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ABSTRACT 

ABUJABER, AHMAD, A.M., Doctorate : June : [2021:], 

Doctorate of Philosophy in Business Administration  

Title: Harnessing Machine Learning in Clinical Decision Support: Theory and Practice 

Supervisor of Dissertation: Adam M. Fadlalla. 

Decision making is a central activity in all clinical professions. Clinical 

decisions bear wellbeing and economic risks and consequences for patients, families, 

employers, and national economies. Thus, clinicians should employ sound scientific 

knowledge to promote optimum decision outcomes. Evidence-based medicine 

organizes clinical decision-making activities with philosophical, ethical, and 

methodological foundations to ensure accessibility to the best scientific knowledge to 

inform clinical decision-making. But high-quality evidence could be lacking or 

methodically, ethically, or economically unfeasible, compelling clinicians to make risk-

bearing decisions without an ideal evidence-base. In uncertain clinical conditions, 

decisions` outcomes are probabilistic and the clinicians’` knowledge about outcomes 

are limited which make the clinical decision in significant need for aid.  

The advent of electronic health records and the data warehouse technology 

boosted healthcare industry capacity to generate and store vast amounts of diverse data 

types. Advanced analytical and computational techniques in artificial intelligence and 

medical informatics provide unprecedented opportunities to galvanize knowledge 

deployment in clinical decision, bridging gaps in clinical knowledge. The ability of 

machine learning approaches to handle the large-scale and diverse data addresses some 

evidence-based medicine challenges, providing real-time, cost-effective evidence.  

Nevertheless, despite our beliefs that artificial intelligence and data science may 
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have the potentials to transform the clinical practice, the utilization of artificial 

intelligence in healthcare is still poor, and the full benefits are not reaped. The adoption 

of machine learning in healthcare faces several epistemological, methodological, and 

ethical challenges that make the integration between the machine learning and the 

evidence-based medicine a hard mission. 

This dissertation adopted a literature-based reconceptualization to help 

comprehensively understand the two paradigms, to guide the paradigms reconciliation 

agenda and to determine the reasons behind the slow adoption of machine learning in 

healthcare industry. Secondly, we followed an interpretive research design in order to 

propose a roadmap that aims to enhance the adoption of machine learning in clinical 

decision support. To validate the theoretical work, we conducted five empirical studies 

in collaboration with trauma surgery section at Hamad Medical Corporation. In these 

studies, we developed several ML predictive algorithms to address real-life clinical 

issues that are faced by the trauma surgery clinicians and predict the prognosis of 

patients who suffered from Traumatic Brain Injury which include mortality, prolonged 

mechanical ventilation, ventilator associated pneumonia and prolonged in-hospital 

length of stay.   

Subsequently, this dissertation determines how machine learning and evidence-

based medicine can be reconciled through proposing a novel pragmatic reconciliation 

framework that guides the clinicians and the scholars on how to benefit from the 

synergistic effect of both paradigms. In addition, this dissertation determines the factors 

that negatively affect the adoption of machine learning in clinical decision support and 

proposes an original theoretical framework that draws a strategic road map towards the 

effective adoption of machine learning in healthcare. Furthermore, the dissertation 
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sheds the light on the future research directives that may enhance the compatibility 

between the data science and the evidence-based medicine paradigms in order to 

augment the clinicians’ capacity to make high-quality informed decisions.   
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CHAPTER 1: INTRODUCTION AND PROBLEM STATEMENT  

Data Science in Healthcare 

The interest in data science approaches in the healthcare industry is 

growing significantly, and with the growing capabilities of handling large data 

sets, there are unprecedented research opportunities that may change the face 

of care delivery (1). The growing use of electronic health records has 

contributed to the generation of massive volumes of diverse types of data, but 

utilizing such data effectively remains problematic. For instance, improving the 

quality of care using electronic health records is still an under-researched area 

(2). Fortunately, researchers are increasingly assisted by the availability of 

increasingly effective analytical tools that enable the analysis of large-scale 

data sets, such as machine learning (ML) approaches (3). These help 

practitioners improve the quality of their decisions and as a result contribute to 

improving the treatment outcomes and their organizations’ economic 

performance (4). The advancement in modern computational capacity, 

specifically ML, encouraged industrial organizations to make considerable 

investments in data science analytics in order to improve decision-making 

capabilities, and reduce risks and costs (3, 5).  

However, despite the massive quantities of data accumulating from 

patient records (6), and the rise of the health information technology and health 

informatics (7), the potential benefits of the modern analytics in the healthcare 

industry have not been fully reaped, which results in both economic and 

wellbeing opportunity costs for healthcare systems and service users (6, 8, 9). 

The utilization of ML analytics in other business sectors helped organizations 

improve efficiency and profitability (10). Therefore, there is an economic cost 
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associated with not utilizing ML in managing healthcare organizations. One of 

the key areas where ML can benefit the healthcare industry is in clinical 

decision support. Clinical decisions are the fundamental activity of all clinical 

professions, whose outcomes influence patient health status, the quality of life 

(QoL) of patients and their families, and the reputation of healthcare institutions, 

as well as the cost of healthcare for patients and their families, hospitals, and 

the entire economy. Therefore, the great capacity of ML approaches represents 

an unprecedented opportunity to uncover potentially useful knowledge in 

clinical data that can influence clinical decision making and treatment 

outcomes.  

Research Problem  

The opportunity cost of not utilizing data science in healthcare is 

significant, and in the era of electronic health records, investment in data 

science is arguably an obligation. However, developing huge data warehouses 

without building the capacity to leverage such data is meaningless. Accordingly, 

the critical question of concern to this research is why the potential benefits of 

data science and ML analytics have not been realized in supporting clinical 

decision making.  

Research Question and Objectives 

The key research question for this thesis is “why are the benefits of ML 

in supporting clinical decision making not fully realized?” 

To answer this question, we break it down into the following sub-questions: 

(a) How can ML be integrated with EBM to support clinical decision 

making?  
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(b) Why is ML adoption in healthcare relatively slower than in other 

sectors?  

(c) How ML adoption in clinical decision support can be enhanced? 

Answering this question mandates a meticulous analysis of literature in 

order to explore the current state of research in this area, to identify the gaps 

and to determine the future research directions that help both practitioners and 

academics benefit from utilizing ML in the healthcare sector. Therefore, this 

study aims to:  

 Understand the nature, strengths and challenges of clinical decision 

making in the era of evidence-based medicine (EBM). 

 Review the recent ML literature to understand the current status of ML 

in supporting the clinical decision making, identifying related 

opportunities and challenges. 

 Determine the gap in knowledge in order to address the reasons for the 

poor utilization of ML in biomedical sciences. 

 Propose a theoretical framework to guide future efforts to reconcile ML 

and EBM in a way that addresses philosophical, methodical, and ethical 

differences. 

 Propose a conceptual framework that provides a roadmap for policy 

makers to address the problem of slow ML adoption in clinical decision 

making.  
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CHAPTER 2: CLINICAL DECISION MAKING – THEORY AND PRACTICE 

Within medicine, there are more than ten major disciplines consisting of 

various subspecialties, dealing with more than 10,000 specific illnesses. Before 

starting any treatment for all these diseases, a diagnosis must be established 

first (11). The wellbeing and economic consequences that are associated with 

clinical decisions influence numerous stakeholders in addition to patients, 

which is part of the reason substantial amounts of state subsidies are devoted 

to supporting the healthcare sector. Thus, providing support to clinical decision 

making is of utmost importance due to the inherent importance of healthcare 

services for patients and society in general.  

Djulbegovic et al. (12, 13) discussed that although substantial 

expenditure and subsidies are devoted to the healthcare sector, health 

outcomes remain poor. They attributed this to suboptimal decision making, 

which is regarded as a leading cause of death, and which is responsible for 

more than 80% of healthcare expenditure. In 2011, the USA spent around 18% 

of GDP ($3.2 trillion) on healthcare, of which around 30% was considered 

inappropriate and therefore wasteful (14). Qatar spent only 2-3% of GDP on the 

healthcare sector in the past decade (15); while no comparative data is 

available about the suitability of expenditure on national healthcare, it can be 

assumed that a great deal of wasteful expenditure exists, which could be 

mitigated by enhancing the quality of decision making.  

The objectives of this section are (a) to explore the theoretical and the 

philosophical foundations of the clinical decision making and the EBM 

paradigm, (b) to understand how the EBM defines the guiding principles for the 

clinicians’ clinical decisions and scientific activities, and (c) to identify the 
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challenges that face the EBM and impede its further progress in the era of the 

4th industrial revolution.  

What Do the Terms “Decision” and “Clinical Decision Making” Mean?  

This section explores the theoretical and philosophical foundations of 

clinical decision making, and how the EBM paradigm guides the clinicians’ 

clinical decisions and scientific activities. According to the Oxford Dictionary, 

the word “decision” refers to “the choice or the judgement that you make after 

thinking and talking about what is the best thing to do”. Dowie (16) argued that 

a decision is the “cognitive preliminary to the action” (p. 8), referring to the 

choice of what to do now or the choice to wait and see. A decision cannot be 

articulated without subjecting multiple options to judgement, which refers to the 

assessment of alternatives. In other words, the concept of a decision refers to 

assessing the several alternatives and then choosing to operate or not to 

operate on the basis of one of them. Regarding to particular concept of medical 

decision making, Karni (17) defined it as the “choice of an action following a 

diagnosis of a patient’s condition, the medical treatment itself; the facility in 

which it is to be administered; and, if perceived relevant, the individuals who 

administer it”. More broadly, Gladstone (18) stated that clinical decision making 

is used interchangeably with clinical judgement, referring to “a cognitive 

process concerned with problem recognition through the identification of cues 

and clinical features, data gathering, integration, analysis, evaluation and 

choice to produce an informed decision” (p. 66).  

It is very important to understand that any clinical decision is associated 

with an element of assessment of the future (19). In the book Analysing How 

We Reach Clinical Decisions, Dowie (16) discussed that the sensibility of a 
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decision is determined, to a great extent, by the amount of knowledge the 

clinician has about how the future may look as a result of making the decision. 

Without this future element, the decision will be made without thought.  

The future is an integral component in any clinical decision. The future 

that clinicians aim to influence by their decisions is related to patient outcomes 

and healthcare system interests. Since clinicians cannot know the future with 

certainty, nor whether their diagnosis is absolutely accurate, they cannot know 

whether their prescribed interventions and treatments will cure the patients (20). 

Furthermore, the probabilistic nature of the decision outcomes adds to the 

challenge that the clinicians face (21). The clinician is expected to make 

decisions that guarantee the best possible outcomes for patients, their families, 

and healthcare organizations. However, the inherent lack of knowledge of the 

future scenario resulting from the clinical decision places a great responsibility 

on the clinician, who must evaluate all conceivable risks. Clinical decisions may 

negatively affect the patient’s health or QoL and may unnecessarily increase 

the healthcare bill and burden of families and the entire economy. Furthermore, 

the timeframe within which the clinical decisions are required are of significant 

importance (19, 20). Subsequently, clinicians are under pressure to make 

decisions that maximize gains for patients and healthcare institutions, while 

minimizing risks, all in the context of situations with a great degree of inherent 

uncertainty, represented in the limited amount of relevant knowledge about the 

future that may help evaluate various decision alternatives.  

Several scholars asserted that the clinical decision making is a rational 

process that consists of observations, critical thinking, and clinical judgement 

and information processing, relying greatly on hypothetico-deductive reasoning 
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(22-24). When applied in clinical decision making under uncertainty, 

hypothetico-deductive reasoning is considered a method for choosing the best 

alternative (among available options) based on the rationality criterion (13, 24).  

Rationality usually refers to analytical decision making to achieve 

desired goals. Rational decisions are evaluated based on their ability to 

optimally maximize the expected utility from available choices (13, 25). 

Nonetheless, rationality does not guarantee that a decision is error-free, rather 

it accounts for false negative or false positive types of errors (13). In other 

words, if rational reasoning is followed, a conclusion will be sought irrespective 

of the accuracy of the premises. If a premise is false, the conclusion, although 

the process is rationally valid, will be false.  

Theories of rationality in clinical decision making can be broadly 

classified into three categories; descriptive, normative, and prescriptive 

theories (12, 13, 19, 26-28). Descriptive theories are concerned with how and 

why decisions are made (13, 19). Originating from psychology and behavioral 

sciences (29), descriptive theories that have direct relevance to medical 

decision making include (but are not limited to) bounded rationality, 

argumentative theory of reasoning, adaptive rationality, and pragmatic/ 

substantive rationality (12). Descriptive theories put great emphasis on the 

context, ecology, and environment where decisions are made, with no 

restrictions on whether people are rational or irrational (19). On the other hand, 

normative theories depict how rational people should make decisions in an 

optimal world (19). They stem from the disciplines of mathematics, statistics 

and economics (13, 27, 29). Normative theories that influence the clinical 

decision making include epistemic theories that direct the practice of EBM and 
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expected utility theory, which provides the basis for widely used clinical decision 

analyses (12, 13). The prescriptive theories basically deal with how people can 

think and decide (28, 30). They stem from the fields of operations research and 

management science (29). Prescriptive models are usually variants from both 

descriptive and normative theories. The prescriptive theories are set out to aid 

the decision making process in the form of policies, protocols and clinical 

guidelines (19). Table 1 summarizes some of the common theories of rationality 

that are related to the medical decision making.  

 

 

Table 1. Major Rationality Theories Relevant to Clinical Decision Making 

Descriptive theories 
 

 
 

Bounded rationality Rational behavior relies on the satisficing process 
(finding a good enough solution) (12). 

Argumentative theory of 
reasoning 

People make decisions because they can find 
reasons to support them. These decisions are not 
necessarily the best or the most satisfying to 
rationality criteria; rather they favor socially 
acceptable attitudes, being easy to justify and less 
likely to be criticized (31). 

Adaptive/ecological 
rationality 

A variation from bounded rationality in which human 
decision making relies on the context and 
environmental cues. Rational decision making 
requires adaptation to environmental/ patient 
circumstances (20, 32).  

pragmatic/substantive 
rationality 

The decision depends on the content of the decision, 
not only on the process, and is assessed in light of 
the short- and long-term purpose (33). 

Normative theories  
Epistemic theories Rationality is based on acquisition of true/ fit-for-

purpose knowledge. EBM is an example of a 
normative approach to medical decisions (12, 13, 
34). 
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Furthermore, we identified five principles that have been agreed upon 

across all the theories of rationality and decision making that apply to the clinical 

decision making. 

 Benefit-harm/ gain-loss interaction: all the major rationality and 

decision-making theories aim to maximize gain and minimize loss. This 

applies to the basic principles of clinical decision making, where 

clinician’s decisions aim to achieve the best outcomes for the patients 

and their families while being cost effective.  

 Uncertainty: decisions occur under uncertain conditions and the 

future/decision outcome is probabilistic. Therefore, rational decisions 

require reliable evidence to face the uncertainties.  

 Cognitive architecture: there is consensus among the three theoretical 

approaches that rational decisions have to be informed by the human 

Normative Theories   

Expected utility theory 
(EUT) 

Based on Bayesian probability calculus, this is the 
most dominant approach to rational decisions in 
medicine (13). The rational decision is associated 
with selection of the alternative with higher expected 
utility (expected utility is the average of all possible 
results weighted by their corresponding 
probabilities) (12, 13). 

Prescriptive theories  
Bounded rationality Variation from the descriptive approach providing 

mechanisms for improving human rationality given 
the human cognitive architecture (12, 13). 

