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a b s t r a c t 

Electronic government services (e-services) involve the delivery of information and services to stakehold- 

ers via the Internet, Internet of Things and other traditional modes. Despite their beneficial values, the 

overall level of usage (take-up) remains relatively low compared to traditional modes. They are also chal- 

lenging to evaluate due to behavioral, economical, political, and technical aspects. The literature lacks a 

methodology framework to guide the government transformation application to improve both internal 

processes of e-services and institutional transformation to advance relationships with stakeholders. This 

paper proposes a cognitive analytics management (CAM) framework to implement such transformations. 

The ambition is to increase users’ take-up rate and satisfaction, and create sustainable shared values 

through provision of improved e-services. The CAM framework uses cognition to understand and frame 

the transformation challenge into analytics terms. Analytics insights for improvements are generated us- 

ing Data Envelopment Analysis (DEA). A classification and regression tree is then applied to DEA results to 

identify characteristics of satisfaction to advance relationships. The importance of senior management is 

highlighted for setting strategic goals and providing various executive supports. The CAM application for 

the transforming Turkish e-services is validated on a large sample data using online survey. The results 

are discussed; the outcomes and impacts are reported in terms of estimated savings of more than fifteen 

billion dollars over a ten-year period and increased usage of improved new e-services. We conclude with 

future research. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

The Internet has been having a transformational effect on

our society, and governments worldwide have been undertaking

various initiatives to improve the efficiency and effectiveness of

internal operations, communications with citizens and transac-

tions with organizations with the aim to encourage the adoption

of electronic government (e-government) initiatives. E-government

involves the delivery online of government information and
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ervices to various stakeholders using the Internet, Internet of

hings, and traditional modes for cutting-cost ideas in govern-

ent, Welsh (2014) . Stakeholders include citizens; non-citizen and

usiness users; government employees; information technology

evelopers; government policy makers; public administrators

nd politicians; and organizations, Rowley (2011) . E-government

ervices (e-services) have been developed to achieve various en-

ironmental, financial, political and social beneficial goals, Chircu

2008) . Despite such benefits, they have several challenges includ-

ng governance; policy development; information management;

echnological change; societal trends; and human factors, Dawes

2009) . E-services require high capital investments and have a

imited take-up rate from users, Lee et al. (2008) . The take-up rate
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s measured by the percentage of individuals aged between 16 and

4 who have used the internet for interacting with public author-

ties, ( UN-Survey, 2012 ). It was reported that the expenditures on

nformation and communication technology were 2.4% and 0.9%

f the Gross Domestic Products of the 27 European Union states

EU27) and Turkey, whereas the take-up rates of e-services were

8% and 9% in EU27 and Turkey, respectively, EU-Archive (2010) .

he low usage limits the impact of e-government services, and

ore research needs to be done if governments are to success-

ully leverage e-government services and realize other benefits,

 UN-Survey, 2012 ). In response, an EU i2010 initiative on inclusive

overnment was launched to achieve a government goal “close the

igital divide - no citizen to be left behind” through the provision

f improved e-services. Given the low take-up rate in Turkey,

he Turkish agency in charge of the provision of e-services, has

imilarly endorsed the EU i2010 inclusive initiative and partici-

ated in this research project as an industrial partner. It should

e noted that the digital divides include access; affordability; age;

ducation; bandwidth; content; gender; mobile coverage; internet

peed; and useful usage among others, ( UN-Survey 2012 ). It was

nvisaged that the inclusive government initiative can be achieved

sing two ways of government transformation , EU-Archive (2010) :

ne transformation of internal processes to improve e-services ; and

nother institutional transformation to improve relationships be-

ween governments and stakeholders for a creation of sustainable

hared values. Shared values are often created using innovative

deas based on the interface of measurement and management to

alance the various tradeoffs when making long and short terms

ransformative decisions, Osman and Anouze (2014a) . Shared value

s measured by the total sum of business value to shareholders

nd the other economic, environmental and social values to other

takeholders, Porter and Kramer (2011) . Luna-Reyes and Gil-Garcia

2014) reported that there was little or no evidence of govern-

ent transformation applications; and such applications may

ccur in the future. Therefore, our research goal is to propose a

ethodology framework to guide the government transformation

pplication to improve e-services, and to improve the relationships

etween governments and its stakeholders, thus leading to an

ncrease in the take-up rate of e-services and the creation of sus-

ainable shared values to all stakeholders. The associated research

uestions include: (a) How can an e-service be improved? Can

e the efficiency and effectiveness of an e-service be measured?

b) How can the relationship between government and citizens

e improved? Can the characteristics of satisfaction of users be

dentified to increase the usage of e-services? (c) What are the es-

imated shared values to the stakeholders of e-services in Turkey?

d) What is the methodology framework to guide the government

ransformation application to achieve the various objectives?”

Reviews of the literature on addressing the low take-up chal-

enge identified the followings. Millard (2008) called for improv-

ng the performance of e-services with a special focus on mea-

uring the efficiency utilization of input resources and the ef-

ectiveness of generated outputs and impacts from users’ per-

pective. Whereas, Lee et al. (2008) and Petter, DeLone, and

cLean (2008) suggested to improve users’ satisfaction with e-

ervices to increase the take-up rate. While reviews on method-

logies for evaluating e-services listed several challenging aspects

ncluding: identification of measures on users’ attitude and be-

avior (knowledge of technology; personal traits and behavioral

hange during online interactions with e-services), Magoutas and

entzas (2010) ; implementation of ICT processes (breaks of In-

ernet connectivity and communication systems, internal disin-

egration and operability, electronic system’s security, and ser-

ice development), ( Weerakkody, Irani, Lee, Osman, & Hindi, 2015;

ildiz, 2007 ); inappropriate usage of methodologies to identify the
est-practice benchmark (lack of tools for improving inefficient e-

ervices), ( Irani et al., 2012; Osman et al., 2014a ); and inabil-

ty to analyze qualitative and quantitative data on environmen-

al, financial, political, and social dimensions, ( Bertot, Jaeger, &

rimes, 2010; Chircu, 2008 ). Further reviews on evaluation method-

logies can be found in Irani et al. (2012), Osman et al. (2014a) ,

eerakkody et al. (2015) and Petter et al. (2008) . These reviews

howed that the majority of methods builds conceptual frame-

orks or apply statistical and descriptive analytics using fragmented

easures for different reasons and from mixed perspectives rather

han using holistic measures to perform prescriptive and predictive

nalytics . 

Although, the existing studies were useful in providing a good

nderstanding of the complexity of evaluating e-services, and in

dentifying factors of satisfaction on users of e-services, they have a

umber of limitations, ( Irani et al., 2012; Weerakkody et al., 2015 ).

irst, subjective data obtained from off-line distributed surveys may

ontain transformation errors and bias. Whereas, experiential data

btained immediately from online surveys after a completion of

nteractions with an e-service can be of better quality, and free

rom subjective bias and errors found in traditional offline surveys

 Chen, 2010 ). Second, statistical methods are useful in establish-

ng relationships among variables and capable of predicting trends,

etter et al. (2008) . Third, they may consider the set of most effi-

ient (and inefficient) e-services as outliers to drop from the sta-

istical analysis for the sake of generating average trends, ( Lee &

im, 2014 ). Hence, they may not be the most appropriate methods

or conducting benchmarking analysis to identify the set of effi-

ient e-services (best practice benchmark) to suggest improvement

argets for the set of inefficient e-services where frontier analytics

re more appropriate for benchmarking the quality of e-services.

ast, they have other limitations on multi-collinearity assumption,

ormality of data, large sample sizes, and internal validity of mea-

ures, Norris and Lloyd (2006) . 

Reviews of the literature on emerging prescriptive methodolo-

ies for evaluating the performance efficiency of operations showed

hat Data Envelopment Analysis (DEA) is one of the most popular

ethods with over 485,0 0 0 hits on Google. DEA was introduced by

harnes, Cooper, and Rhodes (1978) to evaluate the relative perfor-

ance efficiency of operating units (often called Decision Making

nits- DMUs). DEA aggregates multiple-input and multiple-output

easures using data-driven variable weights to generate a rela-

ive efficiency score for each DMU. The efficiency score measures

he quality of transformation of inputs into outputs. DEA can also

dentify the best-practice benchmark (or the set of efficient DMUs)

o suggest improvement targets for the set of inefficient units. In

he literature, there are a large number of relevant DEA applica-

ions. Cook and Zhu (2006) developed a DEA model for treating

ualitative data with ordinal Likert Scale values. They showed that

ualitative rank ordered data can be treated in a conventional DEA

ethodology. De Witte and Geys (2013) argued that the citizens’

oproduction of public services require a careful measurement of

roductive efficiency. They presented a DEA application to measure

he technical efficiency of citizens’ co-production in the delivery of

ibrary services. Osman, Berbary, Sidani, Al-Ayoubi, and Emrouzne-

ad (2011) used DEA to assess the performance efficiency of nurses

t an intensive care unit using Likert scale values. An appraisal and

erformance evaluation system was developed for a better motiva-

ion of nurses. It corrected the evaluation bias which was found

n a traditional approach based on fixed weights to combine mea-

ures. Esmaeili and Horri (2014) used a fuzzy DEA approach to

valuate the satisfaction of customers with online banking services

sing variables with qualitative values. For more details on the

EA theory and applications in the public and private domains;

e refer to the handbook on strategic performance measurement
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and management using DEA in Osman, Anouze and Emrouznejad

(2014); and to the special issue on DEA in the public sector by

Emrouznejad, Banker, Lopes, and de Almeida (2014) . 

Reviews of the literature on predictive methodologies for the

prediction of satisfaction classes and characteristics of satisfied

users showed that Classification and Regression Tree (CART) is one

of the most popular methods, it received more than 291,0 0 0 hits

on Google. CART was first developed by Breiman, Friedman, Ol-

shen, and Stone (1984) to identify classes of common characteris-

tics from the construction process of a tree of predictors. It has at-

tracted a number of applications. Oña, Eboli, and Mazzulla (2014) )

used CART to determine the most important variables which affect

changes in the quality of transit services. However, DEA and CART

methodologies are often combined in a two-stage approach, which

has attracted more than 6070 hits on Google. Applications include

the work of Emrouznejad and Anouze (2010) . They used DEA in the

first stage to generate relative efficiency scores for banks, whereas

CART was used in the second stage to identify the characteris-

tics of profitable customers in the banking sector. Chuang, Chang,

and Lin (2011) used DEA to measure the operational-efficiency and

cost-effectiveness of medical institutions while CART was used in

the second stage to extract rules for a better resource allocation.

De Nicola, Gito, and Mancuso (2012) applied a Bootstrapping ap-

proach to the DEA efficiency scores to increase the confidence

in the quality of DEA results, before conducting CART analysis to

determine the environmental variables which impact the perfor-

mance of the Italian healthcare system. Biener, Eling, and Wirfs

(2016) also used DEA and Bootstrapping models to evaluate the ef-

ficiency production of Swiss insurance companies. Li, Crook, and

Andreeva (2014) used DEA to measure the technical and scale effi-

ciencies of some Chinese companies. The two efficiency measures

were introduced into a logistic regression model to predict the

distress probability of a particular company. Horta and Camanho

(2014) used DEA and CART models to characterize the competi-

tive positing of Portuguese construction companies. They argued

that the DEA–CART approach can bring new insights and identify

classes of competitive companies. They generated DEA efficiency

scores from financial data and identified by CART the non-financial

characteristics of efficient companies. 

The previous studies demonstrated the importance of the Op-

erational Research/Management science (OR/MS) in providing the

academic rigor in modeling and solving problems. However, Busi-

ness Analytics (BA) is a growing faster and becoming more popular

than OR/MS. Searching for BA on Google, it returned 7440,0 0 0 hits,

compared to 2750,0 0 0 hits for OR and 11,50 0,0 0 0 hits for MS. BA

presents a genuine challenge to the OR/MS community, Mortenson,

Doherty, and Robinson (2015) . Rayard, Fildes and Hu (2015) argued

that if OR are to prosper; it must reflect more closely the needs of

organizations and practitioners. Further, Vidgen, Shaw, and Grant

(2017) highlighted that challenges of data and management are of-

ten marginalized and even ignored in the OR context, but they are

essential for organizational managers who seek to become more

data-driven creators of shared values. 

The above review of the literature shows a lack of a method-

ology framework to guide the government transformation appli-

cation to improve both the internal processes of e-services and

the institutional transformation to advance relationships with

stakeholders; to increase the usage of e-services for creating

sustainable shared values to all stakeholders. The innovative

methodology framework brings together the OR/MS academic

rigor and the BA practical relevance in the context of electronic

government. It consists of three interconnected closed-loop strate-

gic processes. First , the cognitive process is to understand the

evaluation (business) challenge and frame it into analytics terms.

The framing process identifies the questions to answer, the goals
o achieve, and the data guideline and processing requirements

o be understood by technical teams. For instance, it provides the

ecessary understanding of the human–machine interactions with

-services and the underlying factors that affect the satisfaction

f users. It designs the data strategy; identifies the performance

ariables, data types, and collection sources; define data gover-

ance and ethics. It further builds the data model to align and

ap the identified variables to the defined organizational goals

nd objectives. Second, the analytics process employs the right mix

f advanced modeling and solving methodologies to address the

omplex challenge in evaluating the performance of e-services. The

nalytics process combines both the Data Envelopment Analysis

DEA) and the classification and regression trees (CART) method-

logies in a two-stage approach. In the first stage, DEA generates

he input-efficiency and output-effective scores for each e-service,

omputes an individual satisfaction score for each user and iden-

ifies the set of efficient of e-services (the set of best-practice

enchmark) to improve inefficient e-services. In the second stage,

he individual DEA scores and the qualitative characteristics of

sers are analyzed using CART to predict the characteristics of sat-

sfaction classes and prescribe corrective policy recommendations

or managerial actions. Last the management process defines the

ngagement and coordination among senior managers, providers

nd research team during the execution of the analytics project.

he senior management further sets the strategic goals and ob-

ectives to be achieved. Senior managers have an important role

n fueling the organization digital culture for the assurance of

 successful implementation of the government transformation

pplication. Those seniors have to be convinced before they can

upport any digital technology innovation to address challenges.

herefore, the management process is needed to provide the

losed-loop linkage between the cognitive and analytics processes. 

In summary, the main contribution of the paper is to propose

 cognitive analytics management (CAM) methodology framework

o guide the transformation of Turkish e-services to achieve the

urkish Government goal in implementing its digital inclusive ini-

iative to close the digital divide through improved performance

-services, increased satisfaction of users, and creation of sustain-

ble shared values to all stakeholders. To the best of our knowl-

dge, the CAM framework is the first OR/MS contribution to the

odeling of human–machine online interactions in the electronic

overnment domain. It builds on the academic OR modeling rigor

nd practical BA relevance to advance electronic government re-

earch. The specific research objectives include: (i) introducing a

ognitive process to understand and frame the human–machine in-

eractions with an e-service in analytics terms; (ii) introducing an-

lytics models and solving processes to evaluate the efficiency of

n e-service and measure the satisfaction of users during their on-

ine human–machine interactions, hence providing a new research

venue to understand the human–machine online interactions in

he electronic government context; (iii) using the DEA methodol-

gy to develop performance indices for the input-efficiency and

utput-effectiveness of e-services, and to measure satisfaction of

sers with e-services; (iv) proposing a tool to identify the set of ef-

cient e-services (best-practice benchmark) to guide the improve-

ent process of the inefficient e-services; determine the variables

nd associated target improvement levels with reference to the

est-practice benchmark; (v) identifying characteristics of the dif-

erent satisfaction classes of users using CART to develop social in-

lusion policies for managerial actions. 

The remaining part of the paper is organized as follows.

ection 2 presents a literature review on the existing method-

logies for the evaluation of e-services. Section 3 introduces each

rocess of the proposed CAM framework. Section 4 presents and

iscusses our experience and results. The final section concludes
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ith managerial implications, practical impacts, and limitations

or further research directions. 

. Review of evaluation studies on e-government services 

Many of the models and frameworks for the evaluation of

-services are adapted from the e-commerce literature; they inves-

igate users’ attitudes and satisfaction with e-government services.

ppendix 1 presents taxonomy of developed methodologies to

valuate e-services with special focus on the measured objec-

ives, evaluation methodologies, analytical models and associated

ariables. The following observations can be made. The various

ethodologies developed over time have one of the following

bjectives to evaluate: (a) system success , (b) service quality , (c)

overnment value , and (d) users’ satisfaction index. First, the e-

ervice success model was built on the well-known information

ystem success model introduced by DeLone and McLean’s (1992) .

t consists of six measurement factors: system quality; information

uality; service quality; system use; user satisfaction and net

enefits. Second, the e-service quality model was built on the

ERVQUAL model introduced by Parasuraman, Zeithaml, and Berry

1998) . It consists of five factors: tangibles; reliability; respon-

iveness; assurance and empathy. Third, the e-service value model

VM) was introduced by Harvard University to assess the value

nd usage of e-government websites and e-government projects,

echling (2002) . The VM model is conceptual and based on five-

alue factors: direct-user value; social/public value; government-

nancial value; government operational/foundational value and

trategic/political value. In the value category, a commissioned-

valuation study for the Australian government was presented

y Alston (2003) . The study provided estimated measures on

-government costs and benefits to both users and government

gencies. The estimated measures were midpoint values of the

nancial benefits and costs over a period of 5 years. The estimates

ere solicited from e-government agencies. The estimated results

rovided useful information, but given the difficulty of getting

hose estimates, it was advised to interpret them with caution.

ourth, the cost-benefit and risk-opportunity analysis (COBRA)

odel was developed to measure the satisfaction values of users

ith e-services based on 8 factors, Osman et al. (2014a) . Last ,

ther satisfaction models were adopted from traditional customer

atisfaction indices in different countries to identify key drivers of

atisfaction with products and services, ( Kim, Im, & Park, 2005 ).

hey were extended to evaluate satisfaction with e-services using

urveys. The importance of using surveys to measure satisfaction of

itizens was discussed in Van Ryzin and Immerwahr (2007) . Fur-

her, Grigoroudis, Litos, Moustakis, Politis, and Tsironis (2008) used

urveys data and multi-criteria regression models to assess users’

erceived web quality and to measure users’ satisfaction with the

ervice provisions by three major cellular phone companies in

reece. More details on other satisfaction methodologies in the

lectronic government research can be found in Irani et al. (2012) . 

Finally, there is a lot of literature on evaluating e-government

ervices from providers’ perspective. For instance, Chircu (2008) re-

iewed the electronic government research published in the period

0 01–20 07; and found that most of the research contributions

n e-services were focused on US (45%), UK (11%), Singapore (7%)

nd (37%) for the rest of the world. The evaluated objectives were

easured in percentages of coverage in the published papers: 63%

ddressed financial objectives to achieve reduction in cost, time and

abor savings for maintaining the current service levels, and avoid-

ng cost-increase for the provision of better service levels; 65%

ocused on social objectives to provide effective e-service deliveries,

nformation dissemination, sustainable shared value creation and

etter resource allocation; and finally 44% discussed political objec-

ives to enable democracy, transparency, accountability, social jus-
ice and liberty. As a result, a conceptual framework was proposed

sing the identified financial, social and political dimensions from

ultiple stakeholders’ perspective without any quantitative vali-

ation and analysis, Chircu (2008) . Recently, a systematic review

n electronic government research was conducted by Weerakkody

t al. (2015) . The overall derived view indicated that although a

arge number of papers discussing issues related to costs, oppor-

unities, benefits and risks, the treatment of these issues tended

o be superficial . They reported a lack of empirical studies to

alidate the relationships of the performance measures to various

-government systems and government transformation goals. Such

nalysis would help in the pre-adoption of digital government

ransformation and implementation by senior management. 

Reviewing non-statistical studies for the assessment of cus-

omer satisfaction in other non-government domains shows the

ollowings. First , k-means algorithm was used by Afolabi and

degoke (2014) to identify the factors that contribute to customer

atisfaction. It requires researchers to pre-specify the number of

lusters (k) which is very difficult to estimate in reality. Another

rawback of k-means, it does not record the quality of gener-

ted clusters for benchmarking analysis. Second, a multi-objective

enetic algorithm (GA) was implemented by Liébana-Cabanillas,

ogueras, Herrera, and Guillén (2013) to predict the levels of trust

mong e-banking users using socio-demographic, economic, finan-

ial and behavioral variables. It was found that GA requires a long

unning time to find optimal solutions, converges to a limited re-

ion on the Pareto efficient frontier; and might ignore interesting

olutions. An advanced technique based on Artificial Neural Net-

ork (ANN) was used by Shen and Li (2014) to evaluate the ser-

ice quality of public transport. It was found that the ANN tech-

ique lacks interpretability at the level of individual predictors

nd is difficult to construct the network layers, and associated

earning and momentum measures. Finally , a DEA model based

n the SERVQUAL five dimensions using nominal and ordinal data

as useful for conducting a benchmarking analysis to improve the

uality of services by Lee and Kim (2014) . 

