Graduate Students, Science and Engineering

Micromodel Study on Pore-Scale Mechanisms Associated with Permeability Impairment in Porous media

Safna Nishad and Riyadh I. Al-Raoush

Department of Civil & Architectural Engineering, Qatar University, P.O Box 2713, Doha, Qatar

BACKGROUND AND MOTIVATION

- ✓ Methane Hydrate bearing sediments are potential energy resource reserving 500-1000Gt of carbon world wide.
- ✓ Dissociation of hydrate into gas and water is the preliminary process in gas production.
- \checkmark Mobilization and migration of fines during gas production reduce the permeability of the formation.
- ✓ Laboratory column studies reveal the reduction in permeability during single and two-phase flow.
- ✓ Clogging of pore throats by fines significantly decrease
- ✓ The fines mobilized by the gas-water interface might impact the permeability.
- Pore-scale visualization studies need to be conducted to understand the mechanisms responsible for permeability reduction during two-phase flow.

OBJECTIVES

The objective of this study was to investigate the pore-scale mechanisms associated with fines mobilization on permeability reduction during two-phase flow using a micromodel.

EXPERIMENTAL STUDY

Figure 2: Absolute permeability of micromodel calculated as the slope of volumetric discharge and pressure drop before and after fine injection

Figure 3: Variation of effective permeability of CO₂ with the flow rate before and after fine injection

- ✓ Breakthrough pressure of CO2 increased 39% with the presence of fines
- ✓ Based on the pore-scale observations, the reduction in permeability is affected by the following factors:
 - ✓ Percentage of particles in the porous media: increased retention on gas-water interfaces
 - ✓ Type of particles (i.e., hydrophilic or hydrophobic): the strength of capillary forces holding the particles on fluid interface increases with decreasing hydrophobicity.
 - ✓ Solution chemistry (i.e., ionic strength, pH etc.): the adhesion forces on solid surfaces are impacted by surface forces

Figure 1: Experimental Set-up

Figure 6: Different mechanisms affecting permeability of the porous media; interface pinning, coalescence and deformation in addition to pore clogging

✓ MATERIALS

- ✓ Glass Micromodels fabricated by Micronit Microfluidics
 ✓ Fines: Carboxylate modified Polystyrene latex particles of 5 µm diameter
- ✓ Fluids: Wetting phase (Brine solution (1 mM of NaCl and pH 4)) and Non-wetting phase (CO₂ gas)

✓ METHODS

- ✓ Determination of the following before and after fine injection
- Absolute Water permeability
 - Saturate micromodel with water (with or without fines)
 - Measure pressure drop across the micromodel at different flow rates
- 2. Effective CO2 permeability
 - Saturate micromodel with water (with or without fines)
 - Inject CO2 at 0.5, 1 & 2 mL/min
 - Measure pressure drop across the micromodel
- 3. CO2 breakthrough pressure
- Measure the pressure drop during CO2 breakthrough in the micromodel
- ✓ Capture images at various locations

K: Permeability, D

Q: Volumetric Discharge, mL/s

ΔP: Pressure Drop, atm

Figure 4: Effect of presence of fines in the micromodel on different factors.

Figure 5: Micromodel images at different permeability measurement conditions

CONCLUSIONS

The important findings from the experimental investigation are summarized below:

- > There is a decrease in permeability of the porous media due to the presence of fine particles.
- The reduction in permeability during single-phase flow is due to the pore clogging or decreased pore dimensions by the presence of fines.
- Comparatively higher percentage reduction in effective permeability during two-phase flow with CO₂.
- > The resistance to invade the pores by the gas-water interface increased by the presence of fines in the pore space.
- > Fine particles attached on solid surface are mobilized with the moving gas-water interface and retained on the interface.
- The capillary retention of fines on gas-water interface pin the interface on grain surface causing higher hydraulic resistance to flow.
- > The coalescence of two moving interfaces require higher capillary pressure due to the presence of fines on the interface.
- The different pore scale mechanisms (i.e., interface pinning, deformation and coalescence) are responsible for increased reduction in permeability during two-phase flow.
- The permeability can be affected by the percentage and type of fines and fluid chemistry in the porous medium.

ACKNOWLEDGMENT

This research was made possible by the National Priorities Research Program (NPRP) grant #NPRP8-594-2-244 from Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors