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ABSTRACT

ALHADDAD, AHMAD YASER., Doctorate : January : 2020, Doctorate of Philosophy

in Mechanical Engineering

Title: Safe and Adaptive Social Robots for Children with Autism

Supervisors of Dissertation: Dr. John-John Cabibihan, Prof. Andrea Bonarini

Social robots are being considered to be a part of the therapy for children with

autism due to the reported efficacy of such technology in improving the outcomes. How-

ever, children diagnosed with autism exhibit challenging behaviors that could cause

harm to themselves and to others around them. Throwing, hitting, kicking, and self-

harming are some examples of the challenging behaviors that were reported to occur

among this population. The occurrence of such behaviors during the presence of a so-

cial robot could raise some safety concerns. For this reason, this research attempts to

identify the potential for harm due to the diffusion of social robots and investigate means

to mitigate them. Considering the advancement in technology and the progress made

in many computer science disciplines are making small and adaptable social robots a

foreseeable possibility, the studies presented here focus on small robotic form factors.

The first study quantifies the potential harm to the head due to one of the identified

risky scenarios that might occur between a child and a social robot. The results re-

vealed that the overall harm levels based on the selected severity indices are relatively

low compared to their respective thresholds. However, the investigation of harm due

to throwing of a small social robot to the head revealed that it could potentially cause

tissue injuries, subconcussive or even concussive events in extreme cases. The second

two studies are aimed to make small robots safer by optimizing their design. Hence,
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studies are conducted investigating how robot design can be made safer by investigat-

ing different design factors. The first study investigated the influence of the mass and

shape on the linear acceleration of a developed dummy head. The results revealed that

the two design factors considered (i.e. mass and shape) affected the resultant response.

The second study investigated the influence of three different soft materials on the same

response. The findings showed that the control factors considered are not statistically

significant in attenuating the response. Finally, the last two studies attempt to make

small robots more adaptable to promote safer interactions. This is carried out by em-

bedding the recognition of unwanted physical interactions into companion robot with

the appropriate timing of responses. The findings of the first study highlight the pos-

sibility of characterizing children’s negative interactions with robotic toys relying on

accelerometer sensor. The second study showed that producing a late response to an

action (i.e. greater than 1.0 s) could negatively affect the children’s comprehension of

the intended message. The work presented in this dissertation is multidisciplinary that

involves the field of Mechanical Engineering and Information Technology.
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1 Introduction

Autism spectrum disorder (ASD) is a condition that is diagnosed during early

childhood and affects the neurodevelopment. Traditionally, intervention sessions for

ASD have been carried out through a human therapist. However, there has been a

promising potential of using social robots in interventions based on the evidence re-

ported by many individual studies [14], [15]. Most of the studies conducted in robot-

mediated interventions, if not all, did not address some of the safety concerns regarding

the diffusion of social robots into therapy. The interaction between children with autism

and social robots will introduce some concerns and safety issues (Fig. 1.1).

Figure 1.1: The interaction between children with autism and social robots raises

potential safety issues that need to be addressed early on.
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Children with ASD often exhibit aggressive behaviors that cause a lot of troubles

to their families and caregivers. The extent of such aggressive behaviors could even af-

fect their peers and the people around them. Children diagnosed with ASD often exhibit

stereotypical repetitive and stimming behaviors as a response to a sensory overload.

When their body’s senses are overwhelmed by too many stimuli in the environment,

they might exhibit shut down, loud outbursts or aggressive behaviors in an attempt to

escape from unpleasant sensations. This response could intensify to meltdowns, that is

the temporary loss of behavioral control. Biting, hitting, throwing objects, and others

are physical signs that are usually associated with meltdowns.

1.1 Overview

Many studies have been conducted on using robots in the therapy sessions with

children with ASD. There have been many designs with various shapes, functionalities,

sizes and therapeutic objectives. Most of the existing designs, if not all, were designed

initially for research purposes to target a single or a set of objectives; hence, they have

been limited in terms of functionality; were not flexible to re-adjust to target different

or new objectives; and lacking the feasibility to be deployed to the end-users. When it

comes to design features of a robot, there are many important requirements that should

be considered, such as safety, adaptability, functionality, and autonomy [16].

Children with autism often show aggressive behaviors that should be accounted

for when designing robots for them. The robot design should be made safe enough not

to harm the child and others in case of the occurrence of such behaviors. Few previous

designs have paid attention to that aspect, but as a trade-off the overall functionality of

the robot has been limited. Other than the safety of the child and people around them,
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the robot must be designed to be robust enough to withstand any aggressive behaviors.

The overall robot design should be safe and robust at the same time.

Most existing social robots that have been used in therapy were either controlled

through a therapist with a hidden controller or through an operator within the same

room or at a different room. The adaptability of the robot in that case was limited to

the person controlling it. They might have to control every simple set of interactions

manually and try their best to select the next appropriate action to be performed by the

robot. The robot by itself should at least have some sort of sensing to enable more

autonomy and adaptability during the sessions, especially to unwanted and aggressive

interactions. The current state of a robot’s autonomy that is meant for therapy has not

reached a high level of complexity and it is still lagging. The development in robots that

sense and respond to unwanted interactions is still needed to achieve safer interactions.

How can small social robots be made safer? In order to answer this question,

this research has three main objectives as follows:

1. To quantify the potential harm due to one of the identified potential risky scenar-

ios that might occur between a child and a social robot.

2. To investigate how a robot design can be made safer by investigating some design

parameters and their influence on a selected severity index.

3. To investigate the possibility of recognizing and classifying unwanted interactions

and to evaluate the influence of the emotional reaction time of a robot’s response

on the interactions.
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1.2 Contributions

The three major contributions of this research are related to safety aspects of

small robotic form-factor as follows:

1. The identification of potential harm and risks due to the introduction of social

robots to children with autism. The risks are intensified due to the challenging

behaviors that exist within this population as compared to neurotypical children.

The risks are also dependent on the form-factor of the robot involved. Several

severity indices were used to quantify the potential harm due to one of the identi-

fied risky scenarios.

2. The investigation of hardware approaches to optimize small robotic design to

improve safety by reducing the potential harm to the head. The influence of

different design parameters on a selected severity index were considered. Two

different studies were conducted that considered different parameters. The first

study considered the influence of the shape and mass of a robotic design while the

second study considered the potential of incorporating soft materials in mitigating

the potential harm. The optimal settings for the investigated parameters were

identified based on Taguchi method.

3. The embedding of unwanted interactions recognition into small companion robots

with the appropriate timing of responses. The first study demonstrated the appli-

cation of an embedded accelerometer inside a robotic toy to detect and classify

a set of interactions based on a machine learning algorithm. The second study

investigated the influence of reaction time of the emotional response of a robot

to unwanted behavior on the interactions. This study identified the appropriate
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reaction time window that should deliver the right message to the user.

1.3 Dissertation Outline

The rest of the dissertation is organized as follows:

Chapter 2 provides a background about the core topics in this research. This

chapter starts with describing autism, the associated symptoms, and some of the preva-

lence rates. Next, it moves to describe the challenging behaviors that are exhibited by

this population and the application of social robots in therapy. Furthermore, this chapter

provides the severity indices of the head that are used to quantify the potential harm.

Next, this chapter presents Taguchi method that is used in the robotic design optimiza-

tion. Finally, this chapter provides studies on activity recognition that are related to

make a robot more adaptive in recognizing unwanted interactions.

Chapter 3 presents exploratory experiments for children with autism interacting

with different toys and two social robots. This chapter highlights some key interactions

between the children with the different robotic form factors. The experiments described

in this chapter reveal some behaviors and observations that represent the motivation

behind this research.

Chapter 4 identifies the potential risky scenarios between a child and a compan-

ion social robot. This chapter highlights some of the challenging behaviors that could

cause harm when interacting with social robots. Furthermore, it provides the develop-

ment of the experimental setup that is used to conduct the impact experiments. Finally,

it quantifies the potential harm for one of the identified scenarios based on the relevant

severity indices.

Chapter 5 presents two parametric studies aimed to make small robotic design
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safer. Based on Taguchi’s method, the first study investigates the influence of shape and

mass of a small robot on the linear head acceleration (i.e. severity index) of a dummy

head. The second study in this chapter explores the potential of soft materials embedded

into a robotic design in mitigating potential harm based on the same severity index. The

optimal conditions for all the investigated parameters are also discussed.

Chapter 6 explores the possibility of recognizing six different possible interac-

tions between a child and a small robotic toy based on an embedded tri-axial accelerom-

eter. This chapter first describes a study presenting the adopted approach to acquire the

data and the development of a neural network algorithm to classify the unwanted in-

teractions. The study demonstrates the possibility of recognizing behaviors relying on

low-cost and simple approaches. The influence of reaction time in the emotional re-

sponse of a companion robot to a child’s unwanted interaction is explored. The second

study in this chapter presents the findings of experiments with children interacting with

different robotic toys programmed with different reaction timings. The study finds that

the right reaction time of a robot’s response is essential to deliver the right message to

the user.

Chapter 7 provides the conclusions for all of the studies presented in the previous

chapters and their implications on safety in robotic design. This chapter also provides

directions for potential future research in this domain.
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2 Background

This chapter provides a theoretical background about the core topics in this re-

search. This chapter starts with describing autism, the associated symptoms, and some

of the prevalence rates. Next, it moves to describe the challenging behaviors that are

exhibited by this population and the application of social robots in their therapy. Fur-

thermore, this chapter provides the severity indices of the head that are used to quantify

the potential harm. Next, this chapter presents Taguchi method that is used in the robotic

design optimization. Finally, this chapter provides studies on activity recognition that

are related to make a robot more adaptive in recognizing unwanted interactions.

2.1 Autism

Characterized by lifelong difficulties and impairments in communication, social

interaction, and the exhibition of restricted interests or behaviors, Autism Spectrum

Disorder (ASD) is a condition that is diagnosed during early childhood and affects the

neurodevelopment [17], [18], [19]. Furthermore, children face a multitude of daily

behavioral challenges as compared to neurotypical children [20], [21]. There has been

a growing concern worldwide pertaining the rate of ASD among children. For example,

the pervasiveness rate of ASD among children is found to be 1 out of 45 in the United

States [22], 1 out of 100 in the United Kingdom [23], and 1 out of 38 children in South

Korea [24]. Up to date, the research to find the exact causes of ASD is still on going.

Due to the diverse nature of ASD, the manifestation of behaviors among chil-

dren on the spectrum varies greatly in their degree. Such children face a lot of daily

behavioral challenges as compared to neurotypical children, such as avoiding eye con-
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tact, poor motor skills, understanding gestures, interpreting facial expressions, feeding

problems and others. Their inability to understand the behaviors, social cues, and feel-

ings of others are among the contributing factors to their impairments in social rela-

tionships and interactions [20], [21]. Lack of intonation, inability to understand verbal

and nonverbal languages, repetitive and obsessive thoughts, and limited understanding

of emotions are some of the deficits in communication among children with ASD [20].

Early intervention, especially during the early years, seems to play a great role in the

treatment, or at least the mitigation, of such behaviors and make them more independent

in their lives [25].

2.2 Challenging Behaviors

Individuals on the spectrum are very unique and complex in their dispositions

and their manifestation of ASD. Autism affect such individuals and causes a lot of

deficits and challenges in their communication skills, interactions with others, behav-

iors, sensory inputs perception, and social life [20]. Furthermore, they exhibit self-

stimulatory behaviors, perfectionist tendencies, meltdowns, and delayed echolalia [26].

Due to the nature of ASD, children diagnosed with it tend to exhibit more challenging

and aggressive behaviors than their neurotypical peers. For example, those with per-

fectionist tendencies and emotional regulation deficiencies have shown higher level of

aggressive behavior, anxiety, and depression [27], [28].

Frustration is another contributing factor toward the exhibition of more chal-

lenging behaviors. Children with ASD might face frustration when being exposed

to new unpredictable, overwhelming, and noisy environments as that found in hospi-

tals [2], [29]. In addition, such environments are rich in stimuli that might overload
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their body’s senses, and that would make meeting their needs even harder due to in-

creased struggle with the new environmental changes [30], [29]. Challenging behaviors

take on many different forms, such as withdrawal, repetitive and stereotypes habits,

aggression against others, self-injury, tantrums, meltdowns, and property destruction

(Fig. 2.1). Not only such behaviors pose risks on the children themselves, but also pose

a lot of risk on others around them, such as other children, nurses, patients, care givers,

parents, and family members [2], [31].

Children with ASD

Normal Behaviors Challenging Behaviors

TantrumsRepe��ve Behaviors and 

           S�mming

Obsession and
Withdrawal

Meltdowns

Oneself Others

Hitting/Banging Biting Rubbing Scratching

Biting Kicking Hitting Throwing Objects

Aggression
   

Figure 2.1: Different forms of challenging behaviors that are exhibited by children

with ASD [2], [3], [4], [5].

Among all the children without and even with developmental disabilities, chal-

lenging behaviors and anxiety problems seem to have higher prevalence rates among

children with autism [32], [33]. Even within children on the spectrum themselves,

those with more severe ASD have showed higher rate of challenging behaviors as com-
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pared to those with less ASD severity [34], [35]. Furthermore, studies have shown that

even infants or toddlers that are diagnosed with ASD do exhibit challenging behaviors

at a higher rate compared to their neurotypical counterparts [5], [36]. Due to difficulties

in using proper communication to satisfy their needs, children with autism might turn

to challenging behaviors as a form of communication to express themselves [37].

The pervasiveness of challenging behaviors among individual with autism is

relatively high. One study surveying 222 children reported 50% occurrence rate while

another study surveying 32 adults reported a rate of 69% [38], [39]. A more recent study

with larger sample size of 1,380 children has reported a high aggression prevalence rate

of 68% against caregivers and 49% against others [40]. The majority of previous studies

have reported the occurrence of at least one or more challenging behaviors among at

least half of the individuals with ASD [5]. The existence of such behaviors has many

implications on those providing treatments and services to individuals with ASD [37].

2.3 Social Robots

The traditional intervention sessions for ASD have been usually conducted rely-

ing on human therapists. However, the advancement in technology is providing added

tools for improved therapeutic sessions (e.g. independent learning, hands-on learn-

ing, and skills training [41]). Several technologies have been explored in supporting

therapeutic and educational initiatives for children with ASD [42], [43]. Furthermore,

previous studies have shown that children on the spectrum have strong interest in tech-

nology, such as computer applications [44], virtual environments [45], and robots [14],

[15].

There has been a growing interest in using robots clinically to assist in the re-
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Figure 2.2: Some of the social robots that have been considered or have the potential

for ASD intervention: a) Kasper, the minimally expressive robot. b) Infanoid, the

upper torso humanoid robot. c) Keepon, the yellow snow-life robot. d) Roball, the

spherical robot. e) Milo, the humanoid robot. f) Leka, the ball-like robot. g) Nao, the

humanoid robot. h) Buddy, the companion robot.

habilitation of children with ASD [46], [47], [48]. The usage of technology, especially

robots, for ASD therapy opens many possibilities in the early intervention for children

with ASD, and toward more personalized rehabilitation [49], [50]. The application of

robots for intervention provides many options and flexibility as it can either be used as

an intervention tool to facilitate the therapeutic session, co-therapist with turn-taking

with the main therapist or as a sole therapist [48], [51].

Social robots have also been reported to help in improving the outcomes of ther-

apy, such as communication, gestural responses, motor and social skills, eye contact,

imitation, and joint attention [14], [52], [53], [54], [55]. Children are found to be more
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intrigued to interact with robots as compared to humans due to the limited complex-

ity of robots [14]. Many previous studies have demonstrated that robots can be used to

elicit many behaviors, such as imitation, joint attention, and eye contact [56], [57], [58].

Many form factors have been developed that took on different looks and shapes that can

be broadly categorized as being either anthropomorphic, non-anthropomorphic or non-

biomimetic. Kasper (Fig. 2.2a) [59], a minimally expressive robot, and Infaniod (Fig.

2.2b) [60], an upper torso humanoid robot, are examples of an anthropomorphic robotic

design. Keepon (Fig. 2.2c) [56], a yellow snowman-like robot, is an example of a

non-anthropomorphic design while Roball (Fig. 2.2d) [61], the sepherical robot, is an

example of non-biomimetic design. There are new emerging, promising, and commer-

cially available robots, such as Milo (Fig. 2.2e), Leka (Fig. 2.2f), Nao (Fig. 2.2g), and

Buddy (Fig. 2.2h), that have a great potential to be considered in ASD therapy.

2.4 Quantifying Harm

2.4.1 Overview

The human brain is protected by floating in the cerebrospinal fluid that acts like

a cushion to reduce any potential harm. However, the human head is susceptible to

traumatic brain injury (TBI) when it is receiving blows or bumps, or subjected to im-

pacts with projectiles, such as a baseball [62]. TBI is categorized as either being mild or

severe, and could cause permanent disability or, in severe cases, death. Most occurring

type of mild TBI is concussion. It is not considered a life threatening, however, the

results on the affected can be serious [63].

In the United States and in 2013 alone, a total of 2.8 million (i.e. 50,000 deaths,

282,000 hospitalizations, and 2.5 million emergency department visits) cases of TBI
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have been reported with falls being the lead cause followed by getting struck by or

against an object [64]. Furthermore, it has been reported that 1 in 5 cases of TBI oc-

curred among children (age < 15 years old) to the second leading cause.

TBIs among young children may impair the neurological development and cause

a multitude of challenges, such as depression, attention deficit hyperactivity disor-

der, and in attaining academic achievements [65], [66], [67], [68]. Furthermore, data

showed that those affected with TBI and ASD share some of the biologic mechanisms

that cause both conditions to have similar symptoms. Hence, studying and reducing the

occurrence of TBI is very vital.

Challenging behaviors that are exhibited by children on the spectrum pose a

potential harm to themselves and to the ones around them. With the presence of a

robot, the child might involuntary use it to harm others. Throwing objects, especially

in the case of small robots, pose a great risk to the head and need to be quantified. One

objective of this research is to simulate objects (i.e. representing a small robot) being

thrown at the head to quantify harm levels. Hence, this section describes related studies

and relevant severity indices.

2.4.2 Related Studies

Laboratory settings using anthropomorphic test dummies (ATD) are typically

used to simulate potentially dangerous scenarios to evaluate the possible harm to a

human, such as that used in car crash tests. Furthermore, similar setups have been used

to quantify harm due to impacts in some sports and to evaluate protective gears, such

as helmets [69], [70], [71]. One study used similar settings to assess the influence of

taekwondo kicks and peak velocity of the foot on the dynamics of the head [72]. In that
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study, a crash test dummy head was secured to an aluminum frame and it was used as

a target for the kicks performed. The head form was equipped with an accelerometer

to measure the dynamics of the head (i.e. changes in acceleration) as it was being hit

by the participants. The data generated was used to assess the potential of concussion

based on the head injury criterion (HIC).

Similar studies were conducted in industrial robotics to quantify the potential

harm due to different possible impact scenarios between a human and robotic arm. For

example, few studies have conducted impact tests of a manipulator to a dummy at a

standard automobile crash test facility [73], [74], [75]. In such studies, impacts by

robotic arms using flat surface impactors were performed against a standard crash test

dummy in three regions (i.e. head, chest, and neck). The potential of injury or harm

levels were evaluated based on the respective severity index or indices for each region.

The evaluations were based on varying some robotic-dependent variables, such as mass

and velocity, and their relation on the resultant severity indices. In some studies, low-

cost body part models, such as using a head model or an arm model, and low-cost

sensors were considered and used to carry out experimental tests to evaluate human-

robot impacts [76], [75].

2.4.3 Severity Indices

Severity indices are associated with injury scaling, such as the Abbreviated In-

jury Scale (AIS) [77]. AIS is a tool that provides a simple way to grade the observed

injury based on a scoring criteria (Table 2.1). AIS and together with various severity

indices give an estimation of the potential for an injury and its respective severity.

The investigation in this study is limited to the head, hence, only relevant head
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Table 2.1: Abbreviated Injury Scale (AIS) and the corresponding injury classification

AIS score Injury classification

1 Minor

2 Moderate

3 Serious or severe, but not life threating

4 Severe and life threating

5 Critical and uncertain survivial

6 Unsurvivable

indices, namely, head injury criterion (HIC), 3 ms criterion, peak linear acceleration,

impact forces, and tissue injuries are summarized.