In summary, the above brief review highlights the existence

f fragmented measures with a lack of unified methodologies for

valuating both satisfaction and efficiency of e-services from users’

erspective. This lack requires conducting more research using

xperiential real-time data with a proper validation of measures;

eveloping a comprehensive analytical model which can integrate

arious fragmented measures into a holistic framework to evaluate

imultaneously both satisfaction of users as well as efficiency

nd effectiveness of e-services to identify managerial actions for

mprovement. Users of e-services unlike customers cannot switch

o different government providers; if not satisfied, they can only

pt not to re-use an e-service and stick to traditional modes.

herefore, this paper follows a bottom-up (user-centric) approach

o determine satisfaction measures from real-time experience of

sers while interacting online with e-services. The identified mea-

ures can then be validated and analyzed using the proposed CAM

ramework to meet the desired goal of Turksat. A bottom-up or

ser-centric approach was followed due to the following reasons. It

as reported that the usage rate was limited and had not kept up

ith the fast growing availability of e-services, ( UN-survey, 2012 ).

he percentage availability of basic e-government services has

rown up by 91% compared to only 39% for the percentage usage

f e-government services in the EU27 between 2005 and 2010.

herefore, users must be placed at the center of development and

elivery of e-services; identifying the factors, that affects users’

otivations, attitudes, needs, and satisfactions underlying inten-

ions to use e-government services, would have a decisive influ-

nce on large adoption and use of e-services, Verdegm and Verleye

2009) . A number of recent studies stressed the importance of

tudying the factors that influence citizens’ behavioral intention to
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Fig. 1. The cognitive analytics management framework: processes and concepts. 
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adopt and use of e-government services. Citizens ’ attitude toward

using e-government services was found to be the most significant

determinant factors among other socio-technology, political and

cultural factors by Al-Hujran, Al-Debei, Chatield, and Migdadi

(2015) . The significance of modeling the behavior of citizens to

influence the adoption of e-government services was stressed in

Rana, Dwivedi, Lat, Williams, and Clement (2017) . They found that

the attitude has a direct effect on adoption of e-services and it

is influenced by the effort expectancy of user, the performance of

e-services and the social influence. Similarly, the advantage of

assessing e-services from users’ perspective through measuring

the users’ satisfaction to increase e-participation was stressed

by Kipens and Askounis (2016) . For comprehensive reviews of

literature on e-services’ measures and relationships between

satisfaction, impact, cost-benefit and risk-opportunity, and the

adoption and intention to use of e-services by individuals and

organizations, we refer to Osman et al. (2014a) , Weerakkody et al.

(2015) and Petter et al. (2008) . 

3. The cognitive analytics management methodlogies 

The cognitive analytics management is a mission-driven (or

goal-driven) approach for the transformation of organizations, peo-

ple and systems to generate insights and create shared values. It

generates data-driven insights to make informed decision, and sug-

gests policy innovations for managing performance and transfor-

mation of e-services to achieve desired goals. It expands and in-

tegrate emerging scientific fields including: Social cognitive theory,

Bandura (1986) ; Analytics, ( Robinson, Levis, & Bennett, 2014 ); Busi-

ness analytics ( Pape, 2016 ); Big data (Structured, unstructured, and

semi-structured data), Gupta, Kumar, Baabdullah, and Al-Khowaiter

(2018) ; Cognitive analytics , Donaki (2014) ; and Cognitive computing

(human–machine interaction, machine-machine interaction), Gupta

et al. (2018) . We shall present a brief discussion to provide the

necessary support and background for the development of CAM

framework and associated methodologies. 

The Social Cognitive Theory (SCT) has not been fully used

to examine the individual’s behavior for adopting e-services

despite being considered as one of the important theories in

human behavior, Bandura (1986) . Some of the SCT constructs

such as anxiety, attitude, self-efficacy, social influence, outcome

expectancy, and their links to behavioral intention toward using

technology have been investigated in a number of studies on

e-government adoption studies, Rana and Dwivedi (2015) . Further,

the Cognitive Mapping Theory (CMT) was used to better under-

stand the decision-making interactions that took place across

the management and implementation of e-government projects,

Sharif, Irani, and Weerakkoddy (2010) . CMT seeks to graphically

represent the state of variables (organizational complexity, gover-

nance, methodological constraints, practitioner concerns, financial

concerns, and fear of failure) within an e-government project by

links with fuzzy weights to signify causes and effects relation-

ships. The authors concluded that understanding of the broader

social, political, user satisfaction and stakeholder contexts are

imperative for effective decision making and e-government im-

plementations; organizations must also define who is responsible

for e-government projects, and senior management must engage

with e-government investment decision processes to improve

decision making. Robinson et al. (2014) of the OR/MS community

defined Analytics as “analytics facilitates the realization of business

objectives through reporting of data to analyze trends, creating

predictive models for forecasting and optimizing business processes

for enhanced performance”. This definition stresses modeling and

processing to conduct descriptive, predictive and prescriptive ana-

lytics. Big data analytics describe software tools to handle big-data

attributes which are characterized by the 4-V data-models: Volume ,
elocity, Variety and Value. Donaki (2014) of Deloitte consulting de-

ned “Cognitive Analytics ” as a new emerging term to describe how

rganizations apply analytics to make smart decisions; the new

erm attracts more than 63,900 hits on google, it is defined as a

field of analytics that tries to mimic the human brain in drawing

nferences from existing data and patterns, it draws conclusions

ased on existing knowledge bases and then inserts this back into

he knowledge base for future inferences – a self-learning feedback

oop”. Whereas the Cognitive computing term attracts more than

81,0 0 0 hits on google, it is defined as the simulation of human

hought processes in a computerized model, ( TechTarget, 2017 ). It

nvolves self-learning systems that use data mining, pattern recogni-

ion and natural language processing to mimic the way the human

rain works. Davenport (2006) stressed the need for organizations

o compete on analytics. An analytics initiative requires the follow-

ngs to assure success: an enterprise-wide system to ensure an easy

ccess to critical data; a widespread use of a set of modeling and

ptimization tools beyond basic statistics for a comprehensive un-

erstanding of customers; and an advocate team of senior analytics

eaders who have passion for analytics. Those analytics leaders set

he right goals, objectives and analytics culture. They also provide

upport to acquire the right analytics tools, hire the right analytics

alent and act on the data-driven insights and recommendations.

ape (2016) reported that the extract-transform-load process of

leansing data items from legacy systems and external sources to

ransfer them into an analytics system typically accounts for more

han 50 per cent of the time and cost of any analytics project. 

Given the above brief discussion on fragmented but useful ap-

roaches for the success of organizations in public and private

ectors, we aim to propose our Cognitive Analytics Management

ramework to bring together three fragmented cognitive, analyt-

cs and management concepts into a unifying methodology frame-

ork to guide the implementation of digital transformation to ad-

ress an organization’s challenges. It brings together the best of all

orlds in academic rigor and practical relevance with a special fo-

us on the beginning and ending processes. Fig. 1 illustrates the

nterconnection and integration of the three CAM processes. The

mplementation of CAM starts with the cognition process to un-

erstand a challenge and frames it into analytics terms by build-

ng data models, identifying variables and relationships to align

ith the desired goals/objectives which are set in coordination

ith senior management. A data and governance strategy must be



I.H. Osman, A.L. Anouze and Z. Irani et al. / European Journal of Operational Research 278 (2019) 514–532 519 

Fig. 2. A pictorial representation of the human–machine online interactions. 
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ormulated for getting clean data using appropriate research pro-

esses, protection, and technology enablers in compliance with the

eneral Data Protection Regulation (GDPR) guideline, Tikkinen-Piri,

nna Rohunen, and Markkula (2018) . The cognition process typ-

cally accounts for more than 50 per cent of the time and cost

f any analytics project, Pape (2016) . The analytics process iden-

ifies the most appropriate analytics models and solving method-

logies for addressing the identified challenge, and achieving the

esired objectives; it also validates the results and communicates

he analytics insights to senior management. Finally, the manage-

ent process is the most difficult one. It is necessary for the assur-

nce of successful implementation based on the derived manage-

ial insights; it involves communications of results to other stake-

olders to influence transformational actions. It requires crafting

 message to stakeholders and fueling suggestions on this pro-

ess. More discussions on each process are presented in the below

ub-sections, whereas supporting details on CAM applications and

reation of sustainable shared values can be found in Osman and

nouze (2014b) . 

.1. The cognitive process for understanding and framing the 

valuation challenge 

The cognitive process is designed to understand the human–

achine online interaction and to frame it into analytics terms. It

nalyzes previous findings to find out what has happened to deter-

ine the data management and compliance of research processes

equired to deliver quality data for processing at the analytics pro-

ess. To be more specific, it is to understand the factors affect-

ng performance and satisfaction of human; determine appropriate

ata models and metrics; validate relationships and alignment to

he desired goals; and propose information technology processes

o collect, store, retrieve and prepare data for analysis. 

Fig. 2 provides an illustration of the human–machine online

nteractions with an e-service for a better understanding of the

valuation challenge. It is inspired by the social cognitive theory,

andura (1986) ; and the cognitive computing systems, ( TechTarget,

017 ). It aims to understand the challenge in human–machine on-

ine interactions, Hollan, Hutchins, and Kirsh (20 0 0) . In cognitive

ystems, the psychological and physiological behaviors of a hu-
an during online interactions with a machine are captured us-

ng digital sensors/cameras to estimate human-intent to guide the

ovement of robotics, Kulic and Croft (2007) . However, in our e-

overnment online interactions instead of using sensors/cameras,

nline surveys are used to capture real-time behavior, attitude, in-

ention and reaction, and economic values of users immediately af-

er completing online sessions with an e-service. Fig. 2 illustrates

he human–machine interaction with an e-service. The left part of

he figure and the right part of the figure show the internal process

black-box for analytics engine) and the external process via a user

nterface (white box: computer/ mobile screen) while interacting

ith an e-government system The user interactions are then trans-

ated into a series of internal/external processes involving human–

achine (external), machine-to-machine (internal) and machine-

o-human (external) instructions to complete an e-service request.

he final interaction delivers outputs on screen or on other exter-

al delivery modes such traditional mails, emails, mobile messages,

tc. For more discussions on the human–man interaction cycles for

he creation of shared values, refer to Osman and Anouze (2014c) . 

To evaluate the human–machine online interactions, a careful

esign is required for the identification of metrics to capture both

uman and machine characteristics. Critical reviews for the iden-

ification of the most critical factors and variables affecting users’

atisfaction were published in Irani et al. (2012) and Weerakkody

t al. (2015) . The reviews led to the development of COBRA model

or satisfaction, which consisted of a set of satisfaction metrics.

his set contains 49 SMART (Specific, Measurable, Achievable, Rel-

vant, Timely) metrics, which were statistically validated in Osman

t al. (2014a) . Table 1 provides a list of questions for each of 49

OBRA metrics divided into four COBRA factors and 8 sub-factors:

ost, (tangible, tC; and intangible, iC); Benefit (tangible, tB; and in-

angible, iB); Risk, (personal, pR; and financial, fR); Opportunity

service, sO; and technology, tO). The SMART metrics were de-

ived using serval focus-group meetings conducted in UK, Turkey,

ebanon and Qatar involving users, professionals, academics and

overnment experts to include new practical and relevant metrics

ot available in the literature. It turned out that COBRA model

as the quantitative equivalent to the SWOT qualitative strategic

odel, ( Jackson, Joshi, & Erhardt, 2003 ). SWOT evaluates company,

ervice and product by generating improvement initiatives with

eferences to internal processes and external competitors without
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Table 1 

COBRA validated measurable variables and associated labels (online survey questions). 

