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Abstract: A synthetic approach to quinindoline derivatives by the Cu-catalyzed dual cyclization has been
developed. This catalytic reaction is a practical method for the systematic synthesis of quinindoline core
structure, which contains a limited-step synthetic strategy and can tolerant a wide variety of substituents.
In addition, the mechanistic study reveals that the reaction initiates from a Lewis acid accelerated
addition of aniline to nitrile and provides the indole substructure, and then the subsequent Cu-catalyzed
C-N coupling reaction furnishes the quinoline subunit and affords the quinindoline structure.
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1. Introduction

Quinindoline, the tetra-fused N-heterocycle, is an important structure, particularly in the field of
medical and biological chemistry, which contains the common bioactive subunits quinoline and indole
in its skeleton. The most useful and representative natural alkaloids containing the simplest substituent
on the quinindoline core structure are norneocryptolepine (without any substituent on the core) and
neocryptolepine (with a solely N-methyl group) [1-3] (Figure 1). These two important alkaloids have
attracted considerable attention from chemists because of their versatile bioactivities, including antimalaria,
antitumor, antibacterial properties [4-6]. They are the important components of traditional herbal
medicine in the West and Central Africa [7], and are also the model structures for the design of
pharmaceutical compounds. Therefore, many related studies, for example, their structure-activity
relationship, strategies for the synthetic approaches, and spectroscopy have been developed in recent

decades [8].
O+$0 O+
N~ N N N\
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Figure 1. Natural alkaloids with quinindoline core structure.
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Because of the complicity in the structure of tetra-fused rings, the developed methods for the synthesis
of quinindolines cannot satisfy the comprehensiveness of synthesis on the structures, and thus so many
different approaches appeared based on this. The typical approaching routes mainly relied on three
pathways. The first one is extension of two aromatic rings from an indole substrate, which is also the most
commonly involved strategy [9-13]. The second route is the ring expansion of a quinoline derivative.
This is the oldest strategy to afford the quinindolines, and reported as the first method to synthesize
the neocryptolepine [14-16]. The dual annulation of an N-alkynylaryl-N-aryl carbodiimide through
diradical pathway is the third common strategy, but not as often recorded as other two routes [17-19].
Despite these three dominant pathways, there have been several modern strategies reported [11-13,20-22].
In this respect, our recent work in the synthesis of norneocryptolepine derivatives through a Pd-catalysis
can systematically offer the unprotected quinindolines various substituents on the benzene moieties
(Scheme 1) [22]. This work and our experience in the construction of heterocycles [23-30] encouraged
us to continuously study in this field. In addition, during the investigation of optimized conditions,
we found the possibility to proceed with the dual cyclization under a Cu/Lewis acid catalytic system.
This discovery offered an alternative protocol in a lower cost catalytic system and also the potential for
industrial applications. Herein, we report a Cu/Lewis acid catalyzed dual cyclization for the synthesis
of quinindolines.

R y R' [Pa] R / \R'

concise protocol
NH: ||| Br
N

(Previous work)

R R'
7 R‘ [Cul/Lewis acid R 7\

low cost catalyst
NH, il Br
N

(This work)

Scheme 1. Palladium and copper-catalyzed dual cyclization to synthesize quinindolines.
2. Results and Discussion

Our study was initiated from the inadvertently discovered condition of copper catalysis, although it
did not show satisfactory performance (Table 1, entry 1). We then investigated various factors of the conditions
for this copper catalysis, and the results are summarized in Table 1 (also see Supplementary Materials
in detail). We first examined different solvents and found that because the high reaction temperature is
required, only the polar solvents with high boiling points can advance the reaction effectively (entries
2, 3). The cosolvent system is helpful for this reaction (entries 4-6), and the best yield was observed in
a 9:1 ratio of DMF/NMP. Increase or decrease in the temperature reduced the reaction yields (entries
7,8). We also test different kinds of ligand; however, they did not promote the reaction yields at all.
When we introduced the Lewis acid BF3-OEt; into the reaction, the reaction yield was significantly
improved (entry 9). We further reduced the loading of Cu,O and increase the amount of BF;-OEt,,
and found that the yield was further increased under 36 h reaction time (entry 10). Other copper
sources cannot perform as good as the Cu,O (entry 11). The Lewis acid is crucial, and we found that
only the boron acids can improve the reaction yield, other Lewis acids such as AICl3, TiCly and FeCls
are not able to provide the desired product in good yield (entries 12-14). Moreover, in the absence
of copper source, the reaction can still proceed in a bad yield (entry 15). We then tried to reduce
the loading amount of copper sources by fine-tuning the combination of every factor, but did not well
succeed (see Supplementary Materials for the detail). The moderate or better reaction yields required
at least 20 mol% of copper sources (10 mol% Cu,O).
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Table 1. Optimization of reaction conditions 2.