Dual processing 
theories of rational 
thought/ Meliorism  

Human cognition architecture can be viewed as a 
function of two types of processes: (a) old mind – 
intuitive and emotional based; and (b) new mind – 
analytical, related to the future. Rationality should 
take into account both the intuitive and analytical 
processes. Prescriptive models are variations of 
descriptive and normative approaches, proposing 
that individuals can be taught to be rational.  
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cognitive architecture, which is composed of two types of processes; (a) 

old mind, fast, intuitive, and emotional process; and (b) new mind, 

analytical, and effortful process. 

 Context: rational decisions are contextual, depending on the context 

with respect to epistemological, environmental, and computational 

constraints of the human brain (13). 

 Ethics and morality: rational decisions are expected to serve the best 

interests of the individual (as per the duty-bound obligations of clinical 

professionals), while putting high emphasis on the greatest benefit for 

the majority (utilitarian ethics) (35).  

Consequently, clinical decision making can be defined as a cognitive and 

rational reasoning process that takes place under uncertain conditions, which 

relies greatly on the hypothetico-deductive reasoning, that defines the way a 

healthcare professional processes the patients information (36). This forward-

reasoning approach is considered beneficial not only because it guides 

clinicians’ analytical process and diagnoses, but also helps prescribe the 

decision (18, 37). This mode of reasoning and deciding follows four essential 

steps:  

 Acquisition of cues: Primary data about the patient and other sensory 

stimuli which direct clinicians’ thought processes and help generate 

hypotheses. 

 Hypotheses generation: Based on the collected cues and patients’ 

baseline data, clinicians set differential diagnoses. 

 Interpretation of cues: Clinicians collect further data to re-explore and 

re-interpret cues and use them in evaluating hypotheses. This could 
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include diagnostics such as laboratory and imaging studies and/or 

consulting specific specializations. 

 Hypothesis evaluation: The cues are then evaluated and applied to an 

overall hypothesis that directs the decision and the subsequent 

interventions.  

In conclusion, clinical decision making follows a strict rational reasoning 

process that depends on true, reliable, and justifiable knowledge that results 

from thorough hypothetico-deductive methodologies, which gives confidence to 

clinicians to rely on when making decisions in uncertain conditions, when 

knowledge about the future is limited. These principles set the direction, values, 

and standards for the EBM paradigm.  

Evidence-Based Medicine (EBM) 

Conceptualization and Role 

EBM is the fundamental basis of clinical practice in modern healthcare 

(38). As described by Djulbegovic et al. (12, 13), EBM, as a rational decision 

making paradigm, embraces the normative approach of rationality through 

determining how rational clinicians should make the decisions based on what 

they believe to be true (34, 38). The belief of truth is the function of the 

trustworthiness of evidence and the degree to which we believe that the 

process that led to the evidence is credible (12, 38). Emphasis on the reliability 

and the credibility of the process of reaching the evidence can be seen from the 

perspective of proximity to the truth. In other words, the reliable process takes 

us closer to the truth and therefore is capable of generating trustworthy 

evidence. Thus, the decision that is based on that evidence will better help us 

calibrate the gains and losses/ benefits and harms (13, 38). To enhance 
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clinicians’ capacity to guide their decisions by high-quality evidence, EBM is 

developed to include the prescriptive aspects of rationality. One of the most 

important principles of the prescriptive rationality is that rationality can be taught 

or dictated (12). Therefore, it is very common nowadays to see the evidence-

based clinical pathways and guidelines presented in decision tree algorithms 

(DTAs) that guide the clinician throughout the clinical reasoning and the 

decision process. Also, the modern healthcare system puts great emphasis on 

the continuing professional education that focuses on the process of 

generating, reviewing, evaluating and employing best available evidence in 

clinical practice. Healthcare organizations in today’s modern healthcare system 

encourage activities such as journal clubs, multidisciplinary case reviews, and 

morbidity and mortality conferences, in order to review the degree to which the 

performance of the system and the individuals can be improved through 

evaluating the degree of conformance with EBM standards.  

EBM is defined as “the conscientious, explicit, and judicious use of 

current best evidence in making decisions about the care of individual patients” 

(39). The development of the evidence-based paradigm has been enabled by 

evidence from high quality randomized controlled trials (RCTs) and 

observational studies, communicated via further analysis in systematic reviews 

and meta analyses, providing clinical practitioners with distillations of extensive 

clinical research which they can interpret with their clinical expertise to tailor 

care to individual patient needs; this has revolutionized modern healthcare from 

the traditional paradigm of treatment traditions based on anecdotal evidence 

and theoretical reasoning (40). 

The main concept behind the evidence-based practice is that the 
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activities of practitioners should be guided by the best empirical findings in their 

fields (41). According to Gambrill (42), evidence-based practice integrates the 

practice and research. This explains why healthcare providers are under 

pressure to employ research-based interventions in their practice (43). From 

another perspective, clinical decisions entail critical safety considerations and 

risks (44). This explains why clinical research puts significant emphasis on 

controlled experiments and the elimination of bias, with great reliance on 

randomized controlled clinical trials (1, 45). Indeed, the EBM paradigm is 

fundamentally concerned with criteria to evaluate the quality of evidence, which 

is organized in a hierarchical based on the research methods used in 

generating data (41, 46). The logic behind this pyramidal evidence model is that 

certain methods are more rigorous, and thus provide more confidence in the 

clinical decision making (47). Accordingly, methods that generate knowledge 

from data (e.g. ML) are in a critical position with regard to influencing clinical 

decisions. Figure 1 and Table 2 explain the hierarchy of evidence and grading 

of recommendations.  

 

 

 

Figure 1. Traditional single-hierarchy evidence model;Tomlin and Borgetto (46). 
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Table 2. Levels of Evidence and Grade of Recommendations 

Level of evidence  Grade of recommendation  
 
 

Level I Grade A 
Level I Results of single RCT with lower limit of confidence 

interval for the treatment effect exceeding the minimal 
clinically important benefit. 

Level I+ Results come from a meta-analysis of RCTs in which the 
treatment effects from individual studies are consistent, 
and the lower limit of the confidence interval for the 
treatment effects exceeds the minimal clinically 
important benefit 

Level I- Results come from a meta-analysis for RCTs in which 
the treatment effects from individual studies are widely 
dispersed, but the lower limit of the confidence interval 
for the treatment effect still exceeds the minimal clinically 
important benefit. 

Level II Grade B 
Level I Results come from a single RCT in which the confidence 

interval for the treatment effect overlaps the minimal 
clinically important benefit. 

Level I+ Results come from a meta-analysis of RCTs in which the 
treatment effects from individual studies are consistent 
and the confidence interval for the treatment effect 
overlaps the minimal clinically important benefit. 

Level I- Results come from a meta-analysis of RCTs in which the 
treatment effects from individual studies are widely 
dispersed, and the confidence interval for the treatment 
effect overlaps the minimal clinically important benefit. 

Level III Grade C 
 Results come from non-randomized concurrent cohort 

studies. 
Level IV Grade C 
 Results come from non-randomized historic cohort 

studies. 
Level V Grade C 
 Results come from case series. 

Adopted from Cook et al. (46). 

 

 

Although EBM changed the face of medicine and contributed to 
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significant medical advancement, it faces significant challenges. First, the very 

nature of the clinical decision outcomes is probabilistic, due to the uncertainty 

and the bounded rationality of clinicians and clinical scenarios; put simply, there 

is always risk associated with clinical decisions (13, 44). This is a strong reason 

why clinical decision making is in a great need for aid by advanced decision 

support tools. From another angle, to achieve the goals of the EBM, 

practitioners need to build skills to critically evaluate the literature to find the 

proven effective interventions (best evidence) that are generated from meta-

analysis of the RCTs (42, 43). This, according to Greenhalgh et al. (40), is one 

of the biggest challenges to the EBM. Clinicians’ basic training does not 

concentrate on building academic skills to critically review and judge the quality 

of research or to abstract evidence. Therefore, proponents of EBM advise the 

institutionalization of the production of the clinical evidence and clinical 

guidelines rather than leaving them to the variable individual skills and abilities 

of practitioners (43).  

Furthermore, to translate evidence into practice, the evidence is usually 

transformed into algorithmic top-down clinical guidelines that serve as a 

reference for practitioners and help standardize practice, to obtain optimal 

treatment outcomes. However, in many instances normative clinical evidence 

may be unavailable, impossible, unethical, impractical, or too expensive (48). 

The lack of high-quality evidence represents a very significant challenge to the 

EBM. In such scenarios, practitioners find themselves compelled to make risk-

bearing clinical decisions in the absence of strong and reliable background 

knowledge. Therefore, they rely on lower-level evidences (i.e. level V - expert 

opinions) or on their experience, which may not necessarily lead to the best 
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possible outcomes. This risky trade-off led some scholars to take the initiative 

to propose solutions to help clinicians benefit from the scientific advancement 

of other disciplines, such as data science, management information systems, 

and health informatics.  

Further to the aforementioned challenges, the process of evidence 

generation is very slow (1), as well as the adoption of evidence in clinical and 

managerial practice (49, 50). It has been estimated that the time lag between 

the generation of evidence until it is effectively deployed in clinical settings is 

approximately 17 years (51, 52). Westfall et al. (52) argued that only 14% of 

new discoveries will get access to day-to-day clinical activities. It has been 

reported that USA citizens receive 50% of the recommended preventive, acute, 

and long-term healthcare solutions theoretically available under EBM (53). 

Ebell et al. (54) aimed to determine the degree to which the primary care 

practices are informed by high quality evidence, and found that only 18% of 

primary care recommendations are based on high-quality and patient-oriented 

evidence, while around 50% are based on expert opinions (which in turn are 

based on the usual way of treating medical conditions). Bradly et al. (55) argued 

that although the evidence of the beneficial use of β-blockers in myocardial 

infarction has been in place for more than 20 years, this medication is still 

underused in clinical practice. Westfall et al. (52) ascribed this to several 

reasons: (a) the vast majority of patients are treated in healthcare facilities, 

while high quality research is conducted in the academic institutions; (b) the 

tight inclusion and exclusion criteria that are practiced in clinical research create 

an artificial sample of patients that do not represent the vast majority of patients; 

and (c) the majority of clinical guidelines are based on evidence that is based 



  

17 

 

on a very small number of patients who basically present to tertiary healthcare 

facilities. Consequently, the applicability of evidence in other settings such as 

primary healthcare facilities is questionable.  

The above challenges mean, to a great extent, that in some scenarios 

the clinicians will find no high-quality evidence to support their clinical decisions, 

thereby posing significant risks to patients, families, and healthcare institutions, 

in addition to clinicians themselves. On the other hand, the healthcare industry 

is experiencing the revolutionary development of high-throughput data-

generating technologies. This significant development in data collection and 

storage capacity requires building up capacity to enable the development of 

sophisticated algorithms that outperform the traditional computation and 

inferential techniques, enabling practitioners to obtain and analyze evidence 

much more quickly and efficiently (56).  

Moreover, patients themselves pose challenges for EBM. The spread of 

social media and the use of smart devices have changed patients’ access 

toward health information and options, and their attitudes towards managing 

their own health (57-59). Beckmann and Lew (60) maintained that we are living 

in the most profound periods of advancement in biology and medicine, leading 

to a medical revolution that will transform healthcare and contribute to precision 

medicine. Perhaps this is the reason that motivated several scholars to argue 

that the application of the big data analytics in the healthcare is inevitable and 

to suggest that the reconciliation between the EBM and the data science could 

be the remedy for the EBM challenges (1, 43, 61, 62). However, due to the lack 

of literature that tackles this subject, it is very difficult to abstract a serious 

literature-based framework that can guide this research agenda. In addition, 
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there is a serious lack of literature that informs the reconciliation between EBM 

and data science paradigms. 

Challenges to EBM Implementation 

In summary, despite the remarkable contributions of the EBM to the 

advancement of healthcare and enhancing clinical decision quality, through 

emphasizing on the importance of basing clinical decisions on reliable 

knowledge and high-quality evidence, there are several challenges to the 

achievement of the main purposes of EBM. These include: 

1. Uncertainty, the bounded rationality of clinicians, and the probabilistic 

nature of the clinical decision outcomes. 

These increase the margin of risk embedded in clinical decisions. 

Therefore, there is an increasing need for clinical decision support tools. 

Therefore, we argue that the modern analytics (i.e. ML) that can handle large 

volumes of data collected in electronic health records can provide a great 

support to the clinical decision making.  

2. The availability of high-quality evidence is not guaranteed.  

In several situations the normally expected evidence for EBM may be 

unavailable. Furthermore, the generation of evidence entails huge costs and 

ethical implications, requiring significant stretches of time. This is another 

reason why data science and artificial intelligence (AI) approaches that utilize 

the readily available data can be viewed as a remedy.  

3. The generalizability of evidence is based on a relatively small number of 

patients.  

Precision medicine relies to a great extent on large data volumes and 

ML approaches, which can provide an avenue to overcome the “one-size fits 
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all” challenge. It is worth noting that we do not propose data science or ML as 

a panacea for all EBM challenges. Rather we present the ML as a solution to 

address some of the challenges that EBM suffers from, knowing that ML and 

other AI modalities suffer their own challenges that can be partially addressed 

by EBM standards.  

Data Science Applications in EBM 

The potential applications of data science in the era of EBM can be 

categorized under four rationales. 

First, clinical decisions must always be supported by strong arguments 

and thoroughly evaluated models. However, data science approaches are 

usually free from hypotheses or theory, which questions the positivist, empirical 

value of data-driven knowledge in EBM. Second, clinical experiments are costly 

and add significant discomfort for the participants, and tend to involve diseased 

people, therefore, data science approaches provide a relatively cheap, 

innovative, and a powerful alternative to the RCTs in specific circumstances 

and under specific conditions. Third, the data sets at hand may be 

irreproducible in controlled conditions. Therefore, controlled trials may not 

always be the appropriate method to generate evidence in certain conditions. 

Fourth, the process of evidence generation and adoption in EBM is very slow. 

Therefore, ML approaches may present an opportunity to enhance the 

timeliness of evidence availability and interestingly generate new hypotheses 

for future RCTs and experiments. This argument forms the base of the 

proposed pragmatic framework that is presented at the end of the next chapter, 

which discusses the applications of ML in supporting clinical decision making.  
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CHAPTER 3: UTILIZATION OF MACHINE LEARNING IN CLINICAL 

DECISION SUPPORT IN THE ERA OF EBM – A CRITICAL EVALUATION 

Background 

Motivated by facilitating fast and cost-effective decision processes, 

several business sectors have outsourced the process of decision making to AI 

and ML algorithms. It is evident in the literature that the utilization of ML in 

supporting decision making has resulted in significant benefits in several 

industrial and academic fields. Therefore, we believe that there is significant 

potential to enhance the quality of clinical decision making through the adoption 

of the ML in supporting clinical decisions and contributing to the process of 

generating reliable clinical evidence. The value of supporting the clinical 

decision making reflects on several aspects, including patient treatment 

outcomes, improved patient QoL, patient and family satisfaction, improved 

healthcare organization performance, and reduced healthcare costs for 

patients/families, healthcare systems, and national economies. Nevertheless, 

it has been reported in several academic and business reports that the benefits 

of the modern analytics in the healthcare industry are not fully reaped, and that 

the adoption of the AI and ML approaches in healthcare are particularly slow 

compared to other industrial sectors.  

Therefore, it is crucial to determine the factors that impede realizing the 

maximum benefits of ML and which inhibit the speed of ML adoption in 

supporting clinical decisions. Hence, we decided to conduct a scoping review 

of literature that tackles the use of ML in clinical decision support in the era of 

EBM. The purpose of this review is to determine the current status of the 

literature to understand in depth the challenges that face ML in the healthcare 
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industry in the era of EBM, and which contribute to the ineffective adoption and 

prevent the realization of the full potential of ML in supporting clinical decisions. 

Furthermore, we aim to understand the avenues wherein the ML can address 

some of the key challenges that face the EBM. Thus, we can propose a 

literature-based pragmatic reconciliation framework that achieves the required 

synergy to address some of the challenges in both paradigms. Furthermore, we 

aim to provide some directives for future research to help the professionals and 

the scholars optimally utilize ML to enhance clinical decision making.  

Methodology 

Literature Search Strategy 

PubMed database was searched to identify review articles that were 

published in the period from January 2016 to September 2020 discussing ML 

applications in various clinical fields in the era of EBM. The literature search 

was limited to the reviews that were published in the past five years because 

we believe that this field of research is rapidly evolving and changing. 

Therefore, older reviews may reflect obsolete issues that are addressed by 

newer research. Accordingly, the reviews that are published in the past five 

years provide the most recent challenges that face the ML in the clinical 

research and would help us identify the current position and the progress of the  

research agenda. We applied the following key terms to search in the titles and 

the abstracts (machine learning OR artificial intelligence OR big data) AND 

(evidence-based medicine) and the selection was limited to review articles. This 

approach was followed in order to: (a) optimize the literature search and 

selection procedures through limiting the key search terms to the main key 

words that relate directly to the core of the review; and (b) understand the 
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current position of this field of research by using the most recent reviews, 

enabling this study to address literature gaps and explore emerging research 

directions. This process resulted in 189 articles.  

Article Selection 

The initial step in articles selection was through scanning the abstracts 

to retain only studies discussing ML, AI or big data as key subjects, which 

resulted in 69 articles that were carried through to the next phase.  

The articles’ inclusion criteria were formulated to ensure that the 

selected articles were relevant to the study’s objective. Articles that thoroughly 

discussed one or more of the following subjects were selected; (i) common ML 

methods in clinical research; (ii) ML potentials in supporting clinical decision 

making; (iii) challenges that face ML in clinical fields; (iv) epistemological 

aspects of ML in clinical research; and/or (v) recommendations to benefit from 

ML in supporting EBM. Articles that referred to ML techniques as a future 

opportunity for addressing some computational issues in clinical research 

without providing a thorough discussion were not selected. This step resulted 

in 52 articles.  

Outlet Quality Measures  

All the 52 articles that met the study inclusion criteria were again 

evaluated based on the citation metrics of the publishing journals. Impact factor 

and Source-Normalized Impact per Paper (SNIP) were considered for selecting 

high quality journals. The selected journals had to have an impact factor of 1 

and SNIP of 1 at least to be considered. Despite the debate and the limitations, 

impact factor is still a reasonable measure for the medical journal’s quality (63). 

Further, SNIP metric that is included in Elsevier’s SCOPUS database was used 
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as it corrects for the differences in the impact factor across the scientific 

disciplines (64). This step resulted in 15 papers.  

Results 

The database search returned 189 unique review articles. After 

conducting the initial screening to the abstracts, 69 papers were selected for 

the next phase. The inclusion criteria were applied on the selected articles 

which resulted in 52 papers. of them, 37 papers were disqualified. Accordingly, 

15 papers were ultimately included in the review. The 15 papers cover several 

medical disciplines as shown in Table 3. 

 

 

Table 3. Clinical Disciplines Covered by Selected Reviews 

Discipline(s) Review article(s) 
 

Cardiology Shameer et al. (65) 
Oncology, radiotherapy and cancer 
genomics  

Marka et al. (66); Resteghini et al. 
(67); Vogelius et al. (68); Xu et al. 
(69) 

Critical care medicine Sanchez-Pinto et al. (70) 
Immunology  Mersha et al. (71); Saglani and 

Custovic (72) 
Neuroscience Kim and Na (73) 
Occupational health Six Dijkstra (74) 
Orthopedics  Cabitza et al. (75); Helm et al. (76) 
Mental health  Torous et al. (77) 
Pulmonology  Pepin et al. (78) 
Rheumatology  Gossec et al. (79) 

 

 

Discussion  

The selected papers cover variety of subjects concerning ML in various 

medical disciplines. All the papers discuss the great computational capacity of 

ML approaches in supporting clinical decision making, and their potential in 



  

24 

 

boosting efforts towards precision or personalized medicine, and the future 

revolutionary impacts of ML that will change the way we practice medicine. 

Nevertheless, there is consensus amongst the scholars that there are serious 

fundamental limitations in AI in general and in the ML in particular that need to 

be addressed. These limitations make medical practitioners and scholars 

skeptical about the validity of the ML output and its ability to play a real role in 

shaping or influencing clinical decisions. This may explain why the EBM 

paradigm, in spite of its well documented challenges, will continue to have the 

upper hand in formulating the treatment strategies and influencing the clinical 

decision making, as opposed to purely data-driven approaches.  

This review is structured as follows. The first of the following sections 

covers the historical background and a glossary of terms that help the reader 

who does not have a background about the ML obtain an overview of the 

subject. The second section discusses the ML conventional tasks and 

techniques predominantly used in the clinical research. The third section 

provides a summary of the main subjects that are covered by the reviewed 

articles which include the avenues of ML in medicine; the need for ML in 

supporting clinical decisions; and the philosophical, methodological, and the 

ethical challenges that face ML in clinical sciences. The fourth section 

discusses the proposed pragmatic reconciliatory framework that seeks to 

activate ML to exercise a true influence on clinical decision making and 

contributing to EBM. The fifth section presents a list of recommendations to 

address the ML limitations and challenges.  

Historical Background and Glossary of Terms and Definitions  

ML is an umbrella term for a set of algorithms that enable computers to 
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uncover patterns and make decisions from data (65). Viewed with a larger 

scope, ML is a subset of AI (76) that is a subset of the data science (80). ML 

term was first used in scientific publications in 1959 in an article published in 

the IBM Journal of Research and Development, which defined ML as the “field 

that gives the computer the ability to learn without being explicitly programmed” 

(81). However, years before that, Alan Turing designed the “Turing test” to 

answer the question “Can machine think?”, which is considered to be the 

beginning of the AI (82). In 1957, Frank Rosenblatt was inspired by the human 

thought process to propose the first neural network for computers (83). The 

progress in the ML continued until 1990 when the work shifted from learning 

from knowledge to learning from data (in large volumes), which started to 

produce robust outcomes in various fields, including medicine (84). To better 

understand ML, it is crucial to define a set of the key terms that will be used 

throughout this review. Sanchez-Pinto et al. (70) provided a comprehensive 

glossary of definitions for the key terms used in data science fields (Table 4). 

 

 

 Table 4: Glossary of terms  

Term Definitions 

Big data “Digital data that are generated in high volume and high 
variety and that accumulate at high velocity, resulting in 
datasets too large for traditional data-processing systems” 
(70) 

supervised 
learning 

“Algorithms that are used to uncover the relationship between 
a set of features and one or more known outcomes” (70) 

Unsupervised 
learning 

“Algorithms that are used to uncover naturally occurring 
patterns or groupings in the data, without targeting a specific 
outcome” (70) 

Semi-
supervised 
learning 

“Machine learning from input data, where only a subset of 
input data is paired with output data, that is, an approach that 
mixes supervised and unsupervised learning” (68) 
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Machine Learning (ML) Algorithms  

The included reviews covered several ML algorithms that are commonly 

used in the clinical literature,  categorized into three categories based on the 

intended goal or function and the characteristics of the outcomes: supervised 

learning, unsupervised learning, and reinforcement learning (65, 70, 73, 75). 

Term Definitions 
 

Ensemble 
learning 

“Is an umbrella term for methods that combine multiple 
inducers or base learner algorithms to make a decision. The 
objective is to minimize the error of a single algorithm. So, the 
overall prediction performance can be improved” (85)  

High 
dimensionality 
dataset 

“A general term used to describe datasets that contain large 
numbers of features per patient, including genomic data and 
image features” (68) 

Feature “A variable used in a machine learning algorithm or an aspect 
of a dataset that is of some relevance” (86) 

Model training “The process through which machine learning algorithms 
develop a model of the data by learning the relationships 
between features and, in supervised learning, between 
features and outcomes. This is also referred to as model 
derivation or data fitting” (70) 

Model 
validation 

“The process of measuring how well a model fits new, 
independent data. For example, evaluating the performance 
of a supervised model at predicting an outcome in new data. 
This approach is also referred to as model testing” (70) 

Predictive 
model 

“A model generally trained to predict the likelihood of a 
condition, event, or response” (70) 

Prognostic 
model 

“A model specifically trained to predict the likelihood of a 
condition-related endpoint or outcome such as mortality. In 
general, the goal is to estimate a prognosis given a set of 
baseline features, regardless of what ultimately leads to the 
outcome” (70) 

Overfitting “The phenomenon that occurs when an algorithm learns from 
idiosyncrasies in the training data, usually referred to as noise 
which leads to poor performance of the model” (70) 

Structured 
data 

“Data that are easy to search, summarize, sort, and quantify” 
(70) 

Unstructured 
data 

“Data that do not conform to a prespecified structure, such as 
a written narrative, images, video, or audio. Unstructured data 
are generally harder to search, sort, and quantify” (70) 
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Semi-supervised algorithms, a hybrid of supervised and unsupervised 

algorithms, are used less frequently in healthcare (70). Cabitza et al. (73) used 

the terms “conventional ML” to differentiate between supervised and 

unsupervised learning on one hand, and “deep learning” on the other (75). 

Similar to Shameer et al. (65), in this study, we categorize the ML algorithms 

into four classes: supervised, unsupervised, deep, and reinforcement learning.  

Supervised ML Algorithms 

As described by Deo (87), supervised learning starts with the goal of 

predicting known output or target. For example, if researchers need to know if 

a set of features can predict certain outcomes (e.g. mortality), they may apply 

a supervised ML algorithm where there is an outcome variable (e.g. survived 

or deceased). The most common supervised algorithms that are highlighted in 

the included articles are described below. 

Regression-Based Algorithms  

This class includes both the classic regression (i.e. linear and logistic 

regression models) and the regularized regression algorithms (i.e. Least 

Absolute Shrinkage and Selection Operator (Lasso), elastic net and ridge 

regression), which perform both the feature selection and regularization to 

enhance the accuracy of the prediction. This is achieved through imposing 

penalties on the fitted model to reduce its complexity and risk of overfitting (70).  

Tree-Based Algorithms  

This class includes variety of algorithms that serve classification 

prediction functions such as C.5 decision tree (C.5DT) and classification and 

regression algorithm (C&RT). Generally, DTs are sequence of “if-then-else” 

splits derived by iteratively separating the data into groups based on the 
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relationship of the features with the outcome. A DT is a “classification algorithm 

in which each non-leaf node indicates a test on an attribute of the input cases; 

each branch corresponds to an outcome of the test; and each leaf node 

indicates a class prediction” (88). Generally, they are powerful, logical and easy 

to interpret and to understand classification algorithms (89). This class also 

includes random forest (RF), an example of ensemble tree models, which 

combine the output of many trained models to estimate an outcome. For 

example, RF uses bootstrapping to grow a forest of uncorrelated trees with a 

high degree of randomness in feature selection, which contributes to 

significantly reducing errors (90).  

Support Vector Machine (SVM) 

SVM is a powerful classification algorithm that can be used for linear and 

non-linear data sets. SVM represents the data in a multidimensional space and 

then fits a hyperplane that optimally separates the data based on the intended 

outcome. To achieve this, SVM uses an optimal kernel function (e.g. linear, 

polynomial, or radial basis function) to map the input data into a higher 

dimensional feature space (70, 91, 92).  

K-Nearest Neighbor (KNN) 

KNN is a supervised learning algorithm that represents the data in a 

multidimensional feature space and uses the Euclidean distance to predict the 

class of the unknown example based on its closeness from training examples 

(70, 93).  

Bayesian-Based Algorithms  

A class of algorithms that uses Bayes theorem of conditional probability 

assumes the prediction of the occurrence of something given that something 
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else has already happen (posterior probability). This class includes naïve Bayes 

(NB) and Bayesian network.  

Neural Networks 

Neural networks are class of nonlinear algorithms which can be viewed 

as a set of connected input/ output units in which each connection has an 

associated weight. During the learning phase, the network learns by adjusting 

the weights to be able to predict the correct class label of the input items. The 

networks can be shallow, with two layers, or deep, with multiple layers, as in 

the field of deep learning (70, 93). This class of algorithms include the artificial 

neural network (ANN).  

Unsupervised ML Algorithms 

Unsupervised learning is a synonym for clustering (93). It is basically 

used to uncover naturally occurring patterns or groupings in the input data 

without pre-existing labels or particular outcome (68, 87). The most common 

examples of the unsupervised learning algorithms are the clustering algorithms 

(hierarchical clustering and k-means clustering) and principal component 

analysis (PCA) (65, 70).  

Clustering Algorithms  

Hierarchical clustering. This is a clustering algorithm that applies an 

iterative process of grouping similar observations in clusters based on similarity 

or the chosen distance function. Hierarchical clustering is classified into one of 

two types: (a) agglomerative approach (bottom-up), where the algorithm treats 

every observation as a cluster, and it keeps merging similar observations in an 

iterative process until only one cluster remains (80); and (b) divisive approach 



  

30 

 

(top-down), which starts with all objects as one cluster, which it then iteratively 

splits into smaller clusters, until eventually each object is in one cluster (93).  

K-means clustering. Different from hierarchical clustering, which looks 

into similarities between instances and links them together, K-means algorithm 

focuses on the clusters themselves, through representing them by their centers 

or centroids (arithmetic mean) (80). The algorithm starts with the K initial cluster 

centers, formed based on the closeness of each point to the centroid. Next, the 

centroid of every cluster is recalculated by finding the new centroid after the 

changed cluster membership. The K-means procedure keeps iterating until 

there is no change in the clusters’ membership (80, 93). 

Dimension Reduction  

Dimension reduction algorithms work on transforming a large data set 

into a smaller set that retains the important and pertinent information of the 

antecedent larger set (80). There are several dimension reduction methods, 

such as PCA, Wavelet transforms, and Linear Discriminant Analysis (70, 93). 

PCA is the most commonly used dimension reduction algorithm (73).  

Principal Component Analysis (PCA). PCA’s main function is to reduce 

a large set of dimensions into a smaller set of artificial dimensions, usually 

referred to as principal components (73). PCA combines dimensions that have 

relations which were not previously revealed resulting in dimensionality 

reduction (93). The principal components can then be used as input in further 

analysis, such as regression.  

Deep Learning 

Some scholars consider deep learning to be a subset of unsupervised 

ML (65), while others considers it to be a separate class that belongs to 
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unconventional ML algorithms (75). Deep learning is an emerging subset of ML 

that utilizes the multi-hidden layers neural networks to facilitate fast learning 

across a large number of samples (65, 94). Every layer in the neural network is 

used to encode input data into a something salient about the features that are 

contained within the data (86). Deep learning is basically suited for computer 

analysis, as it usually uses convolutional neural network-based representation 

to carryout image interpretation (95). This could be the reason why deep 

learning is popular in the fields of orthopedics and neuro-imaging (73, 75, 86). 

Reinforcement Learning 

Reinforcement learning is emerging subset of ML that is based on 

behavioral psychology (65). As described by Kim and Na (73), the key concept 

of the reinforcement learning is the interaction with the environment. Unlike 

conventional ML algorithms and deep learning, reinforcement learning is a 

dynamic process where the software agent aims to maximize the reward while 

interacting within a pre-specified environment. The agent learns the appropriate 

behavior by utilizing reward maximization criteria to handle the decision-making 

function (65). Reinforcement learning is used in several avenues such as image 

analytics, disease screening, and personalized prescription selection. 