2.4.3.1 Head Injury Criterion (HIC)

One of the most commonly used severity indices to measure the possible injury

to the head in many applications, such as in vehicles and in sports [78]. HIC is defined

as:

H IC = (t2 − t1)

[
1

(t2 − t1)

∫ t2

t1

a (t )d t

]2.5

(2.1)

where a(t) is based on the resultant acceleration of the head and measured in terms

of gravity acceleration (g = 9.81 m/s2) and ∆t = t2 − t1 is the duration of the impact

considered in calculating the resultant HIC. The two most commonly used durations

to evaluate the severity of injury to the head are 36 ms and 15 ms. Because it is less

restrictive, the 36 ms duration only will be used (Fig. 2.4).

The HIC standard is converted to a corresponding AIS based on the following
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Figure 2.3: The relationship between the Head Injury Criterion (HIC) and the

probability of injury according to different Abbreviated Injury Scales (AIS) [6].

relation [6]:

p
(
head i n j ur y

)=φ

(
ln(H IC36)−µ

σ

)
(2.2)

where φ is the cumulative normal distribution, and µ is the population mean, and σ

is the standard deviation (Table 2.2). These values are originally specified for a test

dummy head, hence, they will only be used for comparison purposes. At a particular

HIC value, the probability of injury occurrence differs between each of the AIS scores

(Fig. 2.3).
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Table 2.2: The values of population mean µ and standard deviation σ corresponding to

different scores of Abbreviated Injury Scale (AIS)

AIS score µ σ

2 6.96352 0.84664

3 7.45231 0.73998

4 7.65605 0.60580
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Figure 2.4: Sample of the generated linear acceleration data demonstrating the

durations of both, the Head Injury Criterion (HIC) and the 3 ms Criterion, and the

instance of peak linear acceleration that were considered in the data analysis.
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2.4.3.2 The 3 ms Criterion

This criterion requires that the maximum mean value over 3 ms duration of the

resultant head acceleration is less than a certain threshold when there is no hard contact

(Fig. 2.4). This criterion is used as part of the regulations pertaining the safety of

occupants in vehicles and also used in helmet testing [79].

The European National Car Assessment Protocol (EnuroNCAP) states that the

thresholds for 3 ms criterion for a child occupant should not exceed 60 g in case of

frontal impact and 60 g in case of side impact [10].

2.4.3.3 Peak Linear Acceleration

Peak linear acceleration has been used as one of the biomechanical measures

for head impact to investigate its association with concussion events [80][81]. A study

investigating the head impact exposure in youth football has reported linear accelera-

tions due to impacts anywhere in the range of 10 g to 111 g [82]. While that study did

not report the occurrence of any concussions, however, it is believed that concussions

could occur within that range based on the reported football-related concussions [83].

One study based on a finite element head model validated from field collisions has esti-

mated a probability of mild TBI to be 25%, 50%, and 80% corresponding to maximum

accelerations of 66 g, 82 g and 106 g, respectively [84]. One study has reported the

occurrence of a concussive event at a relatively low linear acceleration value of 31.8 g

[85]. Some of these studies did not report the duration of impacts while others reported

impact durations of 30 ms or less.
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Figure 2.5: Injury risk function for facial fractures of the face (i.e. maxilla and

zygoma) [7], [8]. Dashed red line represents a facial fracture probability of 50%

corresponding to a force value of 755 N.

2.4.3.4 Impact Forces

The HIC severity index is not enough for the assessment of head safety, espe-

cially for what concerns any potential damage to the skull and brain injury [86]. Contact

force is another indicator to predict the fracture tolerance of the human bone structure.

There have been many studies conducted on heads from cadavers to measure fracture

forces of the skull. Experiments conducted were either by dropping heads from differ-

ent heights or impacting the head with an impactor at various velocities.

A summary of the studies conducted on facial fracture (i.e. maxilla, zygoma,

frontal bone, nasal bone, and mandible) revealed peak force tolerance anywhere in the
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Table 2.3: Classification of tissue injury based on depth [1]

Classification Affected Skin Layer Depth

Superficial Only the epidermis <1 mm

Partial thick-

ness

The epidermis and into the

dermis

1 - 4 mm

Full thickness Through the epidermis and

the dermis into subcutaneous

tissue

>4 mm

Subcutaneous Extends into and beyond the

subcutaneous tissue

>4 mm

range of 610 - 9,880 N [8]. An injury risk function with comparable consistency to

facial fracture data has been proposed based on Weibull distribution to identify forces

that at which facial fracture starts for and impactor with an area of 13.8 cm2, and it is

defined as [7], [8]:

P f r actur e (F ) = 1−exp

[
−

(
F

B

)α]
(2.3)

where α = 2.27 is the Weibull shape parameter, and B = 887.7 N is Weibull scale pa-

rameter, and F is the impact force. According to this function, a force of 755 N would

have 50% chance of fracture risk (Fig. 2.5).

2.4.3.5 Tissue Injuries

Tissue injuries as a result of impacts with objects could take on different forms,

such as skin tears, lacerations and abrasions. The magnitude and the depth of the re-

20



sultant injury depends on the geometry of impactors or penetrators and pressure forces

in effect [87]. Classification by depth is often used as indicator for wounds and tissue

injuries [1]. According to this classification, tissue injuries could either be superficial

wounds, partial-thickness, full-thickness or subcutaneous skin loss (Table 2.3). This

classification will be used as a reference and indicator for the possible tissue injury in

our investigation.

2.5 Taguchi Method

Experiments are usually conducted on processes and systems to understand the

overall performance, to deduce the most influential parameters, and to determine the

optimal settings to achieve the desired responses or overall goals [88]. Design of exper-

iment (DOE) is an approach aimed at using the minimum amount of resources avail-

able while maximizing the amount of information obtained from a process through the

selection of parameters to be investigated [88]. DOE helps in collecting different infor-

mation by altering the optimal arrangement of parameters or factors to enhance product

robustness [89],[90]. There are many DOE techniques available. The choice depends

on the investigated problem and the aim of the experiments conducted [89]. One of

such techniques is the Taguchi method.

The method was developed in 1979 and was meant to be used as an off-line

quality control tool to improve manufacturing products and goods in different appli-

cations [91], [92], [93], [94]. Taguchi DOE considers two types of variables, namely

controllable and noise (or uncontrollable). Control factors can be controlled in pro-

duction while noise factors cannot be controlled, except experimentally. This method

aims to improve the robustness of products against any variations in the noise factors
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Table 2.4: The standard L9(32) orthogonal array (OA).

Run Control factors

A B

1 1 1

2 1 2

3 1 3

4 2 1

5 2 2

6 2 3

7 3 1

8 3 2

9 3 3

by finding the optimal values of the controllable factors. Depending on the number

of factors investigated, Taguchi DOE could take on different settings by considering

different Orthogonal Arrays (OAs) [95] (Table 2.4). The crossed array Taguchi design

that was considered provides a robust solution by understanding the interaction between

the control factors and the noise factors [89]. The studies reported in Chapter 5 were

conducted based on this method.

2.6 Activity Recognition

The research in human activity recognition relies on different sensors, technolo-

gies and wearable devices to acquire data [96], [97], [98]. Human activity recognition

is being considered in the healthcare domain, for example, detecting falls among the

elderly [99], [100]. Previous studies on fall detection considered wearable devices, am-
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bient devices, and vision based devices [101]. Different sensors were used, such as

accelerometers, cameras, microphones, and gyroscopes [102]. Furthermore, different

classification of falls were investigated (e.g. falls from sleeping or from walking) [101].

A recent study has considered using a wearable device on a belt to detect falls [103].

The device contains an accelerometer that acquires signals at a sampling frequency of

25 Hz. Their method was able to achieve an accuracy of 99.4% using a non-linear

classifier and a Kalman filter.

The detection of problematic behaviors in the population with special needs is

another area in healthcare domain to consider activity recognition techniques. To facili-

tate the therapy for those with special needs, one study considered using accelerometers

to detect problem behaviors among this population [104]. In this study, the data to de-

velop the recognition model were simulated by trained clinic staff. Their approach was

able to achieve an accuracy of 69.7% when evaluated with realistic data. Activity recog-

nition is also gaining attention in the area of robotics, especially when a robot operates

in close proximity with humans. In robot-assisted living, one study introduced a wear-

able system that relies on the fusion of multi-sensors to recognize human daily activi-

ties [105]. The sensor system consisted of two nodes (i.e. on the waist and on the foot)

that measure angular velocity, magnetic data, acceleration, and temperature. The sys-

tem was able to produce promising results using a combination of neural networks and

hidden Markov models. For more advanced and interactive applications, accelerometers

were considered in robot games to model players and recognize activities [106], [107].

One study considered using a tri-axial accelerometer module embedded in the player’s

chest to acquire the motion data [108]. Their work showed promising results in de-

tecting different activities with the robot, such as running, walking or dodging, and
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blocking the robot’s path.

Different sensors and wearable devices were considered in human activity recog-

nition research. A frequently used sensor is the accelerometer, which is a relatively

low-cost sensor that is able to detect acceleration on three orthogonal directions. When

associated to a gyroscope, the rotational speed can be detected along the same axis. One

of the earliest works classifying different daily physical activities, such as walking and

running, used five wearable small accelerometers on different body parts of 20 partici-

pants [109]. The data collected were from subjects performing a sequence of different

daily tasks. The best classifier selected (i.e., a decision tree) was able to recognize the

actions with an accuracy rate of 84%. Another study considered using accelerometer

and sound data to recognize workshop related activities to develop a proactive sys-

tem [110]. The data collected were based on tasks performed in a wood shop. The

system was able to recognize different activities with an accuracy of 84.4% on contin-

uous simulated stream of data. Nowadays, accelerometers are used in smart phones to

detect a wide range of activities [111].

2.7 Chapter Summary

This chapter provided a background information about the core topics of this

thesis. The chapter described autism, challenging behaviors, and social robots. Ad-

ditionally, it presented the severity indices and Taguchi method. Finally, it provided

the related studies to human activity recognition. This chapter established the main

concepts that will be used throughout this dissertation.
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3 Design Preference for Robot Form Factors

This chapter describes exploratory experiments between children on the spec-

trum interacting with different toys and two social robots. It provides the preferences

among the children toward the different robotic form factors. It also highlights some

key observations about their interactions.

3.1 Introduction

Social robots are emerging to become useful assistive tools to be considered

in the therapy and education of children with Autism Spectrum Disorder (ASD). The

nature of ASD causes its symptoms and manifestations to vary widely, resulting in a

variety of robotic designs that have been developed for this application. These robots

vary in structure, shape, size, color, and function. There was a significant variation in

the types of form factors considered that were either small or large in size while taking

the appearance of either humans, animals, toys or others. Due to the heterogeneity of

ASD, the reactions of individuals with ASD toward the existing robotic designs have

varied considerably, and so are their preferences.

Over the years, many social robot designs have been developed and tested for

intervention sessions [14]. Those include humanoids, human-like robots, robotic balls,

mobile robots, and animaloids. In these experiments, the responses of children with

ASD toward different toys and two social robot (i.e. humanoid and a robotic seal) are

explored. Experiments were conducted to verify whether or not there are any effects of

the different form factors on the children’s interactions.
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3.2 Methods

3.2.1 Participants

Ten English-speaking children aged 7 to 10 years (all were males) participated

in this study. They have been diagnosed with mild to moderate autism and are attend-

ing the Step By Step Center for Special Needs in Doha, Qatar. The consent from the

parents were secured by the center. The children were accompanied by either a teacher

or a caregiver. The procedures for this work did not include invasive or potentially haz-

ardous methods and were in accordance with the Code of Ethics of the World Medical

Association (Declaration of Helsinki).

3.2.2 Stimuli

There were a total of 4 experiments, where different stimuli were used for each

experiment. The details about the individual stimuli used are summarized below.

1. Five different toys were used. These were a rubber ball, two metal cymbals, a

colourful plastic train, a small humanoid robot, and a wooden truck with wooden

blocks pegged into its carrier that have alphabets and objects drawn on them (Fig.

3.1a).

2. Two interactive social robots were used (Fig. 3.1b). One was a Nao humanoid

(SoftBank Robotics, Paris, France), and the other was a seal robot (PARO Robots

U.S., Inc., IL, USA). The movements of Paro were autonomous and were limited

to the built-in functions. The movements of Nao were initiated by the experi-

menter and were limited to basic activities (e.g. sit, stand up, dance).
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3. Three Tank Engine toy trains were used. These included two blue trains of dif-

ferent sizes (Thomas train character) and one red train (James train character).

These were used against a larger, multi-colored toy train (Fig. 3.1c).

4. The child’s preferred train in Experiment 3 was used against a train identical to

the multicolored train from Experiment 1 and Experiment 3, but emits bubbles

(Fig. 3.1d).

3.2.3 Procedure

There were 4 different experiments aiming at different goals (Table 3.1). Each

experiment was around 6 minutes long. Experiment 1 is an unstructured play scenario.

After obtaining the results of Experiment 1, the succeeding experiments explored an-

imating the toys and the goal was to see the effects of these in the subjects. No in-

structions were given to the children, except encouragement to initiate interaction with

different toys.

3.2.4 Monitoring Equipment

The children’s interactions were monitored with four video cameras placed at

the corners of the room. Four cameras (MyDlink DCS-931L, D-Link, Taipei, Taiwan)

were mounted on four tripods. Care was taken in the setup of the equipment to ensure

that it remained unobtrusive throughout the length of the experiment. The cameras were

positioned to ensure that the children’s activities were captured from different angles.
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Figure 3.1: The group of stimuli used during the experiments. (a) five different

non-moving toys. (b) The social robots, Nao and Paro. (c) Thomas and Friends trains

(left) and larger train (right). (d) The participant’s favorite train from the previous

stimuli group and bubbles train.
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Table 3.1: Experimental protocol and objective of each experiment

Expt # Protocol Objective

1 Present 5 different non-

moving toys

To determine which toy is the most pre-

ferred

2 Remove all toys from Exper-

iment 1 and replace with in-

teractive social robots, such as

Nao and Paro.

To determine whether interactive robots,

behaving autonomously, appeal to the child

more than the non-moving toys from the

preceding experiment, and to observe the

nature of his/her interactions with them

3 Remove all toys from Exper-

iment 2 and present the train

from Experiment 1, and add

different mechanical Thomas

and Friends trains

To determine whether the interest in trains

is limited to Thomas toys or extends to all

trains

4 Remove all toys from Exper-

iment 3 except the partici-

pant’s favorite toy, and replace

them with a train that automat-

ically generates bubbles from

its chimney once switched on

To determine whether bubbles can add to

the appeal of a toy to verify their use as a

reward mechanism
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3.2.5 Annotation Software

An open-source video event-logging software (BORIS, version 3.12, Torino,

Italy) was used to analyze the videos. The user environment of the software was pre-

pared with all the behaviors of interest.The analysis of videos was conducted by three

observers after getting well-acquainted with the software.

The measured variables were divided to either state or point. A state variable

was used to calculate the duration of a specific event while a point variable is used to

calculate the frequency of occurrence. The measured variables are listed as follows:

• Experiment duration: state variable to declare the duration of an experiment.

• Interaction duration: state variable to declare the durations of interaction during

an experiment.

• Preference: experiment-dependent point variable to indicate the preference of the

child based on the given stimuli for each experiment. For example in Experiment

1, Q is pressed when the preference is the small robot. The deduction of pref-

erences were based on either direct verbal communication, longest interaction

duration or most preferred.

• Unclear: point variable is pressed once in case the preference implied by the child

is not clear. Unclear selections occur when the child either prefers, selects more

than one or neither of the stimuli.
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Figure 3.2: Some of the behaviors and interactions that occurred during the

experiments. (a) Nao fell after being pushed by a child. (b) A child refusing to interact

with the humanoid robot while shaking the small robot with his left hand. (c) A child

is getting excited about the train by shaking it around.

3.3 Results and Discussions

Most of the children showed continuous interaction and engaging behaviors with

the experimenter. The observed reactions varied differently across all the sessions, and

the participants exhibited different responsiveness to a given stimulus. Some interac-

tions only occurred after a prompt from the experimenter or caregiver while others were

instantaneous and spontaneous. Some of the children displayed some concerning be-

haviors during the experiments (Fig. 3.2). The preferences and the main features of

interest have been observed and recorded based on post-analysis of the videos. The

individual results and discussions are summarized below.
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Figure 3.3: The preferences for the toys in Experiment 1. (a) Child playing with the

cubes of the truck. (b) Average rated preferences for each toy with the small robot

scoring the highest.

3.3.1 Experiment 1

In Experiment 1, five different toys were presented. The small robot scored the

highest (30%) followed by the truck with cubes (23.3%) and the ball (16.7%) (Fig.

3.3b). The train scored 13.3% while the cymbals scored 10%. Unclear preference was

around 6.7% of the participants.

Most of the interactions were limited to playing with the toys without standing

up or moving around, and without showing high level of excitement. The majority

of the children appeared interested to play with cubes that comes with the truck (Fig.

3.3a). They spent some time in picking the cubes while trying to name the shapes and

numbers on them with the experimenter. When prompted, some of the children played

with the ball together with the experimenter or caregiver. The sound and reflection of

the cymbals piqued the interest of two children while three liked the features on the

train, such as the colors and wheels. Three participants enjoyed interacting with the
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Figure 3.4: The preferences for the social robots in Experiment 2. (a) Child crying and

refusing to approach Nao. (b) Average rated preferences for each social robot. Less

than half of the participants liked Nao more, while a quarter preferred Paro more. The

remaining children did not like either of these robots.

small humanoid robot the most while one avoided approaching it and kept his distance.

This reaction could be attributed to the human-like appearance of the small robot. One

participant did not show any interest in most of the toys in this experiment and ended

up ignoring the toys.

The interest in technology, especially to robots, is evident in Experiment 1. This

cannot be generalized across all the participants and all individual with ASD due to

varying degree in their reactions to the same stimulus (e.g. small humanoid robot)

and due to the small sample involved in our experiments. Some of the features and

characteristics of existing toys (e.g. cubes on the truck) seem to still get the interest of

the children on the spectrum and should be considered in any new robotic designs.
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3.3.2 Experiment 2

In Experiment 2, two interactive social robots were presented (Fig. 3.4a). Nao

scored higher than Paro, 36.7% and 26.6%, respectively (Fig. 3.4b). 36.7% of the

participants showed either refusal to interact or no definitive selection on the preference.

The observations can be divided to three groups. The first group of children

interacted right away and showed positive reactions to the robots. They imitated or gave

instructions to Nao and they played with Paro. The second group hesitated to interact

quickly. They started by observing the movements of the robots, and they then began to

approach the robots slowly to initiate the interactions. The last group refused to interact

with either of the robots as they seemed afraid of interacting or even approaching the

robots. Two children reacted with immediate anxiety upon the introduction of the robots

and demanded the robots to be removed from the room (Fig. 3.4a).

The increased interactions and higher levels of excitement were clear in Exper-

iment 2 among some of the participants. Part of that could be attributed to the novelty

effect of the presented social robots [15]. Interestingly, the size of Nao being larger as

compared to the smaller robot in Experiment 1 played an important role in altering some

of the reactions negatively. This could imply that some children on the spectrum could

feel more comfortable dealing with robots relatively smaller than themselves. Perhaps

the smaller size gives them more sense of control over the presented stimuli. These

negative reactions could also be attributed to lifelikeness of the presented social robots

(i.e. human-like or animal-like).
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Figure 3.5: The preferences for the trains in Experiment 3. (a) A child showing

interest in the moving train. (b) Average rated preferences for the trains. The majority

of children have selected Thomas and Friends trains. Around one-third of the children

were not clear on their preference as they have interacted almost equally with all the

trains without implying their preferences.

3.3.3 Experiment 3

In Experiment 3, three different Thomas and Friends trains and one bigger train

were presented. Around 46.7% of the participants showed interest in Thomas trains and

20% showed interest in the other train. The rest were not clear on their preferences (Fig.

3.5b).

The children were more excited in this experiment as compared to Experiment

1 and Experiment 2. Some children showed more excitement and more movements

when some of the trains were powered on (Fig. 3.5a). These reactions support the idea

that the implementation of simple features could serve as reward mechanisms. Some

recognized Thomas Trains and started re-enacting crashing scenes while mimicking

the sound of a train. One child did not seem to show the same level of interest and
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excitement as compared to others.

