sec h

2 �1ðx; tÞ
2

� �
: ð2:8Þ

Next, we are looking for two-soliton solutions. Let

dðx; tÞ ¼ 1þ er1x�
R t

0
r51ds þ er2x�

R t

0
r52ds þ c12e

ðr1þr2Þx�
R t

0
ðr51þr52Þds: ð2:9Þ

Substituting Eqs. (2.9), (2.6), and (2.4) into Equation (1.4), we obtain
the two solutions for the phase shift as

c12 ¼
r41�3r1r32�3r31r2þ4r21r

2
2þr42

r41þ3r1r32þ3r31r2þ4r21r
2
2þr42

; if bðtÞ ¼ aðtÞ; cðtÞ ¼ a2ðtÞ
5 ;

r21�2r1r2þr22
r21þ2r1r2þr22

; if bðtÞ ¼ 2aðtÞ; cðtÞ ¼ 3a2ðtÞ
10

8>><
>>:

9>>=
>>;
: ð2:10Þ

The two-soliton solutions of the (FNEE) Eq. (1.4) are given by

wðx; tÞ ¼

30
aðtÞ�

r21e
�1þr22e

�2þc12 r1þr2ð Þ2e�1þ�2
1þe�1þe�2þc12e

�1þ�2 �
�

r1e
�1þr2e

�2þþc12 r1þr2ð Þe�1þ�2
1þe�1þe�2þc12e

�1þ�2

� �2
�
; if bðtÞ ¼ aðtÞ;cðtÞ ¼ a2ðtÞ

5 ;

20
aðtÞ�

r21e
�1þr22e

�2þc12 r1þr2ð Þ2e�1þ�2
1þe�1þe�2þc12e

�1þ�2 �
�

r1e
�1þr2e

�2þþc12 r1þr2ð Þe�1þ�2
1þe�1þe�2þc12e

�1þ�2

� �2
�
; if bðtÞ ¼ 2aðtÞ;cðtÞ ¼ 3a2ðtÞ

10

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

:

The three-soliton solutions can be obtained by assuming

dðx; tÞ ¼ 1þ e�1 þ e�2 þ e�3 þ c12e�1þ�2 þ c13e�1þ�3

þ c23e�2þ�3 þ c123e�1þ�2þ�3 ; ð2:11Þ
where

cij ¼
r4
i
�3rir3j �3r3

i
rjþ4r2

i
r2
j
þr4

j

r4
i
þ3rir3j þ3r3

i
rjþ4r2

i
r2
j
þr4

j
; if bðtÞ ¼ aðtÞ; cðtÞ ¼ a2ðtÞ

5 ;

r2
i
�2rirjþr2

j

r2
i
þ2rirjþr2

j
; if bðtÞ ¼ 2aðtÞ; cðtÞ ¼ 3a2ðtÞ

10

8>><
>>:

9>>=
>>;
: ð2:12Þ

Substituting Eqs. (2.11), (2.6), and (2.4) into Equation ( 1.4), we get

c123 ¼ c12c13c23: ð2:13Þ
Then, the three-soliton solutions are obtained. Then Nsoliton solu-
tions exist for any order N P 4 [15,16].

Multiple singular soliton solutions for (FNEE)

To obtain a single singular soliton solution, we assume that the
auxiliary function dðx; tÞ is given by

dðx; tÞ ¼ 1� e�1ðx;tÞ ¼ 1� er1x�
R t

0
r51ds:: ð3:1Þ

Substituting Eqs. (2.4) and (3.1) into Eq. (1.4) and solving the new
equation for q, we get

q ¼ 60
aðtÞ þ bðtÞ ð3:2Þ

subject to the same conditions in Eq. (2.7). Then, the single singular
soliton solution for (FNEE) Eq. (1.4) is given by
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wðx; tÞ ¼ �60
aðtÞ þ bðtÞ r

2
1

e�1ðx;tÞ

1� e�1ðx;tÞð Þ2

¼ �15
aðtÞ þ bðtÞ r

2
1 csch

2 �1ðx; tÞ
2

� �
: ð3:3Þ

To determine the two singular soliton solutions explicitly, we
substitute

dðx; tÞ ¼ 1� er1x�
R t

0
r51ds � er2x�

R t

0
r52ds þ c12e

ðr1þr2Þx�
R t

0
ðr51þr52Þds; ð3:4Þ

in Eq. (1.4). We obtain the phase shift c12 as in Equation ( 2.10). Fol-
lowing the same procedure as described before to obtain the two
singular soliton solutions of Eq. (1.4). For the singular three-
soliton solutions, let

dðx; tÞ ¼ 1� e�1 � e�2 þ e�3 þ c12e�1þ�2 þ c13e�1þ�3 þ c23e�2þ�3

þ c123e�1þ�2þ�3 ; ð3:5Þ
where cij are defined in (2.12). Following the same procedure as
described before, we obtain

c123 ¼ a12a13a23:

The singular three-soliton solution can be obtained by substituting
Eqs. (3.5) and (3.2) into Eq. (2.4).