No Item/question Label 

1 The e-service is easy to find tB 

2 The e-service is easy to navigate tB 

3 The description of each link is provided tB 

4 The e-service information is easy to read (font size, color) tB 

5 The e-service is accomplished quickly tB 

6 The e-service requires no technical knowledge tB 

7 The instructions are easy to understand tB 

8 The e-service information is well organized iB 

9 The drop-down menu facilitates completion of the e-service iB 

10 New updates on the e-service are highlighted iB 

11 The requested information is uploaded quickly iB 

12 The information is relevant to my service iB 

13 The e-service information covers a wide range of topics iB 

14 The e-service information is accurate iB 

15 The e-service operations are well integrated iB 

16 The e-service information is up-to-date iB 

17 The instructions on performing e-service are helpful iB 

18 The referral links provided are useful iB 

19 The Frequently Asked Questions are relevant sO 

20 Using the e-service saved me time tC 

21 Using the e-service saved me money tC 

22 The provided multimedia services (SMS, email) facilitate contact with e-service staff sO 

23 I can share my experiences with other e-service users sO 

24 The e-service can be accessed anytime sO 

25 The e-service can be reached from anywhere sO 

26 The information needed for using the e-service is accessible sO 

27 The e-service points me to the place of filled errors, if any, during a transaction tO 

28 The e-service allows me to update my records online tO 

29 The e-service can be completed incrementally (at different times) tO 

30 The e-service removes any potential under table cost to get the service from E-government agency (tips) tC 

31 The e-service reduces the bureaucratic process tC 

32 The e-service offers tools for users with special needs (touch screen, Dictaphone) tO 

33 The information are provided in different languages (Arabic, English, Turkish) tO 

34 The e-service provides a summary report on completion with date, time, checkup list tO 

35 There is a strong incentive for using e-service (such as paperless, extended deadline, less cost) tO 

36 I am afraid my personal data may be used for other purposes pR 

37 The e-service obliges me to keep record of documents in case of future audit fR 

38 The e-service may lead to a wrong payment that needs further correction fR 

39 I worry about conducting transactions online requiring personal financial information such visa, account number fR 

40 Using e-service leads to fewer interactions with people pR 

41 The password and renewal costs of e-service are reasonable tC 

42 The Internet subscription costs is reasonable tC 

43 The e-service reduces my travel cost to get the service from E-government agency tC 

44 It takes a long-time to arrange an access to the e-service (the time includes: arrange for password; renew password; and Internet subscription) iC 

45 It takes a long-time to upload of e-service homepage iC 

46 It takes a long-time to find my needed information on the e-service homepage. iC 

47 It takes a long-time to download/ fill the e-service application iC 

48 It takes several attempts to complete the e-service due to system break-downs iC 

49 It takes a long-time to acknowledge the completion of e-service. iC 

COBRA : intangible and tangible Benefit (iB and tB); intangible and tangible Cost (iC and tC); service and technology Opportunity (sO and tO); financial and personal 

Risk (fR and pR) Analysis. 
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prioritization. In the SWOT-COBRA analogy, the Cost, Opportunity,

Benefit and Risk factors are equivalent to Weakness, Opportunity,

Strength and Threat, respectively . With the appropriate use of an-

alytics model to balance the tradeoffs between the various COBRA

measures, satisfaction and prioritization insights with recommen-

dations for improvement and resource allocations can be generated

as discussed later. 

Further the theoretical support to the CORBA selection of

metrics for measuring satisfaction and performance values are

provided below. First , the social exchange theory for interaction

indicates that people invest in social exchange interaction if and

only if the cost and risk inputs they put in the interaction are less

than the benefit and opportunity outputs they get, ( Blau, 1964 ). The

e-service values to users have been largely ignored in empirical

research; they play an important role in determining patterns of

development, adoption, use and outcomes, Leinder and Kayworth

(2006) . Second, the expectation confirmation theory for satisfac-

tion indicates that consumers are satisfied if the actual experience
atches prior expectation, ( Oliver, 1980 ). If users are satisfied

ith the e-services’ website and application design, they are likely

o share information about their successful experience through the

se of social media networks, UN-Survey (2012) . Such satisfaction

ould further encourage the citizen usage of e-services, Zheng

nd Schachter (2017) . According to the equity theory for predict-

ng individual’s motivation and satisfaction behaviors, equity is

easured by comparing the ratio of rewards (outputs) to efforts

inputs). Pritchard (1969) suggested that employees try to maintain

 balance between what effort s they give to an organization (input

ffort s) against what they receive (output rewards) to base their

atisfaction. As a consequence, individuals seek to maximize their

et outcomes (rewards minus costs) or at least maintain equity

etween them. When individuals find themselves participating in

nequitable relationships, they become distressed and dissatisfied.

sing rational thinking, it is believed that when the benefits and

pportunities (used as outputs) are greater than the costs and

isks (used as inputs), the users will be more satisfied. 
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Table 2 

DEA output-oriented and input-oriented constant return to scale (primal) models. 

DEA-CRS-O: output-oriented primal model DEA-CRS-I: input-oriented primal model 

Maximize θp = 

s ∑ 

k =1 

v k y kp Minimize ϕ p = 

m ∑ 

j=1 

u j x jp 

Subject to: Subject to: 
m ∑ 

j=1 

u j x jp = 1 
s ∑ 

k =1 

v k y kp = 1 

s ∑ 

k =1 

v k y ki −
m ∑ 

j=1 

u j x ji ≤ 0 ; i = 1 , . . . , n 
s ∑ 

k =1 

v k y ki −
m ∑ 

j=1 

u j x ji ≤ 0 ; i = 1 , . . . , n 

v k , u j ≥ 0 ∀ k, j v k , u j ≥ 0 ∀ k, j

3
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Table 3 

DEA input-oriented and output variable return to scale envelopment (dual) 

models). 

DEA-VRS-I: DEA input-oriented dual DEA-VRS-O: output oriented dual 

Minmize θp Maximize ϕ p 
Subject to: Subject to: 

n ∑ 

j=1 

λ j x i j ≤ θp x ip ; ∀ i 
n ∑ 

j=1 

λ j x i j ≤ x ip ; ∀ i 
n ∑ 

j=1 

λ j y r j ≥ y rp ; ∀ r
n ∑ 

j=1 

λ j y r j ≥ ϕ p y rp ; ∀ r
n ∑ 

j=1 

λ j = 1 
n ∑ 

j=1 

λ j = 1 

λ j ≥ 0 ; ∀ j = 1 , . . . , n ; θp free λ j ≥ 0 ∀ j = 1 , . . . , n ; ϕ p free 
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.2. The analytics process for evaluation 

The analytics process to analyze the online experiential data is

ased on prescriptive analytics using Data Envelopment Analysis

nd prediction analytics based on a classification and regression

ree (CART). Data Envelopment Analysis (DEA) models the human–

achine interactions to find out what to do. DEA generates

nalytics results on the performance of e-services and the satisfac-

ion of users. It establishes the best-practice internal benchmark

o set target for improving inefficient e-services with reference to

he established benchmark. A classification and regression trees

CART) model is used to analyze both DEA satisfaction score of

ach individual with associate characteristics to identify satis-

ed/dissatisfied classes for recommending social inclusion policies

nd prioritizing managerial actions to increase take up. The two

nalytics models are described next. 

.2.1. Data Envelopment Analysis (DEA) for satisfaction and 

erformance evaluation 

DEA is a nonparametric linear programming approach. It is pro-

osed to evaluate the relative performance efficiencies of a set

f e-services. These e-services are called decision-making units,

DMUs) in DEA terminology. Each DMU utilizes multiple-input re-

ources (costs, risks) to transform them into multiple-output re-

urns (benefits, opportunities) to measure satisfaction and perfor-

ance. DEA generates a relative score for each DMU indicating the

uality of transformation by comparing the DMU to its peers. The

EA score is an aggregated value, which is defined as the ratio

f the total sum of weighted outputs over the total sum of the

eighted inputs. The weights for the inputs and outputs are not

xed values, like in statistics, but they take variable values. These

ariable weights are optimized in the best interest of the DMU be-

ng evaluated subject to relativity performance constraints indicat-

ng that the performance of each DMU should not exceed 1. A DMU

ith a DEA score of 1 is called efficient, whereas a DMU with a

core less than 1 is called inefficient. 

In the literature, there are two basic DEA models. First , a DEA

odel assumes that all DMUs are operating under the homo-

eneity assumption of Constant Return to Scale (DEA-CRS), Charnes

t al. (1978) . Further the DEA-CRS model can be sub-divided

nto input-oriented and output-oriented DEA models. The output-

riented model maximizes the total sum of weighted outputs to

enerate an output-effectiveness performance value for each DMU

nd suggests recommendations for increasing outputs at a fixed

evel of the multiple inputs. The input-orientation model minimizes

he total sum of weighted inputs to generate an input-efficiency

erformance value and suggests recommendations for reducing the

tilization of inputs at a fixed level of the multiple outputs. 

Table 2 provides linear programing formulations for the input-

riented (DEA-CRS-I) model and the output oriented (DEA-CRS-O)

odel under constant return to scale assumptions. For each DMU

 p = 1,…, n) in a set of homogenous DMUs for evaluation, ( m) rep-

esents the number of input variables and ( s) represents the num-
er of output variables; x jp is the utilized amount of input j , y kp is

he generated amount of output k; and v k , u j are the weights as-

igned to output k and input j , respectively. The optimized weights

an be seen as the optimal values for the returns and the costs of

he resources that would make the associated DMU as efficient as

ossible in the relative evaluation process. The quality value of the

ransformation for a DMU ( p) is obtained by maximizing a non-

inear objective performance function. It is expressed by the ratio

 

∑ s 
j=1 v k y kp / 

∑ m 

i =1 u j x jp ) subject to no performance ratios exceed

ne. This objective ratio is linearized in two different ways to gen-

rate the input and output oriented linear models as follows. The

EA-CRS output-oriented linear model is generated by setting the

enominator of the non-linear objective to 1, whereas the DEA-CRS

nput-oriented linear model is obtained by setting the numerator

o one. Table 3 provides the two formulation models in columns

ne and two, respectively. The set of n constraints in both models

mposes the relativity concept that no ratio should exceed one. 