Familiarity with a presented stimuli (e.g. Thomas Trains) seems to play a role in

making interactions more fluid and spontaneous. Researchers in social and educational

robots could exploit this aspect in promoting their designs to achieve higher effective-

ness for the intended goals and purposes. This could be achieved by accompanying

their developed robots with interactive videos and books exhibiting their robots in ac-

tion. The exposure to such media prior to the presentation of the actual stimuli could

help achieve better outcomes and mitigate any potential negative reactions.

3.3.4 Experiment 4

In this experiment, the bubble-generating train and the child’s favorite train in

Experiment 3 were presented (Fig. 3.6b). Almost all the participants showed high

interest towards the train with bubbles (93.3%).

Most participants were immediately attracted to the bubbles, clapping or jump-

ing in excitement, attempting to catch them. The interaction durations increased dra-

matically during this experiment. Children even showed more interactions with higher

level of excitement depicted by the increased physical interactions, laughters, and move-

ments (Fig. 3.6a). These observations support the idea of using bubbles as a reward

mechanism in our proposed model. Some showed curiosity about the train and its fea-

tures that they ended up carrying it while walking around. Few participants seemed to

be wondering why the other big train was not generating any bubbles.

3.3.5 Limitations

The number of participants in this study was limited to ten male children. Hence,

some aspects of the findings and preferences can not be generalized. The experiments
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Figure 3.6: The preferences for the trains in Experiment 4. (a) Child interacting with

the bubbles generating train. (b) Average rated preferences for the trains. Almost all

the children preferred the train with bubbles.

were not repeated and conducted only once. Therefore, the effects of repeated exposure

and continuous interaction over multiple sessions were not investigated. Finally, the

influence of different features (e.g. bubbles) on different toys was not explored.

3.4 Conclusion

The results suggest diverse preferences among the participants. The most pos-

itive reactions were observed during the sessions with the train with bubbles. On the

other hand, the instances where interactions were more difficult occurred during the

sessions with the social robots, especially with Nao. While the humanoid robots have

been reported to be a preferred candidate for imitation and eye-contact [58], the life-

likeness of their appearance, relatively large sizes or sudden motions might have been

a contributing negative triggers for this difficulty. There have been some instances of
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aggressive behaviors towards the social robots, such as pushing Nao and jumping on

Paro. This could suggest that social robots that resembles the appearances of human or

animal, to some degree, might not be positively perceived equally by children on the

spectrum. However, repeated exposure and multiple sessions might alter these reactions

overtime [112].

3.5 Chapter Summary

This chapter presented exploratory experiments for children with autism inter-

acting with different toys and two social robots. The chapter highlighted some key

obaservations and interactions between the children and the different stimuli.
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4 Severity Measures for Social Robots

This chapter identifies the potential harmful scenarios between a social robot

and a child exhibiting some challenging behaviors toward it. Additionally, it also pro-

vides the materials and methods that were used in the experiments to quantify possible

harm levels. Finally, it presents the results of the experiments and their implications

concerning the potential harm.

4.1 Introduction

In the last few decades, the robotic research has witnessed a great changes in

the traditional paradigm as it has shifted to cover new areas, such as entertainment,

transportation, space, healthcare, and others [113]. Robots are now being considered

to be used in many applications (e.g. rehabilitation and elderly care) that require direct

physical human-robot interaction [113], [114].

The rapid evolution of technology has sparked a global interest in robotics and

their prospective applications. The International Federation of Robotics (IFR) has

predicted that the number of entertainment robots, such as toy robots, personal edu-

tainment robots, and multi-media robots, will rise to 11 million units by 2019 [115].

This dramatic increase in the number of robots, especially the ones with close prox-

imity with humans, has a lot of implications on safety concerns that emphasize the

need for standardization. Some of the standards that have been established are ISO

10218 [116], [117], which is concerned with safety in industrial robots; ISO/TS15066

[118], which is related to collaborative industrial robots; and the ISO 13482 [119],

which is related to personal care robots. Currently, there is no safety standard pertain-
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ing social robots or toy robots.

One of the earliest work concerning safety and harm quantification with robotics

introduced the human pain tolerance as an indicator for potential risks [120]. In another

work, the simulation of impact tests of an industrial robot on a crash test dummy us-

ing Finite Element Method (FEM) was proposed and demonstrated as means to assess

safety [121]. In later works, actual crash test dummies have been used in impact tests

using industrial robotic arms [73], [74]. Various safety indices, such as for the head,

chest, and neck, have been used in the evaluation of safety and potential injury levels

due to impacts. Up to date, limited studies have been conducted on safety in social

robotics, especially pertaining the safety of children with ASD [122], [123], [124].

The objective of this chapter is to identify potentially harmful scenarios that

might occur between a child and a social robot due to the manifestation of challenging

behaviors. Additionally, it is aimed to quantify the harm levels based on severity indices

for one of the identified scenarios.

4.2 Robots and Potential Risks

Technology offers a lot of potential to therapeutic sessions, such as, but not

limited to, independent learning, individualizing, motivation, reinforcement, social and

communicative skills practice, hands-on learning, and others [41]. The advancement in

several Artificial Intelligence (AI) fields has enabled robots to function independently

and more naturally for effective social interactions (Fig. 4.1). Social robots differ from

typical toys in many ways, such as the way they engage people at an interpersonal level

to achieve positive outcomes in different domains [125]. Furthermore, social robots

should be able to convey emotions, form social relationships, demonstrate personality,
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Figure 4.1: Some of the robots that have been considered or have the potential for

ASD intervention: a) Keepon, a yellow snowman-like robot [9]. b) Chippies, a pack of

playful puppies (With kind permission from WowWee Group Ltd). c) SPRK+, a more

than just a ball robot (With kind permission from Sphero). d) Lynx, a humanoid robot

companion (With kind permission from UBTECH). e) Cozmo, an interactive tiny

robot (With kind permission from Anki). f) Leka, an autonomous ball-like robot (With

kind permission from Leka Inc). g) Tipster, a fun and interactive robot (With kind

permission from WowWee Group Ltd).

41



use natural communication cues, and to understand their social partners [126]. Child-

robot interactions are characterized beyond traditional toys by the form of robot’s em-

bodiment, the interface of communication, two-ways reciprocally interaction, and the

robot’s adaptability to the child [127], [128].

Children interacting with social robots are prone to touching the robot. In some

cases, they might show aggression toward the robot [129], [130], [131]. This requires

that the existing design guidelines must ensure the safety of the children and the physi-

cal integrity of the robot, especially during meltdowns [14]. While some of the existing

developed robots could meet many of therapy objectives, they are still not adequate

enough to be used with some of the children on the spectrum that exhibit high activity

and aggression levels [132]. The majority of the social robots used in the literature are

just prototypes, not commercially available, and have yet to find their ways into therapy

sessions or schools [47]. Hence, the exposure to such technology is still very limited

worldwide, and the need to identify potential safety issues arises. The wide adoption

of social companions and smart toys would introduce some concerns and ethical con-

siderations that must be addressed early on [133], [134], [135], [128]. Furthermore, the

introduction of robots to children with ASD represents a new stimulus from their envi-

ronment that must be taken into account and consideration because of their potentially

challenging behaviors when interacting with them.

The occurrence of challenging behaviors [3], such as kicking objects, throwing

objects at others, banging on objects, and harming oneself by hitting, when a robot is

present increases the chances of potentially risky scenarios (Fig. 4.2). Depending on

the size of the social robot being used, the magnitude of potential risks might change

accordingly. For instance, kicking a large robot will inflict an initial harm to the kicker
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Potential Risky 
Scenarios

Due to hitting or 
banging

Due to throwing

Due to self-harming Due to kicking

Figure 4.2: The identified possible risky scenarios that might occur between a child

and social robot due to some challenging behaviors.

and secondary damage on others in case of the robot falling down on them. On the

other hand, kicking a small robot might impact on others and cause harm. Another

challenging behavior that could inflict harm on others is throwing, especially in the

case of small and light robots. The child could use the small robot involuntary as an

object to be thrown on others. Self-inflicted harmful behaviors, such as banging and

hitting, could be increased with the presence of a robot as it can be used by the child as

an object to stimulate oneself. All the aforementioned scenarios must be accounted for

when designing robots and solutions to mitigate them must be investigated.
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4.3 Materials and Methods

4.3.1 Dummy Head Development

A 3D-printed head form made of polylactide was augmented with clay to reach

a weight of 3.1 kg that is comparable to the weight of scaled 50th percentile 3-6 years

children dummy heads [136]. A 2 mm layer of deformable soft material made of sili-

cone (Ecoflex 00-30, Smooth-On, USA) was added to the head form to add more lifelike

skin [137]. This silicon layer will be used in estimating potential tissue injuries due to

its close shore hardness value to that of human skin [138].

A low-cost triple-axis accelerometer (ADXL 377, SparkFun Electronics, Col-

orado, USA) was placed at the center of the head to measure the linear acceleration of

the head. A force-sensing resistor (FlexiForce Force Sensor, Tekscan Inc, USA) was

placed at the center of the forehead to measure the impact forces (Fig. 4.3). The force

sensor was calibrated according to the manufacturer’s guide and a small puck (i.e. disk-

like force concentrator) was placed at the center of the sensing area to ensure that most

of the force applied can be detected. In case the embedded sensor failed to properly reg-

ister some of the impacts, digital force gauge (FGE-100X, Shimpo Instruments, USA)

was used in separate experiments to measure the impact forces by attaching it to the top

of the head. Thus, increasing the total weight of the head to 3.5 kg.

4.3.2 Experimental Setup

The experimental setup was based on a low-cost head model situated in a ded-

icated frame (Fig. 4.4). The dimensions of the frame used were (94.0 x 94.0 x 94.0

cm3). Nylon coated wire ropes were used to situate the head at the center of the frame.
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Figure 4.3: The developed low-cost 3D printed head form with the embedded sensors.
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Figure 4.4: The experimental setup used in this study.

Both sensors (i.e. accelerometer and force) were interfaced to a computer through a

data acquisition card (PCI-6031E, National Instrument, USA). The sampling rate was

20 kHz and signals were filtered according to Channel Frequency Class 60 [139].

During the early years of a child, the muscles of the neck are not developed

enough to dampen sudden and violent head’s movements [140]. Furthermore, for short

impact durations, the effects of the neck and body mass on the head are believed to be

minimum [141]. Therefore, the developed setup focuses on the dynamics of the head

only.
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Figure 4.5: The impactor representing a small social robot that has been used in the

experiments. a) Perspective view. b) Side view.

4.3.3 Impactor

The goal of this study is to quantify the potential harm due to the throwing

action of a small robot (i.e. impactor). Hence, to represent a small social robot, a

simple and small 3D model with minimum features was designed and then fabricated

using a 3D printer (Replicator 5th Generation, MakerBot Industries, USA) (Fig. 4.5).

The dimensions of the impactor are (18.0 x 8.0 x 17.0 cm3) and weighs around 0.55 kg.

The surface roughness of the printed robot model was limited to the resolution of the

3D printer.

While there are many large social robots, the smaller ones are more affordable

and are more suited for typical home users. The advancement in technology is allowing
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smaller robots to be more compact and intelligent. Hence, the size and mass of the

proposed dummy robot falls according to such projections. Furthermore, the parameters

of the dummy robot are within the potentially throwable range (i.e. light mass) for the

targeted users (i.e. children).

4.3.4 Procedures

4.3.4.1 Setup Validation

To verify the reliability of the developed setup in reporting a comparable HIC

values, six impact tests at different velocities were conducted. The impactor used was a

2 kg mass attached to a beam (Fig. 4.6a). The beam was attached to the main frame of

the setup and allowed for free motion that enabled it to hit the frontal side of the head

at various velocities (See supplementary material). All impact tests were recorded and

the corresponding HIC, 3 ms criterion, and impact velocities were calculated.

4.3.4.2 Harm Quantification

Two different experiments of 15 trials each were conducted. Experiment 1 was

in more controlled condition as the dummy robot was tied with a rope to the frame to

freely allow it to swing while making its left side facing the forehead of the head (Fig.

4.6b). Experiment 2 was in a more comparable condition to the realistic scenario, and

that involved the throwing of the dummy robot at various velocities from a distance

of 1 m away from the head model. The velocities used in both experiments were in

the range of 0.5 - 8 m/s, which was within the range of a previously reported throwing

speed of tennis ball performed by children of different ages (i.e. 3 - 9 years) [142]. We

believe this range is reasonable and comparable to the throwing velocities that might be
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Figure 4.6: Experiments that were conducted in this study. a) Validation experiment

with the 2 kg impactor b) Harm quantification experiment with the dummy robot.

exhibited by children on the spectrum.

All experiments were recorded using a video camera (FDR-X1000V, Sony, Japan)

in slow-motion mode (240 fps, 720 pixels). All videos were analyzed using the open-

source video analysis software Tracker (v4.10.0, Douglas Brown, Open Source Physics).

A LabView (v2014, National Instrument, USA) script was used to obtain the raw data

from the data acquisition card, processes it and then stores it in a worksheet file. The

data were post-processed by a Matlab (v2015, MathWorks, Massachusetts, USA) script

that generates the HIC and 3 ms criterion values.
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Figure 4.7: Head Injury Criterion (HIC) values generated by the developed

experimental setup due to different impact velocities with a 2 kg impactor. The results

were compared with similar impacts conducted by different industrial robots.

4.4 Results

4.4.1 Setup Validation

To validate the head model setup, results were compared to previous studies of

similar nature [75], [73], where a low-cost dummy head fixed on a frame was developed

and an impactor of a mass of 1 kg was used for validation. The impact tests were

conducted using robotic arms of different masses at different velocities and their results

were then compared to that obtained with ATD. Their setup was able to reproduce

comparable numerical HIC values.
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Figure 4.8: The 3 ms criterion values generated due to different impact velocities with

a 2 kg impactor. The results were compared with similar impacts conducted by an

industrial robot.

The generated HIC values from the validation impact tests in our study were

comparable to that conducted previously (Fig. 4.7). For example, impacting at a veloc-

ity of around 1 m/s has generated a HIC value in the range of 3 - 10. The trend is also

similar as the values of HIC obtained have increased proportionally with the applied

impacts velocities. As for the 3 ms criterion, the values at around 1 m/s were in the

range of 8 - 16 (Fig. 4.8). The differences in the values obtained are attributed to the

differences in the mass of the impactors used (i.e. 2 kg vs 1 kg) and the mass of the

developed dummy heads (i.e. 3.1 kg of a child vs 4.5 kg of an adult) [143], [144].
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Figure 4.9: The corresponding Head Injury Criterion (HIC) values for impact

experiments conducted in Experiment 1 and 2. Experiment 1 where the dummy robot

was attached to the experimental setup while Experiment 2 where the experimenter

conducted the throwing of the dummy robot. The results were compared with HIC

values generated by an industrial robot.

4.4.2 Harm Quantification Measures

4.4.2.1 Head Injury Criterion (HIC)

In Experiment 1, there is a more consistent trend as the velocity of impact

increases the corresponding numerical HIC value increases (Fig. 4.9). The lowest

recorded HIC value was 0.013 and it occurred at a velocity of 0.6 m/s while the highest

recorded HIC value was 8.568 corresponding to a velocity of 5 m/s.

In Experiment 2, the overall trend is less consistent at certain velocities as com-
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Figure 4.10: The corresponding 3 ms criterion values for impact experiments

conducted in Experiment 1 and 2. Experiment 1 where the dummy robot was attached

to the experimental setup while Experiment 2 where the experimenter conducted the

throwing of the dummy robot. The results were compared to the 3 ms criterion

thresholds for child occupant [10].

pared to Experiment 1, especially around 4 m/s. However, there is an increase in the

recorded HIC values as overall speed of throwing increases. The lowest HIC value ob-

tained was 0.114 corresponding to a velocity of 3.9 m/s while the highest recorded HIC

value was 7.066 at a velocity of 7.48 m/s.

4.4.2.2 The 3 ms Criterion

In Experiment 1, the lowest recorded 3 ms value was 1.425 g and it occurred at

a velocity of 0.6 m/s while the highest recorded 3 ms value was 21.476 g corresponding

53



Lower limit

Median

Average

Upper limit

0 1 2 3 4 5 6 7 8

Velocity (m/s)

0

5

10

15

20

25

30

35

40

45

50

P
e
a
k
 L

in
e
a
r 

A
c
c
e
le

ra
ti

o
n

 (
g

) Experiment 1

Experiment 2

Figure 4.11: The corresponding peak linear acceleration values for impact experiments

conducted in Experiment 1 and 2. Experiment 1 where the dummy robot was attached

to the experimental setup while Experiment 2 where the experimenter conducted the

throwing of the dummy robot. The highlighted area represents the range of peak linear

accelerations that is associated with the occurrence of subconcussive events [11].

to a velocity of 5 m/s (Fig. 4.10). The trend of the 3 ms values are linearly increasing

with the applied velocities.

In Experiment 2, The lowest 3 ms value obtained was 2.96 g corresponding to

a velocity of 2.97 m/s while the highest recorded 3 ms value was 18 g at a velocity of

7.48 m/s (Fig. 4.10). the trend is less consistent as compared to Experiment 1 as evident

around 4 m/s.
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Figure 4.12: The corresponding impact force values for impact experiments that were

conducted using the stand-alone digital force gauge. The right axis represents their

corresponding probabilities of causing facial fracture.

4.4.2.3 Peak Linear Acceleration

In Experiment 1, the lowest recorded peak linear acceleration value was 1.5 g

and it occurred at a velocity of 0.6 m/s while the highest recorded peak value was 23

g corresponding to a velocity of 5 m/s (Fig. 4.11). The peak acceleration values are

increasing linearly with throwing velocity.

In Experiment 2, the lowest peak linear acceleration value obtained was 3 g

corresponding to a velocity of 2.97 m/s while the highest value was 19 g at a velocity

of 7.48 m/s (Fig. 4.10). The trend is less consistent as compared to Experiment 1,

especially around 4.0 m/s.
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4.4.2.4 Impact Forces

The embedded force sensor approach has failed in registering some of the im-

pacts or maximum values due to the lack of sufficient contact between the dummy robot

and the effective area of the sensor. However, the maximum force recorded in all of the

experiments was 28 N at a velocity of 5.75 m/s.

In order to get a better understanding of the potential impact forces involved,

four separate experiments at different velocities were conducted using a stand-alone

force gauge. These experiments were conducted similar to Experiment 1 method (Fig.

4.6b). The lowest value was around 30.1 N corresponding to velocity of 0.75 m/s while

the maximum value was 91.3 N at a velocity of 2.15 m/s. There is a trend and linear

relationship between the applied velocities and the measured resultant peak force values

(Fig. 4.12).

4.4.2.5 Tissue Injuries

The evaluation of tissue injuries was based on the visual inspection of the artifi-

cial skin and sample measurements using vernier caliper. All observations were made

after conducting Experiment 1 and Experiment 2. In terms of depth, the majority of the

observed damage to the artificial skin were less than 1 mm (Fig. 4.13a). There were

some instances where the depth of the observed damage was more than the thickness of

the artificial skin (i.e. greater than 2 mm) and piercing the dummy head (Fig. 4.13b).

4.5 Discussion

For HIC values to be meaningful, they need to be translated to a corresponding

metric for potential injury based on AIS scaling. From reported equations previously,
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Figure 4.13: The observed tissue damage to the artificial skin. a) Abrasions-like skin

damage of depth that is less than 1 mm. b) Laceration-like skin damage of depth that is

equal or greater than 2 mm.

the probabilities of injury due to all impact tests conducted in both Experiment 1 and 2

are negligible (i.e. close to 0%). Even though all the estimated potential for injuries in

our experiments are low, there is still a potential for serious harm based on the reported

catastrophic injuries and fatalities that occurred due to impacts with lighter objects (e.g.

baseball) among children [145], [62]. While HIC severity index is significant in giving

an estimation of the potential for head injury, it is insufficient to estimate pain and assess

tissue injuries.

As for the 3 ms criterion, the maximum values obtained for both sets indicate

a low potential for harm. The highest value for Experiment 1 is around 36% of the 3

ms criterion impact limit (i.e. 60 g for frontal and side impacts). As for Experiment

2, the corresponding percentage for the highest 3 ms value is around 30% for the 3 ms

criterion impact limit of 60 g.
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Figure 4.14: Surface areas of the dummy robot that hit the head. a) Frontal edge. b)

Chimney. c) Back. d) Side.