Analysis of the parameters and discussion

The soliton amplitude amp can be expressed from Eq. (2.8) as

15
aðtÞ þ bðtÞ r

2
1

����
����:

Hence, the soliton amplitude amp for fifth order KdV equation
(FKdV) is given by a

amp ¼ 5
aðtÞ r

2
1

����
����;

as well as the soliton amplitude amp for the Sawada-Kotera equa-
tion (SK) given by

amp ¼ 15
2aðtÞ r

2
1

����
����:

The characteristic line [17,5,6,11] for each solitary wave can be
defined by

x ¼ r4i t; i ¼ 1;2;3; . . . : ð4:1Þ
The velocity of the wave at time t can be expressed as

v i ¼ r4i : ð4:2Þ
The soliton amplitude amp of Eq. (2.8) depends only on aðtÞ and bðtÞ
while the soliton amplitude amp of fifth order KdV equation (FKdV)
and Sawada-Kotera equation (SK) depends only on aðtÞ. In addition,
the solitonic amplitude decreases while aðtÞ is increasing. However,
from Eq. (4.2), we note that the propagation velocity is independent
on the coefficient parameters aðtÞ; bðtÞ and cðtÞ.

Choudhuri et al. [23] used the Helmholtz solution of the inverse
variational problem to derive conditions under which this equation
admits an analytic representation. They studied only the case
when A ¼ aðtÞ;B ¼ bðtÞ, and C ¼ cðtÞ are constants. They derived

the conditions B ¼ 2A;C ¼ 3A2

10 . In addition, they use the homoge-
neous balance method to derive the single soliton solution which
is given by

wðx; tÞ ¼ 20
A

c0c1
ffiffiffiffi
v

p
e

ffiffiffi
v4p ðxþvtÞ

c0 þ c1e
ffiffiffi
v4p ðxþvtÞ
 �2 :

Their results are special case of our results. If we choose
c0 ¼ c1 ¼ 1;v ¼ r4, then their single soliton solution is the same sin-
gle soliton solution which is given in Eq. (4.2).
The Caudrey-Dodd-Gibbon equation, which is given by

wt þ 30wwxxx þ 30wxwxx þ 180w2wx þwxxxxx ¼ 0; ð4:3Þ
was solved by Mia et al. [18] by tanh-method and the solution was
given by

wðx; tÞ ¼ k2 � k2tanh2ðkx� 16k5tÞ: ð4:4Þ
They found that the necessary conditions are aðtÞ ¼ bðtÞ ¼ 30 and

cðtÞ ¼ a2ðtÞ
5 ¼ 180. If we choose k ¼ r1

2 , the solution in Eq. (4.4)
becomes

wðx; tÞ ¼ r21
4
� r21

4
tanh2 r1

2
x� r51

2
t

� �
¼ r21

4
sech2 r1

2
x� r51

2
t

� �

which the same solution given in Eq. (4.2). This means that the pro-
posed method is also solving Caudrey-Dodd-Gibbon equation.

Wazwaz [19] solved Eq. (4.3) by coth-method and his solution
was given by

wðx; tÞ ¼ �l2 csch2ðlx� 16l5tÞ:
If we choose g ¼ r1

2 , his solution will be the same as well as the one
in Eq. (3.3). Abdollahzadeh et al. [20] solved Eq. (4.3) using the
rational exponential function method and he found that the solu-
tion was given by

wðx; tÞ ¼ a2ðcoshðaðx� a4tÞÞ þ sinhðaðx� a4tÞÞÞ
1þ coshðaðx� a4tÞÞ þ sinhðaðx� a4tÞÞð Þ2

:

If we choose a ¼ r21, their solution will be the same solution as the
one given in Eq. (4.2). Ghasemi et al. [21] used the homotopy per-
turbation method for solving the Sawada-Kotera (SK) Equation

wt þ 15wwxxx þ 15wxwxx þ 45w2wx þwxxxxx ¼ 0: ð4:5Þ
and they found the solution was

wðx; tÞ ¼ 2k2 sech2ðkðx� 16k4t � x0ÞÞ:
If we choose k ¼ r1

2 and x0 ¼ 0, then their solution will be the same
solution as the one given in Eq. (4.2). Naher et al. [22] studied the
solution of the SK Eq. (4.2) using the exp-function method and they
found the solution was

wðx; tÞ ¼ a1 þ 1
1þ coshðx� ð45a21 þ 15a1 þ 1ÞtÞ : ð4:6Þ

If we set a1 ¼ 0 in Eq. (4.6), then

wðx; tÞ ¼ 1
2
sech2 1

2
ðx� tÞ

� �

which the same solution produces by Eq. (4.2) if we choose r1 ¼ 1.