O [Cu] (x mol%) == 0
7 O Lewis acid (y mol%) O \

N

NHz ||| Br solvent, t °C, 24 h N
N H
1a 2a
Entry [Cu] (x) Lewis Acid (y) Solvent Temp (°C)  Yield (%) ®
1 Cu,0 (20) - DMF 120 36
2 Cu,0 (20) - DMSO 120 29
3 Cuy0 (20) - NMP 120 33
4 Cu,0 (20) - DMSO/NMP (4:1) 120 39
5 Cu,0 (20) - DMEF/NMP (4:1) 120 50
6 Cuy0 (20) - DME/NMP (9:1) 120 65
7 Cu,0 (20) - DME/NMP (9:1) 150 58
8 Cu,0 (20) - DMEF/NMP (9:1) 100 37
9¢ Cuy0 (20) BF3-OEt; (20) DME/NMP (9:1) 120 88 (83) d
10¢ Cu,0 (10) BF;-OEt; (40) DME/NMP (9:1) 120 90 (83) 4
11 Cul (20) BF3-OEt; (40) DME/NMP (9:1) 120 69
12 Cu,0 (10) AlCl; (40) DME/NMP (9:1) 120 48
13 Cu,0 (10) TiCly (40) DME/NMP (9:1) 120 37
14 Cu,0 (10) FeCl3 (40) DME/NMP (9:1) 120 trace
15 - BF;-OEt; (40) DME/NMP (9:1) 120 11

@ Reaction conditions: 1a (0.2 mmol, 1.0 equiv), Cu (10-20 mol%), Lewis acid (0—40 mol%), solvent (2.0 mL),
indicated temperature (°C), under N for 24 h. ®TH NMR yield based on internal standard mesitylene; ¢ 3.0 mL
solvent was used; 9 isolated yield; € 36 h.

After studying the factors of the reaction conditions, we then investigated the reaction scope
by testing various substituents to understand the capacity of this copper catalysis. We selected two
conditions (entries 9, 10) as our standard conditions since we found that different structures fit different
conditions. The reactivity for the substituent on the aniline moiety (left ring, Table 2) was surveyed
first. It was found that an electron-donating group on the aniline moiety can generally provide higher
yields of the desired products than those with an electron-withdrawing group on it. In addition, for
the substrates with an electron-donating group, the condition A (10 mol% of CuyO and 40 mol% of
BF3-OEtp) can provide higher yields of the desired products than the condition B (20 mol% of Cu,O
and 20 mol% of BF3-OEt,). On the contrary to the electron-donating substituents, the substrates with
an electron-withdrawing group can offer higher yields under the condition B. Thus, for a substituent
para to the amino group (entries 1-3), the desired product 2b can be afforded in 41% yield under
condition B; and the products 2¢, 2d and 2e can be obtained in 68%, 76% and 45% yields, respectively,
by using condition A. The substrates with a substituent meta to the amino group (1f and 1g) can
also advance the reaction smoothly and afford the corresponding products 2f and 2g in moderate
yields with condition B. The disubstituted products 2h and 2i can be obtained in 71% and 56% yields,
respectively, with condition A.

We further surveyed the substrates with a substituent on the ortho-bromostyryl moiety.
As indicated in Table 3, the products were consistently obtained in higher yields with condition
A. For the substrates with a substituent para to the bromide (1j, 1k and 11), the corresponding products
2j, 2k and 2l can be afforded in moderate-to-good yields. The distribution of yields reveals that
the electronic property on the styryl moiety also significantly affects the reaction yields. Substrates with
a substituent meta to the bromide advance the reaction smoothly as well. Thus, the meta-fluoro and
chloro groups resulted in similar yields of the desired products (2m and 2n), while the meta-methyl
substituted product 20 was generated in a slightly lower yield. The amino substituted products
2p and 2q were obtained in much lower yields comparing with other meta-substituted products.
The disubstituted products 2r and 2s can be also generated in moderate yields; the yields of the desired
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products are 62% and 57%, respectively. Moreover, the naphthyl group is able to be tolerated to give
the product 2t in 49% yield.