Nevertheless, there are no promising outcomes yet for the application of the 

reinforcement learning, particularly in neuroimaging (65, 73).  

ML Avenues and Opportunities Supporting Clinical Decisions  

The main difference between the ML and the conventional statistical 

methods is that the latter helps us understand a relationship between small 

number of variables. However, the ML algorithms go way beyond that and help 

us handle large number of variables, handle diverse data forms, and engineer 
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features from data and perform predictions. With the advancement in data 

warehousing technologies, the advent of electronic health records, and the 

growing use of sensors and wearables in healthcare, the speed of data 

generation and the complexity of data have grown exponentially. Subsequently, 

the challenge has shifted from collecting data to obtaining potentially useful 

insight from the data (69). The big size and the complex diversity of the 

collected data (e.g. videos, waves, images, narratives, etc.) mandate the 

adoption of modern analytical methods that have the capacity to unveil the 

potentially useful information latent within the vast volume of available data. 

Therefore, the potentials of ML approaches in the medical field are undeniable. 

This review identified several avenues where ML algorithms prove useful in 

enhancing the clinical decision making.  

Precision Medicine 

Precision or personalized medicine is a field where the majority of 

scholars foresee that data science and AI can realize their maximum potential 

in healthcare (65, 69, 71, 78). AI is regarded as the main driver of the 

transformation of healthcare towards precision medicine due to its ability handle 

vast amounts of complex and diverse data, leveraging pattern recognition to 

enhance timelines and accuracy in clinical decision making (69). Precision, 

personalized, or individualized medicine are used interchangeably to describe 

“the treatments targeted to the needs of individual patients on the basis of 

genetic, biomarker, phenotypic, or psychosocial characteristics that distinguish 

a given patient from other patients with similar clinical presentations” (96) (p. 

2229). Precision medicine aims to tackle diseases through designing targeted 

treatments based on genomic, lifestyle, and environmental characteristics of 
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each patient.  

Xu et al. (69) discussed that the advent of the AI and ML methods 

revolutionized oncology. The advancement in ML technology, especially 

dimension reduction algorithms, helped scientists analyze vast amounts of data 

with next-generation sequencing (NGS). Before NGS, Sanger sequencing 

technology was used to decipher the human genome, but required over a 

decade to deliver the final draft (97).  

Shameer et al. (65) argued that the field of cardiovascular medicine 

produces huge amounts of data that are stored in different forms of repositories 

that are un-utilizable for research purposes. They argued that precision 

medicine has significant potential in the cardiovascular medicine. Precision 

medicine helps the physicians produce personalized guidelines that fit 

particular patients, thereby enabling individual-based decision making as part 

of tailored, patient-centered care. They suggested that there is a great 

opportunity for ML algorithms to be embedded in electronic health records to 

perform timely precision decisions and predictions.  

Pepin et al. (78) studied the potentials of ML and big data analytics in 

diagnosing and designing personalized treatments for obstructive sleep apnea 

and other sleep disorders. They discussed that there are several avenues 

where ML can support precision medicine. Big data generated by 

telemonitoring help clinicians detect particular patients’ phenotypes and 

understand the patient ecosystem, which supports personalized medicine 

efforts. Furthermore, the powerful clustering capacity of ML helps scholars 

determine homogenous patient groups, and generate hypotheses that can be 

utilized in targeted clinical trials to investigate responses to targeted therapies 
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directed to clusters that share similar molecular properties and pathobiological 

characteristics (70, 72, 78).  

Torous et al. (77) discussed the potentials of ML methods in capturing 

and analyzing the huge amounts of data that are generated by social media in 

order to develop individualized suicidal risk profiles. They argued that ML 

clustering methods can use the social media data to cluster individuals into 

novel patient subgroups that may provide more accurate suicidal risk 

assessment at the individual patient level. For example, instead of using a few 

variables as currently utilized in clinical risk assessments (e.g. access to 

weapons and history of prior suicide attempts for suicide risk), researchers can 

now look at hundreds of variables to generate a more personalized risk profile.  

Classification, Prediction and Prognostic Modeling  

The growth in the use of the electronic health records, biomedical data 

bases, and data warehouse technologies and the advancement in the modern 

analytical approaches such as ML made disease or complication detection 

much easier than before (98). Moreover, the advent of the precision medicine 

that utilizes the AI techniques in genetics and the human genome made it 

possible to execute personalized predictions at the level of individual patients. 

One of the most important avenues where ML technologies may enhance 

clinical decision making is predictive and prognostic modeling (70).  

Sanchez-Pinto et al. (70) stated that the purpose of predictive models is 

to identify patients with specific conditions or those who are likely to respond to 

specific treatments. They emphasized the supremacy of ML-based predictive 

power over conventional logistic regression-based predictive models. They 

reported that in several instances, ML-based models outperformed the mortality 
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prediction of one of the most common predictive tools in critical care settings, 

the Acute Physiology and Chronic Health Evaluation (APACHE) score, which 

developed in the 1980s.  

In a similar vein, Shameer et al. (65) reported that ML can solve complex 

classification problems in cardiovascular medicine, especially in phenotypically 

difficult patients, such as differentiating between athletes’ hearts and 

hypertrophic cardiomyopathy, or between constrictive pericarditis and 

restrictive cardiomyopathy. They argued that the use of ML in cardiovascular 

medicine enables risk stratification, which has significant implications for the 

quality of healthcare delivery and patient outcomes.  

Torous et al. (77) highlighted on the great potential of ML for psychiatry. 

They discussed the application of ML and smartphone sensing technologies in 

the early detection and prevention of suicide. The authors reported that the 

majority of previous literature in this field focused on long-term suicidal risk due 

to the lack of real-time data and the computational capacity to effectively handle 

real-time data (where it exists). Therefore, they foresee that the utilization of ML 

in analyzing real-time data generated by smartphone and social media usage 

will enhance short-term suicidal risk detection (e.g. within 30 days).  

In the field of orthopedic medicine, scholars discussed several avenues 

where ML predictive analytics can enhance the clinical decision making. ML 

has great potential to support orthopedic medicine through the field of image-

based pathology detection and prediction (76). Helm et al. and Cabitza et al. 

(75, 76) reviewed several papers that tackle the applications of ML in several 

clinical and operational aspects of the orthopedic field, including cost estimation 

and reduction, length of stay, disease prognosis, and other outcomes.  
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Marka et al. (66) discussed the applications of ML classification 

potentials in the dermatology medicine. In their review, they compared between 

the ML and conventional analytics in handling the data complexity and 

dynamicity. They reported that the utilization of ML classification algorithms in 

digital images to classify non-melanoma skin cancer achieved results with 

higher accuracy (72%-100%) and discrimination power (81%-100%) that 

outperformed certified dermatologists.  

Clustering, Phenotyping and Endotyping 

Most well-known guidelines are implicitly based on the average patient, 

with limited tailoring toward individual patient needs (65). Thus Mersha et al. 

(71) and Saglani and Custovic (72) discussed the potentials of ML in supporting 

the field of immunology particularly through clustering and endotypes detection. 

Endotypes are defined as the pathophysiological mechanisms at the cellular 

and molecular levels that differentiate the response of individuals to certain 

disease process (72) . Similarly, Mersha et al. argued that it is not necessarily 

the case that individuals with similar clinical diagnoses will have similar disease 

etiologies, natural histories, or responses to treatment. Therefore, they argued 

that the advent of the high throughput molecular omics, immunophenotyping, 

and bioinformatics methods, including ML algorithms, will enhance the 

development of endotype-based diagnosis to help clinicians devise 

personalized treatment plans (71). Saglani and Custovic argued that big data 

assets provide the foundation for personalized asthma treatment. To achieve 

that goal, they emphasized the importance of multidisciplinary efforts whereby 

clinicians, epidemiologists, bio-informatics experts, and data scientists work 

together to obtain actionable insights from the data and reshape the clinical 
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evidence and make it more personalized to patients’ specific characteristics 

(72). In the same field, Saglani and Custovic (72) discussed that ML has great 

potential to advance the endotype discovery through powerful clustering 

mechanisms that facilitate endotype-based diagnosis, enabling clinicians to 

devise treatment plans that take individualized characteristics and 

pathophysiological responses into account. 

In the field of pulmonology and sleep disorders, Pepin et al. (78) 

discussed that the modern big data analytics, particularly clustering algorithms, 

would advance the field through phenotype identification. A phenotype is 

defined as “observable characteristics that result from a combination of 

hereditary and environmental influences” (99). It is noticeable that ML clustering 

is associated with different forms of advancements in medicine, such as next 

generation sequencing, phenotype and endotype discovery, and overall 

precision medicine, which transforms medicine towards devising personal care 

plans that are based on individuals’ intrinsic and extrinsic factors to determine 

patients’ risk of and response to certain diseases.  

Real-World Evidence  

EBM esteems RCTs and meta analyses because they satisfy the 

clinicians’ quest to eliminate bias from their clinical decisions. Randomization 

and control are considered the golden standards of empirical research, to 

ensure that the observed variations between the study groups are caused by 

the intervention (100, 101). RCTs are “quantitative, comparative, controlled 

experiments in which a group of investigators study two or more interventions 

by administering them to groups of individuals who have been randomly 

assigned to receive each intervention” (102). Nevertheless, RCTs suffer from 
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several challenges and limitations, such as their significant cost, slowness, 

involvement of diseased individuals, and limited external validity (103, 104). 

These limitations have serious influences on the availability of evidence and 

negatively affect clinicians’ ability to safely make necessary treatment decisions 

based on reliable evidence (48).  

Due to the long time needed for RCTs to ultimately translate into EBM, 

many analysts have argued that modern ML approaches can be used in “real-

world” applications to fast-track improvements in EBM. In an era where data 

and evidence about the real world are available in registries, databases, and 

longitudinal electronic health records, such scholars argue that studies which 

utilize ML and large volumes of real-world data can comprise “real-world 

studies” that circumvent the slow and tedious traditional processes of RCTs and 

EBM to offer immediate insights and guidance for clinical practice.  

There are two perspectives about the relationship between the real-

world studies and RCTs, the extremist and conservative views. The former view 

considers the real-world studies a substitute for RCTs, arguing that modern 

analytical techniques have the capability to achieve control and to analyze 

prospective data to mimic the RCT methodology, rendering evidence more 

quickly for use by clinicians at the point of care delivery (78, 104-106). However, 

this view is objected by several scholars who see that modern data science 

analytics are still inferior to RCTs because of their inability to control for 

confounders and to reveal causality. They argue that the majority of 

relationships revealed by data science methods are basically reflections of 

association rather than causation (68, 78).  

Therefore, scholars such as Pepin et al. and Vogelius (68, 78) discussed 
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that the real-world studies cannot replace RCTs, and that data science 

outcomes should always be investigated by RCTs to ensure benefits. 

Nonetheless, such authors called for a complementary view that enables 

practitioners to yield the benefits of both approaches. The advancement in and 

the powerful computational capacity of ML methodologies can enable real-

world studies to address the main two limitations in the mainstream RCTs: (a) 

the inability to gather a large sample in a reasonable timeframe, and (b) the 

inability to follow-up all the randomly assigned participants.  

This coincides with our intuition that data science methods, through their 

pattern recognition ability, can provide hypotheses to be examined by RCTs. 

From another perspective, the great power of ML clustering represents a great 

potential to increase the success of RCTs. ML-based clustering capabilities 

reduce the heterogeneity of populations, enabling clinical researchers to select 

patients who are more suited to respond to the study’s intervention.  

Challenges to ML in the Era of EBM 

It is undeniable that the modern computational methods will have great 

and perhaps revolutionary impacts on the ways medicine will be practiced in 

the coming years. Nevertheless, to reap the full potential of such technologies, 

we need to take a serious look at the challenges that face ML in the clinical 

fields, where clinical decision making remains dominated by the EBM paradigm 

for various legal, ethical, professional, and methodological reasons. Shedding 

light on these challenges is a crucial step to address them and to allow the data 

science paradigm to have a true influence on clinical decision making, to realize 

potential benefits for patient treatment outcomes and healthcare organizational 

performance in general.  
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The reviewed articles shed light on several challenges that can be 

classified as methodological and ethico-legal. However, there is a strong 

reason to believe that the origin of all the challenges is epistemological in 

nature. There are fundamental differences between the EBM and data science 

paradigms in the way in which they practice science and produce knowledge. 

These differences are reflected in the methodologies of the two paradigms and 

their ethical frameworks. Since EBM dominates the scene in clinical sciences, 

it poses numerous challenges to data science adoption.  

Methodological Challenges  

Control Over Confounders  

The golden standard in EBM is control over confounders in order to 

eliminate bias and infer causal relationships. Several scholars argued that ML 

cannot control the confounding effect of other covariates, whereby it is difficult 

to infer a relevant causal relationship where bias is eliminated or controlled (65, 

68). This is why, in the EBM paradigm, the most robust method is the RCT, 

while in ML randomization is not easily feasible (68). This is a serious limitation 

in ML; if this issue was addressed properly, ML could revolutionize clinical 

sciences to a greater extent.  

Limited Generalizability  

The ML algorithms train on a portion of a data set and then produce 

future predictions for the remaining portion of the dataset. This makes the 

model subject to learning from idiosyncrasies and noise in the data set that 

could lead to overfitting (73). Accordingly, there is no a priori reason to think 

that predictions made on the basis of the specific context wherein the model 

learned are applicable to other contexts (70). Model overfitting and lack of 
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control affect the generalizability of results and may lead to inappropriate 

conclusions (79).  

Lack of Reproducibility  

The combination between huge data sets and the complex 

computational and analysis processes (i.e. data cleaning, preparation, 

modelling, and validation) makes full reproducibility hard to achieve (107). 

Interestingly, in a paper published in Nature, a group of scholars and 

statisticians concluded that approximately 50% of published papers in the field 

of microarray gene expression that greatly utilized data mining are 

irreproducible or un-repeatable (108). Thus, several scholars advocate for the 

open availability of datasets, algorithms, study procedures, and even codes, to 

promote reproducibility (69, 70).  

Complexity and Lack of Transparency  

ML approaches are considered black-box analytical techniques for 

clinicians (69). This complicates interpretability and makes it difficult for 

clinicians to base their clinical decisions on ML based evidence (68, 78). Part 

of this problem is related to the awareness among the clinicians about the 

modern analytical methods (78). The other part is related to the very nature of 

ML projects, which lack transparency about the study procedure, making it 

difficult to compare the performance of the ML algorithm with the performance 

of human experts in order to demonstrate the value of the ML to the clinicians 

(69).  

Lack of Standardization  

Shameer et al. (65) noted that evidence in mainstream medicine is 

synthesized through summarizing multiple studies in standard procedures, 
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such as meta-analysis or systematic reviews. This process is essential in EBM 

to develop clinical guidelines that inform the clinical decisions. It is difficult to do 

the same in the ML field, because there is no policy to regulate the 

dissemination and the reporting of ML models in medicine. In many instances, 

researchers do not report data elements and model parameters, or declare the 

transformations that are carried out on the data. All these challenges complicate 

the synthesis of ML-based evidence and negatively affect the reliability of 

outcomes. This may partially explain why relatively few ML projects have 

succeeded (70).  

Ethical and Legal Challenges 

Six Dijkstra et al. (74) explored the ethical considerations and potential 

consequences of using ML-based decision support tools in the context of 

occupational health. They argued that the use of ML in occupational health will 

change the nature of interactions between clients and care providers, with 

unknown consequences. They discussed the ethical considerations in light of 

the four predominant ethical principles of medicine:  

 Autonomy, which refers to respecting the individual’s right of choice;  

 Beneficence, which entails that the clinicians should act in the best 

interests of their patients; 

 Non-maleficence, which means “do no harm” as per the Hippocratic 

Oath; and 

 Justice, which refers to fairness and equality among patients.  

