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1. Introduction

A debilitating complication of many chronic diseases is neuropathy. It is a disorder of the central nervous system 

which degrades the quality of life o f the patient. Early and timely diagnosis of neuropathy is beneficial in many ways. It 

can help determine the severity level of nerve damage and allow the monitoring  of disease growth.  Peripheral 

neuropathy is distinguished by numbness in the limbs and is the most prevalent complication of d iabetes. Other visib le 

effects of neuropathy include foot ulceration [1]. One of the earliest hidden symptoms of neuropathy is small fiber 

nerve damage and is apparent in a very early stage prior to the occurrence of visible symptoms [2]. On the other hand, 

visible symptoms of neuropathy occur only when the damage has reached the long nerve fibers. Therefore, precise and 

prompt diagnosis of neuropathy is necessary for prognosis, early recognition of subclin ical neuropathy, monitoring 

disease growth, classifying disease severity and suggesting relevant therapy plans [3]. 

State-of-the-art techniques for detecting nerve damage include electrophysiology, quantitative sensory testing, skin 

biopsy and nerve conduction studies. Most of these techniques are unable to detect small nerve fiber loss  and provide 

subjective and inaccurate results  [4]. A lthough skin biopsy has been successful in detecting small nerve fiber loss, the 

technique itself is invasive and therefore cannot be conducted frequently. Moreover, it is time consuming and requires 

expert skill [5].  

Recently, in vivo corneal confocal microscopy (CCM) has emerged as a non -invasive, objective surrogate and 

imaging  biomarker for detecting nerve fiber deficits. Due to the scientific fact  that small nerve fibers are present in the 

human cornea, an insight into the subbasal nerve plexus of the cornea can detect very early neuropathy. The 

Abstract: Recent research shows that small nerve fiber damage is an early  detector of neuropathy. These small 
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transparency of the epithelium enables the laser to penetrate into the different layers of the cornea and give a clear 

visualizat ion. Thus, CCM images reveal a detailed and magnified structure of the densely innervated cornea of the 

human eye. 

Studies have demonstrated the effectiveness and reproducibility of CCM in detecting neuropathy in diabetic 

patients [3] and subjects with Parkinson’s disease [6], Multip le Sclerosis [7], chronic migraine [8], chemotherapy 

induced neuropathy [9], human immunodeficiency virus [10] and acute ischemic stroke [11]. 

CCM provides a detailed and magnified  visual representation of the corneal nerve structure. Current limitations of 

such a promising tool include the tedious process of manual nerve tracing by clinicians for nerve parameter 

quantification and classification of images to define the degree of nerve damage. Rapid, accurate and automated 

quantification of CCM images by explo iting image processing techniques  tends to be a challenging task. Nevertheless, 

significant research has been conducted in this domain [12]–[17] attempting to address the challenge by employing 

different techniques.  

To the best of our knowledge, currently there is no fully automatic system for classificat ion of CCM images 

captured from the sub-basal nerve plexus of the cornea. One research group [18] has proposed the idea of neuropathy 

classification through convolutional neural networks, but it is a pilot study and lacks an in -depth analysis of the results. 

Therefore, the primary contribution of this research is to evaluate machine learning techniques for classifying 

corneal nerve images, using adaptive neuro fuzzy  in ference system (ANFIS), support vector machines (SVM), naïve 

Bayes (NB), linear discriminant analysis (LDA), classification trees and k-nearest neighbours (KNN). The classifier 

can distinguish between the state of nerves in the corneal images as normal or abnormal. The proposed system 

significantly speeds up the classification process which allows for early diagnosis of neuropathy . 

This paper is organized as follows. The subsequent section presents related work on CCM image segmentation and 

classification. Th is is followed by a detailed description of the proposed method including nerve segmentation along 

with  a description of machine learn ing algorithms in  Section  III. The evaluation of the classification technique is 

reported in Section IV which exp lains the experimental setting and achieved results. Finally, Section V concludes the 

paper with possible future research directions . 

 

2. Related Work 

A factor hindering the advancement of CCM for neuropathy detection is the absence of precise and automated 

systems for image analysis and disease prediction. Precise nerve segmentation and quantification techniques are 

required for the establishment of reliable and consistent standards for nerve measurements. Researchers have 

approached nerve segmentation of CCM images using various methods. Ruggeri et al. [17] p roposed a nerve 

recognition and tracing method based on vessel segmentation in ret inal images [15]. Th is method starts with fixed 

locations for seed point ext raction and tracks nerve p ixels by expanding  the region  of interest. Conflicts at nerve 

intersections are rectified by using a technique called bubble analysis which identifies nerve pixels by going through 

concentric circles from the center point. Then, fuzzy k-means clustering is applied to classify pixels as nerve or non-

nerve. The proposed algorithm was evaluated on 12 CCM images captured from a sit -lamp CCM. The algorithm 

showed a tendency for increased false positives, possibly due to the existence of other structures in the background. 

The segmentation time per image was 4 – 5 minutes. The same algorithm was modified by Scarpa et al. [16] to include 

the use of Gabor filters before nerve tracking. A further enhancement of the algorithm was performed by Po letti and 

Ruggeri [14], by allowing mult iple orientations of the lines for seed points extraction. The algorithm was tested on 30 

corneal nerve images and the segmentation time was reduced to 25 seconds per image. 

Dabbah et al. [19] developed a dual model algorithm for nerve segmentation  by applying Gabor and Gaussian 

filters. A comparative analysis of the proposed algorithm with another previously reported method for detecting 

asbestos fibers [20] showed improved performance for the dual model approach. Later, the  method was modified with 

multiscale enhancement in  [21], and p ixel classification was approached through neural networks and random forest 

classifiers. In another study [22], classification was performed  using SVM. A l-Fahdawi et al. [12] approached nerve 

segmentation through morphological operations. They applied  coherence and Gaussian filters for contrast enhancement 

followed by dilation and erosion operations for noise reduction. Canny edge detection is employed for detecting nerve 

edges. The algorithm required about 7 seconds per image and was tested on approximately 1500 images. 

Colonna et al. [18] introduced the idea of using U-net for nerve segmentation. U-net is a convolutional neural 

network originally designed for segmentation of biomedical images [23]. During the preprocessing stage, 10 pixels 

from each side of the image were removed and then the image was resized to  the input size required by U-Net using a 

bicubic transformation. The training was performed on 8909 images obtained from d iabetic and healthy subjects. 30% 

of this dataset was used for validation only. The maximum t rain ing epochs of the network was set to  6 epochs. Due to 

the lack of manual tracings for the training images, they created segmented images by applying a previously proposed 

algorithm for segmentation [24] and used it as ground truth for comparison. The performance of the trained model was 

tested on 30 test images and compared  against manual t racings by an observer. In  order to allow for slight shifts in the 

nerve position, a tolerance of 3 p ixels was allowed. Results revealed a sensitivity of 97%  and a false detection rate of 

18%. However, since the number o f test images is so small, the ability of the model to generalize cannot be determined. 



T. Salahuddin et al., Int. J. of Integrated Engineering Vol. 11 No. 3 (2019) p. 1-9 

 

 

 3 

The authors also used U-Net for neuropathy classification of images. They tested the trained model on 100  images and 

obtained an accuracy of 83% for binary classification (healthy/pathological). No further details on the experimental 

results were provided. 

In summary, the related research focusses on the segmentation techniques for CCM images and the domain  o f 

neuropathy classification of CCM images is yet to be explored. We show the potential of machine learning techniques 

for automatic classification of CCM images. In the following sections, we discuss our methodology. 
 

3. Materials and Methods 
 

3.1 Dataset 

The performance of the classifier was evaluated on 297 CCM images taken from the dataset in [25]. 93 images 

belong to the normal class, while the rest belong to the abnormal class. The images were captured using a laser 

scanning corneal confocal microscope, Heidelberg Retinal Tomograph, equipped with Rostock Corneal Module (HRT -

RCM: Heidelberg Engineering, Heidelberg, Germany). The images are of size 384x384 pixels and saved in JPG 

format. 
 