The values for the peak linear accelerations for both experiments were around

20 g, which were far away from most of the reported peak accelerations (e.g. 66 - 106

g) that are associated with concussive events [84]. However, most of the obtained peak

acceleration values fall within the range (i.e. 6 - 46 g) that is associated with subcon-

cussive events (Fig. 4.11). Furthermore, two peak linear acceleration values are at or

above the reported median value of 19 g that has been associated with the occurrence

of subconcussive impacts, where the occurrence of which has been linked to neurocog-

nitive deficits [11]. More research need to be done to understand the biomechanical

variables and its relation to causing concussion or mild TBI among children.

For HIC, 3 ms criterion, and peak linear acceleration results, there was a notice-

able disparity in Experiment 2 at a velocity of around 4 m/s. For example, HIC values
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range was from 0.114 to 2.834. This discrepancy can be attributed to the surface or

area of the dummy robot that hit the head (e.g. chimney vs side) as observed from the

analysis of the recorded videos (Fig. 4.14). This implies that at higher velocities, the

harm level could even be larger depending on the contact area.

The peak force values for all the experiments were translated to percentages

corresponding to the potential of causing fracture to the skull based on the previously

stated relation (Fig. 2.5). All the recorded peak forces have low potential to cause real

harm to any of the facial bones. For example, a peak value of 91.3 N (i.e. the maximum

value obtained) corresponds to around 0.6% chance of causing fracture to the bones of

the face. However, assuming the linear relation holds true for higher velocities (Fig.

4.12), the chance for facial fracture increases up to 20% at a hypothetical throwing

velocity of 10 m/s for the same robot.

The depth of the observed artificial skin damage were interpreted to a corre-

sponding tissue injuries based on the classification listed in Table 2.3. Most of the

damage caused by the impacts conducted in this study falls into superficial category

that affects the epidermis layer, and they were in the form of abrasions. There were

few lacerations that are classified as partial-thickness skin loss that would require med-

ical care. No instances of full-thickness (i.e. depth greater than 4 mm) skin loss were

observed.

The dummy robot has sustained a considerable damage (Fig. 4.15). The damage

was more apparent after performing Experiment 2 (i.e. mimicking real throwing sce-

nario). Some of the lacerations on the artificial skin of the head could have resulted from

the newly formed sharp edges on the robot due to the sustained damage from some of

the initial impacts. This implies that any robotic design should remain robust and safe,
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Figure 4.15: The sustained damage on the small robot after finishing all of the

experiments.

especially after being subjected to similar impacts and conditions. Superficial injury

as an indicator for potential harm could serve better than some of the typical severity

indices. Similar conclusion has been reached in studies investigating the potential harm

due industrial robots [73], [146].

The safety investigations conduced in this study were limited to one potential

scenario that may happen between a child and a social robot, which is harm to the head

due to throwing. The developed experimental setup was limited to the head, but to better

understand the overall dynamics involved due to impacts, a child dummy model should

have been used. Quantifying harm was limited to the head, however, the actual harm

could potentially affect other areas, such as the neck or the chest. The impact scenario

considered was limited to one and did not account for any impact boundaries, such as

against a wall. Measurements of harm to the head was limited to the existing severity
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indices and to the closest available data. Thus, some aspects can not be measured, such

as pain levels. The tissue injury investigations were limited to artificial skin and not a

live skin. Thus, actual depth of lacerations on an actual live skin might differ. Finally,

the study was limited to small form factor impactor representing a small social robot,

hence, the obtained results are only applicable to closely comparable robots in terms of

mass, design, material and size.

4.6 Conclusion

The motivation of this study is to investigate the potential for harm due to the

interaction between social robots and children with ASD, especially during the man-

ifestation of challenging behaviors. Throwing, kicking, hitting, and self-harming are

some of the challenging behaviors that during the exhibition of which, especially in the

presence of a social robot, could inflict some harm to the children themselves and those

around them. Our investigation of harm due to throwing of a small social robot re-

vealed that it could potentially cause tissue injuries, subconcussive or concussive event

in extreme cases.

4.7 Chapter Summary

This chapter identified the potential harmful scenarios that could occur between

a child with autism and a social robot. The chapter presented the experimental setup and

methods that were used to quantify the potential for harm due to throwing based on the

severity indices. Finally, the chapter presented the results for the impact experiments

and discussed their implications on the potential harm.
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5 Parametric Design of Small Robots

This chapter investigates different design parameters of small robots to reduce

the potential harm by conducting two different studies. The first section provides a

brief introduction about the problem and motivation. The methods and materials are

then presented in this chapter. The last two sections of this chapter provide the details

about the two studies and their outcomes.

5.1 Introduction

The interest in robots is increasing globally as estimated by the International

Federation of Robotics (IFR) [115]. The application of robots is extending to new areas,

such as that in healthcare. Most notably is the application of social robots in therapy

sessions with children with autism, which has been reported to improve the overall

outcomes [14]. However, such children exhibit a multitude of challenging behaviors

that could raise some safety concerns when a robot is present in their vicinity [147]. The

occurrence rates of challenging behaviors are high (e.g. 49% up to 69% [38], [39], [40]),

and that have many consequences on the services and treatments provided to them [37].

Unlike typical toys, social robots have the ability to demonstrate emotions, es-

tablish social connections, display of personalities, using cues, and engage with part-

ners at an interpersonal level [52], [148], [55]. The introduction of robots to chil-

dren with ASD represents new challenge that must be taken into account. Some stud-

ies reported that children interacting with social robots might show some aggression

[129],[149],[150]. Furthermore, robots are meant to elicit behaviors [151], [53]. Hence,

the introduction of such technology to children with ASD could represent a potential
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harm during the manifestation of unwanted behaviors (e.g. kicking, throwing, and bang-

ing [3]). For instance, a thrown small robot that hits the head might cause subconcussion

or superficial injuries [147]. There is a need to evaluate social robots to achieve safe

physical human-robot interaction during such scenarios.

When the head is subjected to bumps or blows and impacts with objects, a trau-

matic brain injury (TBI) might occur. In serious cases, TBI could lead to a disability

or, in extreme cases, it could cause death. The occurrence of TBI among children could

cause challenges, such as disabilities and impairment in daily skills [66], [67]. In 2013

alone, 2.8 million cases of TBI have been reported in the United States [64]. The cases

of TBI among children were occurred due to getting struck by or against an object. A

study analyzing mild brain injuries among children in Sweden for the years 1998 and

1999 has found that 47% of the cases occurred at home and during playtime or leisure

activity and due to childcare products, which includes toys [152]. These figures have

many implications on the design of robotic toys pertaining to the safety of the head.

There is a need for further safety considerations and user-focused design to take into ac-

count the characteristics of special needs users, such as children with ASD [147], [129].

The work in social robotics safety is still limited [124], [153], especially in relation to

improving design aspects of small robots [122], [154], [155], [156].

The establishment of safety standards in different fields of robotics is making

notable advances. However, the progress in establishing safety standards in relation to

social robots and robotic toys is still lacking [124], [153]. Some of the existing safety

standards in toys can be readily imported to cover some fundamental design and safety

aspects. For example, the ISO 8124 standard [157]. Safety aspects of the mechanical

and physical properties of toys are covered in part one of this standard while part two
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and three covers flammability and migration of certain elements, respectively. More

rigorous design considerations are needed that consider the unwanted behaviors exhib-

ited by children with autism. For example, considering a scenario where the robotic toy

is thrown to the head.

In this chapter, two studies based on Taguchi method to investigate the influence

of different design parameters on a selected severity index are presented. The first study

investigates two design factors (i.e. mass and shape) of a small robot that is subjected

to different throwing velocities (i.e. noise factor) and understand their effects on the

acceleration of a dummy’s head. Furthermore, the first study identifies the conditions

of the design factors at which the response is minimized. The second study investigates

a way to reduce the harm to the head by studying the influence of two control factors (i.e.

storage modulus of soft material and its thickness) and one noise factor (i.e. throwing

velocity) of a small form factor toy on the resultant head’s acceleration. Furthermore,

the optimal levels of the investigated control factors that help in reducing the response

are identified.

5.2 Materials and Methods

5.2.1 Impact Setup

The impact setup was used to conduct the experiments that contained a 3D-

printed head that was mounted on a frame (Fig. 4.4). The mass of the dummy head was

made close to that of children’s dummy heads [136]. To measure the linear acceleration

of the head, an accelerometer was placed inside the head. The data was acquired at

20 kHz. The impact setup has been shown to give similar results to that of related

studies. More in-depth details about the experimental setup and validation can be found
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a) b) c)

Figure 5.1: The three basic 3D designs of the impactors that have been considered in

the study. a) Cube (10×10×10 cm3, length, width and height). b) Cylinder (10×10

cm2, diameter and height). c) Wedge (10×10 cm2, length and height). For simplicity,

the three basic featureless shapes were considered to isolate the contribution of the

shape on the response.

in Chapter 4 or in our earlier studies [158], [147], [159], [160].

5.2.2 Impactors

5.2.2.1 Study One

The goal of this study is to understand the influence of the mass and shape of a

small robot on the resultant peak linear head acceleration due to an impact. Hence, 3D

models of three basic shapes were considered (Fig. 5.1). The shapes were constructed

using a 3D printer (Replicator 5th Generation, MakerBot Industries, USA). A clay ma-

terial was used to adjust the mass of each shape according to the mass levels in Table

5.1. The center of mass was made sure to be balanced for all the objects.
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Figure 5.2: Sample of the experiments conducted for the second study.

5.2.2.2 Study Two

A 3D printed cylindrical object was used as an impactor in the second study

investigating the influence of adding soft materials to the robotic design. The dimen-

sions of the impactor were (10× 10 cm2, height and diameter). The 3D printer was

used to build the object. Clay was used to fill the impactor to reach 0.4 kg. The soft

materials (Ecoflex OO-30 & Dragon skin FX-Pro, Smooth-On, USA) were prepared

according to manufacturer’s instructions. The soft materials were prepared in molds of

different thicknesses and then rectangular (5×8 cm2) samples of each were attached to

the impactor covering the area of impacts (Fig. 5.2).
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Figure 5.3: Samples of the experiments that were conducted in the first study [12]. a)

For the cube. b) For the cylinder. c) For the wedge.

5.2.3 Procedures

5.2.3.1 Impact Experiments

All experiments were performed according to the L9(32) orthogonal array (OA)

(Table 2.4). For each noise level, 9 experiments were conducted that have covered

all possible combinations of the control factors (Data available in [161], [162]). The

objects were tied to the frame which provided a controlled condition in the execution

of the experiments (Fig. 5.3). Furthermore, it has provided more consistent impact

velocities by adjusting the drop height of an object. Three different drop locations

generated three different noise levels. The impact velocities were based on the video

analysis of the experiments.

The impact velocities were estimated based on the slow-motion recordings of

the experiments using a video analysis software (Tracker v5.0.7 [163]). The raw read-
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ings were obtained from the data acquisition card and then stored using a LabView

script. Finally, the peak head acceleration for each experiment was calculated based

on a MATLAB script. More detailed procedures can be found in our earlier stud-

ies [158], [147], [159], [160].

5.2.3.2 Dynamic Mechanical Analysis

For the second study, the properties of the soft materials were studied using a

dynamic mechanical analyzer (RSA-G2, TA instruments, USA ; Fig. 5.4). The dynamic

mechanical analysis (DMA) is a common test to measure the properties (i.e. elastic and

viscous) of a material. The properties were studied by applying a stress (e.g. sinu-

soidal) and measuring the resultant strain and the phase difference between the input

and output. A frequency sweep tests were conducted to study the storage modulus. In

these tests, the frequency was varied from 0.1 Hz to 100 Hz while the strain and tem-

perature kept constant. The storage modulus readings for each material were generated

(Fig. 5.5). The values of storage modulus at 1 Hz for each material were considered

in the analysis. This frequency is believed to be at which the high rate of challenging

behaviors might occur [104].

5.2.4 Head Severity Index

Several head severity indices were used in the literature to study the potential

harm to the head, such as Head Injury Criterion, 3 ms criterion, and peak head lin-

ear acceleration. Previous studies have considered the peak linear acceleration of the

head to investigate concussive events due to impacts [81][82]. Among hockey players,

an earlier study has reported the possibility of the occurrence of a concussion at 31.8

g [85]. Another study investigating football impacts identified the occurance of subcon-
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Figure 5.4: The Dynamic Mechanical Analyzer device that was used to analyze the

soft materials.
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Figure 5.5: The storage modulus results for the dynamic mechanical analysis (DMA)

tests that were performed on the three materials.

cussive events at 26 ± 20 g [11]. Dummies that report the head acceleration were also

considered to evaluate the potential injuries to the head (e.g. in industrial robots and in

sports [75], [70], [71]). Similarly, the experimental setup in this study will use the peak

linear head acceleration to conduct the impact experiments.

5.2.5 Data Analysis

5.2.5.1 ANOVA

To study the significance of each factor on the head’s acceleration, three-way

analysis of variance (ANOVA) test was conduced on the responses of all the investigated

factors. The level for statistical significance was set to p < 0.05. All analyses were

performed using Minitab (v18.1, Minitab Inc., USA).
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5.2.5.2 Signal to Noise Ratio

The optimization technique considered the signal-to-noise (S/N) ratio. The aim

of this study is reduce the head’s acceleration. Hence, the appropriate S/N ratio was

selected, and it is defined as[89]:

S/N =−10log10E

[
y2

i

]
(5.1)

where E is the expectation and y2
i is the head’s acceleration (i.e. the response).

5.3 Shape and Mass of Small Robotic Design

5.3.1 Experimental Factors

The goal is to investigate whether the shape or the mass play any role in affecting

the response. Hence, two control factors are considered in this investigation for their

possible influence in attenuating the peak acceleration of the head. Twenty seven (i.e.

9×3) experiments must be conducted to cover all the possible combination of all the

factors based on the L9(32) OA (Table 2.4). The considered control and noise factors

are independent.

All levels of all factors have been defined (Table 5.1). The range for the mass

is comparable to that of small robotic toys. For the sake of simplicity, the selection of

the overall shapes of the form factor were limited to three basic 3D geometric shapes

while ignoring any other features. For consistency, the noise levels were limited to low

velocities divided into levels (i.e. < 3 m/s) [164].
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Table 5.1: The experimental factors and their descriptions. The impact velocity levels

are represented by the mean and the standard deviation.

Type Factor Code Level 1 Level 2 Level 3

Control Mass A 0.3 kg 0.4 kg 0.5 kg

Control Shape B Cube Cylinder Wedge

Noise Impact X Low Medium High

velociy (m/s) (1.14 ± 0.10) (1.72 ± 0.12) (2.7 ± 0.10)

Response Peak linear head acceleration (g)

5.3.2 Results

5.3.2.1 Orthogonal Array

The Taguchi L9 orthogonal array was completed by finding the average response,

the standard deviation, and the respective S/N ratio for each combination of the investi-

gated factors (Table 5.2). The range for the linear acceleration values was 2.72 to 13.03

g. The lowest response value was at a mass of 0.3 kg, wedge shape, and Level 1 impact

velocity (i.e. A1-B3-X1). As for the highest response, it occurred at a mass of 0.5 kg,

cylinder shape, and at an impact velocity Level 3 (i.e. A3-B2-X3). The lowest overall

average response across all factors was 3.95 g with a S/N ratio of -12.05 and was due to

Level 1 velocity (Table 5.3 and Table 5.4). On the other hand, Level 3 velocity scored

the highest average response (ie. 9.70 g) with a S/N ratio of -19.91.
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Table 5.2: The complete Taguchi orthogonal array along with columns showing the

average response, standard deviation (SD), and the signal to noise ratio (S/N) for each

row.

Inner

control

factors

array

Outer noise

factor

array

Average

response

Standard

deviation

Signal-

to-noise

ratio

RUN A B X1 X2 X3 Mean SD S/N

1 1 1 3.75 5.74 6.58 5.36 1.45 -14.79

2 1 2 3.25 7.28 9.24 6.59 3.05 -16.96

3 1 3 2.72 5.81 7.18 5.24 2.28 -14.90

4 2 1 4.18 7.56 8.96 6.90 2.46 -17.13

5 2 2 4.20 9.04 10.96 8.07 3.48 -18.64

6 2 3 3.72 7.04 9.04 6.60 2.69 -16.85

7 3 1 4.93 9.14 10.94 8.34 3.08 -18.80

8 3 2 4.42 9.50 13.03 8.98 4.33 -19.69

9 3 3 4.41 8.84 11.40 8.22 3.54 -18.80

Table 5.3: The average response at every level of each factor.

A B X

Level Mean (SD) Mean (SD) Mean (SD)

1 5.73 (0.75) 6.86 (1.49) 3.95 (0.67)

2 7.19 (0.77) 7.88 (1.21) 7.77 (1.43)

3 8.51 (0.41) 6.69 (1.49) 9.70 (2.07)
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Table 5.4: The average signal-to-noise (S/N) ratios at every level of each factor.

A B X

Level S/N S/N S/N

1 -15.55 -16.90 -12.05

2 -17.54 -18.43 -17.94

3 -19.10 -16.85 -19.91

5.3.2.2 ANOVA

The statistical significance of each factor on the average response due to varying

their levels was investigated based on three-way ANOVA test. The inverse transforma-

tion of the response was considered in this test. A post-hoc pairwise Tukey test was

also conducted.

To understand the contribution of the mass on the head’s acceleration, a three-

way ANOVA was conducted (Table 5.5). The test revealed a statistical significance due

to altering the conditions of the mass on the response (F(2,8) = 46.97, p = 0.00) at the

p< 0.05. A post-hoc Tukey test showed that Level 1 mass (M = 5.73, SD = 0.75), Level

2 mass (M = 7.19, SD = 0.77), and Level 3 mass (M = 8.51, SD = 0.41) were statistically

different at p< 0.05.

To investigate the effects of the shape on the response, a three-way ANOVA test

was conducted (Table 5.5). There was a significant difference due to the alteration of

the shape on the response (F(2,8) = 7.03, p = 0.02) at p< 0.05. A post-hoc Tukey test

showed that Level 2 shape (M = 7.88, SD = 1.21) differed significantly from Level 3

shape (M = 6.69, SD = 1.49).
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Table 5.5: Summary of the three-way ANOVA test on the three factors.

Sourcedf Sum of

squares

Mean

square

F-Value P-Value

A 2 0.02 0.01 46.97 0.00

B 2 0.00 0.00 7.03 0.02

X 2 0.12 0.06 289.24 0.00

A*B 4 0.00 0.00 1.22 0.374

A*X 4 0.00 0.00 2.70 0.11

B*X 4 0.00 0.00 3.91 0.05

Error 8 0.00 0.00

Total 26 0.15

To understand the contribution of the impact velocity, a three-way ANOVA was

performed (Table 5.5). A significant difference was reported due to altering the condi-

tions of the impact velocity on the head acceleration (F(2,8) = 289.24, p = 0.00) at p<

0.05. A post-hoc Tukey test showed that Level 1 impact velocity (M = 3.95, SD = 0.67),

Level 2 impact velocity (M = 7.77, SD = 1.43), and Level 3 impact velocity (M = 9.70,

SD = 2.07) were statistically different at p< 0.05.

There was no significant interaction between the mass and the shape (i.e. A

and B) on the response (F(4,8) = 1.22, p = 0.37) at p< 0.05. There was no significant

interaction between the mass and the impact velocity (i.e. A and X) on the response

(F(4,8) = 2.70, at p = 0.11) at p< 0.05. There was no significant interaction between the

shape and the impact velocity (i.e. B and X) on the response (F(4,8) = 3.91, at p = 0.05)

at p< 0.05.
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Figure 5.6: The average response values and signal-to-noise (S/N) ratios for the

factors investigated in this study. a) For Factor A, the mass. b) For Factor B, the shape.

c) For Factor X, the impact velocity.
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5.3.3 Discussion

The responses of the 27 experiments conducted suggest that the control factors

and noise factor have influenced the response. A trend between Factor A (i.e. the mass)

and the response can be observed by observing the columns of the OA (Table 5.2). For

instance, observing the average response values in the noise factor columns (i.e. X1,

X2, and X3), the registered head acceleration value appear to increase as the mass level

increases (i.e. from row 1 to 9). No consistent trend can be observed for Factor B.