In the context of clinical sciences, ML faces challenges in terms of 

respecting the autonomy principle. Several scholars claim that open consent 

does not specifically explain how data will be used. In addition, the lack of 
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transparency of predictive analytical techniques makes prediction unverifiable. 

Therefore, they concluded that patients feel pushed to choosing certain 

treatment options, which contradicts the principle of autonomy. Similarly, 

Torous et al. (77) studied the potentials of using the social media data to predict 

suicidal events and discussed the challenge of consent to use data generated 

by smart phones and circulated in social media. Also, Gossec et al. (79) raised 

the issue of patients’ role in big data. They argued that active patient 

participation in data collection, interpretation, and decisions related to big data 

analytics is an ethical obligation. However, consent to use, analyze, and 

interpret the data is still challenging in the field of big data analytics.  

In terms of beneficence, Six Dijkstra et al. (74) opined that the validity of 

ML algorithms’ output is uncertain. This, to a great extent, is related to the lack 

of control and to the inability of ML to produce causal relationships. Hence, 

there is significant uncertainty around the consequences of basing clinical 

decisions on ML-based evidence, which raises issues concerning the principle 

of beneficence.  

The issues related to privacy, confidentiality, and data ownership are 

tackled in the majority of data science literature. Six Dijkstra et al. (74) shed 

light on the ambiguity of the privacy and data ownership rights that are at risk 

as a result of the technological advancement. They mentioned the employees 

fear the powerful predictive functions of the ML that may reveal information to 

their employers about future conditions, and which may affect their employment 

status (74). In a similar vein, Torous et al. (77) argued that in the world of open 

data, ML algorithms may predict risks that may not exist, or carry out false 

negative predictions which may cause serious harm to individuals. These 
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issues pose serious challenges to the principle of non-maleficence.  

With regard to the fourth principle (justice), Six Dijkstra et al. (74) 

discussed that patients’ anonymity remains at risk even with data de-

identification. They argued that patients are profiled according to similarities 

with others to know things they do not like others to know about. The risk 

increases when the data comes from open sources such as social media, 

where information about job, age, workplace, and years of experience could 

reveal individuals’ identity. Besides the harm that may result from unveiling the 

identity, this challenge risks the principle of justice, as it may not control conflicts 

of interest (e.g. employers seeking information about employees that the latter 

do not desire their employers to know about).  

Risking the very ethical principles is thought to negatively influence 

patients` and the clinicians` trust in ML. The power of ML to unveil the patients` 

identity, predict “possibly unwanted” future conditions, and the potential misuse 

of patients` sensitive information may lead to patients` mistrusting the ML. We 

believe the patients` mistrust in ML affects the clinicians` trust in the ML. In 

addition, the clinicians` concerns that artificial intelligence would replace the 

clinicians increases the mistrust feelings among the clinicians. We suggest that 

lack of trust in ML that results from the methodical and ethical challenges 

contributes to the slow adoption of ML in healthcare that hinders the healthcare 

industry’s capacity to reap the full benefits of ML in supporting clinical decision 

making. Therefore, to address that, policy makers may need to address the 

methodical and ethical challenges that negatively influence the trust in ML in 

order to facilitate the adoption of ML in clinical decision support.     
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Epistemological Challenges  

We believe that all the challenges that face the data science in the field 

of clinical sciences are essentially epistemological, as the epistemology of a 

certain paradigm defines all aspects related to knowledge production, thereby 

determining acceptable methods of data collection, processing, analysis, and 

interpretation, based on ontological and axiological assumptions. Nonetheless, 

despite their fundamental underlying importance, the epistemological 

challenges that face data-driven science in clinical sciences are not given 

adequate attention in related literature. The reviewed studies identified two key 

epistemological challenges that face data science and its subsets in clinical 

sciences dominated by the EBM paradigm: the challenge of inductive 

reasoning, and the challenge of passive observation.  

Originating from the deductive post-positivism school of thought, medical 

knowledge is created through theory refutations and falsificationism (45). This 

means that the medical scholars have to guide their scientific inquiry by a 

hypothesis that is subject to refutation (109). The theoretical framework defines 

the process of data collection, processing, analysis, and interpretation (110). 

Accordingly, the quality of the evidence in clinical sciences is, to a great extent, 

determined by the soundness and the thoroughness of the research 

methodology. This explains why the EBM paradigm adopts the pyramidal 

representation of evidence quality, which explicitly means that certain methods 

are more rigorous than others, and therefore capable of providing more 

confidence in the clinical decision making (47, 111) (Figure 1).  

On the other hand, the great reliance of data science paradigm on 

secondary data that are collected basically for reasons other than research not 
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only poses ethical and methodical problems, but also reflects a serious 

philosophical concern (43, 61). In the field of data science and its subsets, data 

collection is not always driven by a specific hypothesis to refute or a research 

question to answer (3, 44, 110, 112). ML algorithms learn from and identify 

patterns in past data that are collected without a guiding refutable conjecture, 

with an implicit assumption that future events can be anticipated by observing 

what happened in the past. This is a thorny epistemic assumption, especially 

when the related decisions are risk-bearing and regulated by strict philosophical 

foundations that form the EBM paradigm. There is a widespread belief that 

inductivism is a mistaken philosophy of science (110). Consequentially, data 

science is criticized for being non-scientific and not subject to refutation. 

Scholars argue that a theory or hypothesis is always required to guide scientific 

enquiry in EBM, while data-driven science leads to apophenia, due to assuming 

relations between unrelated things. Therefore, Fricke (110) concluded that 

fields that produce knowledge from data are chimerical. In the fields of clinical 

sciences, where decisions are critical in nature and are associated with high 

risks, an interpretable model grounded in explainable theories would stand a 

better chance to be accepted by clinical scientists and professionals than 

models that learn from spurious data patterns but which cannot lead to 

generalizable performance guidelines (113).  

The second argument is the passive observation versus the active 

experimentation. Passive observations can be misleading and cannot affirm 

causal relationships, largely due to confounding effects. Fricke (110) defined 

confounders as “other conditions or variables which correlate either with the 

causes or with the effects to mask what is really happening at a causal level”. 
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Therefore, control in the EBM paradigm is the golden standard. The rigor of any 

research methodology in EBM is determined by its ability to control 

confounders, and therefore its ability to produce reliable knowledge based on 

which evidence can be abstracted. According to Gerstein et al. (105), RCT is 

the preferred methodology in clinical sciences because it achieves the three 

key criteria that ensure that the abstracted relationships are causal and 

generalizable in nature: (a) large sample size, to ensure that meaningful 

baseline imbalance does not occur by coincidence; (b) randomization, to 

ensure that the effect of the intended intervention on every participant is 

analyzed regardless of adherence to the intervention or treatment with 

additional therapies; and (c) near complete follow-up of all the participants until 

the end of the study.  

Mainstream scholars’ basic criticism of ML is based on their belief that 

the lack of theoretical-based protocolization in designing ML algorithms risks 

the loss of control over confounders (68, 70, 78), and that the data that are 

collected for ML algorithms are subject to incompleteness, errors, and 

systematic bias, which may thus lead to erroneous predictions (114). The 

methodological, ethical, and epistemological differences between the two 

paradigms lead to a phenomenon we name “Normative non-Congruence”, 

which gives the perception to clinicians and researchers that the two paradigms 

are incompatible. Therefore, in order to facilitate the utilization of ML in clinical 

decision support we have to (a) propose recommendations that help address 

the methodical and ethical challenges, and (b) propose a pragmatic 

reconciliatory framework that guides clinicians and scholars on how to build on 

the synergy that results from capitalizing on the strengths of the two paradigms.  
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The next section presents our recommendations to help address the 

identified methodical and ethical challenges and presents our view on how to 

achieve the reconciliation between the two paradigms despite their 

fundamental epistemological differences. We adopted a pragmatic stance that 

aims to transcend the epistemological challenges and the normative 

incompatibilities between the two paradigms in order to enable the maximum 

realization of utility of each paradigm, and to achieve what we call “perceived 

normative congruence”. This view provides a complementary prospect in 

which we believe that both paradigms have strengths and suffer weaknesses, 

and our goal is to capitalize on the strengths and mitigate the weaknesses 

where possible. The framework provides practical guidance to clinical 

practitioners and researchers on how and when to balance the emphasis on 

theory-driven or data-driven knowledge in order to obtain the best possible/ 

feasible evidence.  

We believe that although EBM has revolutionized the clinical sciences in 

the last three decades, it inherited the challenges from which the hypothetico-

deductive paradigm suffers. Scholars ascertain that deductive conjectures lack 

the ability to predict the future with precision. Hence, inductive reasoning is 

needed to create causal inferences about the observed phenomena (115). ML 

approaches can address some of the key EBM challenges. Accordingly, if we 

adopt a synergistic stance, each paradigm can address some of the other 

paradigms’ challenges to pragmatically provide robust evidence in a time-

efficient way to support clinical decision making. This argument is the 

cornerstone of the proposed reconciliation agenda. 
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Data and Theory: A Pragmatic Paradigm Reconciliation Framework  

It is obvious that both EBM and data science paradigms represent two 

extremes of knowledge discovery based on their sources of scientific 

information: theory-based knowledge vs. data-based knowledge. The EBM 

puts great emphasis on scientific knowledge that results from the accepted 

methodologies in the paradigm. Therefore, the clinical decision maker has to 

support clinical decisions with the best available evidence. On the other hand, 

data science depends greatly on the knowledge contained in data that results 

from pattern recognition and other predictive or descriptive algorithms. Figure 

2 illustrates the different emphasis on data vs. theory between the EBM and 

data driven science. 

 

 

 

Figure 2. Emphasis on theory vs. data. 
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There is no doubt that the two paradigms’ ultimate goal is to provide 

high-quality evidence to inform clinical decisions and ensure the best possible 

treatment outcomes. Nevertheless, the word “evidence” holds different 

meanings in every paradigm. Evidence in EBM refers to the reliable scientific 

knowledge that results from specific robust methods that adopt the hypothetico-

deductive reasoning approach (116). In data science, evidence comes from 

knowledge hidden in data through the utilization of sophisticated algorithms 

which have the potential to detect patterns of associations and correlations; in 

this paradigm it is unnecessary that the scientific inquiry is guided by a 

background theory.  

To better understand this argument, it is instructive to refer to Kuhn’s 

theory of knowledge, which entails that the practices of scientists are strictly 

guided by core theoretical frameworks, guiding principles and techniques that 

structure a paradigm. In The Structure of Scientific Revolutions, Kuhn 

discussed the term “normal science” to describe scientists’ actions as a process 

of solving a puzzle, aiming in the first place to prove and support the key 

theoretical framework of their scientific paradigm (117). The key practices and 

guiding principles in the EBM and the data science paradigms represent two 

extremes in terms of the emphasis on the theory-based knowledge vs. the data-

based knowledge. Thus, the term “evidence” definitely means different things 

in each paradigm, and it is epistemologically impossible to achieve synthesis 

between paradigms, because one cannot operate on more than one paradigm 

simultaneously (118).  

Therefore, our goal is not to synthesize a third paradigm as a result of 

merging two paradigms. Instead, the key principle of our view is that each 
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paradigm has strengths and challenges. Therefore, (i) neither paradigm is 

considered sufficient for knowledge discovery in complex scientific applications, 

and (ii) it is a mistaken assumption that data science will address all the EBM 

challenges, and vice versa. Consequently, a pragmatic, balanced view is 

crucial. The main goals of this pragmatic approach are (a) to transform the 

emphasis from the “best available evidence” to the “best possible/feasible 

evidence”, and (b) to enhance the clinicians’ “perceived normative 

congruence” that may boost willingness to accept the ML-based knowledge as 

a source of evidence to enhance the quality of clinical decisions.  

Perceived normative congruence refers to the clinicians’ perception that 

there is an acceptable degree of compatibility between the data-based and 

theory-based paradigm. We stress on the normative component because EBM 

sets strict rules on how clinical practitioners and researchers should think and 

decide. Therefore, it is crucial to approximate the way data-based approaches 

work in EBM. We strongly believe that this will contribute to boost clinicians’ 

willingness to accept the data-based paradigm in their decision making 

process. We suggest that the congruence can be achieved through providing a 

framework that legitimizes the use of ML in scientific clinical knowledge 

production through addressing some of the key challenges from which ML 

approaches suffer. Therefore, our proposed framework and recommendations 

play an integral role in securing a foothold for ML approaches within the clinical 

sciences, which will contribute to enhancing congruence with the EBM 

paradigm.  

On the other hand, the focus on the “best possible/feasible evidence” 

stems from the fact that there are several scenarios where the evidence does 
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not exist, or is impossible, unethical, time-consuming, or extremely costly (48). 

In such cases there is a need to support clinical decisions without compromising 

the quality of evidence. Thus we propose that when “high-quality evidence” is 

not possible through mainstream methodologies, or it requires long time to be 

formulated, the knowledge generated by applying ML approaches on a large 

amount of patient data will be utilized as an evidence base until higher quality 

evidence comes into existence. This is crucial to bridge the gap between clinical 

knowledge and clinical decisions in the EBM context. This also keeps a sense 

of tentativeness of evidence, which encourages clinicians and scholars to keep 

searching for better evidences to support clinicians make higher quality 

evidence-based decisions.  

The pragmatic stance is summarized by viewing the two paradigms as a 

continuum, as shown in Figure 3, where clinicians and scholars can move right 

or left according to feasibility, time, and cost constraints. This does not in any 

way mean ignoring epistemological constraints. Knowledge produced in either 

direction must always be refereed by experts, considering the known body of 

knowledge, to ensure the reliability of knowledge and safety in supporting 

clinical decisions.  
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Figure 3. Data-driven, theory-driven knowledge continuum. 
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patients with moderate to severe traumatic brain injury (TBI) who received 

mechanical ventilation, and provided a new perspective to redefine the 

prolonged mechanical ventilation (> 10 days) in order to help critical care 

physicians timely consider the tracheostomy. These findings coincide with a 

recent Cochrane review which found that mechanically ventilated patients will 

benefit significantly if the tracheostomy is considered early (no later than 10 

days from the start of mechanical ventilation) (120).  

2. When mainstream clinical research methodologies are feasible, scholars 

can consider the utilization of the ML approaches as alternative 

analytical techniques.  

In this way, the EBM best research practices such as randomization, 

control, research ethics, and the presence of a guiding background theory will 

be maintained, while the analytical power of ML techniques is properly utilized.  

3. Electronic health records generate vast volume of diverse data that is 

thought to hide interesting patterns that are potentially insightful.  

Furthermore, the nature of the electronic health records provides an 

outstanding opportunity for retrospectives longitudinal observation when the 

prospective longitudinal studies are not possible. The significant capacity of ML 

approaches to uncover interesting patterns in data can be of great value. These 

patterns can trigger questions about previously unknown associations between 

variables. These interesting patterns can easily serve as hypotheses for future 

RCT whenever possible.  

Figure 4 shows the proposed reconciliation framework that guides the 

scholars how to benefit from ML in EBM. Importantly, to achieve the 

reconciliation purposes, the known body of knowledge should be respected. 
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This can be governed by three conditions. 

First, institutional review boards (IRBs) should consider the provision of 

access to data scientists or ML experts who can collaborate with 

epidemiologists, biostatisticians and clinical scholars to ensure clinical 

researches that contain ML element respect the theoretical and the ethical 

frameworks. 

Second, the output of ML algorithms should be interpreted in accordance 

with the known body of knowledge and the existing theoretical framework, to 

produce generalizable insights that influence clinical decision making. 