3.2 Nerve Segmentation 

During nerve segmentation, the images first undergo discrete wavelet transform to reduce the size o f the image to 

one-fourth of the original. For the elimination of background noise and enhancement of linear structures Gaussian and 

coherence filters are applied. The diffusion scheme for coherence filter was chosen to be optimized derivative kernels, 

because it gave the best results. The resultant image is passed through a Gaussian filter with a variance of 0.5. this is 

followed by binarizat ion with a threshold of 0.35. A number of morphological operations are applied to the binarized 

image to remove further noise and link b roken segments. The final step is skeletonization which reduces the detected 

nerves to one-pixel wide segments. Further details  on the image segmentation process are described in [26]. 

 

 
Fig. 1. Nerve segmentation outputs (a) original CCM image, (b) discrete wavelet transform, (c) coherence and 

gaussian filter output, (d) binary image, (e) skeleton image, (f) final segmented image 

 

3.3 Feature Extraction 

In this step, features representing the image are extracted from the binary segmented nerve  image. We extracted 

three features for each image: 

1) Total nerve fiber length (NFL) calculated as summation of all nerve pixels, 

2) Entropy of the image, and 

3) Area occupied by the nerves .   

 

(a) (b) (c) 

(d) (f) (e) 
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3.4 Machine Learning 

This section briefly explains the machine learning algorithms used in this study. 
 

3.4.1 Adaptive Neuro Fuzzy Inference System 

ANFIS is a machine learn ing algorithm which combines the learning power of fuzzy inference systems and 

artificial neural networks into a robust framework [27]. It consists of five layers. In the first layer, the membership 

functions specify the membership degree of each input variab le. These membership functions are formulated during the 

training phase. Using these membership functions, ANFIS creates a fuzzy inference system (FIS) which map the inputs 

to their corresponding outputs. The inferences from the ru le base are used in the second and fourth layer to adjust the 

firing strength of each rule. The fourth layer generates the outputs using a linear polynomial equation. The last layer 

concatenates all outputs into a single output.  

A two-pass learning algorithm is implemented during the learn ing stage [28]. The forward pass consists of 

updating the parameters  using least squares estimation to produce the output. During the backward pass, error is 

computed across all layers and parameter values are updated accordingly using gradient descent algorithm. 

The ANFIS network builds a FIS from the three input features, mapping them to the output using the membership 

functions. Hence, the FIS is trained on the randomly selected training data. The architecture of the ANFIS network is 

displayed in Fig. 2. The figure shows only four layers because the second and third layers are displayed as one, namely 

the rule layer. 

 
Fig. 2. Architecture of ANFIS 

3.4.2 Support Vector Machine 

SVMs are known as universal learners because they usually perform well in most classification problems. SVM aims to 

create an optimal hyperplane with maximum marg in, that separates the two classes of data. The points closest to the 

hyperplane are called support vectors, and they determine the position of the hyperplane. Consider a set of  train ing 

samples, , each having a label from a set or  labels, . The SVM classifier creates a 

classifier of the form [29]: 

, 

(1) 

 

Where  belongs to a set of real constants,  is the bias and  is a kernel function. Commonly used kernel functions 

are: linear , polynomial with degree d , and radial basis function . 

The lines that separate the data are defined by: 

 
(2) 

 
(3) 

 

This is equivalent to the non-linear function: 

 
(4) 

This maps the input data to a high dimensional space and finds the hyperplane that perfectly separates the classes. 
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3.4.3 Naïve Bayes 

Naïve Bayes is a simple probabilistic  classificat ion algorithm that classifies based on the likelihood of occurrence [30]. 

It assumes that features are independent given the class. During train ing, probabilit ies are calculated for each feature 

value given a class label. These probabilities are used to predict the label of a test sample. 

Consider a feature vector, , where each  feature value is taken from a distribution . The set 

omega contains all feature vectors: . Let  be the class label of an example.  

The class posterior probabilities given a feature vector can be defined as a discriminant function: 

. This can be rewritten after applying Bayes rule:   

 

(5) 

 . 