However, the second shape B2 (i.e. cylinder) appears to score higher responses com-

pared to the other two shapes as observed in the average response column. Observing

the noise columns shows that the head’s acceleration has increased with the impact ve-

locity. The relatively large values of the standard deviation also support that the noise

factor affects the resultant head acceleration significantly. The velocity and mass of the

impactors have been reported to affect the magnitude of the peak linear head acceler-

ation [144], [75]. The average responses and the results of the ANOVA test were in

accordance with these findings (Table 5.3 and Table 5.5). As for the shape factor, it

appears to affect the response the least (Table 5.3). The response for the cylinder shape

reported higher average response compared to the other shapes.

5.3.3.1 Optimization

The goal of Taguchi design in this study was to optimize the control factors in

order to reduce the head linear acceleration. The optimization was accomplished by

inspecting the average response and the corresponding average S/N ratio at every level

of the control factors (Table 5.3 and Table 5.4; Fig. 5.6). The ideal case in this study

is producing a lower response and higher S/N ratio, hence, the focus is on the factor
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conditions that satisfies this criterion.

The optimal conditions for the mass and shape were found (Fig. 5.6). The mass

of 0.3 kg achieved the lowest response. As for control factor of the shape, cube (i.e.

Level 1) and wedge (i.e. Level 3) scored comparably the best. For the noise factor,

Level 1 (i.e. 1.14 ± 0.10 m/s) achieved the lowest response.

The identified conditions were 0.3 kg for the mass factor and cube or wedge

for the shape (i.e. A1-B1 and A1-B3, respectively). Compared to other combinations,

the identified optimal conditions generated relatively lower responses, for example, the

individual responses at noise Level 2 and Level 3 (i.e. X2 and X3) for runs 1 and 3

(Table 5.2).

5.3.3.2 Confirmation Runs

The confirmation runs are needed to validate the optimal conditions that were

obtained in the previous section. To achieve that, 18 experiments were conducted. For

each of the identified conditions in the previous section, 3 runs were performed (Table

5.6). The confirmation runs showed that the average response values were compara-

ble to respective ones obtained in the complete OA (Table 5.2), hence, confirming the

optimal identified conditions for the control factors.

5.3.3.3 Limitations of the Study

The investigation conducted in this study was limited to three factors conducted

in a laboratory developed experimental setup with controlled conditions that might dif-

fer from an actual and more dynamic scenario (e.g. potential for secondary impacts).

The values of the object mass that were tested were limited to the range of 0.3 - 0.5

kg. In reality, lighter or heavier robotic toys could exist. Studying the effect of shape
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Table 5.6: The responses, the average, and standard deviation for the confirmation

runs. The conditions selected achieved relatively better responses in comparison to the

other conditions in the main experiments.

CombinationX1 X2 X3

A1-B1

3.32 5.48 7.57

3.78 5.64 6.51

4.04 6.17 6.46

Mean

(SD)

3.71

(0.36)

5.76

(0.36)

6.85

(0.63)

A1-B3

2.57 5.31 7.97

2.68 5.28 6.63

3.25 6.18 7.76

Mean

(SD)

2.83

(0.37)

5.59

(0.51)

7.45

(0.72)
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was limited to three basic featureless shapes. However, actual robotic forms could have

other unusual shapes with a lot of detailed features. Due to the way the experimental

setup was designed, the impact area for each shape was limited to achieve consistency

between the experiments. The effects of different impact areas and their interactions

with different shapes and surface’s features were not investigated in the current work.

The noise levels that were tested were limited to low velocity impacts. Hence, the gen-

erated head’s accelerations from our experiments were limited to a small range (i.e. <

10 g), which is unlikely to cause any potential harm. However, in an actual scenario,

the toy robot could be subjected to higher velocities generating higher head’s accel-

erations. Finally, the investigated severity index was limited to the head acceleration.

Other severity indices (e.g. tissue injuries) could be considered to investigate different

effects due to different design parameters.

5.3.4 Conclusion

In this study, the Taguchi parameter design method was used to identify the

optimal design parameters for small form factor robotic toy in order to reduce the peak

linear head acceleration due to impacts on the head. The investigated control factors

were the mass and the shape. The impact velocity was the noise factor. Based on

L9(32) orthogonal array, a total number of 27 experiments were conducted covering the

possible combinations of the control factors and the noise factor. The optimal levels of

the shape and mass that minimize the peak head linear acceleration were found based

on the S/N ratio. The three-way ANOVA test revealed statistical significance for the

control factors and the noise factor in influencing the head’s acceleration. The optimal

levels for the control factors were as 0.3 kg for the mass and cube or wedge for the
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shape. The confirmation runs at the optimal conditions for the control factors provided

the best responses as compared to others.

5.4 Thickness and Storage Modulus of Soft Materials

5.4.1 Experimental Factors

In this study, the thickness and the storage modulus (i.e. two control factors) of

three different soft materials are investigated for their potential in reducing the linear

acceleration of the head. Experiments are conducted based on an L9(32) Taguchi OA

(Table 2.4). A total of 27 (i.e. 9×3) experiments have to be conducted that consider

the three levels of the control and noise factors. The considered control factors can

be adjusted at the product design level while the noise factor is dependent on the real

life scenario (e.g. throwing). Finally, the selected factors are independent while the

measured output (i.e. head’s acceleration) is dependent.

The levels of the two control factors (i.e. material thickness and storage mod-

ulus) and noise factor (i.e. impact velocity) have been defined (Table 5.7). To achieve

consistency, the mass and the shape of the impactor were kept the same throughout the

experiments. The mass of the impactor was kept at 0.4 kg, which is within the expected

range of the targeted applications (i.e. small robotic toys). The shape of the impactor

was cylindrical without any features on the surface. Finally, the impact velocities used

were limited to low velocities to achieve more consistency in terms of the noise levels.
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Table 5.7: The experimental factors and their descriptions. The impact velocity levels

are represented by the mean and the standard deviation.

Type Parameter Code Level 1 Level 2 Level 3

Control Thickness A 1 mm 3 mm 5 mm

Control
Storage

modulus

B 0.2 MPa 0.3 MPa 1.7 MPa

Noise Impact X Low Medium High

velocity (m/s) (1.1 ± 0.04) (1.81 ± 0.07) (2.75 ± 0.10)

Response Peak linear head acceleration (g)

5.4.2 Results

5.4.2.1 Orthogonal Array

A total of 27 responses of the peak linear head acceleration were recorded and

the corresponding average value, standard deviation, and S/N ratio for each combination

were calculated to complete the Taguchi L9 orthogonal array (Table 5.8). The obtained

linear acceleration values were in the range from 2.42 to 10.75 g due to different levels

of control and noise factors. The lowest linear acceleration value obtained corresponds

to a thickness of 3 mm, Ecoflex, and Level 1 impact velocity (i.e. A2-B1-X1) while

the highest linear acceleration value corresponds to a thickness of 1 mm, Ecoflex, and

Level 3 impact velocity (i.e. A1-B1-X3). The average response and the S/N ratio due to

varying the level of each factor were tabulated (Table 5.9 and Table 5.10). The lowest
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Table 5.8: The complete Taguchi orthogonal array along with columns showing the

average response, standard deviation (SD), and the signal to noise ratio (S/N) for each

row.

Inner

control

factors

array

Outer noise

factor

array

Average

response

Standard

deviation

Signal-

to-noise

ratio

RUN A B X1 X2 X3 Mean SD S/N

1 1 1 2.90 6.56 10.75 6.74 3.92 -17.45

2 1 2 3.98 6.04 10.23 6.75 3.18 -17.19

3 1 3 3.41 6.35 10.26 6.67 3.43 -17.19

4 2 1 2.42 5.65 9.99 6.02 3.80 -16.61

5 2 2 3.24 6.01 10.29 6.51 3.55 -17.06

6 2 3 3.13 6.06 10.18 6.46 3.54 -16.99

7 3 1 3.03 6.15 10.03 6.40 3.50 -16.92

8 3 2 3.38 6.14 10.53 6.68 3.60 -17.27

9 3 3 3.08 6.50 8.59 6.06 2.78 -16.21

average linear head acceleration was 3.18 g with S/N ratio of -10.10 occurred at Level

1 impact velocity while the highest average linear head acceleration was 10.10 g with

S/N ratio of -20.09 due to Level 3 impact velocity.

5.4.2.2 ANOVA

Three-way ANOVA test was conducted to understand if there is a significant

difference due to varying the conditions on the resultant average peak linear head ac-

celeration. In case the ANOVA test reported a significant difference, a post-hoc Tukey
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Table 5.9: The average response at every level of each factor.

A B X

Level Mean (SD) Mean (SD) Mean (SD)

1 6.72 (0.04) 6.39 (0.36) 3.18 (0.42)

2 6.33 (0.27) 6.65 (0.12) 6.16 (0.28)

3 6.38 (0.31) 6.40 (0.31) 10.10 (0.61)

Table 5.10: The average signal-to-noise (S/N) ratios at every level of each factor.

A B X

Level S/N S/N S/N

1 -17.28 -16.99 -10.10

2 -16.89 -17.17 -15.80

3 -16.8 -16.80 -20.09
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Table 5.11: Summary of the three-way ANOVA test on the three factors.

Sourcedf Sum of

squares

Mean

square

F-Value P-Value

A 2 0.82 0.41 2.62 0.13

B 2 0.40 0.20 1.30 0.33

X 2 216.63 108.31 697.74 0.00

A*B 4 0.64 0.16 1.03 0.45

A*X 4 0.62 0.16 1.00 0.46

B*X 4 1.33 0.33 2.14 0.17

Error 8 1.24 0.16

Total 26 221.67

test was conducted.

A three-way ANOVA was conducted to compare the effect of varying the three

conditions of the thickness on the response (Table 5.11). The test revealed that there

was no significant difference due to varying the thickness on the resultant average linear

head acceleration for the three conditions (F(2,8) = 2.62, p = 0.13) at the p< 0.05.

A three-way ANOVA was conducted to study the effects of the storage modulus

on the head peak acceleration (Table 5.11). The test revealed that there was no sig-

nificant difference due to changing the storage modulus on the resultant average linear

head acceleration for the three conditions (F(2,8) = 1.30, p = 0.33) at p< 0.05.

A three-way ANOVA was conducted to compare the effect of the three different

levels of the impact velocity on the head peak acceleration (Table 5.11). The test re-

vealed that there was a significant difference due to varying the impact velocity on the

resultant average linear head acceleration for the three conditions (F(2,8) = 697.74, p =
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0.00) at the p< 0.05. A post-hoc Tukey test showed that velocity Level 1 (M = 3.18, SD

= 0.42), velocity Level 2 (M = 6.16, SD = 0.28), and velocity Level 3 (M = 10.10, SD

= 0.61) were different significantly at p< 0.05.

There was no significant interaction between the thickness and the storage mod-

ulus (i.e. A and B) on the response (F(4,8) = 1.03, p = 0.45) at p< 0.05. There was no

significant interaction between the thickness and the impact velocity (i.e. A and X) on

the response (F(4,8) = 1.00, at p = 0.46) at p< 0.05. There was no significant interac-

tion between the storage modulus and the impact velocity (i.e. B and X) on the response

(F(4,8) = 2.14, at p = 0.17) at p< 0.05.

5.4.3 Discussion

The alteration of the control factors and noise factor levels have an effect on the

resultant head accelerations (Table 5.8). No definite trend can be observed between the

thickness (i.e. Factor A) and the resultant response by visually investigating the orthog-

onal array. For example, looking at the response values in the noise factor columns X1 -

X3 from row 1 to 9, the registered head acceleration value appear to remain consistent.

Similar observation can be made for Factor B. One the other hand, the noise factor lev-

els seem to affect the response significantly. For example, examining columns X1, X2,

and X3 reveals that the response increases proportionally with the applied impact ve-

locity (i.e. noise factor) as supported by the relatively large standard deviations across

each row.

The peak linear head acceleration has been reported to be influenced by the im-

pact velocity of an impactor [144], [75]. The increasing average values of the response

at each level of the impact velocity supports these findings (Table 5.9). Furthermore,
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ANOVA test results and post-hoc Tukey findings showed that the impact velocity has a

significant effect on the resultant peak head acceleration. On the other hand, no simi-

lar conclusion can be made for the control factors. For example, the reported ANOVA

results for the effect of the material’s thickness revealed that there was no statistical

significance. This could be attributed to the relatively small selected thickness range

and to the small difference between each level.

5.4.3.1 Optimization

The second goal of this study is to find the optimal values that reduces the re-

sponse. This is achieved by investigating the mean value of the resultant head acceler-

ation and the corresponding mean S/N ratio for each factor (Table 5.9 and Table 5.10).

The plots were generated for the mean response at each factor level and the correspond-

ing mean S/N ratios for a better visual comparison (Fig. 5.7). The criterion for selecting

the optimal conditions is based on finding the levels that produce the lowest response

and highest S/N ratio.

The best conditions for the thickness and storage modulus were identified based

on the lowest generated head linear acceleration and highest S/N ratio (Fig. 5.6). For the

control factor of material’s thickness (i.e. Factor A), 3 mm (i.e. Level 2) and 5 mm (i.e.

Level 3) achieved closely the best results. As for control factor of material’s storage

modulus (i.e. Factor B), ecoflex (i.e. Level 1) and clay (i.e. Level 3) scored closely

the best results. Even though ANOVA tests on both of the control factors reported no

significance in affecting the peak head acceleration, the identified levels for each factor

provided the lowest responses and highest S/N ratios as compared to other conditions.

Hence, these conditions were selected as the optimal values. As for the noise factor, 1 -
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Figure 5.7: The average response values and signal-to-noise (S/N) ratios for the

factors investigated in this study. a) For Factor A, the material thickness. b) For Factor

B, the storage modulus. c) For Factor X, the impact velocity.
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1.2 m/s impact velocities (i.e Level 1) scored the best results. The optimized conditions

for the control factors investigated were 3 mm or 5 mm for the material’s thickness

factor and ecoflex or clay for the material’s storage modulus (i.e. A2-B1, A2-B3, A3-

B1, and A3-B3). Interestingly, the selected optimal control factors’ levels produced

relatively lower average peak head accelerations compared to other conditions at even

higher noise levels (Table 5.8).

5.4.3.2 Confirmation Runs

After finding the optimal levels for each control factor, the last stage of Taguchi

design is to perform the confirmation runs. The goal of this study is to minimize the

peak head acceleration due to an object being thrown at the head by investigating the

effect of two control factors, namely the material’s thickness and its storage modu-

lus. Hence, the optimal levels obtained in the previous section should produce rela-

tively smaller head accelerations as compared to other conditions. Confirmation runs

are needed to confirm these findings. To ensure that the optimal levels are robust and

applicable to different noise scenarios, two confirmation runs will be conducted at every

noise level.

A total of 24 confirmation runs were conducted at the optimal control factors’

levels. For each control and noise factors combination, 2 runs were conducted and

the corresponding mean values for each were calculated (Table 5.12). Comparing the

results of the confirmation runs to that obtained from the main experiments, the average

values were very close to respective ones obtained in the complete Taguchi orthogonal

array (Table 5.8). Hence, the confirmation runs confirmed that the selected optimal

levels produced the lowest peak head accelerations.
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Table 5.12: The responses, the average, and standard deviation for the confirmation

runs. The conditions selected achieved relatively better responses in comparison to the

other conditions in the main experiments.

Combination X1 X2 X3

A2-B1

2.17 5.11 10.18

3.17 6.74 9.45

2.68 5.60 9.69

Mean (SD) 2.67 (0.50) 5.81 (0.83) 9.78 (0.37)

A2-B3

2.12 5.04 9.18

3.43 6.59 10.60

3.37 5.06 10.25

Mean (SD) 2.97 (0.74) 5.56 (0.89) 10.01 (0.74)

A3-B1

3.06 6.27 10.25

2.27 6.13 9.71

2.87 6.27 9.82

Mean (SD) 2.74 (0.41) 6.22 (0.08) 9.93 (0.28)

A3-B3

3.34 7.08 8.54

2.99 6.38 8.76

3.32 6.4 8.60

Mean (SD) 3.22 (0.20) 6.62 (0.40) 8.63 (0.11)
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5.4.3.3 Limitations of the Study

This study considered only the application of three soft materials while there

are many other candidates that could be considered. The effects of the added mass

of the soft materials were ignored (e.g Less than 0.05 kg). However, this added mass

might influence the results significantly, especially when larger area is covered (e.g.

covering the whole object with a soft material) or larger thickness is considered (i.e.

greater than 5 mm). For consistency, the shape of the object was limited to one shape

while the velocity of impacts was limited to low range. However, different shapes of

robotic toys exist and higher impact velocities might occur in realistic scenarios. Other

severity indices could have been considered to measure different potential harm. For

example, measuring the soft tissue injuries and quantify the potential of soft materials

in mitigating it.

5.4.4 Conclusion

In this study, the influence of an added soft material to an object on the linear

acceleration of the head upon impact has been investigated. The Taguchi L9(32) orthog-

onal array design has been used to plan the 27 main experiments that were conducted.

The control factors were the thickness and the storage modulus of three different soft

materials. The noise factor was the impact velocity. The significance of each factor has

been identified based on three-way ANOVA test while the optimal levels for the control

factors were identified based on the analysis of S/N ratio. ANOVA test showed that the

control factors were not statistically significant in influencing the linear acceleration of

the head. On the other hand, ANOVA test of the noise factor revealed that it was sta-

tistically significant. Material thickness of 3 mm and 5 mm achieved the best results.
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This implies that the application of a higher thickness of soft material will attenuate the

head’s acceleration better. Ecoflex and clay have achieved better response as compared

to dragon skin. Confirmation runs at the optimal identified conditions achieved better

responses as compared to other conditions.

5.5 Chapter Summary

This chapter presented the investigation of different design parameters (i.e. con-

trol factors) of small robotic toys in their influence on one severity index of the head

(i.e. linear acceleration of the head). This chapter presented two studies designed based

on Taguchi method that was then used to design the experiments and to optimize the de-

sign factors. The first study in this chapter investigated the effects of the mass and shape

of small objects on the selected severity index while the second study investigated the

influence of the thickness and storage modulus of three different soft materials on the

same severity index. The results showed that some of the control factors are significant

in affecting the response. The confirmation runs revealed that the identified optimal

conditions for the control factors achieved relatively better results.
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6 Adaptive Robot Intelligence during Unwanted Interactions

This chapter presents two studies aimed at making a robot adaptive toward un-

wanted interactions. The first study explores the possibility of embedding the knowl-

edge of unwanted physical interactions into a small robotic toy. It highlights the feasibil-

ity of recognizing six different possible interactions between a child and a small robotic

toy based on an embedded tri-axial accelerometer. The second study investigates the in-

fluence of reaction time in the emotional response of a robot on the interactions between

a child and a robot.

6.1 Introduction

The recent advances in robotics accelerated the integration of robots to new

areas, such as in healthcare. More specifically, social robots or rehabilitation robots

are being developed to monitor and improve health, to assist with difficult tasks, and

to prevent the declining of one’s health [165]. Assisting in therapy is an application of

robots in healthcare that has shown a promising potential. For example, social robots

were found to be effective in improving the outcomes of therapy sessions, especially

among children with autism [14], [52].

Aggression is a behavior that is done by a living agent, such as a human or an

animal, that causes harm and violates the rights of others [166]. The American Psy-

chological Association (APA) defines aggression as a behavior that is aimed at hurting

others either physically or psychologically [167]. APA categorizes aggression as hos-

tile aggression, which is intended to cause harm; instrumental aggression, which is not

intended to cause harm; and affective aggression, which is emotionally motivated to-
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Figure 6.1: Some of the unwanted and aggressive interactions that might be exhibited

by children toward a companion robotic toy.

ward the source of distress. The frequency of physical aggression among children was

reported to peak during the years before school [168]. Kicking, biting, and hitting are

examples of the physical aggressive behaviors that might occur during the early years of

childhood [169]. Aggression among children is considered as one of the most common

reasons for the mental health referrals [170]. The occurrence of aggression or disrup-

tive behavior was reported to be higher among children with psychiatric disorders. For

example, the prevalence rates of such behaviors was reported to reach 62.3% among

children with anxiety disorders, while it could reach 45.8% among those with mood

disorders [171].

Social robots represent new stimuli that are meant to elicit behaviors and initiate
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interactions, and that might trigger unwanted ones. Previous studies showed that chil-

dren might exhibit some aggression toward the robots[129],[130],[172]. In case of small

robots, children might carry the robot and mishandle it (Fig. 6.1). To date, the studies

to characterize the unwanted and aggressive interactions are limited [173], [130], [174].

Additionally, limited work has been done to investigate the proper reactions once such

behaviors are detected. The ability of a robot to detect and respond to unwanted interac-

tions will provide many benefits, such as the prevention of potential harm, monitoring,

promoting safety culture, and as a therapeutic and teaching tool. Furthermore, it can

be used by the robot to help the child to stop the unwanted behavior and to prevent any

progression [172]. For example, a child shaking or hitting a robot could be a precursor

for a meltdown episode.

In this chapter, two studies aimed at adding adaptive capabilities to a small

robotic toy are presented. The first study investigates the potential of using an arti-

ficial neural network to develop a model that is capable of classifying the unwanted

physical interactions between a child and a small robotic toy (Fig. 6.2). This study con-

siders six different interaction behaviors, namely, hitting, shaking, dropping, throwing,

picking up, and being idle (i.e. no active interaction). The second study investigates the

effects of reaction time and sound modality employed in robotic toys on the perceived

perception by children interacting with the robots. A recognition architecture based on

Long Short-term Memory Cell (LSTM) was adopted to classify the behaviors based on

the acceleration data received. Different reactions with different timings were produced

once a pickup, a shake, a drop or a throw was detected.
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Figure 6.2: Overview of the proposed model to detect unwanted physical interactions

between a child and a small social robot.

6.2 Recognition of Aggressive Interactions

6.2.1 Overview

For social robots that interact with children with ASD, there have been some

studies conducted to characterize the interactions [175], [130]. An earlier study used

a ball-like mobile robot (i.e. Roball [173]) embedded with sensors to detect the direct

interaction instances with the robot. The study considered four interaction cases with

the robot, namely robot being alone, robot receiving an interaction, robot being carried,

and robot being spun. The study demonstrated the possibility of using the sensor data

to make the robot more adaptable. Another study considered different interactions with

a smaller ball-like robot (i.e. Sphero), such as holding, kicking, and picking up [174].
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Adult participants were asked to perform the behaviors. A set of features were extracted

from the data of the embedded tri-axis accelerometer and gyroscope and then tested

with different supervised learning algorithms. The best classifier (i.e. random forest

algorithm) trained on data obtained from the adult participants achieved an accuracy of

around 49% when evaluated with data generated from children participants.

This study explores the possibility of embedding the knowledge of unwanted

physical interactions into a small robotic toy based on an embedded tri-axial accelerom-

eter. The study aims to recognize six different possible interactions between a child and

a small robotic toy, namely, hitting, shaking, dropping, throwing, picking up, and being

idle (i.e. no active interaction).

6.2.2 Materials and Methods

6.2.2.1 Experimental Setup

Robot System Design The progress in technology is enabling smaller robots to be

more intelligent and more compact. Furthermore, smaller social robots are considered

to be more affordable and suitable to be used by average home users. Hence, the toys

considered in this study were selected accordingly. Three different forms of toys were

used, namely a stuffed robot (LATTJO soft toy, IKEA, Netherlands), a stuffed panda

(KRAMIG Soft toy, IKEA, Netherlands), and a toy excavator (Fig. 6.3). The dimen-

sions of the toys (i.e. less than (38.0 x 29.0 x 9.0 cm3)) and their masses (i.e. less than

0.75 kg) were of the range that enable ease of interactions (e.g. carrying) for children.

The differences in sizes, in shapes, and in materials of the selected toys should cover

any variations among different small robotic toys. Additionally, the selected toys varied

in terms of their softness. For example, the stuffed robot is considered the softest while
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Figure 6.3: The toys that have been considered as dummy robotic forms. From left to

right, a stuffed panda, a soft toy robot, and a toy excavator.

the excavator toy is considered the least soft. Both of the stuffed toys (i.e. the robot

and the panda) were modified with zippered pockets to allow the insertion of the data

acquisition system.

Data Collection System The recognition device used was a small computing device

(Raspberry Pi 3 Model B+, Raspberry Pi Foundation, UK). This device is powered by

a 1.4 GHz quad-core processor and supports wireless, Bluetooth, and Ethernet com-

munication. The availability of such communication channels make it easier to access,

to program, and to configure with other devices. Furthermore, it contains many pe-

ripherals that make it possible to augment it with other devices. The official operating

system (Raspbian v4.19, Debian Project) was installed on a micro SD card (16 GB,
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Figure 6.4: The data collection system that was based on a SenseHat board mounted

on a Raspberry Pi board.

Edge, Sanddisk). The selected storage should provide more than enough space for the

operating system, trained recognition mode, collected data, and for any needed pack-

ages. A remote access software (TeamViewer Host for Raspberry Pi, US) was installed

to allow ease of access to the device and more flexibility for debugging and testing. The

kernel, the firmware, and the packages were all upgraded to their latest versions.

The standard Raspberry Pi does not contain any on board sensors, however, the

40-pin can support different boards with different functionalities. A Sense Hat board

(Raspberry Pi Foundation, UK), which contains different sensors and a display, was

mounted on the Raspberry pi. The built-in accelerometer (LSM9DS1, STMicroelec-
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Figure 6.5: A sample of the extracted features for the acceleration signal.

tronics, Switzerland) was used in the recognition model to acquire the raw acceleration

data at a rate of around 30 Hz and up to 16 g. This rate and magnitude were shown to be

adequate enough for the recognition of human activities [176], [177]. The entire device

was placed in a dedicated enclosure with a small fan mounted on the side for cooling

(Fig. 6.4). For the experiments, the devices were embedded inside the toys and each

was powered with a dedicated power bank (Slim 2, 5000 mAh, POWERADD).

6.2.2.2 Procedures

Acquiring sufficient data from adults is relatively easier than from children [174],

[104]. Hence, the development of the model was based on the data acquired from adult

participants. The participants who took part in this study were asked to perform five
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different behaviors with each robot. The participants were given the freedom in per-

forming the required behaviors and to take breaks between experiments. No instruc-

tions were given to the participants, especially about how a particular behavior should

be performed (e.g. the way to hit or shake the robot). The only instructions were given

to let the participants know the start and the end of each experiment. A MATLAB script

(v2018, MathWorks, Massachusetts, USA) was used to analyze the data and then ex-

tract the instances of each behavior based on the thresholds (Fig. 6.5). This data was

then used in the training, testing, and development of the neural network model.

The data to validate the model was acquired from neurotypical children. Imag-

inative scenarios were told to the children to make them perform the behaviors of in-

terest. For example, to acquire pickup and shake behaviors, they were told that "The

robot is asleep and you need to pick it up and then shake it to wake it up" (Fig. 6.6).

The interaction durations were around 5 mins each. We believe that the characteristics

of behaviors (e.g. hitting) considered in this study are similar and comparable between

neurotypical children and those with autism. Hence, this data will be used as an indica-

tor for the applicability of the developed model to the targeted end-users.

6.2.2.3 Participants

Five healthy adults (one female and four males) aged 24 to 31 years old par-

ticipated in this study. Their data was used to train and test the model. Additionally,

the study acquired data from four neurotypical children (one female and three males)

aged 4 to 9 years old. The children’s data were used to validate the developed model.

The procedures for this work did not include invasive or potentially hazardous meth-

ods and were in accordance with the Code of Ethics of the World Medical Association
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Figure 6.6: Samples from the sessions with the children.

(Declaration of Helsinki).

6.2.2.4 Algorithm

The development of the classification algorithm was based on Scikit-learn, a

Python-based machine learning library [178]. This library includes many supervised

and unsupervised learning algorithms along with other evaluation tools. Furthermore,

it uses high-level language that makes the implementation convenient and flexible. The

classification algorithm in this study was based on a supervised learning algorithm, the

Multi-layer Perceptron (MLP). To investigate the potential of the adopted methods in

producing promising results, the testing of the classification algorithms was limited to
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MLP. Future work might consider other algorithms.

MLP is one of the most widely used form of neural networks. The simplest

configuration of this network consists of an input and an output layer while a more

complex configuration consists of a hidden layer or several hidden layers between the

input and the output layers. Connections between layers follow a consecutive order

starting from the input layer and terminating at the output layer. All connections have

assigned values called weights that are learned during the training of the network. Each

neuron has an activation function (e.g. sigmoid) that generates an output based on the

product of the inputs of the preceding layer and the weights of their connections. More

detailed mathematical description of MLP can be found in [179].

The neurons of the input layer of the classification algorithm take the resul-

tant acceleration values as an input vector. In human recognition applications, there

is a trade off between recognition performance, recognition speed, and computational

complexity [180]. A robot’s reaction to unwanted interactions should be quick and

comparable to that of a human. Hence, a smaller window size (i.e. 25 samples) was

selected, which is enough to capture most of the behavioral characteristics (Fig. 6.7).

This size should provide a fast recognition speed while maintaining a sufficient accu-

racy [181]. Furthermore, minimizing the window size should reduce the overall delay

in the recognition system.

The magnitude of the resultant acceleration was based on the square root of

the sum of the squares of the individual accelerations. The relation is represented as

follows:

|A| =
√

A2
x + A2

y + A2
z (6.1)

where Ax is the magnitude of acceleration in the X direction, Ay is the magnitude of ac-
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celeration in the Y direction, and Az is the magnitude of acceleration in the Z direction.

The classification algorithm trains to map the resultant acceleration values into labeled

outputs corresponding to different behaviors.

The goal is to detect the behaviors of interest regardless of the orientation changes

of the toy and the placement of the accelerometer within. Hence, the magnitude of the

acceleration has been considered because it is insensitive to such changes [182]. Future

work might consider the direction of the accelerations to add more insights about the

orientation of the toy in relation to the behavior being exhibited.

6.2.2.5 Evaluation Metrics

Several metrics were used to evaluate the developed model, such as the accu-

racy, classification report, and confusion matrix. Accuracy reported the percentage of

correct predictions in relation to the overall predictions performed by the model as in

(6.2). Classification report provided the precision, recall, and F1- Score, and support

for the model. Precision provided the percentage of true positives in relation to the total

predicted positive as in (6.3). Recall indicated the number of true positives in relation

to the total number of actual positive as in (6.4). F1 - score provided the harmonic mean

of precision and recall as in (6.5). The confusion matrix provided a breakdown for all

the predictions (i.e. correct and incorrect) by each class.

Accur ac y = Cor r ect Pr edi ct i ons

Tot al Pr edi ct i ons
(6.2)

Pr eci si on = Tr ue Posi t i ve

Tr ue Posi t i ve +F al se Posi t i ve
(6.3)
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Figure 6.7: Samples of the extracted behaviors from the accelerometer signals for

adults and children. The different colors represent different robots where R 1 (i.e in

green) stands for the excavator toy, R 2 (i.e. in red) for the panda toy, and R 3 (i.e. in

black) for the soft robot toy.

Recal l = Tr ue Posi t i ve

Tr ue Posi t i ve +F al se Neg ati ve
(6.4)

F 1 = 2× Pr eci si on ∗Recal l

Pr eci si on +Recal l
(6.5)

6.2.3 Results and Discussion

All participants have performed the requested behaviors differently. For exam-

ple, different intensities were demonstrated when shaking or hitting the robots. The data

of the behaviors were post-processed and the features were extracted (Fig. 6.7). The

selected window size was sufficient enough to capture the most important features of

each behavior. The features of some of the behaviors performed by the participants with

the robots appeared to have some similarities in their characteristics. For example, drop
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behavior was characterized by low acceleration values followed by a large spike and

then oscillations. A hit behavior was characterized by a large spike of a short duration.

Pickup has some resemblance to hit, but the spikes were longer in duration and smaller

in amplitude. Shake behavior was characterized by continuous oscillations at different

amplitudes and frequencies. Throw was characterized by a wave of low amplitude (i.e.

start of throwing) followed by decline in acceleration and then ending with a large spike

(i.e. upon impact).

6.2.3.1 Model Development

The extracted instances of behaviors were labeled and organized as a dataset to

be used in the model training. A total of 1,000 instances for each behavior covering all

robots and participants were extracted. For the idle case, 1,000 instances were added,

hence, making the total instances to be 6,000. Augmentation (i.e roll by a factor of 25)

on the data was performed that should provide more robustness to the model in terms of

predicting new data. Additionally, it should help in avoiding the learning of any specific

pattern in the data. A standard scaler was used to standardize the features by scaling

(i.e. to unit variance) and removing the mean. The data was randomly split into 70% for

training and 30% for validation. Different network configurations were tested and eval-

uated. The configurations for the best trained model (i.e. accuracy of 92%) were hidden

layer settings of (300,150), Rectifier Linear unit (i.e. ReLu) as the activation func-

tion, alpha = 0.0001 for the regularization penalty term, and Limited-memory Broyden

Fletcher Goldfarb Shanno method (i.e. lbfgs) as the weight optimization solver. The

performance of the model improved proportionally with the number of iterations (Fig.

6.8a). The losses of the training and validation were decreasing over iterations and con-
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Figure 6.8: The training and validation over iterations plots for the developed model a)

Accuracy plot. b) Loss plot.

verging closely (Fig. 6.8b). This indicated a comparable performance and a good fit for

the model. Finally, the entire dataset was then used to train the finalized model.

An accuracy of 88% was achieved when testing the finalized model with unseen

adult data. The confusion matrix and classification report for the model were generated

for further analysis (Fig. 6.9 and Table 6.1). Excluding the idle case, the confusion

matrix reported the highest for the throw case while the lowest recognition for pickup

and hit behaviors. The model has identified incorrectly some pickup instances mainly

as hit or as shake instances. Similar observation for the incorrect identification of some

instances can be made for shake and hit behaviors. Throw behavior instances were

mainly identified incorrectly as drop behavior. These incorrect identification could be

attributed to some similarities in the features of these behaviors. Regardless, the overall

evaluation metrics of the model were promising. For example, the model has achieved

an average precision of 88%, a recall of 88%, and an F1- score of 88%. Precision
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Figure 6.9: The confusion matrix for the unseen adult’s dataset.

Table 6.1: The classification report for the evaluated unseen adult’s dataset

Behavior Precision Recall F1 - score Support

Drop 0.91 0.90 0.90 265

Hit 0.84 0.84 0.84 797

Idle 1.00 1.00 1.00 131

Pickup 0.80 0.84 0.82 747

Shake 0.91 0.86 0.88 776

Throw 0.94 0.94 0.94 614

Avg/ Total 0.88 0.88 0.88 3330
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shows the ability of the model not to identify an incorrect instance as correct, while

recall shows the ability of the model to find all correct instances. Finally, the F1 score

takes the average of recall and precision into consideration.

6.2.3.2 Model Evaluation with Children’s Data

The main objective of this study is to develop a model that can characterize the

interactions between a child and a small companion robot. Hence, evaluating the devel-

oped model with children’s data is necessary to investigate the model’s feasibility and

applicability to children. There are some similarities between the acceleration charac-

teristics of behaviors that were exhibited by the children and the adult participants, for

example, in case of hit, drop, and shake behaviors (Fig. 6.7). Visual differences in

performing some of the behaviors were evident in pickup and throw.

The developed model has achieved an overall accuracy of 80% when evaluated

with the children’s dataset. The confusion matrix showed that the model was able to

identify drop and shake behaviors with the best results (i.e. accuracy > 90%) followed

by hit and throw behaviors (i.e. 67%) (Fig. 6.10). Pickup instances were the lowest to

be identified correctly with an accuracy of 52%. One quarter of pickup instances were

identified as shake behavior. The majority for the incorrectly classified throw behaviors

were identified as either drop or shake. As for hit, they were incorrectly identified as

pickup or shake. These misclassifications could be attributed to the differences in the

behaviors’ intensities as exhibited by different age groups that confuses the classifier.

For example, a child’s pickup behavior is more gentle and slower as compared to that

of an adult, hence, it was identified as a shake behavior. The overall precision, recall,

and F1 - score of the model were all promising (i.e. 80%; Table 6.2).
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Figure 6.10: The confusion matrix for the evaluated children’s dataset.

Table 6.2: The classification report for the evaluated children’s dataset

Behavior Precision Recall F1 - score Support

Drop 0.72 0.98 0.83 49

Hit 0.81 0.67 0.73 195

Pickup 0.44 0.52 0.48 56

Shake 0.87 0.91 0.89 377

Throw 0.78 0.67 0.72 70

Avg/ Total 0.80 0.80 0.80 747
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The results showed the possibility of using adult-based generated data to de-

velop a model that can classify some of the children’s unwanted interactions with a

small robotic toy. Furthermore, it showed the capabilities of using multi-layer percep-

tron (MLP) in such applications as compared to other algorithms (e.g. support vector

machines and random forests).

The detection capabilities of the proposed model is limited to during the exhibi-

tion of an unwanted behavior or after. The advantage of this approach is that it helps in

teaching the children the causation between their interactions and the robot’s responses.

This work was limited to the detection of negative or unwanted interactions. However,

future work might consider the positive or desirable interactions. This work did not

account for the vibrations that are usually produced by a social companion robot due

to its functionalities. However, the idle class can be updated to account for such vibra-

tions to make a proper distinction. Alternatively, a rule that checks the magnitudes of

the acceleration could be implemented to discriminate between a shake and the natural

vibrations of the robot.

6.2.4 Conclusion

In this study, a Multi-layer Perceptron (MLP) based neural network was devel-

oped and validated for its potential in classifying behaviors between a child and a small

robot. The physical interactions considered were hit, shake, throw, drop, and pickup.

These behaviors could potentially be used to identify any unwanted interaction between

a child and a robot, which could then act to prevent the occurrence of aggressive behav-

iors that might lead to harm. The data to develop the model was based on adult partici-

pants performing the behaviors while the data used to validate the developed the model
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was based on the children’s interactions. The developed model was able to achieve a

high recognition accuracy (i.e. > 80%) when tested with children’s data. Furthermore,

the classification report and the confusion matrix showed promising results (Fig. 6.10

and Table 6.2).

6.3 Influence of Reaction Time

6.3.1 Overview

Species in nature offer a lot of biologically-inspired concepts and ideas to roboti-

cists. One of these mechanisms is the reflex system that can be adopted in the design

and developments of robots [183]. Reflexes are meant to ensure the survival of the

living organism externally while ensuring the balance of operations internally. Reac-

tion to a stimulus is usually carried out by the reflex arc that consists of several stages,

namely, arrival of stimulus, activation of sensory neuron, information process, motor

neuron activation, and peripheral effector response. The implementation of reflexes

in a robotic system should operate without affecting the main objectives of the robot

(Fig. 6.11). Once an unwanted interaction is detected, the robot may respond with the

appropriate reaction to deliver the corresponding message to the user [172]. The timing

of the reaction and its modality should be felt as natural to provide a clear implication

about the interaction. Few robots were developed that demonstrate some reactions to

a human interactions. PARO is one of the commercially available robots that reacts to

physical interactions [184]. PARO is a seal-looking interactive therapeutic toy that is

covered with white fur and emits voices similar to that of a baby seal. Different em-

bedded sensors enable PARO to interact with its environment. The light sensor enables

it to recognize dark and light. The audio sensor gives PARO the ability to recognize
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Figure 6.11: The proposed reflex model to respond to unwanted interactions. A layer

to detect the unwanted interactions will temporarily inhibit the system to produce a

proper response.

the direction of voice. The tactile sensor gives PARO the ability to feel any stroke or

pressure. PARO interacts with people by making sounds and moving some parts of its

structure, such as the head, paddle and eyelid.

Roball is another robot that was developed to react to certain physical interac-

tions [173]. The robot is shaped like a ball with a diameter of 0.27 m and weighs around

2 kgs. It is equipped with accelerometers and tilt sensors that allows it to interact and

navigate in its environment. Based on the sensors readings, several interaction modes

are possible, such as being alone, general interaction, being carried, and being spun.

Teo is a mobile, soft robot, which was developed to interact with children with

ASD [185]. It can sense distance and touch, and can distinguish different dynamic inter-

actions, like hug, push, punch, getting close, among others. Based on the interpretation
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of sensors, the robot can react with sounds, words, movements, and coloured lights.

This study investigates the influence of reaction time in the emotional response

of a robot on the interactions between a child and a robot. The study considers three

different interactions, namely, pickup, shake, and drop or throw; and considers three

reaction times, namely, 0.5 s, 1.0 s, and 1.5 s.

6.3.2 Materials and Methods

6.3.2.1 The Model

Recognition Architecture The recognition network that was adopted in our work was

proposed by an earlier study that relied on Long Short-term Memory network (LSTM)

in combination with bidirectional and residual connections [186]. In their proposed

model, the network was able to produce improved results (i.e. 93.5%) on the public

domain (i.e. UCI Machine Learning Repository) dataset on human activity recognition

as compared to other configurations [187]. The recognition problem in this study would

benefit from this network due to the similarity in the characteristics of the activities

that needs to be recognized. In this section, a brief description about this recognition

network is provided.

