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ABSTRACT:  
 
The paper proposes to use voxel models of building interiors to perform indoor navigation. The algorithms can be purely geometrical, 
not relying on semantic information about different building elements, such as floors, walls, stairways etc. Therefore, it is possible to 
use voxel models from different data sources, in addition to vector-to-raster conversions. The paper demonstrates this on the basis of 
tree different input types: hand measurements, point clouds and images of floorplans. On the basis of these models, the paper shows 
how to determine the navigable space in a voxel model for a pedestrian actor, and how to compute paths from arbitrary sources to 
specified destinations. 
 
 

1. INTRODUCTION 

Indoor navigation is attracting the attention of many researchers 
in the last decade (Khoshelham and Zlatanova 2016). Indoor 
environments are usually much more complex and difficult for 
orientation compare to outdoor. Creating indoor models poses 
many challenges for indoor navigation (Zlatanova et al 2013).  In 
most of the cases, there are no clear paths and directions for 
walking, as humans can move through the entire empty space. 
Commonly a predefined network model is created to be able to 
perform shortest path computations. However, such networks are 
too abstract and do not consider the entire space, where people 
can be located or can move through.  
 
Another complication is brought by the dimension. Indoor 
environments are three-dimensional and, in many cases, the 
commonly used 2D dimensional floor plans fail to represent 
accurately the available space for navigation. Shapes and sizes of 
stairs are not modelled and are not included in the navigation 
models. 
 
Various approaches for indoor navigation have been presented in 
the literature exploring 3D vector-based representations, as well 
as voxel representations. Several frameworks have been 
investigated that provide mechanisms for space subdivision of 
3D vector models (Diakité and Zlatanova, 2018, Sithole and 
Zlatanova 2016), but the computational complexity for some 
types of representation is too high.  
 
Voxel-based methods gain an increased interest due to their 
flexibility, simplicity and efficiency. In several papers we have 
investigated the suitability of voxel models for navigation (Lim 
et al 2018, Xiong et al 2016) 
 
In this paper we present a voxel-based approach that allows to 
construct quickly a 3D model from point clouds, identify the 
navigable spaces and compute a path for navigation from any 
possible accessible point.  
 
The idea to navigate actors in two- or three-dimensional gridded 
spaces was already being studied in robotics literature during the 

nineties of the last century (Huang and Ajuha, 1992). Some 
instances of this research were based on distance transforms, 
which we use as well (Bandi and Thalmann, 1998). At that time, 
efficiency, both in time and in space, was much more of an issue 
than it is nowadays, which led the research into various 
complications (Kitamura et al 1995, Vörös 2001).  
 
Especially in GIS-environments the preferences went into the 
direction of vector-based modelling. We want to demonstrate in 
this paper that grid-based solutions nowadays are even more than 
before a feasible alternative, offering great flexibility with 
respect to the data sources (manual entry, point clouds or building 
floor plans) from which the 3D models originate. Furthermore, 
we used the results of (Koopman, 2016) to parameterize the sizes 
(heights and widths) of the actors – in the examples provided the 
values are 1.8m and 0.4 m, respectively. Finally, we have a novel 
methodology to have pedestrian actors make use of stairways in 
the building model, which take part in the routing process on the 
basis of their geometry only – in fact, our entire method is purely 
geometrical and no semantic information is required. 
 
 

2. VOXELS MODELS 

A voxel model of, for example, a building exists in a 3-
dimensional, regular, rectangular array of cells (the voxels), 
which spans a ‘block’ of space that fully contains the building. 
All voxels have the same size, and each voxel can be addressed 
by an index, specifying its position in the block of space under 
consideration. Furthermore, each voxel has a value. The block of 
space is entirely filled with voxels, and the values are used to 
distinguish ‘air’ from ‘building’ voxels – in the simplest case.  
 
This is the conceptual view at voxels. Physically, we can 
distinguish between dense and sparse representations. In the 
dense case only the voxel values of all the voxels are represented 
in a known order. Then the position in the block (the index) is 
uniquely determined by the position in the data sequence and 
does not have to be explicitly stored. In the sparse case, there is 
a default value (usually ‘air’). Only the other (non-air) voxels are 
stored, together with their indices. Retrieving a voxel at a certain 
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position involves looking it up by the index in the data structure 
or declaring it ‘air’ if it is not found. 
  