Here,   is the same for all classes and can be eliminated. Thus, Bayes discriminant functions can be written 

as the following: , where  is termed as the class-

conditional probability distribution. 

Finally, the Bayes classifier can be defined as: 

 
 

(6) 

 finds the maximum a posteriori probability for any example x. Extending this to simplified naïve Bayes 

assumption that features are independent given class, we get the following form: 

 
(7) 

 

3.4.4 K-Nearest Neighbors 

One of the classical and simplest nonparametric classification algorithms is the k -nearest neighbor (KNN) classifier, 

which classifies new examples based on nearest sample observation. It is based on the assumption that  when feature 

vectors for training data points are projected into a subspace, any new data point can be classified based on its 

proximity to its k  nearest neighbors [31]. 

Consider a set of  training samples, , each having a label from a set or  labels, , and  

features. The feature vector for  is represented as . A new sample  is assigned label  if a majority 

of  nearest neighbors of  possess the label .  

Nearness can be measured using any of the several distance measures. The most common ones are Euclidean distance 

(L2 norm), Manhattan distance (L1 norm) or Max norm. 

The Euclidean distance between two samples  and  is defined as: 

 

(8) 

 

The number of nearest neighbors in the neighborhood, k, is usually tuned as a hyperparameter. Empirically, as k 

increases, the accuracy of the prediction decreases.  

Several variat ions of KNN exist in the literature. Weighted KNN adds weight to the vote of each label in the 

neighborhood based on its distance from the test sample [32]. Epsilon-ball KNN is a method that selects neighbors 

within a distance from the test sample. 
 

3.4.5 Classification Trees 

Classification trees split the training data into partitions, based on mapping of inputs to the outputs. Thus,  by creating 

partitions it learns the different patterns occurring in the data. Commonly  used split criteria include gini index, 

informat ion gain and entropy. Partit ioning the data results in the creation of a tree, where the root of the tree is one 

feature value, and subsequent nodes are other feature values. Each level contains feature values corresponding to one 

feature. The leaf nodes predict the class of a given sample. As the tree goes deeper, the learning represents overfitting. 

Consequently, pruning the tree to a certain depth is a tunable hyperparameter. 
 

3.4.6 Linear Discriminant Analysis 

A concept similar to Linear Discriminant Analysis is Principal Component Analysis , which is mainly used for 

dimensionality reduction by creating new dimensions representing the original ones. LDA works in a similar way, by 

creating new dimensions from pairs of o rig inal dimensions . It aims to  maximize the distance between the means of the 
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two categories and minimize the variat ion within each category. The class of a test sample is predicted using Bayes’ 

Theorem as explained in Section 3.4.3. 

 

4. Experiments and Results 
 

4.1 Experimental Setting 

All implementation was done using MATLAB. In the preprocessing stage, data are normalized by dividing each 

value by the maximum of its column. Data is randomly  selected for train ing and testing using a ratio of 3:2 for train  and 

test sets. For generating an initial FIS, the grid partit ioning method is used. ANFIS is trained on the initial FIS for 30 
training epochs. The trained FIS is used to calculate the training error and trained repeatedly to generate the best FIS. The 

FIS with the highest accuracy is selected as the best one. 

Besides ANFIS, classifiers are also trained using Support Vector Machines (SVM), Naïve Baiyes (NB), linear 

discriminant analysis (LDA), classification trees (Tree) and k-nearest neighbors (KNN). For SVM, a linear kernel with a 
scale of 1 was used. Sequential momentum optimizer (SMO) was used as the optimizat ion method which uses second 

order polynomial informat ion to speedup convergence. The model identified 42 support vectors from the training data. 

The kernel smoothing type for NB was tuned to be Gaussian which is defined by the following formula: 

 

(9) 

 The number of nearest neighbors in KNN was set to 5 and Euclidean distance was used to determine nearness 

between the samples. The same train  and test subsets are used for all. For all models, hyperparameters were optimized to 
give the best results.   