Further, since one of the objectives of the DEA evaluation is

o identify the set of efficient DMUs to establish a benchmark

nd to set targets for improving the inefficient units; each of

he DEA-CRS models needs to be executed as many times as the

umber of available DMUs to derive the DEA efficiency scores for

he DMUs. The DEA-CRS models assume homogeneity of DMUs.

ccording to Dyson, Allen, Camanho, Podinovski, Sarrico, and

hale (2001) , the source of non-homogeneity (heterogeneity)

f DMUs comes from different environments or economies of

cale. In the context of e-government services, the human–man

nteractions with an e-service (DMUs) are heterogeneous due to

he existence of interactions from locations with more or less at-

ractive internet speeds (environment) or involving people having

ifferent knowledge and technical skills; they are all interacting

ith an e-service using different input resources to receive the

ame output level or interacting with different e-service types

informational, transactional, and interactional) using the same

nput level to receive different output levels. Such differences

ead to heterogeneous human—machine interactions operating

nder variable increasing or decreasing variable return to scales.

o address, the non-homogeneity (heterogeneity) issue, a variable

eturns to scale (DEA-VRS) model has been developed specifically

o accommodate scale effects in analysis, Banker, Charnes, and
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Cooper (1984) . They are based on the duality theory of linear

programing, in which the DEA-CRS primal model is augmented

by adding a new constraint ( 
∑ n 

j=1 λi = 1 ) to allow for variable

returns to scale in the envelopment dual models; where the

set of ( λi ) s represents the dual variables of the constraints in

the linear programing primal model associated with DMU (i).

Table 3 provides linear programming formulations for the input-

oriented (DEA-VRS-I) and the output oriented (DEA-VRS-O)

envelopment dual models under variable return to scales. 

It is known that one of the most important steps in the DEA

analytics modeling process is the definition of DMUs and the identi-

fication of associated multiple-input and multiple-output variables

to achieve the organizational desired goal. The set of human–man

online interactions will be used to define the set of decision-

making units (DMUs). The COBRA metrics would then be used to

define the set of multiple-input and multiple-output variables, re-

spectively. The set of online interactions (DMUs) would then be

evaluated using the DEA models to determine a relative satisfac-

tion of each user based on the individual experiential interac-

tions with a particular e-service. The DEA scores derived for all

users from the DEA-VRS input-oriented model would be averaged

to provide an input-efficiency score on the performance of a par-

ticular e-service. Similarly, the derived DEA scores from the DEA-

RS output-oriented model would provide an output-effectiveness

score on the performance of an e-service. 

The major advantage of DEA Model lies in the simplicity of solv-

ing after careful modeling of the underlying problem. It does not

require an objective function to express the transformation of in-

puts into outputs. But it does require the total number of DMUs

over the total sum of inputs and outputs to be sufficiently large

for a proper discrimination among DEA units, Osman et al. (2011) .

The major DEA disadvantage, it does not provide a statistical in-

ference on the derived DEA scores due to random errors in data

inputs or data correlations between metrics and users’ trait. As a

result, a potential efficiency bias in the DEA scores may happen.

To address this disadvantage, Simar and Wilson (2007) suggested

implementing DEA models with a bootstrapping technique to pro-

duce estimate values for the lower and upper confidence bounds

for the averages and medians of the original DEA scores. They sug-

gested using a simple sampling procedure to draw with random

replacement from the same sample of DEA scores, thus mimicking

the underlying original data generation process. 

3.2.2. Classification and regression trees (CART) for classification 

Classification and regression trees (CART) model – is a non-

parametric methodology. It is proposed to construct a tree struc-

ture to identify classes of users based on their DEA satisfaction

scores (dependent) and characteristics as (independent) predictors.

CART model recursively partitions the dataset of users (population)

into smaller meaningful subclasses to improve the fit within each

subclass as much as possible. The partitioning process uses a sim-

ple decision tree structure to visualize the identified classes. The

major components of CART model are the partition and stopping

rules. The partition rule determines which node (among predic-

tor variables) to select for splitting the population at each strati-

fication stage. The stopping rule determines the final constructed

strata (branches of tree with different characteristics). Once the

strata have been created, the node impurity of each stratum is as-

sessed based on heterogeneity measures. There are three hetero-

geneity criteria to assess a node impurity: Misclassification error,

Gini index, and Cross entropy. The Gini index of node impurity is

the most commonly used measure for classification. The impurity

measure reaches a minimum value of zero when all observations

included in a node belong to the same purity class, and a max-

imum value when the different classes at node are equal sizes.

However in regression trees, the measure of impurity is based on
he least squared differences between the observed and predicted

alues. 

CART models are not as much popular as traditional statistical

ethods due to the short span of existence. However, they have

everal implementation advantages: (i) the analytical results are

asy to explain, and interpret; the segmentation of population into

eaningful classes is often obtained from the visualization of the

onstructed tree structure; (ii) CART models are non-parametric

nd non-linear in nature. They do not make any statistical as-

umptions on normality, non-collinearity, and other requirements

f conventional methods (like discriminant analysis and ordinary

east square methods) (iii) CART model can handle all data types

hether numerical or categorical. As a result, they become one

f the most powerful visualization analytics tool, Hastie, Tibshi-

ani, and Friedman (2009) . However, they are not without disad-

antages. A researcher cannot force a particular predictor variable

nto CART model. It might be omitted from the list of predictors

n the final tree if such predictor was found not necessarily sig-

ificant. In such case, traditional regression models might be more

ppropriate, Gordon (2013) . Finally, for more details, we refer to

he good book on statistical learning by Hastie et al. (2009) , and

he review on CART development and applications by Loh (2014) . 

.3. The management process for setting goals and managerial 

ctions 

The management process is an essential component of CAM

ramework for the initiation and successful completion of any an-

lytics project. Senior management sets initially the strategic goals

nd objectives such as closing the digital divide through enhancing

sers’ satisfaction and providing more improved e-services. They

pprove access to systems, and enforce adherence to data gover-

ance policies. Senior management also synchronizes and coordi-

ates the interactions among stakeholders (policy makers, internal

echnical support staff and research team, users and providers). If

onvinced in the desired values, senior managers would commit

he necessary resources to execute the analytics project and im-

lement the analytics-based policy recommendations. 

Successful organizations like e-bay, google, and amazon have

dopted superior management processes by hiring analytics ex-

erts. They provide them with quality data; support them with the

est analytics tools to make the best-informed decisions whether

ig and small, every day, over and over, ( Davenport, 2006; Daven-

ort & Patil 2012 ). For a recent survey on analytics models, appli-

ations, and tools we refer to Osman et al. (2014a) . Further, discus-

ion on the importance of the management process for the success

f the analytics initiatives for measuring productivity performance

t organizations and development of evidence-based policies can

e found in Dyson (20 0 0) . 

. CAM implemenation and discusion of results 

In this section, the CAM implementation processes, associated

omponents, results and impacts are discussed. Each CAM process

ook almost one-year time to complete, and the project was ex-

cuted over a 4-year period from 2010 to 2014. Fig. 3 depicts the

ata-flow chart for implementing the cognitive, analytics and man-

gement processes. The PIM (Performance Improvement Manage-

ent) Software is used to generate the DEA results ( Emrouznejad

 Thanassoulis, 2014 ), while the CART analysis and visualization is

enerated from v6.6 (Salford Systems, San Diego-USA) software. 

.1. The implementation of the cognitive process 

Turksat is a private agency entrusted to provide e-services to

urkish users. It has provided an excellent support staff to mount
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Outputs
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Opportunity 

DEA
Models 

& 
Scores

Fig. 3. The flow-chart of processes for the CAM implementation. 

Table 4 

List of the 13 e-services and characteristics. 

Group Code Name Responses 

Informational-G1 (1 e-service) 9001 Content Pages for Citizen Information 2258 

860 Military Services – Application for receiving information 

867 Online Inquiry for Consumer Complaint 

868 Parliament Reservation for Meeting 

871 Military Services – Deployment Place for Training 

872 Military Services Inquiry 

Interactive/Transactional-G2 (10 e-services) 20 0 0 Consumer Portal – Application of Consumer Complaint 636 

2002 Juridical System Portal – Citizen Entry 

2003 Juridical System Portal – Lawyer Entry 

2004 Juridical System Portal – Institutional Entry 

2005 Juridical System Portal – Body of Lawyers Entry 

Personalized-G3 (2 e-services) 870 Education Service – Student Information System 284 

90 0 0 My Personal Page 
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he online survey inside the internal operating systems of e-

ervices to collect real-experiential data from users. The online sur-

ey parts were first approved by our Universities Internal Review

esearch boards before the data collection process took place. 

.1.1. The list of e-services 

A list of 13 e-government services was selected from Turksat’s

-government portal. The details on each e-service and collected

esponses from users are provided in Table 4 . They are divided

nto three groups of different characteristics: (1) informational; (2)

nteractive/transactional; and (3) personalized groups . The Informa-

ional e-services provide public content, and do not require au-

hentication (username and password) to access by users. Interac-

ive/transactional e-services, however, do require authentication for

ownloading application forms, contacting agency officials and re-

uesting appointments. Finally, personalized e-services also require

uthentication and allow users to customize the content of e-

ervices, conduct financial transactions and pay online to receive

-services. 
.1.2. The online survey for data collection 

The online survey is composed of three parts: (1) part I col-

ects qualitative bio-data on users (education, age, income, gender,

requency of using e-government services and annual income); (2)

art II accumulates quantitative data from responses of the 49 CO-

RA questions, and (3) part III gathers text-free comments in re-

ponse to an open-ended question for cross-validation and content

nalysis. The online survey was not promoted to Turksat’s users;

nd the data was collected using a simple random sampling pro-

ess to avoid bias. After completion of an e-service interactive ses-

ion, a user is invited to complete the online survey. At the start,

he respondent user is informed that the personal data will be kept

onfidential, the collected data will only be used for an academic

esearch to improve the provision of e-services; the user was not

bliged to complete the survey and can stop any time. 

The data collection process was collected over two-phases. A

ilot phase collected data over a three-month period to refine

he measurement scale model. The field phase was run for an-

ther period of nine months; and one dataset was gathered ev-

ry three months. Since it is an unsolicited online survey, it was
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Table 5 

Descriptive analysis of the DEA input and output variables. 

Variables (Total number of Questions): “NO” under Column 1 of Table 2 Mean Median Deviation Minimum Maximum 

DEA input variables 

tangible Cost (tC) (7): Q20–Q21; Q30–Q31; and Q41–Q43. 22.84 25.00 8.38 7.00 35.00 

intangible Cost (iC) (6): Q44–Q49 17.19 17.00 6.93 6.00 30.00 

personal Risk (pR) (5): Q36–Q40 6.34 7.00 2.41 5.00 25.00 

financial Risk (fR) (3): Q37–Q39 9.39 10.00 3.48 3.00 15.00 

DEA output variables 

tangible Benefit (tB) (7): Q1–Q7 22.54 25.00 8.73 7.00 35.00 

intangible Benefit (tB) (11): Q8–Q18 34.84 38.00 13.22 11.00 55.00 

Service support Opportunity (sO) (5): Q19–Q22 and Q26 19.05 21.00 7.30 5.00 25.00 

Technology support Opportunity (tO) (7): Q27–Q29 and Q32–Q35 22.52 24.00 8.03 7.00 35.00 
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not possible to determine the termination time to accumulate

enough responses. At the end of the collection period, a total of

3506 responses were collected. A data cleaning process was con-

ducted to remove incomplete responses; a total of 3178 responses

(96.64%) was found valid, and they were distributed on the list

of e-services as follows: (2258 responses for the informational e-

services; 636 responses for interactive/transactional e-services; and

243 responses personalized e-government services) as shown in

Table 4 . 