The idea of voxel analysis is that a voxel dataset can serve as 
input to an operation, which produces a modified (or an entirely 
new) dataset as its output. In this study we present operations to 
implement indoor navigation in voxel datasets that model 
building interiors. Three cases are shown: First we demonstrate 
the detailed analysis steps with a small apartment model that was 
made by hand. Then we repeat the analysis in another model of 
the same apartment, generated from a (simulated) laser point 
cloud. Lastly, we show a (larger) office building that was 
modelled based on floor plans. 
 
 
 

3. METHODOLOGY 

We have a manually created voxel model of an apartment. Empty 
(transparent) space has voxel value 0, ‘hard’ objects, such as 
floors, walls, ceilings and furniture have value 1 (but there is 
hardly any furniture). The model has been entirely created by 
hand, by subdividing the hard elements into 3d rectangular boxes 
and denoting their places and sizes in a script for a little program 
that inserts the blocks into a 3dimensional matrix, combining 
them using logical operators OR and SUBRACT (for the 
windows). 
 

 
 

Fig. 1: Apartment voxel model after identifying  
navigable floor space. 

 
The apartment has two floors. The entrance is on the ground 
floor, and stairs lead to the second floor, which has a combined 
living/kitchen, two bedrooms, a bathroom and a balcony. The 
voxel size in this example is 5cm and the 3-dimensional array has 
an extent of 208 x 240 x 98 voxels (see Fig. 1, while ignoring the 
green part for the time being). 
  
In a voxel model we can do indoor navigation, consisting of 
several steps. The first step computes the navigable floor space: 
a subset of the ‘hard’ voxels that satisfies the following 
conditions. 
 

• there is at least 1.8m of air above a navigable voxel 
• there is 20 cm of air around the vertical line above a 

navigable voxel 
• all navigable voxels are connected in 2D 

• height jumps are max. 25 cm (allowing to use the 
stairs) 

 
The first two of those conditions can be checked by 3D spatial 
filtering. This operation is an extension of the well-known filters 
for convolution and morphology for analysis of 2D images and 
other raster data sets – the 3D extension can meanwhile be 
considered known as well. In the current case we would have a 
3D kernel (or structuring element) depicting a 1.55 m (31 voxel) 
high cylinder with a 45cm (9 voxels) diameter, standing on a stick 
of 25cm (5 voxels) high, with the origin of the kernel at the 
bottom end of the stick. We perform a normal convolution (i.e. 
count the 1-voxels that are covered by the kernel) and are only 
interested in 1-voxels of the model where the convolution result 
is equal to 1 – meaning that all the other covered voxels are 0. 
The trick with the stick is to allow for the height jumps of max 
25 cm (the 4th condition). 
 
The second step is to perform a dilation (the same spatial filtering 
algorithm) of the above-selected voxels by 6 voxels up. We will 
get a 6 voxels thick layer on top of all horizontal surfaces, in such 
a way that the top of the layer on one step at a stairway will be 
adjacent to the bottom of the layer on the next step. Under the 
assumption that any place in a building can be reached from any 
other place by moving through the navigable space, the dilation 
layer above this navigable space will be one single, connected 
voxel volume. This volume may be separated from other dilation 
layer pieces, for example lying on chairs, tables, cabinets and 
window sills. A 3D connected-component algorithm can assign 
unique numbers to all the disconnected pieces: every voxel in 
each piece will get the number of that piece as the voxel value. 
By making a histogram of those numbers, the largest piece of 
dilation layer can be identified, and the hard voxels underneath 
form the navigable space of the building. These are the green 
voxels in Fig. 1. 
 
During the third step in the navigation process the identify one or 
more voxels in the navigable space the destination in a routing 
exercise. For example, one destination voxel can be placed at 
each exit of the building. 
 

 
Fig 2. Distance transform of all navigable voxels to an  

exit voxel at the right side on the ground floor. 
 
Next, we compute the distance of all other voxels in the 
navigable space to the nearest destination voxel (the nearest exit). 
This is done by a distance transform (DT), an image operation 
devised by Borgefors in the late seventies. The original DT 
computes the distance from each background (= source) pixel in 
a binary image to the nearest object (= destination) pixel, in a 
sequence of two (recursive) ‘filters’. This can be expanded to a 
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three-valued case, which has ‘obstacle’ pixels in addition to 
source and destination pixels, which are excluded from the 
operation. This makes the process iterative: it continues until it 
stabilizes. Furthermore, the extension from 2D to 3D has been 
made long ago. In our case, a destination voxel is placed at the 
exit on the ground floor, the blue area in Fig. 3. The navigable-
space voxels and the dilation layer are made ‘source voxels’, and 
all other voxels are marked ‘obstacle’. The resulting distances 
(for the navigable space voxels) are shown colour coded in Fig. 
2. DT gives an approximation of Euclidian distances with a 
maximum error of a few percent and is very efficient 
computationally.  
 