Third, proponents of data science have to understand that the key word 

in data science is the “science”, not the data. As discussed by Vogelius (68), 

clinical utility is not measured by discovering another prognostic tool or merely 

an interesting pattern in data or sophisticated mathematical technique, it is 

measured by the ability to support the clinical decision making or by the novel 

clinical insight.  

Recommendations 

The pragmatic reconciliation approach paves the way towards enabling 

the utilization of ML in supporting clinical decision and to ensure the timely 

availability of evidence to inform clinical and scientific activities. Besides that, 

the following recommendations aim to facilitate the adoption of the proposed 

framework and the achievement of the perceived normative congruence 

through addressing some of the main identified methodical and ethical 

challenges.  

Data Management, Sharing, and Enhanced Generalizability 

Healthcare policy makers have to consider the need for policies that: (a) 
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regulate and encourage the optimal utilization of electronic health records and 

data warehouses; (b) encourage open access to data provided the privacy and 

confidentiality are maintained; (c) encourage data sharing at the national and 

international levels, to facilitate multicenter studies which enhance the 

generalizability of research outcomes; and (d) encourage the sharing of data 

sets that are used in research studies to facilitate governance.  

Analysis Procedure and Enhanced Interpretability and Reproducibility 

It is imperative for the procedural governance, transparency, 

interpretability, and reproducibility that researchers should explicitly report 

study procedures, codes, missing data imputation, and algorithm tuning, etc. 

(121). In another aspect, there is a need to encourage a multidisciplinary 

approach in analyzing data in ML projects. This may help scholars utilize best 

epidemiological practices (e.g. randomization and controlling confounding 

variables). Intuitively, the availability of large volume of data may make the 

randomization and control in ML achievable tasks, given that the ethical, 

privacy, and confidentiality requirements are respected. It was suggested by 

May (106) that scholars can achieve a virtual control in ML studies, but no 

explanation was provided on how to achieve that. We argue that scholars can 

always create a randomly selected control group of patients to provide 

comparative perspectives between study and the control groups. Furthermore, 

there is a serious need to develop standards that ensure reproducibility, and 

cross-validation procedures to control the over/underfitting problems.  

Research Ethics  

ML study designs should respect privacy, anonymity, and confidentiality 

in all project phases, including data collection, processing, storage, analysis, 
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and interpretation. In the context of clinical research, ML-based clinical 

research should comply with the ethical standards of IRBs and health research 

ethics committees. Scholars must prove that their study protocols provide all 

possible means to secure patient data and maintain privacy. One of our key 

recommendations is that an ML expert or a data scientist should be a member 

in the IRB whenever ML project is presented. This is essential to inhibit any 

opportunity for potential profiling, function creep, or discrimination. This is also 

important for the maintenance of privacy and ownership of data.  

Furthermore, there is a need to reconsider the process by which we 

obtain informed consent, especially as data science analytics holds risks of data 

misuse. We recommend that the IRB sets rules that force the scholars to restrict 

the use of data only to the purposes that are listed in the consent. Thus, 

whenever a need for further analysis arises that may risk the principles of 

patients or privacy, permission by the IRB should be granted.  

Provision of Academic and Professional Training  

Policy makers in healthcare institutions have to identify the opportunity 

to train healthcare professionals on modern data analytical approaches. The 

same applies for academic institutions that may consider the need to include 

data analytics and AI approaches in the curriculum of clinical sciences. This 

contributes to raising awareness among clinical students, which contributes to 

building a strong foundation that considers the ML as a reliable alternative to 

produce scientific knowledge. Furthermore, the complexity of ML methods may 

serve as a limiting factor. Therefore, academic and professional training may 

help clinicians master the use of the ML and realize their value in supporting 

clinical decision quality.  
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The next section is an attempt to synthesize a literature-based 

conceptual framework in order to answer the question of how clinicians’ 

adoption of ML in clinical decision making can be enhanced. Several challenges 

have been highlighted in the literature that negatively influence the willingness 

of clinicians and clinical researchers to utilize ML in their scientific activities. 

Nonetheless, none of the past literature provided a comprehensive framework 

that presents a roadmap to guide policy makers to set strategic directions to 

enhance the utilization of ML in supporting clinical decisions.  

 

 

 

Figure 4. Pragmatic paradigm reconciliation framework  
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CHAPTER 4: USING TISM AND MICMAC ANALYSIS TO MODEL  

ENABLERS OF CLINICIANS INTENTIONS TO ADOPT ML IN CLINICAL 

DECISION MAKING – A CONCEPTUAL FRAMEWORK. 

Background 

It has been evidenced in the literature that the full potential benefits of 

modern analytics and data science approaches in healthcare are not fully 

realized (6, 8). We showed in the previous chapter that this is a multifactorial 

problem, highlighting the significant epistemological incommensurability that 

influences the normative congruence between the data science and the EBM 

paradigms. To address this gap, we proposed a pragmatic framework that 

provides practical guidance to clinical practitioners and researchers on how to 

balance their emphasis on data and on theory based on certain circumstances 

in order to provide the best possible evidence. In addition, we provided some 

recommendations that could address some of the main challenges faced by ML 

in EBM, which enhances the perceived normative congruence of the 

paradigms. However, one of the reasons that negatively affects the realization 

of the full benefits of ML in clinical decision support is the slow adoption of AI 

approaches, including ML, in the healthcare field. 

In a market study conducted by the McKinsey Global Institute in 2019, 

the healthcare industry, relative to all other industries, was found to have the 

slowest rate of adoption of the five key AI technologies, including the ML (122). 

This poor adoption is a fundamental reason for not realizing the full benefits of 

ML in healthcare. The poor adoption of ML represents a lost opportunity to 

support clinical decision making, which is a key reason for poor healthcare 

outcomes and substantial wasteful expenditure in healthcare (13). Therefore, it 
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is crucial to determine and model the factors that lead to the slow adoption of 

ML technology in the healthcare context, particularly to support clinical decision 

making.  

The purpose of this chapter is to propose a Total Interpretive Structural 

Modeling (TISM) conceptual framework that helps us: (a) model the factors that 

may enable the adoption of ML in the healthcare industry; (b) understand the 

nature of and the interrelationships between adoption enablers; and (c) develop 

a diagraph that orders the enablers in a hierarchical fashion, to present a 

roadmap that informs policy makers on how to enhance clinicians’ intentions to 

adopt ML approaches in healthcare, particularly in supporting clinical decision 

making.  

The scoping review identified several challenges that face ML in the field 

of clinical decision support. We believe that addressing these challenges will 

encourage clinical practitioners and researchers to adopt the ML in their clinical 

decisions and scientific activities. Furthermore, we consulted the technology 

acceptance model (TAM) to borrow the original constructs (perceived ease of 

use, perceived usefulness, and users’ behavioral intentions to adopt). The 

reasons behind using TAM are that it addresses the potential users’ intentions 

to use a technology, which we believe that it is a key for enhancing the adoption 

of the ML at the industry level; and the original constructs of TAM fit perfectly 

with this study context. The benefits and the complexity of ML were highlighted 

as challenges to adopting ML in several studies. Therefore, we consider that 

enhancing the perceived usefulness and the perceived ease of use will work as 

enablers to adopting ML in clinical decision support. On the other hand, 

although we do not treat the ML as a technology in the same way TAM treats 
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the technological innovations, we still see ML as an innovative technological 

approach to support clinical decision making, which offers great potential 

functionality in theory, but which stumbles at the intersection of actual effective 

use in clinical practice.  

This work presents an original conceptual framework that provides 

strategic directives to the policy makers towards enhancing clinicians’ 

intentions to adopt ML in their clinical decisions, thus reaping the maximum 

benefits through raising the quality of clinical decision making, while reducing 

healthcare expenditure. Although many identified variables were highlighted by 

previous literature, no previous studies presented a theoretical framework that 

explains the dynamicity amongst the enablers and the path towards achieving 

the ultimate outcome, which is enhancing the adoption of the ML in supporting 

the clinical decision making. Thus, we argue that this work is novel and adds 

value to the body of knowledge.  

Why Total Interpretive Structural Modeling (TISM)? 

According to Watson (123), structural models are necessary for dealing 

with the modeling process that helps scholars identify the elements of a model 

and analyze the interactions among the identified elements. Interpretive 

Structural Modeling (ISM) is defined as “a process that transforms unclear and 

poorly articulated mental models of systems into visible, well-defined models 

useful for many purposes” (124) (p. 87). The ISM helps develop a hierarchy of 

interacting variables to graphically represent transitive relationships between a 

system variables (125). Haleem et al. (126) argued that ISM is an interactive 

process that helps structure a set of interacting elements that are relevant to 

the problem at hand in a comprehensive systematic model. Also, ISM helps 
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scholars order and identify the direction of a complex system of relationships 

between elements of a system (126, 127). As described by Haleem et al. (126), 

ISM is interpretive in the sense that it helps scholars determine whether or not 

and how the variables are related. ISM is widely used in several industrial fields, 

including supply chain management (128, 129), airline performance (130), 

waste management (131), strategic decision making (132), and in the 

healthcare industry (133). Sushil (124) identified four key limitations of ISM: 

 It can only be used by those who are trained to interpret the data. 

 It relies greatly on computers, which makes it difficult if computers are 

not available. 

 It provides partial interpretation of links between variables, which leads 

to multiple possible interpretations. 

 It does not provide a causal explanation for the links between the 

variables, which limits theory-building potential.  

Jena et al. (134) added a fifth limitation, which is that ISM does not 

consider the transitive linkage between the variables. Accordingly, Sushil 

presented TISM as an extended ISM approach to address the identified 

limitations of ISM (124, 135). According to Deshmukh and Mohan (135), the 

use of the TISM results in the a diagraph that represents the complex system 

among the variables of interest which was described as a novel qualitative 

multi-attribute decision modeling method (136). Jena et al. (134) summarized 

the salient characteristics of TISM as the following: 

1. TISM is interpretive in nature, as it utilizes expert opinion to determine 

why linkages between connected variables exist in the way they do (i.e. 

inferring causality). 
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2. TISM is a modeling technique that depicts the contextual relationships, 

entire structure, and interpretation for direct and significant transitive 

links between variables by a diagraph.  

3. TISM simplifies the portrayal of complicated systems.  

4. TISM addresses ISM’s poor interpretability of links through employing 

an interpretive matrix.  

5. TISM facilitates theory-building through answering what, why, and how 

questions.  

6. TISM interprets both the links and nodes in the structural model. 

Methodology  

The aim of this chapter is to develop a TISM-based hierarchical 

relationship among a set of literature-based identified enablers of ML adoption 

to support clinical decision making. TISM methodology is composed of nine 

steps, as described below. To achieve the objectives, a panel of 4 expert clinical 

scholars with experience and knowledge of the potential role of ML in 

supporting clinical decision making was formulated to conduct the TISM 

process. The panel consists of two experienced physicians, and two 

experienced nurses who are all well published researchers. It was agreed that 

the contextual pairwise relationships would be blinded and done by every 

panelist separately, then all pairwise relationships were discussed openly. The 

final decision about the pairwise relationships was reached by majority voting, 

if no consensus was achieved.  

Step I: Identify and Define Enablers of ML Adoption in Clinical Decision 

Making in the EBM Era  

This preliminary TISM step sources elements from previous literature 
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(129, 134), and brainstorming with a panel of experts (128). In this study, the 

adoption enablers were sought basically from the previous literature.  

Perceived Normative Congruence 

Based on the results of the scoping literature review, we identified 

several factors that pose challenges to the utilization of the ML in the clinical 

field. The epistemic incommensurability between the EBM paradigm, which 

emphasizes theory-based knowledge, and the data science paradigm, which 

puts great emphasis on data-driven knowledge is regarded a key challenge to 

the willingness of the clinicians to adopt ML. Within a scientific paradigm, 

scientists and practitioners are mandated to comply with the paradigm’s norms. 

This understanding led us to propose the construct “perceived normative 

congruence” that reflects the pressure of complying to the paradigm’s norms 

on the user’s intentions to use an innovation. In this study’s context, the 

perceived normative congruence refers to the degree to which the potential 

users (clinicians and clinical scholars) believe that the ML approaches are 

consistent with the values, standards, and scientific traditions of the dominant 

paradigm in the clinical sciences, EBM.  

In other words, the perceived normative congruence reflects the degree 

to which clinicians believe that the ML approach satisfies the normative 

approach of decision making, which includes but is not limited to ensuring the 

best methodological standards, such as control and elimination of bias, 

respecting medical ethical principles, and respecting patient privacy and 

anonymity. We suggest that the perceived normative congruence contributes 

positively in enhancing the clinicians’ intentions to adopt ML in their clinical 

decisions. This is consistent with the theory of planned behavior, which 
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indicates that a person’s behavioral intention is determined by subjective 

norms, which refer to “the perceived social pressure to do or not to do” (137) 

(p. 188).  

In a similar vein, Wang (138) studied the influence of the technological 

congruence on consumers’ attitudes towards price change and technology 

adoption. The study found that the perceived technological congruence 

significantly influences consumers’ adoption intentions. Wang defined the 

perceived technological congruence as “the degree to which a new mobile 

application is perceived by users as being consistent or compatible with their 

values and travel needs” (p. 23). Furthermore, in his book Diffusion of 

Innovations (139), Everett Rogers discussed the impact of perceived attributes 

of the innovation on the rate of adoption, including the attribute of compatibility. 

One way of evaluating compatibility was through the values and belief system. 

Rogers argued that incompatibility with the values and beliefs slows down the 

adoption rate. This is consistent with our proposal that the incompatibility that 

results from the incommensurability between the EBM and the data science 

paradigms in the way normal science is practiced plays a role in the slow 

adoption of AI (particularly ML approaches) in clinical decision making.  

Clinicians’ Awareness of ML Potential 

Oh et al. (140), who investigated the awareness of Korean doctors of AI 

in medicine, found that less than 6% of the 669 surveyed doctors have a sort 

of familiarity of the AI in medicine. Kelly et al. (141) argued that raising the 

awareness amongst clinicians contributes to improving the adoption rate. The 

importance of raising the awareness of the users about the potentials of a new 

technology was also discussed by Kamal et al. (142). They differentiated 
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between the non-users due to resistance and due to lack of awareness. 

Therefore, they recommended raising awareness as a measure to overcome 

resistance and to improve adoption. They suggested awareness campaigns to 

help reduce resistance and to enhance knowledge about the potential benefits 

of adopting the technology, to contribute to improved adoption.  

Similarly, it was reported that the awareness of the benefits of the 

technology was a limitation in studying the critical care nurses’ intentions to use 

the eICU telemedicine technology (143). Interestingly, Oh et al. (140) came 

across a very important perspective which is the concern that AI will replace 

physicians’ roles in the future, which could be a reason for resistance. In our 

opinion, this is a consequence of poor awareness. In this work’s context, 

awareness is meant to target practicing clinicians who face patients and clinical 

researchers who are well-versed with EBM standards. There is a significant role 

to be played by government health ministries in encouraging the advent of AI 

in the healthcare industry, and in formulating strategies that ensure the 

readiness of the healthcare industry for the 4th industrial revolution.  