Conclusions

In this paper, we study class of the fifth order nonlinear evolu-
tion equation (FNEE) with variable coefficients of t:

wt þ aðtÞwwxxx þ bðtÞwxwxx þ cðtÞw2wx þwxxxxx ¼ 0 ð5:1Þ
where w ¼ wðx; tÞ and the coefficients aðtÞ; bðtÞ and cðtÞ are function
of the variable t. We use the simplified bilinear method based on a
transformation method combined with the Hirota’s bilinear sense.
We derive the multiple soliton solutions for Eqs. (5.1). In addition,
we derive the multiple singular soliton solutions for the problem
under discussion. Also, we present some analysis of the parameters
such as the soliton amplitude and the characteristic line.

We compare our results with the solutions of Choudhuri et al.
[23], Mia et al. [18], Abdollahzadeh et al. [20], Ghasemi et al.
[21], and Naher et al. [22] and we find that the proposed method
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generate their solitons. For this reason, we consider their problems
as special case of the problem under discussion. This comparison
shows that

� Choudhuri et al. [23] studied only the case when
A ¼ aðtÞ;B ¼ bðtÞ, and C ¼ cðtÞ are constants. They derived the

conditions B ¼ 2A;C ¼ 3A2

10 . In addition, they use the homoge-
neous balance method to derive the single soliton solution
which is given by
wðx; tÞ ¼ 20
A

c0c1
ffiffiffiffi
v

p
e

ffiffiffi
v4p ðxþvtÞ

c0 þ c1e
ffiffiffi
v4p ðxþvtÞ
 �2 :

Their results are special case of our results. If we choose
c0 ¼ c1 ¼ 1;v ¼ r4, then their single soliton solution is the same
single soliton solution which is given in Eq. (4.2).

� Mia et al. [18] solved the Caudrey-Dodd-Gibbon equation and
their solution was given by
wðx; tÞ ¼ k2 � k2tanh2ðkx� 16k5tÞ: ð5:2Þ
They found that the necessary conditions are aðtÞ ¼ bðtÞ ¼ 30

and cðtÞ ¼ a2ðtÞ
5 ¼ 180. If we choose k ¼ r1

2 , the solution in Eq.
(4.4) becomes

wðx; tÞ ¼ r21
4
� r21

4
tanh2 r1

2
x� r51

2
t

� �
¼ r21

4
sech2 r1

2
x� r51

2
t

� �

which the same solution given in Eq. (4.2). This means that the
proposed method is also solving Caudrey-Dodd-Gibbon
equation.

� Wazwaz [19] solved Eq. (4.3) and his solution was given by
wðx; tÞ ¼ �l2 csch2ðlx� 16l5tÞ:
If we choose g ¼ r1

2 , his solution will be the same as well as the
one in Eq. (3.3).

� Abdollahzadeh et al. [20] solved Eq. (4.3) using and he found
that the solution was given by
wðx; tÞ ¼ a2ðcoshðaðx� a4tÞÞ þ sinhðaðx� a4tÞÞÞ
1þ coshðaðx� a4tÞÞ þ sinhðaðx� a4tÞÞð Þ2

:

If we choose a ¼ r21, their solution will be the same solution as
the one given in Eq. (4.2). Ghasemi et al. [21] used the homotopy
perturbation method for solving the Sawada-Kotera (SK)
Equation

wt þ 15wwxxx þ 15wxwxx þ 45w2wx þwxxxxx ¼ 0:

and they found the solution was

wðx; tÞ ¼ 2k2 sec h2ðkðx� 16k4t � x0ÞÞ:
If we choose k ¼ r1

2 and x0 ¼ 0, then their solution will be the
same solution as the one given in Eq. (4.2).

� Naher et al. [22] studied the solution of the SK Eq. (4.2) and they
found the solution was
wðx; tÞ ¼ a1 þ 1
1þ coshðx� ð45a21 þ 15a1 þ 1ÞtÞ : ð5:3Þ

If we set a1 ¼ 0 in Eq. (4.6), then

wðx; tÞ ¼ 1
2
sech2 1

2
ðx� tÞ

� �

which the same solution produces by Eq. (4.2) if we choose
r1 ¼ 1.
From these comparisons, we conclude that the proposed
method is efficient and the solutions produced by the simplified
bilinear method based on a transformation method combined with
the Hirota’s bilinear sense are correct.
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