Table 2. Reaction scope ?.

X
R
QT/\Q Cu,O/BF5*Et,0 RN\
NH; (| g DMF/NMP (9:1), 120 °C NN
N H
1

2

Entry 1 2 Condition Yield (%) ?

R

HaC
%
2 y O . A 68
NHz ||| Br H 2c
N

H,CO
3 1¢, R = CHs A 76
1d, R = OCHj,4 =N

1e, R = N(CHs), H

5 Rl
/‘i
NH2 ||| Br
N
F

Ha
1f,R=
1g, R= CF3

7 R HsCO
R N
C A
av
0
NH, Il Br { J O
N o)
8 1h, R = OCH, =

g,O

1, R R=¢

2 Condition A: 1 (0.4 mmol, 1.0 equiv), CuyO (10 mol%), BF5-OEt; (40 mol%), DMF/NMP (2.0 mL, 9:1), 120 °C,

under N for 36 h. Condition B: 1 (0.4 mmol, 1.0 equiv), Cu,O (20 mol%), BF3-OEt; 20 mol%), DMF/NMP (3.0 mL,
9:1), 120 °C, under N for 24 h. b Isolated yield.
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Table 3. Reaction scope 2.

= R
= R Cu,0 (10 mol%) ~
7\ // BF4°Et,0 (40 mol%) 7 \_y
NHz ||| Br DMF/NMP (9:1) N
N
1

N
120°C, 36 h H
2
Entry 1 2 Yield (%) b
F
1 ey, .
=N
O Y O N 2
NH, || g CF,
N
av
) 1j,R=F O - 57
1k, R = CF NN
11, R = OCHj H 2k
OCHs
N2 i
=N
N 21
av
4 O - F 75
NN
H 2m
av
' QLlse -
avs ¥
NH, Il Br y O
N
6 O - Cre 69
1m R=F NN
1n, R=Cl H 20
10,R = CH,
1p. R = N(CHy), J O CH,
7 14, R = N(nBu), O N 51
N =N CHj;
H 2p
nBu
8 O ¢ D N 32
N =N )78u
H 2q
OCH3
e Qe
=N
N
74 O R H 2r 5
NH, I Br
~ A
10 1r, R = OCH; O - 57
. N
1s, R,R=§Z> H 2s
11 l 7 49

w0
N

1t

2 Reaction condition: 1 (0.4 mmol, 1.0 equiv), CuzO (10 mol%), BF3-OEt; (40 mol%), DMF/NMP (2.0 mL, 9:1), 120 °C,
under N for 36 h. P Isolated yield.
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From the results of this and our previous works, we can find that the reactivity of substrates is
very different between conditions of the Pd- and the Cu-catalysis. Therefore, we tried to figure out
the reaction pathway of this Cu-catalytic dual cyclization. We set up some control experiments to
carefully study the nature of this reaction (Scheme 2). We first monitored the relationship between
the reaction time and the reaction behavior. When the reaction time was increased, the recovered
amount of substrate 1a decreased, and the yield of product 2a increased. A supposed intermediate
3a was detected in low yields. We then removed the copper source and checked the difference of
the reaction, and the results were unexpected. The supposed intermediate 3a was always detected,
and the detected amount of 3a was steady around 20% for the reaction time greater than 16 h.
In addition, a trace amount of the desired product 2a was detected, which was probably caused by
the intramolecular Sy Ar reaction. We further investigated the variety of the amount of 3a by solely
using Cuy0 as the catalyst. It was found that the substrate is fully consumed in a much longer
reaction time compared with the standard condition, and the crude TH NMR spectrum is messier.
Some unidentified compounds appear at 18 h reaction time. The amount of supposed intermediate
3a was generally kept in a low yield for different reaction times. The formation of 3a implied that
the cyclization pathway is likely similar to the reaction with the condition of BF3-OEt, only. The results
of control experiments can be briefly concluded as the following. First, the supposed intermediate 3a
was detected in every control experiment; therefore, it is highly possible that 3a is the key intermediate
in the copper catalysis. Second, the amount of 3a is higher while the BF3-OEt,; is introduced into
the reaction. This phenomena is obvious when the BF3-OEt; is solely introduced without any copper
source. Third, during the reaction, the amount of 3a is steady, and would not change as the product
formed. This is probably because the subsequent step is faster than the formation of 3a.

O Cu,0 (10 mol%) y
7 O BF4+E,0 (40 mol% \ O
NHz ||| Br DMF/NMP (9:1)

N 120°C, x h
1a 2a 3a (Y O or NH)
x= 6;1a (51%), 2a (23%), 3a (5%)
x = 12: 1a (27%), 2a (51%), 3a (7%)
x = 18: 1a (12%), 2a (60%), 3a (11%)
Br
O 7 O BF4+Et,0 (40 mol%) O 7 \
— +
NHz || Br DMF/NMP (9:1) Nl N Y
N 120 °C, x h H H
1a 2a 3a (Y =0 or NH)
x = 16; 1a (53%), 2a (0%), 3a (16%)
x = 24; 1a (47%), 2a (5%), 3a (21%)
x = 30; 1a (39%), 2a (8%), 3a (19%)
Br
O % O Cu,0 (10 mol%) O 4 \
— +
NHz ||| Br DMF/NMP (9:1) L. N Y
N 120°C, x h H H
1a 2a 3a (Y =0 or NH)

x = 24: 1a (21%), 2a (46%), 3a (6%)
x = 30: 1a (11%), 2a (53%), 3a (7%)
x = 36; 1a (0%), 2a (57%), 3a (5%)

Scheme 2. Control experiments ?; 2 the yields were estimated by GC-MS.
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Based on the above results and the previous report [31], a tentative reaction pathway can be
proposed as below (Scheme 3). The reaction is likely to be initiated by the coordination of substrate with
BF3, which accelerates the cyclization to form the intermediate A. Transmetalation of the boron species
A generates the copper complex B, which facilitates the intramolecular addition to form the complex C.
Aromatization and release of [Cu]Br affords the desired product 2a. The [Cu]Br can react with proton
to regenerate the [Cu]*.

(A _./_.[Cur'f’
N +
NHz|| Br NH ||| Br H HN Br

2
( N N\BF3
BF; A [Cu}

_.\/_. \v\*_, at

N-[cu] I [Cu] N
B C 2a

[CulBr + HY — [Cu]* + HBr
Scheme 3. Proposed reaction mechanism.

3. Materials and Methods

All reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA), Alfa-Aesar (Haverhill,
MA, USA), TCI (Tokyo, Japan) and Fisher-Acros (Loughborough, UK), and were used without
further purification unless otherwise noted. All manipulations of oxygen- and moisture-sensitive
materials were conducted with a standard Schlenk technique or in the glove box. Flash column
chromatography was performed using silica gel (230-400 mesh). Analytical thin layer chromatography
(TLC) was performed on 60 Fys4 (0.25 mm) plates and visualization was accomplished with UV light
(254 and 354 nm) and/or an aqueous alkaline KMnO;, solution followed by heating. Proton and
carbon nuclear magnetic resonance spectra (*H NMR and 3C NMR) were recorded on Bruker 300
or Bruker 600 spectrometer with Me,Si or solvent resonance as the internal standard (\H NMR,
Me,Si at 0 ppm, CDCl3 at 7.26 ppm, dg-DMSO at 2.49 ppm; *C NMR, Me,Si at 0 ppm, CDCl; at
77.0 ppm, dg-DMSO at 39.7 ppm). 'H NMR data are reported as follows: chemical shift, multiplicity
(s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet, br = broad,
m = multiplet), coupling constants (Hz), and integration. IR spectral data were recorded on a Bruker
TENSOR 37 spectrometer (Bruker, Billerica, MA, USA). Melting points (mp) were determined using
a SRS OptiMelt MPA100 (Stanford Research Systems, Sunnyvale, CA, USA). GC-MS data were obtained
from the HP 5890 Series II GC/HP 5972 GC MASS Spectrometer System. High resolution mass spectral
data were obtained from MAT-95XL HRMS by using EI method.

4. Conclusions

In conclusion, we have developed a catalytic dual cyclization to approach the quinindolines by
using the copper and boron species as the catalytic system. This catalytic cyclization could proceed
for most substrates and provide the desired products in moderate-to-good yields with tolerance of
various substituents. Study of the reaction mechanism via the control experiments indicates that
the reaction goes through the formation of an oxindole-related intermediate, and the copper species
can facilitate the intramolecular SyAr reaction. Moreover, this reaction protocol with low cost catalysts
may represent a practical synthesis with potential in industrial applications.

Supplementary Materials: The following are available online, experimental procedures for the synthesis of
substrates (1) and products (2). Table S1-S3: optimization study:.
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