LSTM network is a special structure based on a Recurrent Neural Network

(RNN) that is used to process a data stream. In RNN, the prediction depends on the

history information that is maintained within the internal memory of the network. A

typical RNN consists of three layers, namely, an input layer x, a hidden layer h, and an

output layer y. The relations among these layers are defined as follows:

h(t ) = f (Ux(t )+W h(t −1)) (6.6)
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y(t ) = g (V h(h)) (6.7)

where U is the connection weights matrix from the input layer to the hidden layer, W is

the connection weights matrix within the hidden layers, and V is the connection weights

matrix between the last hidden layer and the output. Furthermore, f and g represent the

activation functions.

Compared to standard RNN structure, LSTM showed stability and powerful per-

formance in the modeling of long sequences (e.g. [188]). The structure of LSTM is

unique due to a memory cell ct that accumulates the state information [189]. Further-

more, this structure allows one to deal with the vanishing gradients problem [190]. The

LSTM cell contains three controlling gates, namely, input gate, forget gate, and output

gate (Fig. 6.12). These gates control what information that should be kept, updated, or

forgotten. More complex structures can be formed by combining multiple LSTM cells.

The internal parameters of an LSTM cell are defined as follows [191]:

it =σ (Wxi xt +Whi ht−1 +Wci ct−1 +bi ) (6.8)

ft =σ
(
Wx f xt +Wh f ht−1 +Wc f ct−1 +b f

)
(6.9)

ct = ft ct−1 + it t anh (Wxc xt +Whc ht−1 +bc ) (6.10)

ot =σ (Wxo xt +Whoht−1 +Wcoct +bo) (6.11)

ht = ot t anh (ct ) (6.12)

where i is the input gate, f is the forget gate, o is the output gate, σ is the logistic

sigmoid function, and c is the cell activation vectors.
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Figure 6.12: A graphical representation of the Long Short-term Memory (LSTM) cell.

The LSTM cell consists of three gates, namely, the input gate i, the output gate o, and

the forget gate f. These gates control the information within the cell.

The recognition network also made use of bidirectional LSTM due to its advan-

tages over standard LSTM. For example, the output of bidirectional LSTM is related to

previous and subsequent information, hence, a better overall performance. The output

of the proposed algorithm is determined by concatenating the results of the forward and

backward sequences through a hidden layer that reduces the number of features [186].

Finally, the algorithm uses a residual network that provide different advantages, such as

efficient training and easier optimization.

Data Format The data that were used in training and testing the recognition model

were acquired from an earlier study [13]. The data for the acceleration were in the form

of the resultant acceleration computed as the square root of the sum of the squares of

the individual accelerations. The relation is defined as in (6.1).
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The training data were acquired from adult participants performing the behav-

iors of interest while the test data were acquired from children participants. To create a

temporal data stream from these discrete data samples, artificial sequences were created

from the data samples randomly (Fig. 6.13). The sequences were selected based on the

likelihood of their occurrence in realistic interaction scenarios. This approach will sup-

port the creation of more variability in data and decrease subject-dependent learning.

For example, a sequence could contain samples from any of the participants and from

any of the robotic toys used. This procedure was applied to both the training and testing

data.

Model Evaluation Several models were trained and the best one was considered.

The configuration of the selected model included a bias mean of 0.3, weights SD of

0.3, and 28 hidden neurons per layer. The configuration of the architecture was 2 × 2,

where there are 2 hidden layers that contains 2 bidirectional layers each. More details

about the architecture can be found in [186]. The model achieved promising results that

considered precision, recall, and f1-score metrics (Table 6.3). The confusion matrix

revealed that the model might confuse some of the behaviors (Fig. 6.14). For example,

it might confuse hit as pickup. For the purpose of this study, the focus is on detecting

pickup, shake, and throw or drop. Once these behaviors are detected, the robot will

produce the corresponding responses. All other interactions will be ignored and will

not produce any response once they are detected.

6.3.2.2 Experimental Setup

Three different toys embedded with recognition devices were considered. The

toys were a stuffed panda (KRAMIG Soft toy, IKEA, Sweden), a stuffed toy robot
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Figure 6.13: Five samples of the artificially created sequences from the data samples

obtained from an earlier study [13]. The sequences were selected based on their

likelihood of occurring in realistic scenarios. The behaviors in the sequences were

obtained randomly from the available pool of samples from each participant.
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Figure 6.14: The confusion matrix for the recognition algorithm when tested with the

children data. The recognition performance of the model is higher than 90% for drop,

idle, and shake. The recognition performance is less than 90% for hit, pickup, and

throw.

Table 6.3: The classification report for the recognition algorithm when tested with the

children’s data.

precision recall f1-score support

drop 0.98 1.00 0.99 120

hit 0.72 0.83 0.77 210

idle 0.98 1.00 0.99 390

pickup 0.86 0.73 0.79 270

shake 0.82 0.91 0.86 150

throw 0.99 0.86 0.92 120

avg / total 0.89 0.89 0.89 1260
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(LATTJO soft toy, IKEA, Sweden), and an excavator toy (Fig. 6.3). The mass and

dimensions of the selected toys were in the range that allowed the ease of carrying

and manipulation for the targeted users. The toys were equipped with the recognition

device that was based on Raspberry Pi. The same toys and the device were previously

used in the earlier study to collect the data that was then used to train the recognition

model [13].

6.3.2.3 Robot Reactions

The robotic toys showed reactions when manipulated by the user. For example,

a robot would display discomfort when shaken. The reactions were implemented as

different short sounds. The samples were obtained from https://freesound.org and were

modified for the experiments. The sound samples were cut and shortened to less than

one second and were saved as wav files. For the behaviors considered in the experi-

ments, 6 different sound samples for each behavior were selected, to provide variety.

For example, when a pickup is detected, one sound sample is randomly selected from

the pool of the available samples for pickup and then played (See supplementary mate-

rial). A Bluetooth speaker (AQL Sparkle, Cellularline, Italy) was used to produce the

sound samples for the behaviors, activated by the system embedded in the robot. The

actions triggering reactions were limited to pickup, shake, and drop or throw.

To investigate the effects of response time on the interactions, three different

timings were considered to generate a reaction, namely, 0.5 s, 1 s, and 1.5 s. A sched-

uled task that periodically checks the detected behaviors was used to control the tested

reaction times. This task generates a reaction based on the detected manipulation with

a delay equal to the selected time. However, a condition has been implemented that
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prevents the generation of two consecutive responses in less than one second. This was

designed to make the toy more natural in terms of response rate and more pleasant to

interact with.

6.3.2.4 Participants

The experiments conducted in this study were focused on the evaluation of the

appropriateness of the reactions implemented in the robots, in particular on the reaction

timing. Subjects (9 females and 21 males) volunteering in the experiments were stu-

dents aged 8 to 13 years old (10.26 ± 1.48 years old). The consent from the parents

was secured by their school and the children were accompanied by their teachers to the

experiment site. The children were introduced in the experimental room one at a time.

In the room, one researcher and one assistant were present. The procedures for these

experiment did not include any invasive or potentially hazardous methods and were in

accordance with the Code of Ethics of the World Medical Association (Declaration of

Helsinki).

6.3.2.5 Reaction Evaluation

Robotic toys or social companion robots should provide a timely feedback, a

reaction, to the user performing an interactive act. A late and less frequent response

might render the interaction slow and uninteresting while a very fast and more frequent

response might be felt as eerie and unnatural. The frequency and the speed of response

should be natural and comfortable to the user. To evaluate the effects of these, a set of

experiments were performed with a group of children individually. The three robotic

toys were configured with reactions at different timing, namely, 0.5 s, 1 s, and 1.5 s.

The participants were divided into three groups accordingly. A robotic toy was placed
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a) b)
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Figure 6.15: Samples of the conducted experiments. a) A child exploring the toy. b) A

child shaking the toy. c) A child throwing the toy.

on a small table and a child was encouraged to interact with it. The evaluated behaviors

were limited to pickup, shaking, and throwing or dropping (Fig. 6.15). All tasks were

requested in the form of an imaginative scenario that the the children need to perform

with the robotic toys (Table 6.4). After each session, a simple questionnaire containing

five simple questions was given to the child (Table 6.5). The questions were related

to the interactions and the possible answers were in Likert scale showing five different

levels of agreement (from total agreement to total disagreement). All sessions were

recorded with a webcam (C310 HD, Logitech, Switzerland) and then annotated with an

open-source software (BORIS, version 3.12, Torino, Italy).

6.3.2.6 Data analysis

The data collected from the participants were based on questionnaires contain-

ing five different questions. To visualize the collected responses, histogram plots were
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Table 6.4: The experimental protocol for the experiments conducted in this study

Number Reaction evaluation

Task 1 Pick up the robot up and explore it

Task 2 The robot is sleeping and in order to wake it up you need to shake it

Task 3 The robot would like to be to a specific place, toss it there

Table 6.5: The questions stated in the questionnaire

Number Questionnaire statement

Q1 The robot reacted to my interaction

Q2 The robot reacted quickly to my interaction

Q3 The robot liked it when I picked it up

Q4 The robot liked it when I shook it

Q5 The robot liked it when I threw it

123



generated for each question to check for the peaks, spread, and symmetry. Furthermore,

Kruskal-Wallis tests were performed on each question to check for any statistically sig-

nificant differences between the medians of the three groups at p <0.05. Furthermore,

the test was performed to check for effect due to gender differences.

6.3.3 Results

In this section, a summary of all the responses for each question are presented

as histogram plots for the different groups. Then, statistical analysis is provided for the

effect of gender and the response time.

6.3.3.1 Summary of the questionnaire

The first statement in the questionnaire was: “The robot reacted to my interac-

tion.” The frequency of answers for each group were presented as a histogram plot in

Figure 6.16. The majority (i.e. 80%) of the responses for each group fall into the agree-

ment region. This clustering of the responses created a right-skewed symmetry for all

the groups. The peak of the data was at the strongly agree response for group 3 (i.e. re-

action time of 1.5 s). There was only one subject’s response in the disagreement region

for group 3. This could be due to the slow reaction time compared to other groups (i.e.

1.5 s vs 1.0 s or 0.5 s) that gave the wrong impression of the robot’s responses to the

subject. Alternatively, this could have been simply an outlier.

The distribution of the responses have changed when the subjects were asked

about the second statement of the questionnaire, which was: “The robot reacted quickly

to my interaction.” Similar to Q1, the majority of participants have answered in agree-

ment to the statement, with group 2 being the highest (i.e. 80% of the subjects) and

group 3 the lowest (i.e. 60% of the subjects)(Fig. 6.17). The data for each group appear
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Figure 6.16: A histogram summarizing the responses for the first question of the

questionnaire: “The robot reacted to my interaction.”

to be skewed to the right. There were three peaks for each group at the strongly agree

and agree scales. More responses were in the disagreement region as compared to the

previous question. Group 3 contained the highest number (i.e. 40% of the subjects)

of responses in the disagreement scales. This could be attributed to the relatively late

response of the robot for this group as compared to the other groups.

The distributions for the third question (i.e. “The robot liked it when I picked

it up”) showed different spread for each group (Fig. 6.18). The responses for group 2

(i.e., reaction time of 1.0 s) appears to be right-skewed with 60% of the responses in the

agreement region. Group 3 (i.e. reaction time of 1.5 s) also appears to be right-skewed,

but with 50% of the subjects in agreement with the statement. The peak for group 2

was at Strongly agree selection while for group 3 the peak was at the Agree selection.

As for group 1 with a reaction time of 0.5 s, the overall responses appear to be scattered

in the agreement region (i.e. 50% of the subjects), however, the peak is at the Not sure
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Figure 6.17: A histogram summarizing the responses for the second question of the

questionnaire: “The robot reacted quickly to my interaction.”

scale. There were some responses in the disagreement region mainly for reaction time

of 1.0 s and 1.5 s (i.e. 20%). The discrepancy in the responses could be attributed to the

perceived understanding of the robot’s reactions due to the subjects’ interaction. The

robot voice reaction to being picked up was similar to that of being surprised, but in

a joyful manner. This could have confused some of the participants which made more

responses leaning toward the Not sure scale or even into the disagreement region.

The fourth question was “The robot liked it when I shook it.” For this case,

the robot produced a voice that indicated being annoyed to being shook. Hence, the

responses are expected to be mostly in the disagreement zone. More than 70% of the

responses for group 1 and group 2 fall into the disagreement region (Fig. 6.19). Group

1 and group 2 (i.e. reaction time of 0.5 s and 1.0 s) appear to be left-skewed with

two peaks occurred at the Strongly disagree scale. The majority of the participants of

group 3 (i.e. reaction time of 1.5 s) have voted in agreement (i.e. 70% of the subjects)
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Figure 6.18: A histogram summarizing the responses for the third question of the

questionnaire:“The robot liked it when I picked it up.”

to the fact that the robots have liked being shook. These results could be due to the

relatively late response time for this group that made the robot produce delayed or

incorrect reactions for the current interaction being made. For example, the robot is

making the reaction for pickup while it should produce the one for shake. Clearly, a

reaction time greater than one second could alter the perceived perception of a robot’s

response.

The fifth question was related to the perceived understanding of the robots’ re-

sponse after being thrown. The robot produced a sound indicating the feeling of pain

after being thrown. The majority of the responses appear to be clustered in the disagree-

ment region when the participants were asked “The robot liked it when I threw it.” The

highest peak was for group 1 (i.e. reaction time of 0.5 s) at the Strongly Disagree scale

followed by group 2 (i.e. reaction time of 1.0 s) at the Disagree scale (Fig. 6.20). Group

3 with a reaction time of 1.5 s achieved the highest number of responses (i.e. 40% of
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Figure 6.19: A histogram summarizing the responses for the fourth question of the

questionnaire:“The robot liked it when I shook it.”

the subjects) in the agreement region followed by group 1 (i.e. 30% of the subjects).

6.3.3.2 Statistical Analysis - Gender Effect

As a secondary objective, it is interesting to find if there is an effect of gender on

the responses for the different groups. For this analysis, only group 1 and group 2 were

considered because of the close number of participants’ genders (i.e., total of 8 females

vs 12 males). A Mann-Whitney U test was run on 20 participants to determine if there

were differences in the responses between males and females. The median response

score for males (3.5) and females (4.0) was not statistically significantly different, p =

0.948. These results were expected as the human perception of a response should be

similar regardless of the gender.
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Figure 6.20: A histogram summarizing the responses for the fifth question of the

questionnaire: “The robot liked it when I threw it.”

6.3.3.3 Statistical Analysis - Response Time Effect

A Kruskal-Wallis test for each item in the questionnaire was conducted to check

for any significant difference between the three groups.

For the first question, the median values for group 1 (4.0), group 2 (4.0), and

group 3 (5.0) were not statistically significantly different, p = 0.827 (Table 6.6).

The median values for the second questions of group 1 (4.0), group 2 (4.5), and

group 3 (4.0) were not statistically significantly different, p = 0.223 (Table 6.7).

As for the third question, the differences between the median values of group 1

(3.5), group 2 (4.0), and group 3 (3.5) were not statistically significant, p = 0.666 (Table

6.8).

The median values for the fourth question of group 1 (1.5), group 2 (1.5), and

group 3 (4.0) had statistically significant differences, p = 0.023 (Table 6.9). The average
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Table 6.6: Kruskal-Wallis test for the first question of the questionnaire for the three

groups

Group N Median Ave Rank Z P-value

1 10 4.00 14.8 -0.31 0.827

2 10 4.00 14.8 -0.31

3 10 5.00 16.9 0.62

Overall 30 15.5

Table 6.7: Kruskal-Wallis test for the second question of the questionnaire for the

three groups

Group N Median Ave Rank Z P-value

1 10 4.00 15.2 -0.13 0.223

2 10 4.50 19.1 1.56

3 10 4.00 12.3 -1.43

Overall 30 15.5

Table 6.8: Kruskal-Wallis test for the third question of the questionnaire for the three

groups

Group N Median Ave Rank Z P-value

1 10 3.50 15.4 -0.02 0.666

2 10 4.00 17.3 0.79

3 10 3.50 13.8 -0.77

Overall 30 15.5
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Table 6.9: Kruskal-Wallis test for the fourth question of the questionnaire for the three

groups

Group N Median Ave Rank Z P-value

1 10 1.50 12.2 -1.47 0.023

2 10 1.50 12.6 -1.28

3 10 4.00 21.8 2.75

Overall 30 15.5

Table 6.10: Kruskal-Wallis test for the fifth question of the questionnaire for the three

groups

Group N Median Ave Rank Z P-value

1 10 2.00 14.3 -0.55 0.415

2 10 2.00 13.8 -0.77

3 10 3.00 18.5 1.32

Overall 30 15.5

rank and median values showed that group 3 was different compared to the other groups.

Group 3 was the one with the longest reaction time (i.e. 1.5 s) and that could explain

the statistical difference.

As for the fifth question, the differences in the median values of group 1 (2.0),

group 2 (2.0), and group 3 (3.0) were not statistically significant, p = 0.415 (Table 6.10).

However, the average rank for group 3 (18.5) is higher than that of group 1 (14.3) and

group 2 (13.8).
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6.3.4 Discussion

The participants displayed different reactions while performing the tasks with

the robotic toys. The first task was to pick up the robot and explore it, and the robot

would respond with sounds implying a joyful reaction. For this task, many showed

curiosity and laughter about the sounds that the robots were emitting. Some of the

children showed surprised expressions and stopped temporarily to explore the robots

then looked at the experimenters. The second task was to shake the robot, and the robot

would respond with sounds implying annoyance. For this task, many were surprised,

stopped shaking the robot, and then placed it back after hearing the robots’ reactions. A

few resumed shaking after stopping temporarily. The last task was to throw the robot at

a specific target, and the robot would emit a sound, which implied pain. Many showed

surprised expressions about the responses while some of them gazed at the experimenter

with astonished looks.

The results of the questionnaire implied that there is an effect for the reaction

timings on the perceived understanding of the robots’ responses. Group 3 (i.e. reaction

time of 1.5 s) scored more incorrect responses across most of the questions as com-

pared to other groups. This was very evident in the responses for the fourth item in the

questionnaire (Fig. 6.19). The delay in producing a reaction to an interaction might

have given the wrong impression about the causation effect, hence, making it difficult

to understand the aim or goal behind a robot’s response. In other words, the longer the

duration to make a reaction, the more likely it will deliver an incorrect message to the

user for the intended interaction. Producing a response within one second from detect-

ing a stimuli should produce more favorable results. The Kruskal-Wallis test results for

the fourth question supports these findings.
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Another dimension that might have influenced the responses is the modality of

the response itself. The sounds for the responses were considered to indicate three

different expressions, namely, joyful surprise, being annoyed, and feeling pain. These

responses were selected by adults to target children as the primary users. Some of the

incorrect responses to the questions could be attributed to a possible confusion about

the intended message behind each sound (i.e. response). This implies the need for

more commonly-accepted responses that could be easily understood regardless of age,

culture, or geographical region.

The experiments in this study were limited to three different responses corre-

sponding to three different interactions. However, more responses could exist to imply

different emotions and reactions. Sound was the only modality that was considered to

convey the robot’s responses. Different modalities could be considered and integrated

to provide clearer responses. Children were the only participants in our experiments

because of the targeted end-users of this study. However, adults participants could be

considered to obtain more comprehensive and more in-depth feedback about the exper-

iments. Finally, the recognition model could be improved to increase its capabilities in

recognizing more behaviors accurately and quickly.

6.3.5 Conclusion

An approach to detect and respond to three types of manipulation of robotic

toys was presented. The interactions with the toys considered were being picked up,

being shaken, and being thrown. Furthermore, the study evaluated the perception of

the reaction provided at different timing through the emission of sounds. The results

showed that the reaction time affect the understanding of a robot’s response to an inter-
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action. Ideally, the response to an action for robotic toys should occur not more than

one second after the detection of an aggressive behavior or an unwanted interaction.

Furthermore, sound as a modality to a robot’s response provided a sufficient message

to be understood by the majority of the participants.

6.4 Chapter Summary

This chapter presented the finding of two studies aimed at making a robot more

adaptive once an unwanted interaction is detected. The first study showed the possi-

bility of recognizing unwanted physical interactions based on the data received from

an embedded tri-axial accelerometer. The second study investigated the influence of

reaction time in the emotional response of a robot on the perceived message during

interactions. This study showed the importance of producing a timely response to an

unwanted interaction to deliver the right message to the user.
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7 Conclusions and Recommendations

7.1 Conclusions

Social robots have gained a lot of attention in health care generally, and specif-

ically in therapy, due to the increased number of studies reporting the efficacy of using

such technology. Among children with ASD, social robots have been reported to effec-

tively help in the elicitation of some positive behaviors. This has been attributed to the

fact that social robots are simpler than humans, and could exhibit more coherent behav-

iors. The advancement in technology has enabled robots to be more autonomous and

intelligent. In particular, it is possible to develop smaller social robots exhibiting a high

level of interaction with many capabilities. While larger social robots can be used in

therapeutic settings, especially for training, the smaller form of social robots are more

affordable and suitable options to be considered at home for continuous support. The

introduction of a new device, such as a social robot, that is meant to evoke behaviors

to the surrounding of such children could pose as new source of harm to themselves or

others, especially during the manifestation of challenging behaviors.

Children on the spectrum lack the ability to properly communicate their needs

and the case of harm due to impacts might be problematic, especially during therapy

sessions. Generalization of skills is usually done with other children. Hence, being sub-

jected to pain due to impacts might affect any positive outcomes, and potentially cause

more challenging behaviors. With children generally, and those with ASD especially,

any source of potential harm, pain or even annoyance must be kept to a minimum or

eliminated altogether.

As for the parametric studies conducted in Chapter 5, some of the control fac-
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tors investigated provided a reduction in the overall head’s acceleration. For example,

reducing the mass of a thrown object appear to reduce the head acceleration consider-

ably. This was more evident at higher impact speed. This finding combined with the

application of soft materials could provide a better overall reduction of the potential

harm.

Optimization of a robot’s design can benefit from the techniques provided by

Taguchi methods, as it gives an efficient and convenient way to assess and optimize

the safe design of small social robots. Moreover, such benefits are magnified for two

reasons. On one hand, the safety requirements of the target users, such as children with

special needs who may have a tendency for meltdowns, are addressed. On the other

hand, the manufacturers have done their due diligence in optimizing their design for

minimizing the chances of harm to the users and avoid lawsuits or product recall later

on.

Many children show aggression toward others and animals [192], [193]. Social

companion robots could be used to mitigate aggression. Being able to detect unwanted

interactions while providing timely reactions, will enable the robot to train the chil-

dren about the culture of safety. By selecting an appropriate response to their negative

action, the robot could be used to display that the current behavior is undesirable and

unacceptable.

Companion robots would benefit from having the capability of detecting and

reacting to aggressive interactions. This layer to detect undesired interactions would

operate independently from the robot’s main objectives. Having such capabilities to

detect undesired behaviors could be used to make children experiment with the conse-

quences of their actions on others. For example, a robot displaying sad emotion after
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being hit can influence a child to believe that this behavior is not appropriate in social

interactions. Furthermore, this also has the potential to be extended to target aggression

among neurotypical and neurodivergent children.

The need for a quick response implies the need for fast recognition algorithms

that must provide a quick prediction about an interaction. The modality of a response

should be clear enough to provide the right message intended from an interaction. Mul-

tiple modalities could be fused together to provide a stronger response and clearer mes-

sage to the user. Hence, it would reduce the likelihood of a user’s misinterpreting the

intended message behind a response.

7.2 Recommendations

More research needs to be done to investigate the potential for harm due to

different robotic shapes, and to identify means to mitigate it through both hardware

and software approaches. For small social robots, regulations from standards that are

concerned with the safety of toys can readily be adopted. For example, ISO 8124-

1:2014 [157], which is related to mechanical and physical properties safety aspects of

toys. Another direction for safer social robots is the adoption of some of the techniques

and advances in soft robotics. New social robotic safety standards targeting and tailored

for special end-users, such as children with ASD, must be established to ensure their

safety and to take into consideration their needs.

The designers of small social robots or robotic toys for children with special

needs, or even for neuro-typical children, should try to minimize the mass of their prod-

ucts as much as possible while adding an external layer of a suitable soft material.

Additionally, they need to investigate different soft materials to find suitable materials
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that provide robustness and ease of application to their products while improving the

safety aspects. In addition to the optimization efforts at the design level, the manufac-

turers should include special warning labels for their products that are meant to be used

by users with special needs, especially those that exhibit challenging behaviors.

The studies presented in Chapter 6 open the possibilities for future work on

continuous online recognition that is embedded within a robotic toy with appropriate

responses. These findings provide a contribution toward improved therapy sessions by

anticipating some unwanted interactions and then preventing the occurrence or pro-

gression of challenging behaviors by the intervention of a human therapist or the social

robot itself. Future studies can investigate sounds along with other modalities in the

emotional response of a robot. Moreover, further improvements on the recognition al-

gorithm should be considered to ensure smoother interactions, which should reach a

much higher performance to become acceptable as a product in the mass market.
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Appendix B: Impact Test Rig

B.1 Hardware in context

Anthropomorphic test dummies (ATDs) are used to evaluate the potential harm

to humans through the simulation of risky scenarios, for example, using ATD in car

crash tests. Such dummies are equipped with sensors to measure different dynamics

that occur due to impacts, such as accelerations and forces. Severity indices are used

to assess the potential for an injury based on the measured dynamics. For example, the

acceleration of the head due to impact is used to compute the Head Injury Criterion

(HIC) numerical value, which in turn is used to predict the potential for harm based on

the Abbreviated Injury Scale (AIS) [77].

The application of test dummies has been also considered in other areas, such

as in sports. For the assessment of protective gears in sports, ATDs based setups were

used [70][69]. The evaluation was based on simulating impacts that might occur in

actual scenarios. In a study evaluating concussion due to taekwondo kicks, a dummy

head was used to measure the dynamics of the head due to impacts [72]. In that study,

a 50th percentile ATD head (i.e. Hybrid II) with a mass of 5.1 kg attached to a neck

was used. The internal structure of the head was made of aluminum covered with an

artificial skin layer while the neck was made of rubber. The head setup was fitted

with a taekwondo head guard that was then mounted on an aluminum support frame.

A tri-axial accelerometer was embedded at the center of the head to obtain the linear

acceleration of the head. The readings of the accelerometer was acquired through a

three-channel sensor signal conditioner connected to a computer. A motion analysis

system consisting of eight cameras was used to monitor the head’s movement and to
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measure the peak velocity of the kicks through tracking reflective markers placed on

the test head and the foot pads. The participants were requested to perform different

kicks on the dummy head while wearing the foot pads.

Furthermore, such setups were also considered to assess harm in robotics by

considering different scenarios where a robot is impacting a person at different body

parts [73][74]. Alternative approaches, such as low-cost sensors and body parts models,

were also considered to conduct impact experiments [75][122]. One study considered a

low-cost developed head model to conduct impact experiments to characterize a safety

index in robotics [76]. In that study, the impacts were performed by robotic arm (i.e.

Scara Robot-Adept Cobra 600) at different impact speed conditions (i.e. 0.4 - 1.9 m/s).

The developed head model was based on a leather ball filled with sand to reach a weight

of 3 kg. A low-cost tri-axial accelerometer was placed at the head to measure the linear

acceleration of the head. Furthermore, that study has considered a low-cost sensor to

measure the impact force placed at the point of impact.

In this work, we present a low-cost method for the construction of a dummy

head experimental setup to conduct impact experiments at low velocities. The impact

rig is focused on investigating impacts due to thrown objects. The developed rig does

not require expensive hardware (e.g. expensive camera system) and can be constructed

using typical available facilities (e.g. 3D printer). Some suggested equipment can be

substituted by cheaper alternatives.

B.2 Hardware description

The experimental setup is a device to examine the acceleration changes of the

head due to impacts. It reports the head acceleration in the X, Y, and Z directions.
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The setup is suitable for the examination of low velocity impacts. The setup would

be beneficial for researchers who have limited access to more expensive test dummies.

The analysis of the acceleration data can report three severity indices. Modifications

are possible to perform different forms of impact tests.

The setup offers the following:

• Reporting of the head accelerations (i.e. in X, Y, and Z axes) and the resultant

acceleration

• Post processing of the raw data provides the analysis for three severity indices

• Adjustable to do different tests at different impact velocities

• The dummy head mass can be modified to meet different age groups

• The rig is adjustable to perform different tests (e.g. different impact areas)

• The artificial skin of the dummy head can be used as an indicator for tissue in-

juries

B.3 Design files

This section contains a summary to the design files that have been used to build

the impact rig. All files can be found in their respective links in the online repository.

B.4 Bill of materials

This section contains the complete bill of materials that were used to construct

the impact rig.
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Table B.1: Design Files Summary

Design
file
name

File
type

Description Open
source
license

Location
of the
file

human-
head-
part1

STL
file

The modified front
half of the original
head design (Fig.
B.1b)

CC BY
4.0

Link 1

human-
head-
part2

STL
file

The modified back
half of the original
head design (Fig.
B.1c)

CC BY
4.0

Link 2

Exp_bench PDF A reference drawing
of the experimental
bench that was used
showing the dimen-
sions.

CC BY
4.0

Link 3

labview_
script

National
instru-
ments
VI file

A script that reads the
accelerometer that is
connected to the data
acquisition card and
stores the readings.

CC BY
4.0

Link 4

Matlab_
script_multi

MATLAB
code

A code to calculate
the three severity in-
dices, namely, the
HIC, 3 ms, and peak
acceleration.

CC BY
4.0

Link 5
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Table B.2: Bill of Materials

Designator Component Units Unit
Cost
(US$)

Total
cost(US$)

Source
of ma-
terials

Material
type

ACC ADXL 377 1 $
25.95

$ 25.95 SparkFun Electronics

DAQ PCI-6031E 1 $
2,895.00

$
2,895.00

National
Instru-
ment

Electronics

Camera FDR-
X1000V

1 $
500.00

$
500.00

Sony Electronics

Tripod Amazon Ba-
sics 50-Inch
Lightweight
Tripod

1 $
15.00

$ 15.00 Amazon Aluminum

Wires Ribbon Ca-
ble -6 wires
15ft

2 $
2.95

$ 5.90 SparkFun Cables

3D
printing
material

PLA Mate-
rial Large
Spool

2 $ 48 $ 96 MakerBot
Indus-
tries

Polylactic
acid

Soft ma-
terial

Ecoflex 00-
30 (2 lbs)

1 $
32.21

$ 64.42 Smooth-
On

Silicone
rubber

Mass Modeling
clay

2 ∼$
10

∼$ 20 Locally Polymer
clay

Frame Custom-
made bench

1 ∼$
150

∼$ 150 Locally

Rope Coated ropes 1 $ 5 $ 5 Locally Nylon

Velcro Velcro Elas-
tic Straps
(36" x 1")

2 ∼$ 7 ∼$ 14 Locally Nylon,
Polyester

PVC Plastic Sad-
dle Elbow
(1")

2 $ 2 $ 4 Locally Plastic
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Figure B.1: The 3D head design that was used to develop the dummy head. a)

Complete view of the original design (Source: Link). b) Part 1 view (i.e. front). c) Part

2 view (i.e. back).

B.5 Build instructions

B.5.1 Experimental setup

The two files of the head design (i.e. human-head-part1 and human-head-part2)

were developed by a 3D printer (Replicator 5th Generation, MakerBot Industries). The

settings of the 3D printer were left at default. The infill option was set at 10%. If

more robustness or higher mass is required, then this option should be set at higher per-

centages. However, this will increase the time required to print the parts considerably.

Soft materials can be added to make the skin more lifelike [194][195][196][197][198].

Hence, a 2 mm layer of a soft material made of silicone was added to the head [137].

The soft material (Ecoflex, Smooth-On, USA) was prepared by mixing equal volume

(i.e. 1A:1B) of the two material parts for around 4 mins. The soft material was then
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Figure B.2: The 3D printed head parts after applying the soft material.

applied to both parts of the head then left to cure for 4 hours at room temperature (Fig.

B.2). Other soft materials can also be considered (e.g. PDMS [199]). Furthermore,

embedding other sensors (e.g. pressure or force [200][98][201]) inside the soft material

is also a viable option. This will allow the detection of other modalities.

As part of our research toward safer social robots for children with autism, this

experimental setup was developed to investigate safety in social robots by considering a

scenario where a small robot is thrown to the child′s head[202]. Hence, a head mass of

3 kg was selected to make the developed dummy head comparable to that of children’s

dummy heads [136]. Both head parts were augmented with clay to reach this mass (Fig.

B.3). The masses of the parts were measured using a weight scale (Fig. B.4). If the

goal is to study an adult’s head, then a higher dummy head mass should be considered
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Figure B.3: The 3D printed head parts after adding the clay to reach the desirable

mass.

(e.g. 4.5 kg).

A tri-axial accelerometer (ADXL 377, SparkFun Electronics, USA) was embed-

ded inside the clay at the center of the front part of the dummy head (Fig. B.5). This

accelerometer will be used to measure the linear acceleration of the dummy head. The

ribbon cable of the accelerometer was routed out of the head through the opening at the

bottom (Fig. B.6). Pressure was applied to merge the two parts of the head together.

The plastic elbows were attached to the head with the Velcro straps (Fig. B.6). The

straps should provide more pressure to keep the head intact. Next, the dummy head was

placed inside the experimental frame with the nylon coated ropes. The ropes should be
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Figure B.4: The measured mass of the dummy head parts.

arranged so that the head is at the center of the experimental setup.

B.5.2 Sensor calibration

The accelerometer was interfaced to a computer through a data acquisition card

(DAQ). The ribbon cable of the accelerometer was connected to the appropriate pins of

the DAQ (Fig. B.7). These pins were matched with the configuration of the LabView

script (Fig. (B.8)). Different configurations and pins can be considered depending on

the DAQ model being used. A microcontroller-based DAQ that is capable of acquiring

the data at a high rate can also be considered [199]. The LabView script read the volt-

ages of the DAQ pins that were connected to the X, Y, and Z pins of the accelerometer

at a sampling rate of 20 kHz and then filtered according to Channel Frequency Class 60

[139]. The readings were then converted to acceleration values (g) for each axis based

on the following relation:
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Figure B.5: The accelerometer placed inside the dummy head.

Figure B.6: The dummy head after assembling it with the Velcro straps.
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Aaxi s =
|Vcur r ent −Vzer o |
Sensi t i vi t yaxi s

(B.1)

where Vcur r ent is the current reading of the voltage of an axis (e.g. X, Y, and Z),

Vzer o is the voltage value of that axis at 0 g, and the sensitivity of an axis is the amount

of voltage change that corresponds to gravitational change of one unit (g). The typical

sensitivity of the accelerometer is around 6.5 mV /g based on the datasheet. More

accurate sensitivity can be obtained experimentally by finding the voltage difference at

1 g and 0 g for each axis. The 0 g voltage was found by setting the axis studied parallel

to ground surface while 1 g voltage by setting the axis perpendicular to the ground

surface, for example, making the top surface of the accelerometer facing upward will

give 1 g at the z axis while rotating it 90◦ will give 0 g. The sensitivity for each axis

can be obtained accordingly. The sensitivity and Vzer o values for each axis should be

updated in the LabView script (i.e. labview_script.ni) by updating the formula vi (Fig.

B.9).

The magnitude of the resultant acceleration is based on the square root of the

sum of the squares of the individual accelerations. The relation is represented as fol-

lows:

|A| =
√

A2
x + A2

y + A2
z (B.2)

where Ax is the magnitude of acceleration in the X direction, Ay is the magnitude

of acceleration in the Y direction, and Az is the magnitude of acceleration in the Z

direction.

182



Figure B.7: The mapping of the accelerometer pins to the data acquisition card (DAQ).

The analog output pin 0 of the DAQ was used to provide 3.3 V to power up the

accelerometer. Alternatively, an external power supply can be used.

B.6 Operation instructions

B.6.1 Preparation of the test rig

There are some steps that need to done before conducting any impact experi-

ment. The steps are as follows:

• Check the connections of the DAQ and the accelerometer and their functional-

ity. This can be achieved by running the LabView script and performing a test

experiment (e.g. light nudge to the head) and checking the response.

• Ensure that there is a fixed reference (e.g. ruler) with a known dimension that is

placed along the direction of impacts and perpendicular to the head (Fig. B.10).

An ideal location would be under the head. This reference will be used to scale

the dimensions in the video analysis software to determine the impact velocity.
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Figure B.8: The analog input pins configuration of the data acquisition card (DAQ)

within the LabView script. Reading the analog input pin 25 is optional and it was used

for testing purposes.
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Figure B.9: Updating the formula vi for the X-axis.

• Set up the camera on the tripod in such way so that it faces the experimental setup

from the side. The center view of the camera should be as centered and close to

the head (Fig. B.10). The reference rod and the impactor should be visible.

B.6.2 Conducting an experiment

Two experimenters are recommended to conduct an experiment. One is in

charge of performing the impact tests while the other is in charge of recording the

videos. The operations involved are as follows:

1. Load the LabView script (i.e. labview_script.ni) and configure the Write to Mea-

surement File to specify the folder and the appropriate file name (Fig. B.11).

2. Run the script and click Enable to write to start acquiring the acceleration data.

Concurrently, start the video recording.

3. While conducting an experiment, the experimenter, who is releasing the impactor,
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Figure B.10: A video of an impact test being analyzed for the velocity of impact in the

video analysis software.

should be aligned to the center of the setup and targeting the front side of the

dummy head.

4. After conducting an experiment, the Enable to write should be clicked again to

stop writing to the file. The script and the video recording should be stopped.

5. Repeat the same steps for multiple experiments.

The LabView script saves the data in Technical Data Management Streaming

(TDMS) file format. Hence, an Add-In package need to be installed to be able to read

the file in Microsoft Excel [203].
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Figure B.11: Specifying a folder and file name in the LabView script to store the

acquired data.
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B.6.3 Video analysis

The video recordings of experiments were analyzed to obtain the impact veloc-

ities. An open-source video analysis software (Version 5.0.7, Douglas Brown, Open

Source Physics) was used1. The steps involved in analyzing a video are as follows:

1. Run the software and load the video file. Move the start frame arrow to the start of

the experiment and the end frame arrow after the impactor hits the dummy head.

It is best to mark the start of an experiment after the impactor passes through the

frame.

2. Add the Calibration Stick and mark both ends to the reference measurement (Fig.

B.10).

3. Create Point Mass by clicking Create in the menu bar. This will be used to track

the object in the next step.

4. Click Auto Tracker icon to open the menu for autotracking. Press Shift + Ctrl and

click on a feature on the impactor to select a feature to track.

5. After selecting a feature to track on the current frame, press Search to allow the

software to automatically track the feature in the next frames of the video. Manual

intervention might be needed to correctly track the feature in the next frame.

6. To view the velocity plot, change the Y-axis on the plot to v: velocity magnitude.

1Visit the software website for more details about the options and settings of the software [163].
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B.6.4 Data analysis

The data analysis involves calculating the three severity indices from the accel-

eration data. A MATLAB script (i.e. Matlab_script_multi.m) was used to find the Head

Acceleration Criterion (HIC), 3 ms criterion, and peak head acceleration. It can process

multiple files and store the results in a spreadsheet file. The steps involved to analyze

the data are as follows:

1. An excel file (i.e. xlsx) should be created for each experiment that contains the

time and the resultant acceleration columns of the TDMS files from the experi-

ments.

2. Each excel file should be named trial_%d.xlsx where %d is the experiment num-

ber (e.g. 1, 2, etc) placed with the script in the same folder.

3. The script is set to read 9 files. However, line 5 in the MATLAB script can be

changed to match the number of files that are needed to be analyzed.

4. After running the script, the code creates a file processed_new.xlsx that contains

the results of the analysis (Fig. B.12).

B.6.5 Limitations

This test rig is a suitable platform to evaluate the level of harm due to impacts,

especially when considered for small objects (i.e. less than 3 kg) thrown at low veloc-

ities (i.e. less than 10 m/s). Furthermore, it can be used to investigate a relationship

between the severity indices employed in the setup and some of the parameters (e.g.

mass) of impactors. The artificial skin could also be used as an indicator for tissue
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Figure B.12: A sample of a generated analysis for 9 experiments.

injuries. However, re-applying the soft material might be needed in case of a tear or

damage. Heavy impactors with sharp features should be avoided as it might penetrate

the 3D printed structure of the dummy head.
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