Despite the fact that our analytics models are non-parametric

and do not require any statistical assumptions on sample size, a

sufficiency test was conducted to make sure that we have an ac-

ceptable representative sample. Given an estimate of 80 million for

the Turkish population, out of which 9% are ICT users then an es-

timate of 7.2 million ICT users can be potential users of e-services.

According to Saunders, Lewis, and Thornhill (2007) , a population
Table 6 

Descriptive analysis on user’s bio-data. 

∗ http://ec.europa.eu/eurostat/statistics-explained/index.php/

by_socioeconomic_breakdown_2009.png. 
f 10 million needs a sample of 2400 responses at the 95% confi-

ence level and at 2% margin of errors. Thus our collected sample

f 3178 clean responses exceeds the minimum threshold to con-

uct any valid statistical analysis. The respondent users were asked

o rate the COBRA questions in part II on the online man–machine-

nteractions using 5-point Likert scale values (1 = strongly dis-

gree, …, 5 = strongly agree). 

.1.3. Validation of COBRA measures 

Further to the theoretical support for COBRA metrics provided

n Section 3.1 , empirical validation was also conducted to establish

elationships between COBRA metrics and the satisfaction of users,

nd alignment to Turksat’s goal. An advanced statistical structural

quation model was developed in Osman et al. (2014a) . The sta-

istical results showed that the cost and risk factors have nega-

ive relationships to users’ satisfaction; whereas, the benefit and
File:Obtaining_information_online_from_public_authorities_ 
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pportunity factors have positive relationships to users’ satisfac-

ion. The coefficients in brackets show the values of the struc-

ural links: cost ( −0.36); risk ( −0.11); benefit (0.59) and opportu-

ity (0.68) indicating that the lower the cost and the risk, and the

igher the benefit and opportunity values, are, the higher the satis-

action is. The total explanation of the users’ satisfaction variations

y the COBRA model was 76% at the 90% confidence level. 

Table 5 provides a descriptive summary of collected data on the

OBRA metrics in part II. For instance, the maximum value for an

ggregated set of 7 questions is 35 (7 × 5); and the minimum value

s 7 (7 × 1), see the values for the set of intangible cost (tC) cate-

ory. Similarly, a descriptive summary on the respondents’ bio data

f part I is provided in Table 6 . The bio-data on users show that

-services are attracting highly educated citizen with a cumulative

f 51.6% for graduate and postgraduate degree holders; this per-

entage is very close to the EU27 average of 53% for the same cat-

gory group. It is interesting to note that the percentage of low

ducated users (33.32%) in Turkey is much higher than 12% of the

U27 similar group. Moreover the low age group in EU27 has a

igher percentage of users than that in Turkey whereas Turkish

iddle and old age groups have higher values than that of EU27.

ast the Eurostat 2010 shows that 28% of EU27 citizens have ob-

ained information online from government authorities’ websites

n 2009 compared to only 9% in Turkey. No other EU statistics can

e compared to our additional statistics generated from our sur-

ey. For instance, the frequency of e-service usages in our sample

s 23% daily; 44% weekly, 27% monthly and around 6% yearly; these

gures indicate a high frequency-usage level. The percentages of

emale and male users were 20% and 80%, respectively. 

.2. DEA prescriptive results for benchmarking analysis 

Two DEA models are implemented with reported results

o evaluate the satisfaction of users and the performance of

-services. First, a local-frontier analysis is conducted to report sat-

sfaction and performance results on a single e-service. Second, a

eta-frontier analysis is conducted to report overall performance

nd satisfaction results obtained by including all e-services in a

ingle DEA run to identify the best-practice national benchmark

hich consists of the set of most efficient and effective e-services

o guide the management process in the design of improved e-

ervices. 

In practice, there are operational managers and policy makers

n charge of e-services. The operational managers often are inter-

sted in monitoring and controlling the operations of an e-service

t the micro (local) level; hence special interest is focused on

nput-efficiency and output-effectiveness performance values of an

-service at the local-frontier level. The input-efficiency objective

inimizes the resource (cost and risk) utilization at fixed amount

f outputs. The output-effectiveness objective maximizes the (ben-

fit and opportunity) return at fixed amount of inputs. However,

he policy makers have a strategic interest in improving the per-

ormance of all e-services at the macro (Meta) level; hence the

eta-frontier analysis is of interest to obtain input-efficiency and

utput-effectiveness values for the whole e-services sector. Hence,

dentification of the national best-practice benchmark is of great

mportance for learning and development of evidence-based poli-

ies. Therefore, input-orientation and output-orientation DEA mod-

ls are used to obtain efficiency and effectiveness values at the in-

ividual level and the overall level of e-services. 

Table 7 reports the averages of the DEA results without boot-

trapping reported under DEA score (1) columns, while that for

he bootstrapping DEA results are reported in averages of Mean

2) and Median (2) columns at both the local-frontier and meta-

rontier levels. Since each DEA run provides a single DEA satisfac-

ion score for each individual user, the average of the DEA satisfac-
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Fig. 4. The national best-practice of efficiency-effectiveness benchmarking groups. 
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tion scores of users is considered as a satisfaction measure for the

particular e-service. The e-service satisfaction measures for a spe-

cific e-service would be different from those at the local-frontier

and meta-frontier levels due to pooling of the data on all e-services

in a single DEA analytics run. 

From the meta-frontier analysis in Table 7 , it can be seen that

the best-practice national benchmark consists of the two non-

dominated frontier e-services (867: online inquiry for consumer

complaint; and 2005: Juridical system portal). They have either

input-efficiency or output-effectiveness scores equal to 100. They

envelop all other e-services under them, hence the Data Envelop-

ment Analysis name. They provide policy makers with an identifi-

cation of the best-practice e-services to recommend improvement

targets to the other less efficient e-services. Additionally, plotting

the averages of efficiency and efficiency pair of scores for each

e-service would provide a visual representation of performances

for all e-services, Fig. 4 . Four different groups of e-services can

be easily identified: two e-services – 2005 is input-efficient (most

efficient); 867 is output-effective (most effective), they form the

frontier best-practice of e-services (benchmark); whereas 860 has

above average values of efficiency and effectiveness scores. 860

and 867 e-services form the super-star group e-services to mimic

(top-right); the five e-services −868, 870, 2004, 9000, 9004 –

have output-effectiveness scores above average but they are not

input-efficient – a potential star group for input redesign (top-left):

three e-services – 871, 20 02, 20 05 – have input-efficient scores

above average but they are not output-effective - a potential star

for output redesign (bottom right): three e-services – 872, 20 0 0,

2003 – are neither effective input-efficient nor output-effective –

a potential group for a complete redesign (bottom-left). The group

of super star would help the policy makers in documenting their

best-practice experiences to guide the learning process to improve

all others inefficient e-services. It is interesting to note that the
orst e-service is 20 0 0 (Application of consumer complaint) while

he best e-service is 867 (Online inquiry for consumer complaint)

ndicating that is easier to get an online inquiry for consumer

omplaint than filling an application for consumer complaint. The

otential star groups include the informational e-service 9001

hich attracts 71.82% of the responded users. It has an above av-

rage output-effectiveness score, i.e., providing reasonable output

alues to users; but it has a below average input-effectiveness

core, i.e., the analysis provides transformational signals to re-

esign its internal process to improve the input-efficiency of such

-service by reducing its associated cost and risk factors, like Inter-

et cost and password access costs. It is also interesting to notice

hat all personalized e-services (870 and 90 0 0) belong to the

utput-effectiveness groups, such personalization is appreciated

y users, but they have below average input-efficiency scores, i.e.,

uch e-services should be re-designed to operate more efficiently

rom users’ perspectives. The potential star inefficient groups

ontain 83% of the total number of e-services; they cut across all

nformational, transactional and personalized operating groups.

hey indicate needs for revamping the majority of e-services to

mprove both their efficiency and effectiveness performance levels.

To provide more analytics insights from the benchmarking anal-

sis, the following three e-services are considered: the Juridical

ystem Portal: Citizen Entry, (20 0 0); Lawyer Entry (2003); Insti-

utional Entry (2004); Body of Lawyers Entry (2005). They are de-

igned to meet the goals and objectives of the Ministry of justice

or serving its users: general public; professional lawyers, and in-

titutional officers. From providers’ perspective, they are designed

o receive the same satisfaction level. However, the DEA bench-

arking analysis places each e-service in different quadrants in

ig. 4 due to different performance evaluation scores from users’

erspective: e-services (20 0 0 and 20 03) in bottom-left; 20 04

n top-left; and e-service 2005 in the bottom-right quadrant.
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Table 8 

The DEA policy recommendations to improve overall performance of e-services. 

Policies for COBRA metrics Maximum Observed Projection % change Weight Weighted change 

P1: Increase benefits and opportunities (effectiveness of e-services) from users’ perspective 

B Tangible benefit 35 17.57 23.00 30.9 0.42 12.97 

Intangible benefit 55 27.85 37.09 33.2 0.15 4.98 

O Service support 30 15.13 20.15 33.2 0.14 6.48 

Technology support 35 18.63 23.61 26.7 0.28 7.47 

P2: Reduce costs and risks (efficiency of e-services) from users’ perspective 

C Tangible cost 35 18.29 13.90 −24.0 0.62 −14.88 

Intangible cost 30 16.42 10.06 −38.7 0.18 −6.96 

R Personal risk 10 5.52 2.80 −49.3 0.11 −5.52 

Financial risk 15 8.51 5.08 −40.3 0.09 −3.62 
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urther empirical insights can be observed from the results in

able 7 . First, it seems that the bootstrapping DEA was able to

orrect down the averages of DEA scores up to 3% at the local-

rontier level and up to 1% at the meta-frontier level. At the local-

rontier level, the frequency of changes (12 times) and magnitudes

f corrections in the averages of the out-efficiency scores over all

-services were: 0% (once), 1% (three times) and 2% (eight times),

nd 3% (once); the similar changes (12 times) to the total re-

uction in the total averages of input-efficiency scores: 1% (eight

imes), 2 (three times) and 4 (once). The bootstrapping DEA re-

ults have changed equally in both models, but the largest change

f 4% occurred in one of the input-oriented results, this is prob-

bly due to the existence of more correlation between to the

nput variables and users’ characteristics than with the output vari-

bles that are more related to e-services’ characteristics. Second,

t the meta-frontier level, the averages of output-effectiveness val-

es were reduced much less as follows: 0% (five times) and 1%

eight times) and the input-efficiency values were reduced by a

otal of 0%. The bootstrapping analysis indicates that the results

t the local-frontier level are more affected by the categorical data

n users’ characteristics. However, it is more interesting to observe

hat pooling all data into a single local DEA analysis has produced

o change in bootstrapping results at the meta-frontier analysis,

.e., the pooling has removed the impact of any correlation and the

xistence of errors. Although, the corrected changes from the boot-

trapping DEA are not big in general, they may be needed for the

nalysis of individual e-services with a small number of responses.