In the final step of the navigation process one or more source 
voxels are chosen. From those, a path to the (nearest) destination 
can be found by ‘swimming’ downstream through the distance 
field (Fig. 3). 
 
  

  
Fig. 3 : Paths to the exit from a number of randomly 

selected source points 
 
 

 
 

4. FLEXIBILITY, FURTHER EXPERIMENTS 

A preliminary conclusion from the above result might be that the 
operations so far are purely geometrical. No semantic 
information concerning floors, walls, stairs, etc. was required to 
establish the navigable space and test for its requirements, nor to 
perform the rest of the computations. The good news of this is, 
that it makes the methodology quite independent of its data 
sources. We will show two more case studies to illustrate this.  
 
 
Voxel Model Reconstruction from a point cloud 
 
The first of those concerns the same apartment as above, but now 
using a model that is reconstructed from a point cloud – albeit 
one that was not obtained by laser scanning.  
 
Using the voxel model, we simulate laser scans (range images 
and point clouds), recorded at different scanner positions. From 
a defined position, the (virtual) scanner emits laser beams 
into many discrete (theta, phi)-directions.  
 
 
 

 
Fig. 3 Two sample range images 

 
We compute for each beam which voxels (relative to the scanner 
position) it eventually traverses. The nearest one of those with 
value 1 defines the distance measurement at that direction, which 
is stored at that (theta, phi) position in the range image. Beams 
that are not hitting any 1-voxel disappear into infinity and remain 
undefined in the range image; they will generate no points in the 
point cloud. 

 
 

   
   Fig. 4. Left: point cloud of a single scan; right: point clouds of 

seven scans combined 
 
 
On the fly, we propose a method to create a voxel model from a 
set of range images made by (simulated) laser scanning, if the 
orientation parameters are known - in our simulated scans they 
are. Given a scanner position, plus a direction and a distance of 
one beam, exactly one voxel will become hard in the generated 
voxel space. Furthermore, all voxels on the line between the 
scanner position and that hard voxel are apparently air (or 
perhaps a window) and will be marked transparent; undefined 
range-image elements only generate transparent voxels, without 
a hard voxel at the end of the beam. Repeating this process for 
all laser beams of all the range images, starting off with an empty 
space where all voxels are unknown, we will end up with three 
classes of voxels: unknown, hard, and transparent. When 
processing all the beams of a set of scans, very many voxels will 
be assigned a value (transparent or hard) several times. In those 
cases, hard gets the priority. 
 
 

  
Fig. 5. Reconstructed voxel model with three classes. Left: 

hard, centre: transparent, right: hard + unknown 
 
After this, the transparent space is considered navigable 
(preventing routes through windows remains the operator’s 
responsibility: close curtains to avoid confusion). This as 
opposed to more traditional approaches, where the point cloud 
only defines the hard voxels, while it remains uncertain whether 
the remaining space is either completely transparent or perhaps 
partially occluded or otherwise not scanned. It may contain other 
hard objects. In the presented method, the union of the hard and 
the (remaining) unknown voxels bounds the navigation space and 
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can be used to evaluate navigation constraints (overhead space, 
passage width, height jumps). 
 
We perform the same navigation operation as in section 3 in the 
reconstructed model and compare the results. 
 The above workflow makes it easy to design and evaluate 
different scanning strategies and station setups. The developed 
system seems helpful if one intends to scan a building where a 
(perhaps outdated) BIM model is already available. (BIM-to-
voxel conversion is on its way.) 
 

 
 

    
Fig. 6.  Navigable floorspace (left) and distances to exit point 

(right) in voxel model reconstructed from point clouds 
 
The more important result, however, is the reconstruction using 
three classes. In general, with “better” scanning (more scans, 
better coverage of the scene) one receives more hard voxels, 
which in a traditional approach would lead to a reduction of the 
navigable space: the number of obtained possible routes goes 
down, but their reliability (the likelihood that a route is 
traversable in reality) increases. In our three-class approach, 
“better” scanning from more positions increases the number of 
hard, but also of transparent voxels, and thereby the ‘amount’ of 
navigable space. Therefore, the number of possible routes goes 
up as well. Meanwhile, the reliability of the obtained routes was 
already high from the beginning. We think this is the preferred 
methodology. 
 