4.2 Performance Measures 

The following performance measures are used in this study to evaluate the results of the ANFIS classifier: 

In this study, the performance measures of accuracy, precision, recall and macro F1were used to evaluate the 

performance. Accuracy is defined as TP+TN/TP+TN+FP+FN, precision as TP/TP+FP and recall as TP/TP+FN, where 

TP stands for true positives, FP for false positives, TN for true negatives and FN for false negatives. Macro F1 is the 

harmonic mean of precision and recall. 
 

4.3 Results and Discussion 

The predicted values by ANFIS are scaled to confine between the range [0,1] using the following equation.  



(10) 

where yi is the predicted ANFIS output for the ith data point. Fig. 3 compares the actual output and the predicted output 
by ANFIS on the testing data. Tuples (data points) from the testing data are represented by the x-axis (84 tuples). The y-

axis shows the actual and scaled predicted output for each tuple. For example, for the second data point, the actual 
output, y3, is 1, and the scaled predicted output, ys3, is 0.98 (almost 1).  

After calculating the scaled predicted output, the most satisfying range for each class is selected. The highest accuracy 

for this experiment is acquired given by the rule: 

IF ysi > 0.8 THEN ysi = 1 ELSE ysi = 0, 

where class ‘normal’=0, ‘abnormal’=1, and the cutoff point is 0.5. Hence, the ranges for class 1 and class 0 are (0.5,1] 
and [0,0.5] respectively. The cutoff line is shown in Fig. 4 as a dotted line where Y=0.5. For example, for the first data 

point, the actual output, y2=1, and it coincides with the predicted output, ys2. Since the predicted output is greater than 
0.5, thus, according to the rule, ys2=1, which makes it a true prediction.  

Table 1 presents the results from all 6 algorithms. For all six classifiers, the performance is more or less the same. It 
can be observed that NB, KNN, LDA and SVM achieved a better accuracy as compared to ANFIS, whereas 

classification trees are worse. However, we hypothesize for future experiments that as we move beyond binary 

classification, the performance of ANFIS will dominate others  because data will get complicated. Moreover, KNN was 
able to detect the highest of number of neuropathy images. Since the train subset only contains 213 samples, the 

prediction time of KNN is tolerable. However, as the training data increases, which is expected with further detailed 
studies, the prediction time of KNN will eventually increase. This is due to the known fact that during the testing phase, 

KNN compares the distance of the test sample with all training samples to get the min imum distance label. Fig.  4 shows 
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the decision surfaces formed by all classifiers  except ANFIS. Since it is a 2d plot, two features were considered for 

plotting the surface. The red region shows neuropathy while the green shows normal.  

 

 

 

 

 

 

 

 

Fig. 3. ANFIS Predicted and Actual Outputs Plot. Cut-off point = 0.5 

Table 1 - Results 

Machine 

learning 

algorithm  
TP TN FP FN Accuracy Precision Recall MacroF1 

SVM 44 32 6 2 0.90 0.88 0.96 0.92 

NB 44 32 6 2 0.90 0.88 0.96 0.92 

KNN 44 33 5 2 0.92 0.90 0.96 0.93 

LDA 43 33 5 3 0.90 0.90 0.93 0.91 

Tree 39 32 6 7 0.85 0.87 0.85 0.86 

ANFIS 44 29 2 9 0.87 0.96 0.83 0.89 

 

 

Fig. 4 Decision surfaces formed by the classifiers 
 

Since the classification relies  heavily on the extraction of features from the images, which is preceded by the nerve 

segmentation procedure, classification accuracy can be increased by improving the segmentation output and extracting 

the right features. Performance can also be improved by extracting different kinds of features, and by combining clinical 
features with the hand-crafted image features. 

5. Conclusion 

We have presented an evaluation of six machine learning algorithms for the problem of neuropathy classification 

of corneal nerve images. In  our experiments, we achieved the highest accuracy of 0.92 using the k-nearest neighbors 

algorithm. The automated process of classification solves the limitations posed by the current manual process. Further 

evaluations on other datasets are required to achieve better results. In future, we plan to continue our experiments and 

widen our research in this domain by extracting different kinds of features, incorporating deep learning, and observing 

the results on different kinds of datasets. 
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