Third, Table 8 suggests improvement targets to develop man-

gerial actions to improve the e-services sector. The targets are

xpressed in terms of expected percentage changes on COBRA fac-

ors. At least, two general policy recommendations at the strategic

evel can be developed. Policy one (P1) is related to the desire

o increase the benefit and opportunity values, while Policy two

P2) is related to the desire to decrease the cost and risk values.

he recommended changes are computed from the difference in

ercentages between the desired projections and observed actual

alues. In Table 8 , the averages of the optimal weights (weight col-

mn) for each COBRA factor are also provided. Although, they may

ot be unique due to the potential existence of multiple-optimality

olutions for the DEA linear programming models, they can still

rovide an expected weighted value on the magnitude of desired

hanges to prioritize managerial actions. The weights are multi-

lied by the percentage of the recommended changes (% change

olumn) to generate the data-driven expected magnitudes. The

ost important recommendations are: to reduce first the tangible

ost factor; and second to increase the tangible benefit factor; and

hird to increase both the service and technology opportunity fac-

ors. However ignoring the order of magnitudes and using the per-

entage differences would favor reducing the risk factor first, fol-

owed by reducing the intangible cost factor second, and increasing

he intangible benefit and service opportunity third; i.e., giving

ore priorities to improving the input-efficiency performance,
ence addressing the concern of users on the five e-services in the

op-left quadrant of Fig. 4 . The input-efficiency recommendations

hould be given the highest priorities since it would impact the

ajority of users 2542 out of 3178 (or 79.93%) of respondent users.

It should be noted that our presented recommendations are

ased on the projected changes using percentages from aggregated

ikert scale data for the 8 measurement factors in Table 8 . The ag-

regated data for the eight factors range from 5 to 55 Likert Scale

alues in Table 5 . But these scales are integer ordinal scale data

hat are used similarly in serval studies including Cook and Zhu

2006) and Park (2010) . The aggregation of Likert values would

essen the effect of the normally required continuous data type

o conduct DEA sensitivity analysis. Park (2010) provided a discus-

ion on how to interpret the DEA results with Likert scale data;

t was concluded that the interpretation of recommendations for

mprovement in percentage of Likert scale is still possible; they

hould not directly operationalized in the same magnitudes of nor-

al data; but using the underlying sprit of magnitudes. Hence, our

ecommendations and interpretations resemble the existing best-

ractice in literature, and they are implemented in the same un-

erlying spirit of magnitude in percentage changes. 

To provide further DEA recommendations at the operational

evel and using the above underlying spirit, one needs to extract

ore details on the individual metrics of each factor using the DEA

ocal-frontier analysis for each e-service. For instance, to reduce

he tangible cost and risk factors, senior management can improve

he complexity of the registration process, remove the replacement

f fees for lost password to access the e-services portal; provide

ore options to retrieve passwords; reduce the cost of Internet

ccess, and provide more access options using public libraries and

ffices. Further reduction in users’ intangible costs can be done

hrough improving Internet speed, i.e., reducing the download

nd increasing the upload speeds. To improve tangible benefits of

-service, they can make them easier to find, easier to navigate,

ore interoperable and have better descriptions of links. Note that,

he above recommendations are generated for variables inside each

actor and were obtained from the open-ended comments. 

.3. CART analytics results 

CART analysis is implemented to identify the characteristics of

sers who are found highly satisfied, satisfied and dissatisfied from

he DEA results. The classes of users with common characteristics

re generated by the CART visualization tree. The DEA analysis pro-

ides relative DEA satisfaction scores, but they do not link an indi-

idual satisfaction score to the characteristics of users. The charac-

eristics can be identified from the set of predictors or categorical

ariables such as gender (male/female), or ordinal variables such

ducation, technology experiences, frequency of use in Table 6 . It

s of prime importance to identify the characteristics of each social

roup in order to understand the underlying reasons behind the

ow usage. Such understanding would help in developing policy
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recommendations to reduce the digital divide among social classes.

Therefore, CART is implemented using DEA scores and individual

characteristics to determine the common characteristics of differ-

ent satisfaction classes. 

To implement CART, the original DEA satisfaction scores are di-

vided into three different groups. Since the DEA scores are nu-

meric values between zero and 1; and a good classification re-

quires only a finite set of ordinal values, therefore, the DEA scores

are transformed into three ordinal data with one value is given

to each group. If not transformed, CART would produce a com-

plex classification tree with a large number of classes leading to

a large and unrealistic number of policy recommendations. There-

fore, three classification classes were created based the overall

average of DEA scores and their standard deviation ( μ, σ ). The

first group of “Satisfied, S” users includes users with DEA satisfac-

tion scores in the interval of ( μ ± σ ) values, it has 1084 satisfied

users (34.10%); the second group of “Dissatisfied, D” includes users

with DEA scores are below the ( μ−σ ) value; it has 1072 dissat-

isfied users (33.75%); and the third group of “highly satisfied, H”

includes users with DEA scores are above ( μ + σ ) value, it has

1022 users (32.15%). The users in each group are assigned one or-

dinal value of 1, 2, and 3, respectively. Looking at the distribution

of DEA-scores; it is interesting to notice that the underlying distri-

bution is not normal despite having a large sample of users; this

is expected from the DEA non-parametric results, but from a prac-

tical point of view, a good success of any e-service is expected to

have a normal distribution of satisfaction values. In fact, the distri-

bution of the different satisfaction scores is almost uniformly equal

and this might explain the reason for the low take-up rate. 

To predict the characteristics of the 3178 responded users, the

set of independent variables (predictors) in Table 6 takes categor-

ical (male/female) or ordinal (low, medium, high) values; whereas

the dependent variable (target) takes the values of 1, 2, or 3 from

the individually transformed DEA scores. The CART analysis is con-

ducted using the following settings; the Gini criterion for split-

ting node and a 10-fold cross-validation for learning and testing

sample. In the 10-fold cross validation, the data on the 3178 users

are divided into approximately 10 equal subsets which are gener-

ated by a random stratified sampling process for splitting on the

set of predictors; and the construction of tree-growing process is

repeated 10 times from scratch. In the cross-validation, nine sub-

sets of the data are used for the learning sample, and one sub-set

is used for the testing sample. The predictability accuracy of re-

sults was verified using two standard quality measures: Receiver

Operating Characteristic (ROC) function and the Area Under Curve

(AUC). ROC illustrates the trade-off values between sensitivity and

specificity that could be achieved by the classification tree when

varying the thresholds of the dependent variables. AUC measures

the overall discrimination ability among the generated classes. The

ROC and AUC values were equal to 0.86 and 0.93, respectively, in-

dicating a high predictable accuracy of the CART constructed tree. 

The CART analysis has generated a number of useful informa-

tion. First, CART evaluates the splitting capability of each predic-

tor; the most important one (frequency of use) is then assigned

the highest score of 100%; the remaining predictors are relatively

ranked for it, and the least predictor is found to be gender (9%) as

shown in Fig. 5 . Second, CART produces a detailed output, or se-

quences of predictors from the top of the tree to various thirteen

terminal nodes (leafs). Such nodes are listed from left to right as

follows: 7, 27, 18, 9, 19, 20, 11, 12, 13, 35, 36 and 24 as shown

in the constructed CART of Appendix 2. Each terminal node repre-

sents one class which contains one dominant sub-group of users

belonging to one of three original satisfaction groups. The domi-

nating satisfaction sub-groups in each class are marked in bold in

Table 9 . Table 9 provides a summary of rich information on the

classification characteristics of each class. The following points can
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Gender 9.9%
Ease of use 25.6%
Education 26.1%

Annual income 32.9%
Age 44.3%

Frequency of use 100%

Fig. 5. Importance of predictions for each of the categorical input variables. 
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e observed and explained. Each satisfaction group has a unique

olor assigned automatically to it by CART software (Appendix 2).

or instance, “Highly Satisfied, H” group is colored in green color;

Satisfied, S” is colored in blue; and “Dissatisfied, D” is colored in

ed. The thirteen identified different classes (1–13) with satisfac-

ion characteristics are displayed in column 1. They are listed in

 decreasing order of sizes, (the number of users) in column 2.

irst , the set of classes 1–3 explains the characteristics of majority

f satisfied group of users. For instance, Class 1 (node 19 in the

ree) is the largest among the set of 1–3 classes with a majority

f satisfied users; it contains a set of 1030 users: 430 (41.7%) users

re satisfied (S); 307 (29.8%) users are dissatisfied, and 293 (28.4%)

sers are highly satisfied. Further, the users of class 1 are charac-

erized by being low (L) to medium (M) frequency of users, young

L) to middle aged users; and it is dominated by male users. If one

dds the characteristics of classes 2 and 3, one would obtain the

verall characteristics of a total of 1429 users: 604 (42.2% of the

hree lasses or 19% of the total population of 3178 users) are sat-

sfied; the majority of them are weekly to monthly average users

3M), the majority are male between 45 and 54 years old (3M) and

ver (2O), middle to high income (MH), and have lower than high

chool (2L) and secondary education (2M). 

Second the next set of 5 classes (4–8) determines the charac-

eristics of highly satisfied users, the set contains 823 users: 410

49.81% of the set of users, or 12.9% of the total population of 3178

sers) are highly satisfied users. The largest class 4 contains 436

sers (53%) who are classified to be: frequency of users – daily (H)

nd few times a year (L) –; less than 54 years old (L–M) and of low

ncome (L). The general characteristics of 4–8 classes are: majority

f low (3L) and high frequency users (3H); majority of less than 54

ear old (4L–4M), high to middle income (2M and 2H) with lower

han high school education (L), and they include a class with a ma-

ority of female users. It is interesting to note that the last two

lasses (7 and 8) demonstrate a fulfillment of a social e-inclusion

nitiative across social classes: the young (4L), middle (4M) and old

O) aged users who are average frequency users and female of low

ducation but they are having middle to high ease of use. 

Last, the set of five classes (9–13) determines the characteris-

ics of dissatisfied users. The characteristics of the largest dissat-

sfied class (9) are: monthly users; above 54-year-old and highly

ducated. The overall characteristics for these five classes include:

aily (2H) to monthly users (4M); low (L) and highly educated

2H), of all ages (2L, 4M and 3O), low income (L) and have low

o medium ease of use. In general, the users are either highly

ducated, mature, and have a medium ease of use or low educa-

ion and low income and low ease of use. The first group of high

ducation expects more in terms of output-effectiveness, whereas

he second group of low education expects more improvements in

erms of input-efficiency. 

It is interesting to note, CART results have highlighted a number

f characteristics for each class of users; such characteristics would

ot have been possible to obtain from the DEA scores alone with-

ut the integration with CART. Finally, it is worth noting that the

et of e-services have attracted all social classes (all ages, young
o old, low to high income, male and women). Hence, the Turk-

sh e-services are fulfilling one the EU i2010 initiative on inclu-

ive e-government services by means of the Internet but at a low

ercentage of 9% of the population. Further, the above analysis pro-

ides empirical evidence indicating that the current Turkish users

ave additional characteristics beyond those of US adopters. In US,

sers were classified to be only young, better educated, and high

ncome citizens, Morgeson, Van Amburg, and Mithas (2011) . 

.4. Management process and practical impacts of policy 

ecommendations 

One of the main objectives of policy makers in Turkey was to

eet the EU initiative for closing the digital divide through “im-

roved” provision of electronic government services. The policy

akers and senior managers at Turskat have played a very instru-

ental role in assuring success of our analytics project and im-

lementation of its evidence-based recommendations. First , they

pproved the initiation of the project by identifying its associ-

ted challenge and desired goals, facilitated the organization of

ocused-group meetings, and provided the technical staff support

o mount the online survey on the government portal of e-services.

ence, they provided us an excellent opportunity to identify real-

ime measures from users’ perspective, to collect real-time qual-

ty data on the human–machine online interactions on e-services,

hus avoiding data quality issues found in traditional surveys. Sec-

nd , the senior management has also provided the executive sup-

ort to implement analytics policy recommendations for achiev-

ng desired goals and creating sustainable creation of shared val-

es. Further support to the recommendations was found from the

tatements of responses to the open-ended question in the survey

uch as “please mention other challenges and desires to improve

he provision of e-services”; “the cost of registration of 10 Turkish

iras to (TL) e-government portal and the need to pay the same

ost again for replacing a lost password are high”; “to add more

ublic electronic services”; “I would like to create my personalized

age on my own“; and “I wish to have the option to add the links

 want to my personal page". 

Combing the various analytics recommendations from the DEA

nput-efficiency and output-effectiveness indices and the open-

nded statements has provided us with additional insights for

anagerial actions. The DEA and CART analyses showed that more

han one third of dissatisfied users include users with distinct

haracteristics from all male and female groups: low income; low

nd highly education; low and high ease of use; medium to high

requency users. To meet their concerns, the senior management

t TurkSat after communicating the recommendations to top pol-

cy makers at the Ministry of transport in charge of providing In-

ernet services has decided to take the following set of correc-

ive actions: (i) increased the Internet speed to reduce the time

f human–machine interactions to improve both the cost and ben-

fit factors; (ii) reduced the registration cost from 10 TL to 4 TL

ith more free options (email and SMS) to retrieve lost passwords,

ence reducing the cost factor and contributing more to benefit
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and opportunity factors; (iii) used a new architecture design to

revamp all e-services in order to provide 24/7 availabilities, elim-

inated internal machine to machine broken links to improve in-

teroperability among e-services; (iv) obtained ISO 9241-151 certifi-

cates for the usability and accessibility of e-services to improve

opportunity factors; (v) added new eservices to provide more op-

portunities to users; (vi) moved the informational group (9001) to

authenticated group G2 and introduced a small registration cost

to the e-government portal in order to provide better opportu-

nity in information quality; (vii) offered users more personalized

e-services via social media (Blog, Twitter and Facebook accounts)

using smart mobile phones with proactive reminders on the com-

ing due date of payments, receipts and tracking options of submit-

ted requests. The implementation of these policies led to a reduc-

tion in the cost-risk and improvement in the benefit-opportunity

factors; consequently fulfilling the main goal of closing digital di-

vide through the provision of more improved e-services to increase

in the take-up rate with significant practical impacts. 

Alston (2003) reported that the benefits, outcomes, impacts and

shared values of e-government services to people, agencies and so-

ciety have been scarce and they are often underestimated by agen-

cies. It was noted that not all the benefits of e-government are to

users, but to agencies and society as well. The study indicated that

45% of e-government users stated that they saved money by using

e-government. An average savings of $14.62 per single transaction

was estimated across all users; while businesses and intermedi-

aries had higher estimates of cost savings and benefits than cit-

izens, for instance 11% of respondents reported savings less than

$10; 11% reported savings between $10 and $24; and 8% reported

savings between $25 and $50 per a single interaction. The total

benefits to users were estimated to be at least $1.1 billion for a

population of 19.5 million citizens using a total 169 e-government

programs in 2002. The government aggregate financial benefit/cost

ratio across e-government programs was estimated to be 92.5%

with an estimated average annual saving of $450 million. 

Due to a lack of similar benefits estimates in Turkey, the

above values are used to provide rough and approximate values

on the Turkish benefits from the provision of new improved e-

government services. Looking at the available statistics at the gov-

ernment portal ( https://www.turkiye.gov.tr ) on January 21st 2016,

it can be seen that our online survey is in continuous usage at

https://www.turkiye.gov.tr/anket- eu- fp7- cees ), the reader can find

also the following information: a total of 26,094,739 registered

users out of 76,66,864 million citizens; and the development of

1394 e-services at 211 public institutions. The above data indicates

that 34.03% of population uses e-services; it is a significant im-

provement over the initial value of 9% in Turkey and 28% in EU27

before starting the government transformation project in 2009.

Given that the ratio of the number of registered users (26,094,739)

over the whole Australian population (19,413,0 0 0 including users

and non-users in 2002) has a value of 1.34, the benefits to users

in Turkey can then be estimated to be $1.573 billion in 2016. The

benefits to government can be similarly estimated and it mostly

comes from improved business processes and service delivery, in-

creased multi-agency cooperation, reduced service costs (advertis-

ing, printed materials, staff cost,...) as well as increased revenue.

Finally, the wider economic and environmental benefits to society

from engagement in the digital economy include reduced complex-

ity when dealing with government, significant ease of finding in-

formation for all stakeholders, more transparent government and

less corruptions; better information to make decisions; increased

community skill and knowledge; more new businesses and job

opportunities; more efficient supply chain management; and bet-

ter opportunities to initiate partnerships between government and

private sectors to deliver jointly better e-services among others. 
. Conclusions, limitation and future research 

The authors have introduced a cognitive analysis management

CAM) framework to evaluate the performance of e-government

ervices to achieve the government goal of closing the digital di-

ide through increasing citizens’ take-up rate. The CAM processes

ere carefully designed to model the human–machine online in-

eractions with e-services. It advances studies on the identification

f characteristics and measurable variables from users’ perspective

hrough an empirical survey. The cognitive process employed a de-

igned online survey to capture data from users while interactions

ith an e-service to ensure highest level of data quality, triangu-

ation and veracity. Much care was also employed to avoid data

rrors and bias found in distributed surveys. Advanced statistical

ools were used to validate measures and established relationships

o the organizational goal. The analytics process used DEA frontiers

nalytics to measure users’ satisfaction as well as generating input-

fficiency and out-effectiveness indices for each e-service. It es-

ablished benchmarking analysis that cannot be obtained through

ther methods. The analytics process used the classification and

egression trees for visualization and identification of characteris-

ics of satisfied, dissatisfied and highly satisfied users. These char-

cteristics cannot be found from the DEA results alone. The man-

gement analytics process has facilitated the synchronization and

oordination among stakeholders to generate a sustainable shared

alue impact. Our CAM framework contributes to the OR rigor in

odeling and solving complex problems while expanding the OR

elevance to the excellence in practice for addressing a new chal-

enge in a no-traditional domain of e-government, as follows: 

1- Identifying a set of new holistic performance measures from

the perspective of actual users. The authors believe that the

presented research makes a contribution to the OR normative

literature through the identification of primary measures on the

performance of e-services. This is achieved using online data

captured immediately after interactions. Therefore, good qual-

ity data can be assured for a proper implementation of Cost-

Benefit and Risk-Opportunity Analysis. 

2- Defining the human–machine online interactions as a set of

decision making units (DMUs) to model and frame the eval-

uation of performance of e-service (machine) and satisfaction

of users (human) in Data Envelopment Analysis terms is an

innovative contribution of OR modeling in Government. The

study has contributed to the generation of input-efficiency and

out-efficiency indices to support benchmarking analysis of e-

services as well as measuring users’ satisfaction levels. 

3- The developing of a two-dimensional visualization plot based

on the input-efficiency and output-effectiveness indices for e-

services, has facilitated the communication of analytics insights

to non-technical managers. For instance, the set of juridical

e-services was designed using the same standards. However,

the DEA benchmarking analysis placed the associated four e-

services in three different quadrants. Such benchmarking anal-

ysis and analytics insights were not expected from the perspec-

tive of providers. 

4- Showing empirically that the DEA bootstrapping approach may

not be necessarily needed for a large sample size. 

5- Combining DEA and CART methodologies has highlighted use-

ful information on users ‘characteristics. It helped to convince

policy makers to execute CAM recommendations by revamping

all existing e-services and obtained the ISO quality certification.

6- Engaging senior managers at various stages of the CAM analyt-

ics processes played a significant role to assure the success of

the project. Although this was not as part of a structured Del-

phi process, it nevertheless contributed to the evaluation and

fitness of the CAM framework. 

https://www.turkiye.gov.tr
https://www.turkiye.gov.tr/anket-eu-fp7-cees
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7- Measuring the outcome and impact of our CAM implementa-

tion were estimated in terms of number of users (adopters);

number of new e-services; and estimated financial savings be-

fore and after the implementation of recommendations: the

percentage of new users increased from 9% to 34%; number of

newly designed e-services increased from few tens to over one

thousands of e-services and the financial savings was roughly

estimated to be over one and half billion dollars annually to

users in addition to more savings to government agencies and

society at large. The estimated savings would be more than fif-

teen billions by 2026. 

8- Recommending the CAM framework for the establishment of

national benchmarking indices to continuously access the de-

velopment of e-services and the impact of new policy over

time. 

Like all studies, there are limitations which invite further re-

earch. The proposed framework was tested and validated us-

ng Likert Scale and rough estimates of the benefits and costs.

AM recommendations were implemented based on the under-

ying sprits of such estimates; obtaining real data would con-

ribute to measuring the real impact of CAM implementation. Fur-

her studies on the evaluation of services should be conducted

ith special measures from the perspective of providers and

ther stakeholders to develop a 360-degree evaluation ( Osman,

nouze, Hindi, Irnai, Lee, and Weerakkody, 2014b) . The new stud-

es would help to measure satisfaction and performance from

ll perspectives to measure different expectations among stake-

olders in different countries and businesses. Last, research on

lock-chain technology is needed for more efficient and secure

nd-to-end processing capabilities; preventing fraud, increasing

ransparency and trust among stakeholders in the e-government

cosystem, Buchanan and Naqvi (2018) . 

Our CAM framework is recommended to support the Informa-

ion Society Strategy of the Ministry of Development in Turkey ini-

iative as well as other in countries to develop government per-

ormance indices, generate data-driven policies to close the digi-

al divide and implement successfully other government transfor-

ation applications. Extension of the set of predictors to include

sers’ physical conditions and GPS location on residential informa-

ion would be advisable to provide further services to the need-

est users. CAM is currently being used to assess e-services from

sers and providers’ perspectives in UK, Qatar and Lebanon in or-

er to modernize government services, increase e-participation, re-

uce corruptions, and increase transparency to achieve a sustain-

ble growth of shared values for a smarter world. 
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