And the even more important result in the current context is that 
good navigation can be performed based on a point cloud, after 
transferring it into the voxel domain. The main reason for this is 
the purely geometric nature of the methodology, requiring no 
recognitions of semantical classes or objects. If the voxel are 
more or less in the right positions, the results will be decent. 
 
Arboretum Professional Centre, reconstruction from 
floorplans 
 
As a last case study, we present a somewhat larger office 
building, reconstructed from floorplans. The floorplans were sort 
of randomly selected from Internet, in order to show we could 
use ‘any’ floorplan to do the analysis. They concern an office 
building in Seattle, WA, USA, called the Arboretum Professional 
Centre.  
 
Floorplans of the three floors were given (ground, second and 
third floor). We set up a small work flow to generate a voxel 
model out of these, requiring a bit of manual editing (Fig. 7). 
First, we remove annotations, ornaments, furniture, doors, 
indications how windows open, etc., and basically only keep the 
walls. The most challenging part is obviously to reconstruct the 
stairs: for this we edit the floorplans again to create an impression 
of the “slab” of concrete underlying each floor as a black 
polygon, on which we indicate the heights of the different steps 
of the stairways in grey scale – all this using the flood-fill 
operation of xpaint in Linux. 

 
The floorplans we found on Internet had room size annotations, 
from which we derived a ‘scale’ of 20 pixels per foot (30.5cm), 
or a resolution of 1.51cm. We reduced the images by a factor 3 
to get a 4.55cm pixel (and voxel) resolution (Fig. 7). 
 

 

 
 

Fig. 7 Original floorplan (top) and edited versions for  
walls (bottom left), slab and stairways (bottom right) 

 
 
 

  
 

   
 

Fig 8: the entire building, including the roof (top left) 
 as well as ‘cut-off’ models at three different heights,  

showing the layouts of the three floors. 
 
 

All the edited floorplans (three sets of walls and four slabs, two 
of which have stairways), are read into a little piece of software 
that reconstructs the voxel model in a straightforward fashion, 
while using some assumptions of various heights and floor 
thicknesses. The hole in the centre of the model concerns the 
elevator, which was left out of all considerations (Fig 8). The 
model occupies a space of 519 x 674 x 196 voxels. 
To start navigation processing, we select a 5-voxel thick layer of 
‘air’ voxels that are located above ‘hard’ voxels and use the 
histogram on the connected component labelling to find the 
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navigable space (Fig. 9) just above the floors and the stairways 
(in this example, we omitted taking the overhead height into 
account, because the model was reconstructed with sufficient 
height all over; the only exception might be under the stairs on 
the ground floor). 
 

 
Fig 9: Navigable space as the largest connected component in 

the air layer just above floors and stairways 
 
To continue the navigation process, we selected one destination 
voxel near the main building entrance, and another using the 
emergency exit at the right front side of the building. The two 
resulting distance fields, denoting the distances from anywhere 
in the building to the nearest destination voxel, are shown in Fig. 
10. Next, specific voxels can be selected as starting points to 
compute routes to the nearest of the exits, by floating downward 
through the distance fields. 
 

 
 

 
 
Fig. 10: Distance fields from anywhere in the navigable space to 
a single building exit (top) or multiple (bottom) exits (in blue). 

 
 

5. CONCLUSION 

We have shown three ways to reconstruct voxel models from 
different data sources: a set of hand measurements of a small 
apartment, a (simulated) set of laser scans of the same apartment, 
and a set of floorplans of a three-story office building. 
 
As a by-product, we have demonstrated laser point cloud 
simulation from voxel models, as well as its inverse: to translate 
a point cloud voxel model with three classes: object, air and 
‘unknown’. The main goal of this study was to illustrate that 
voxel models are a highly suitable basis for performing indoor 
navigation, irrespective of the origin of the models. The reason 
for this is, that the algorithms are purely geometrical, and do not 
rely on the correctness of classification or object recognition.  
 

The steps in the navigation process are 3D versions of well-
known 2D raster operations, such as convolution, morphology, 
distance transform and connected component labelling. In our 
opinion, the paper once more illustrates the general usefulness of 
representing 3D spatial information using voxels. 
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