Patients’ Awareness of ML 

Patients are the heart of the healthcare system. This is why there are 

numerous calls to build healthcare delivery systems that are patient-centered 

(144). As a result, patient engagement in developing care plans is becoming 

increasingly common in modern healthcare systems. In the context of the ML, 

there are several concerns that must be addressed to ensure patients’ trust 

(145). Addressing these concerns requires raising patients’ awareness of the 

potentials of ML to improve the quality of clinical decisions and therefore 

treatment outcomes. In a study conducted by Jaiswal et al. (146) to assess 
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patients’ awareness of the role of the AI in dentistry, 77% of the surveyed 

patients reported that they do not know that AI can help in clinical decision 

making. In another study conducted by Jutzi et al. (145) to assess patients’ 

perspectives about the role of AI in skin cancer, the majority of respondents 

were not amenable to the use of AI as a standalone system, and they preferred 

a joint system where AI supports doctors in clinical decisions related to skin 

cancer classification. Therefore, raising patient awareness is essential to 

eliminate misconceptions about the role that ML can play in improving 

healthcare delivery (146). Similar to raising the clinicians’ awareness, this is a 

strategic role that health ministries can assume and encourage healthcare 

organizations to participate in.  

Clinicians’ Perceived Usefulness 

Perceived usefulness is a concept of TAM referring to the degree to 

which users perceive or believe that the adopted technology will improve their 

performance (147). Davis attached the perception of usefulness to the 

motivation of employees to get promotions or pay increases. In our context, we 

consider perceived usefulness a function of the clinicians’ perception that the 

utilization of the ML approaches will improve their capacity to make better 

clinical decisions, which will contribute to better treatment outcomes, improved 

service user satisfaction, and minimized healthcare bills for clients, healthcare 

systems, and national economies. It is evident in the literature that there is a 

significant positive relationship between users’ perceived usefulness and their 

behavioral intentions to use a technology (142, 148, 149). We believe that the 

awareness of the ML potentials contributes to perceived usefulness.  
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Clinicians’ Perceived Ease of Use 

Davis (147) defined perceived ease of use as “the degree to which a 

person believes that using a particular system would be free of effort” (p. 319). 

He related it to the relative “ease” of the new technology when compared with 

the old way of doing things (in the absence of the innovation). In our context, 

we refer the perceived ease of use as clinicians’ knowledge of how to use ML 

approaches, interpret results, and employ the obtained knowledge in their 

clinical decisions and scientific activities. ML techniques are usually referred to 

as a black-box, and there have been several calls to unlock them (150, 151). 

This contributes to the spread of the perception of the complexity of ML, which 

slows down adoption. The positive impact of the perceived ease of use on the 

users’ intentions to use technology or innovation is well established in the 

literature (142, 148, 149). 

Academic Foundation 

Generally, clinicians are trained to conduct their clinical decisions and 

judgements according to the standards of EBM. However, there is no formal 

training in modern analytical techniques in clinical schools or healthcare 

organizations to orientate the future clinicians about the use of ML to enhance 

quality of clinical decisions. Lack of training was identified as a barrier to 

electronic health record adoption among physicians (152), and a barrier to 

adopting telemedicine technology among ICU nurses (143). Several recent 

studies stressed the importance of providing training to the clinicians and of 

introducing AI in the clinical sciences curricula to prepare the healthcare 

industry for the AI age (153, 154), moving on from the information age to the 4th 

industrial revolution (155). This step requires serious collaboration between the 
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healthcare, education, and government sectors to upgrade curricula with AI 

inclusion as a precursor to the effective use of ML in healthcare. The proposed 

reconciliatory framework forms the basis of an updated curriculum that 

legitimizes the utilization of the data-based paradigm alongside the EBM 

paradigm.  

Multidisciplinary Collaborative Work Environment 

This enabler is related to healthcare organizations who can enable ML 

adoption by fostering a climate conducive to collaboration among different 

disciplines (i.e. clinical researchers, epidemiologists, biostatisticians, data 

scientists, ML experts, etc.). By achieving this, healthcare organizations can 

facilitate clinicians’ access to data science and ML experts, who can help 

clinicians and the clinical researchers unblock the ML black-box and help them 

better understand pertinent clinical evidence (72). Also, the collaboration 

between data scientists, epidemiologists, and clinical researchers can help the 

former develop deeper understanding of EBM best practices and standards.  

Clinicians’ Trust in ML 

Although ML can help improve risk calculation in uncertain conditions, 

the use of ML raises several clinical, ethical, and legal concerns due to the lack 

of understanding how ML produces output (156). The complexity of ML 

approaches, lack of procedural transparency, and lack of interpretability 

increase the ambiguity around the ML, which undermine clinicians’ trust in ML 

outputs (68, 78, 121, 156), and raise questions about accountability for wrong 

decisions (140).  

According to Shahbaz et al. (149), trust is a state of mind in which a 

person has a confidence in the information provided by a system. In our context, 
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the trust refers to the perception of clinicians that ML is capable of providing 

valuable insights from the clinical data in a way that improves patient outcomes. 

Several studies prove that trust is a key reason for the success or the failure of 

information systems adoption (142, 149, 157, 158).  

Patients’ Trust in ML 

Patients’ perspectives have been thoroughly discussed in the context of 

ML in healthcare, identifying key concerns related to the huge potential of ML 

and the risks of breaching patients’ privacy, confidentiality, and anonymity. 

Several scholars discussed that applications of ML may jeopardize the 

bioethical framework that stresses the four key ethical principles of autonomy, 

beneficence, non-maleficence, and justice. EBM particularly stresses 

autonomy and respecting patients’ right of choice. Nevertheless, some scholars 

argued that the lack of transparency of the ML procedures leaves patients with 

no choices, and makes them feel pushed to choosing certain treatment options, 

which jeopardizes the very principle of autonomy (74). Furthermore, several 

scholars raised concerns about the ability of the ML approaches to uncover 

very sensitive information that patients may not like to be uncovered, which 

risks the patients confidentiality (79, 159).  

According to He et al. (9), improving the interpretability of the ML output 

enhances patient trust in AI in general, and holds AI manufacturers more 

accountable. Therefore, there is great emphasis on the importance of improving 

the transparency of the patient consenting procedures and to design strict rules 

to save the patients’ rights from function creep and data misuse, which will 

subsequently enhance patient trust in ML approaches (74, 159, 160). 
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Clinicians’ Behavioral Intention to adopt ML  

Behavioral intentions refer to someone’s intention to achieve a specific 

behavior in the future (149). This TAM variable is largely used as a predictor for 

the actual acceptance of an innovation or technology (142, 161-163). This 

assumption is based on Ajzen’s theory of planned behavior, which posits that 

behavioral intention can predict actual behavior (137). In other words, it is more 

likely that people will adopt a technology if they have the intention to use it 

(164). Consequently, we propose that clinicians’ intentions to use ML in their 

practice will affect their actual adoption of ML.  

Step II: Determine Contextual Relationships 

This step is imperative for developing a structure of interacting elements, 

represented in the structural self-interaction matrix (SSIM) shown in Table 5, 

where expected contextual relationships between the enablers are presented 

in the form whereby enabler a influences or enhances enabler b, or enabler a 

helps achieve enabler b, and so forth (124, 128). The contextual relationships 

are identified from the literature and the expert panelists opinion. We use “V” if 

enabler a (in the column) enhances enabler b (in the raw); “A” if enabler b (in 

the raw) enhances enabler a (in the column); “X” if both variables enhance each 

other; and “O” if there is no relation.  
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Table 4. SSIM Matrix 

 Enablers 10 9 8 7 6 5 4 3 2 1 
 

1 Perceived 
normative 
congruence 

V O V V A O V O A X 

2 Clinicians’ 
awareness 

V V V X A V V O X  

3 Patients’ 
awareness 

O V O O O O O X   

4 Perceived 
usefulness 

V O V X A X X    

5 Perceived ease 
of use 

V O V A A X     

6 Academic 
foundation 

V O V V X      

7 Multidisciplinary 
collaborative 
work 
Environment 

V O V X       

8 Clinicians’ trust V V X        
9 Patients’ trust V X         
10 Clinicians’ 

intentions to 
adopt ML 

X          

 

 

Step III: Interpret the Relationships 

This step helps explain the way in which enabler a helps achieve or 

enhance enabler b, which helps scholars achieve in-depth knowledge about the 

relationships between the elements (124, 134).  

Step IV: Interpretive Logic of Pair-Wise Comparison 

This step identifies the possible directional links (a-b and/or b-a) to 

achieve an interpretive knowledge base. Making use of the concept of the 

interpretive matrix, the scholar in this step fully interprets each paired 

comparison in terms of how that directional relationship operates in the system 

under consideration by answering the interpretive query, as explained in step 
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III (124). The total number of pair-wise comparisons equals to n x (n-1) (128). 

As explained by Sushil (124), there are two possible directional links for every 

pair of elements (a-b or b-a). The entry could be yes (Y) or no (No) for every a-

b link. If it is (Y), further interpretation is required.  

Step V: Development of Reachability Matrix and Transitivity Test 

As explained by Jena et al. (134), the reachability matrix is developed 

with the help of the interpretive knowledge base by transforming every Y to “1” 

and N to “0”. Also, reachability matrix is checked for transitivity rule and updated 

until full transitivity is established. For every new transitive link, N is to be 

changed to Y. Table 6 shows the reachability matrix including the significant 

transitive relationships (1*).  

 

 

Table 5. Reachability Matrix 

 Enablers 1 2 3 4 5 6 7 8 9 10 Driving 
power 

E1 Perceived 
normative 
congruence 

1 0 0 1 1* 0 1 1 1* 1 8 

E2 Clinicians’ 
awareness 

1 1 0 1 1 0 1 1 1 1 8 

E3 Patients’ 
awareness 

0 0 1 0 0 0 0 0 1 0 2 

E4 Perceived 
usefulness 

0 0 0 1 1 0 1 1 1* 1 6 

E5 Perceived ease 
of use 

0 0 0 1 1 0 1* 1 1* 1 6 

E6 Academic 
foundation 

1 1 0 1 1 1 1 1 1* 1 9 

E7 Multidisciplinary 
collaborative 
work 
Environment 

0 1 0 1 1 0 1 1 1* 1 7 

E8 Clinicians’ trust 0 0 0 0 0 0 0 1 1 1 3 
E9 Patients’ trust 0 0 0 0 0 0 0 0 1 1 2 
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Step VI: Level Partition on Reachability Matrix 

This step is important to place the enablers in the appropriate digraph 

level (134). In this step, we determine the intersection set, which is made of the 

common enablers between the antecedents set and the reachability set. The 

reachability set is composed of the enabler itself and the enablers that it 

enhances. The antecedents set is the enabler itself and the enablers that 

enhance it. Consequently, the elements where the intersection set equals the 

reachability set will sit in the top of the hierarchy. The same procedure is 

repeated until all enablers’ levels are determined. Tables 7 to 12 show all the 

iterations that resulted in the enablers’ level determination. The symbol (*) is 

assigned to the enabler(s) where the reachability and the intersection sets are 

equal.  

 

 

Table 6. Partition Level (a) 

Enabler Reachability set Antecedent set Intersection set 

E1 1,4,5,7,8,9,10 1,2,6 1 

E2 1,2,3,4,5,7,8,9,10 2,6,7 2,7 

E3 3,9 2,3 3 

E4 4,5,7,8,9,10 1,2,4,5,6,7 4,5,7 

E5 4,5,7,8,9,10 1,2,4,5,6,7 4,5,7 

 Enablers 1 2 3 4 5 6 7 8 9 10 Driving 
power 
 

E10 Clinicians’ 
intentions to 
adopt ML 

0 0 0 0 0 0 0 0 0 1 1 

 Dependence 
power 

3 3 1 6 6 1 6 6 9 9  
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Enabler Reachability set Antecedent set Intersection set 

E6 1,2,4,5,6,7,8,9,10 6 6 

E7 2,4,5,7,8,9,10 1,2,4,5,6,7 2,4,5,7 

E8 8,9,10 1,2,4,5,6,7,8 8 

E9 9,10 1,2,3,4,5,6,7,8,9 9 

E10 10* 1,2,4,5,6,7,8,9,10 10* 

 (10*): clinicians’ behavioral intentions to adopt ML 
 

 

Table 7. Partition Level (b) 

Enabler Reachability set Antecedent set Intersection 
set 
 

E1 1,4,5,7,8,9 1,2,6 1 
E2 1,2,3,4,5,7,8,9 2,6,7 2,7 
E3 3,9 2,3 3 
E4 4,5,7,8,9 1,2,4,5,6,7 4,5,7 
E5 4,5,7,8,9 1,2,4,5,6,7 4,5,7 
E6 1,2,4,5,6,7,8,9 6 6 
E7 2,4,5,7,8,9 1,2,4,5,6,7 2,4,5,7 
E8 8,9 1,2,4,5,6,7,8 8 
E9 9* 1,2,3,4,5,6,7,8,9 9* 

(9*): patient trust 
 

 

Table 8. Partition Level (c) 

Enabler Reachability set Antecedent set Intersection set 
 

E1 1,4,5,7,8 1,2,6 1 
E2 1,2,3,4,5,7,8 2,6,7 2,7 
E3 3* 2,3 3* 
E4 4,5,7,8 1,2,4,5,6,7 4,5,7 
E5 4,5,7,8 1,2,4,5,6,7 4,5,7 
E6 1,2,4,5,6,7,8 6 6 
E7 2,4,5,7,8 1,2,4,5,6,7 2,4,5,7 
E8 8* 1,2,4,5,6,7,8 8* 

(3*& 8*): patient awareness and clinicians’ trust  
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Table 9. Partition Level (d) 

Enabler Reachability set Antecedent set Intersection set 
 

E1 1,4,5,7 1,2,6 1 
E2 1,2,4,5,7 2,6,7 2,7 
E4 4,5,7 1,2,4,5,6,7 4,5,7 
E5 4,5,7 1,2,4,5,6,7 4,5,7 
E6 1,2,4,5,6,7 6 6 
E7 2*,4*,5*,7* 1,2,4,5,6,7 2*,4*,5*,7* 

(2*, 4*,5* & 7*): clinicians’ awareness, usefulness, ease of use and the 
collaborative multidisciplinary environment 
 

 

Table 10. Partition Level (e) 

Enabler Reachability set Antecedent set Intersection 
set 

E1 1* 1,6 1* 
E6 1,6 6 6 

(1*): perceived normative congruence 
 

 

Table 11. Partition Level (f) 

Enabler Reachability set Antecedent set Intersection 
set 

E6 6* 6 6* 

(6*): building academic foundation 

 

 

Step VII: Develop TISM Diagraph 

This step aims to portray the elements in the form of a directed graph in 

which the enablers are ordered in levels based on the relationships that are 

shown in the reachability matrix (128, 134). Before developing the TISM 

diagraph, we conducted MICMAC analysis in order to determine the driving and 

the dependence power of the enablers (134). MICMAC analysis also helps us 

position the enablers in the right level within the TISM diagraph, which 
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contributes significantly to drawing the roadmap that guides the strategic 

directions to enhance the clinicians’ intentions to adopt ML in their clinical 

decisions. MICMAC analysis clusters the enablers into four clusters based on 

their driving and dependence power as described below.  

Cluster A: Autonomous Enablers 

These enablers have weak driving and dependence power; compared 

to other enablers, they are detached from the system (128). Raising patient 

awareness is found to be an autonomous enabler with a driving power of 2 and 

dependence power of 1.  

Cluster B: Dependent Enablers  

These enablers have very weak driving power but strong dependence 

power. They usually sit atop the hierarchical diagraph as an outcome. We have 

three variables in this cluster; clinicians’ trust, patients’ trust, and clinicians’ 

intentions to adopt ML. The most dependent enabler is the clinicians’ intentions 

to adopt ML, which is basically the outcome of the TISM-based conceptual 

framework.  

Cluster C: Linkage Enablers  

These enablers have strong dependence and driving power. They are 

considered unstable enablers, because any action is done on these enablers 

will influence the whole system (134). They usually sit in the middle levels of 

the diagraph. We have three linkage enablers: perceived usefulness, perceived 

ease of use, and building a multidisciplinary collaborative environment.  

Cluster D: Independent Enablers  

These enablers have strong driving power and weak dependence 

power. Therefore, they are considered the key or the strategic enablers. They 
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usually sit at the bottom of the TISM diagraph. We have three dependent 

enablers: perceived normative congruence, clinicians’ awareness, and building 

academic foundation, which have the highest driving power of 9 and the least 

dependence power of 1. Figure 5 shows the MICMAC analysis of the enablers.  

 

 

 

Figure 5. MICMAC analysis of enablers. 

 

 

Step VIII: Develop the Interpretive Diagraph (Interaction Matrix) 

In this step, the scholars convert the final diagraph into a binary 

interaction matrix, using “1” to indicate direct and significant transitive link (134). 

In addition, the scholars will develop an interpretive matrix through providing 

relevant interpretation, from the interpretive knowledge base, for every cell that 
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contains a “1” entry (124, 128). 

Step IX: Total Interpretive Structural Model 

With the help of the diagraph and the interpretive matrix, the TISM with 

the identified elements is developed. According to Sushil (124), the 

interpretation of the elements that are placed in the box replace the nodes in 

the diagraph. This leads to total interpretation of the structural model in terms 

of the nodes and the interpreting links (134). Figure 6 shows the final TISM 

diagraph.  
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Figure 6. Final TISM diagraph.  

 

 

Building academic 

foundation 

Perceived ease of use 

Collaborative 
environment 

Perceived normative 
congruence 

Raising clinician 

awareness 

Patient trust Patient awareness Clinician trust 

Perceived usefulness 

Clinician intention to 
adopt ML 

       Direct Link     

       Transitive Link 

Helps clinicians unlock the 

ML mystery   

Facilitates access to 

experts   

Adds credibility to the 

ML 

Enhances clinician 

confidence in ML 

Enhances patient 

confidence in ML 

Enhances clinician 

confidence in ML 

Help clinicians value the 

collaboration   



  

81 

 

Discussion 

The purpose of this chapter is to propose a conceptual framework that 

(a) determines the interrelationship between the enablers for the adoption of 

the ML to support clinical decision making; and (b) depicts the enablers in a 

hierarchical diagraph to provide a roadmap that assists policy makers, clinical 

researchers, and clinicians to enhance ML adoption in supporting clinical 

decision making. The driving power and dependence power provide valuable 

insights for the policy makers to set strategies to enhance the willingness of 

clinical practitioners and researchers to consider ML approaches in evidence 

production and clinical decision support.  

The enablers are ordered in the diagraph based on their driving and 

dependence power. The enablers that have the highest driving power with the 

lowest dependence power sit at the bottom, while the enablers that have the 

lowest driving power and the highest dependence power sit on the top (127, 

128). Also, the position of the enabler in the hierarchy determines which among 

the enablers is considered strategic, and achieving these enablers may require 

interventions from ministries or academic institutions. Moving to higher 

positions indicates that the responsibility moves to the healthcare organizations 

or individual clinicians, until we reach to the outcome enablers that in turn leads 

to achieving the ultimate goal of enhancing ML adoption in healthcare, 

particularly in supporting clinical decision making. 

The diagraph has six levels based on the driving and the dependence 

powers that were identified by the reachability matrix and MICMAC analysis. It 

is obvious that patient awareness is an autonomous enabler. This means that 

this enabler has weak dependence on the other enablers to achieve its impact 
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on the outcome. Accordingly, policy makers may need to think of strategies to 

raise patient awareness in line with building academic foundations and raising 

clinicians’ awareness, which sit at the bottom of the diagraph.  

Figure 6 shows that building an academic foundation and raising 

clinicians’ awareness have the maximum driving power of 9 and the lowest 

dependence power (1 and 3, respectively). This means that these two enablers 

are the building blocks of any strategy aiming to enhance the adoption of the 

ML in healthcare. It is important to differentiate between these two enablers. 

Building an academic foundation starts with introducing the ML and AI to the 

clinical sciences curricula; subsequently, clinicians learn from an early stage 

that evidence can be obtained in several ways, including data-driven methods, 

wherever theory-driven methods are not feasible. On the other hand, 

awareness should target the clinical practitioners and researchers to 

demonstrate evidence that ML can improve their decisions, and improve patient 

and organizational outcomes. These two building blocks have a lot to do with 

the health ministries and the higher education ministries. Accordingly, more 

research is required to study the perspectives of the health and education 

ministries to embrace the AI and ML as means to improve clinical decisions and 

to effectively contribute to the overall economy, through effectively managing 

the substantial healthcare expenditure via improved clinical decision making.  

The perceived normative congruence is another independent enabler. 

Nevertheless, its driving power is 8 and dependence power is 3, which puts it 

in the 5th level. The TISM model proposes that building the academic foundation 

and raising clinicians’ awareness, along with adopting the pragmatic 

reconciliatory framework, will contribute to enhancing the perception of the 
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normative congruence, which will contribute to enhancing clinicians’ willingness 

to use data-driven evidence in their clinical decision making. We conclude that 

the perceived normative congruence will be achieved through enhancing the 

clinicians’ awareness and building the academic foundations, which 

simultaneously plays a significant driving role in influencing individual clinicians 

and organizational perspectives towards ML adoption.  

At the operational level, healthcare organizations have to encourage 

collaboration between clinical researchers, ML experts, data scientists, and 

epidemiologists in order to: (a) exchange experiences; (b) facilitate mutual 

understanding of the potentials and the challenges of both paradigms; and (c) 

enhance clinicians’ access to experts and improve the interpretability and the 

operability of clinical research findings. Accordingly, building a multidisciplinary 

collaborative research environment sits on the 4th level, with driving power of 7 

and dependence power of 6. All the mentioned enablers facilitate clinicians’ 

perceived ease of use and perceived usefulness, which are key linkage 

enablers for enhancing the behavioral intentions to adopt ML. Therefore, 

perceived usefulness and perceived ease of use sit in the 3rd level with driving 

power of 6 and dependence power of 6.  

The MICMAC analysis (Figure 5) identified three dependent enablers 

(clinicians’ trust, patients’ trust, and clinicians’ intentions to adopt ML). Both 

clinicians’ trust and patients’ trust sit on the second level, as they both drive 

clinicians’ intentions to adopt ML, with driving power of 3 and 2 respectively, 

and dependence power of 6 and 9 respectively. Patient awareness was also 

placed in the second level, because it is related only to patient trust, with driving 

power of 2 and dependence power of 1. Finally, the clinicians’ intention to adopt 
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ML serves as the outcome enabler that facilitates the actual adoption of the ML, 

with a driving power of 1 and dependence power of 9. The diagraph 

demonstrates a strong logical path towards the enablement of the ML adoption 

in supporting the clinical decision. This direction requires collaboration between 

ministries, healthcare, and academic institutions, as well as clinical practitioners 

and researchers.  

Conclusion 

The present work helps explain the what, why, and how questions that 

are essential for theory-building exercises. The TISM-based framework 

answers the “why” question through presenting the factors that impede the 

utilization of ML in clinical decision-making. Therefore, reversing these factors 

facilitates the enablement of the adoption of ML in supporting the clinical 

decision-making process. It also answers the “what” question through defining 

every enabler and explaining the mutual relationships between the enablers to 

comprehensively understand the dynamicity of the interactions. Therefore, 

understanding the type and the dynamicity of the relationships between the 

various enablers answers the “how” question through providing a systematic 

approach to guide the strategic efforts to enhance the adoption of ML in 

supporting clinical decision-making.  

Through the MICMAC analysis, we were able to determine the level of 

every enabler in the TISM diagraph. This categorization of enablers is crucial 

for determining what enablers have to be addressed first. It is obvious that 

significant work is required from academic institutions to instill the seeds of 

data-driven approaches early during the undergraduate phase, to prepare a 

generation of clinicians ready to cope with the 4th industrial revolution and 
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advance the healthcare industry. Then, step-by-step the ML-EBM reconciliation 

can be achieved and institutionalized to form the new way of producing clinical 

evidence that informs the clinical decision-making.  

Limitations and Future Research Opportunities  

This work provided a novel conceptual framework that guides the efforts 

to enhance the adoption of ML in healthcare. The significance of this work is 

that it answers the questions of why healthcare is the slowest industry to adopt 

ML approaches, and how ML adoption can be enhanced in the healthcare 

industry. The diagraph provides a specific path that guides policy makers in 

their journey to support clinical decision making, which has both wellbeing and 

economic benefits for patients, organizations, and the whole economy. 

Nevertheless, the interrelationships between the enablers and the resultant 

driving and dependence power were determined based on the expert panelists’ 

opinions, which are subject to bias. Accordingly, there is a need for further work 

to validate the framework and ensure that this path will lead to improving the 

adoption of ML in the real business world, which is out of the scope of this work. 

Furthermore, the study addresses the enablers/ barriers from clinicians’ 

perspectives. Therefore, to fully answer the question about the poor adoption 

in the healthcare industry, significant work is needed to address the matter from 

organizational perspectives, considering issues like infrastructure and 

managerial support, etc.  

The next section presents the outcomes of collaborating with the Trauma 

Surgery Section in Hamad Medical Corporation (HMC) to develop ML 

prognostic and predictive models to help address specific clinical problems that 

concern the trauma surgery clinical and administration personnel. We adhered 
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to the reconciliatory framework that we proposed in the previous chapter to 

provide empirical evidence about the utility of the framework in supporting 

clinical decision.  
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CHAPTER 5: UTILIZING ML IN SOLVING REAL CLINICAL PROBLEMS – 

EMPIRICAL EVIDENCE 

Background 

Hamad Medical Corporation (HMC) started to adopt electronic health 

records during the past decade as part of Qatar’s initiative to digitize the public 

healthcare system. The advent of electronic health records allows the collection 

of vast volumes of data in a data warehouse that brings opportunities to provide 

real-time evidence that could support frontline clinicians to make better clinical 

decisions. The Trauma Surgery Section in HMC that administers the level 1 

trauma system established the National Trauma Registry (NTR) in 2007. This 

step contributed to a leap in HMC’s capacity to benchmark with the most 

reputable trauma centers in the world. In addition, the Registry provided great 

opportunity to enhance the education and research activity for the trauma 

surgery and the corporation as whole.  

The NTR is a member in the National Trauma Data Bank (NTDB), which 

is considered the largest aggregation of trauma registries in the world. NTDB 

provides a standard data dictionary with operational definitions for all collected 

data elements. Trauma surgery registration is an essential element in leading 

performance improvement efforts, making data available to the trauma surgery 

leadership to monitor provider and system performance and determine 

improvement needs.  

The collaboration with Trauma Surgery Section aimed to address 

selected real clinical problems through the utilization of ML approaches. The 

objectives of this collaboration were to: (a) design a prognostic model that helps 

quickly predict mortality in patients with TBI in order to provide insight to 
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clinicians to consider early mortality preventive measures; (b) design an ML 

model to predict TBI patients at risk of requiring prolonged mechanical 

ventilation (PMV), in order to help redefine PMV and provide insights into the 

optimal time for tracheostomy; (c) design a prognostic model to predict the 

patients at risk for developing ventilator-associated pneumonia (VAP) following 

TBI, in order to provide an actionable insight that supports the preventive 

measures; and (d) design a model that predicts patients at risk for prolonged 

length of stay (PLOS) in the Trauma Surgery Section following TBI, which is 

important for enhancing the bed turnover rate, reducing unnecessary costs, and 

preventing medical complications that are associated with the PLOS.  

Methodology 

The project was approved by the Institutional Review Board (IRB MRC-

01-19-106) of HMC. This project targeted all adult patients registered in the 

NTR who were admitted to the Level 1 Trauma Center at (L1TC) at Hamad 

General Hospital (HGH), a not-for-profit state healthcare service operated by 

HMC in Qatar, in the period from January 2014 to February 2019. All the studies 

in this project were conducted in accordance with the Cross-Industry Standard 

Process for Data Mining (CRISP-DM), which provides definitions of six typical 

phases of data mining projects: business and data understanding, data 

preparation, modeling, evaluation, and deployment (44). A total of 2318 patients 

with TBI were registered in the NTR for the given period. All patients’ data were 

anonymized and saved only with the principal investigator. Figure 7 provides a 

summary of the methodology used in the whole project. 

Business and Data Understanding 

Not all the NTR data were usable in this project. Therefore, to better 
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understand and chose meaningful variables, the research team explored the 

definition of each variable in the NTR data dictionary, and reviewed the 

literature in order to determine which among the enormous number of recorded 

variables need to be considered predictors, and which among them to be 

imputed if in case they have missing values (88). Pediatric patients (< 14 years 

old) were excluded. This was important for understanding and interpreting the 

results, as some of the important parameters (i.e. vital signs) are different 

between the pediatric and adult patients.  

Data Preparation  

Only adult patients (≥ 14-years-old) who sustained TBI were included in 

the study. All variables that have no predictive power (e.g. health record 

number, date of admission, and date of disposition were excluded. Missing data 

may seriously affect predictive models’ performance (165). Several approaches 

to handle data omissions have been used, such as the elimination of incomplete 

records (166) or imputing missing values, which is a widely used approach 

(165). Therefore, apart from the “time from injury until arrival to emergency” 

variable, which was considered crucial in predicting the VAP, we did not 

consider imputation in any of the included studies. Instead, the records with 

missing data were eliminated. Subsequently, 1620 eligible patients’ records 

were included in the project. Figure 8 shows the records inclusion/ exclusion 

process. 

The retrieved data included the following variables: age, gender, 

mechanism of injury, mode of arrival, alcohol blood level, blood pressure, heart 

rate, Glasgow Coma Score (GCS), CT findings, intubation status and location, 

date/time of injury, time of admission to the emergency department (ED), 
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injuries characteristics, injury severity score (ISS), abbreviated injury score 

(AIS), known comorbidities, performed procedures, blood transfusion, 

administration of venous thromboembolism (VTE) prophylaxis, in-hospital 

complications, outcome, and date of disposition.  

Additional variables were secondarily generated from the retrieved 

variables: shift of admission (D: 7am to 6:59 pm and N: 7 pm to 6:59 am) (167, 

168); and time from injury to emergency room, which was used in predicting 

VAP (169).  

Outcome Measures 

The Trauma Surgery Section identified four outcome measures: 

mortality, prolonged mechanical ventilation (PMV), ventilator associated 

pneumonia (VAP), and prolonged length of stay (PLOS). In addition, we 

conducted a subgroup analysis to predict the mortality in patients who 

sustained TBI and received mechanical ventilation (MV). All the outcome 

variables were binary, whereby the occurrence of the outcome was coded 1, 

and non-occurrence was coded 0.  

Prediction Models 

We utilized a variety of ML algorithms to allow us to compare their 

performance with each other and with past literature, in order to identify the 

optimal model for deployment. We adopted the standard practices to train the 

model and to prevent overfitting through data partitioning and optimizing the 

models’ hyperparameters. We benchmarked our data partitioning procedure 

with the published literature. Commonly, 70-75% of the data is used for training 

the model and 25-30% is used for testing the model. The proportions are 

changeable according to the overfitting evaluation. We used SPSS modeler 
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18.1 to design the algorithms and conduct the analysis.  

Models Evaluation Metrics  

The literature presented various metrics to evaluate ML models’ 

prediction performance. In this work, we used standard set of evaluation metrics 

to ensure that we evaluated predictive performance comprehensively. The 

evaluation process starts with developing the confusion matrix, which shows 

the difference between the actual and predicted classification (true 

positive/negative and false positive/negative). Table 13 shows the evaluation 

metrics and their formulae. 

 True positive (TP): An outcome that the prediction model correctly labels 

positive. 

 True negative (TN): An outcome that the prediction model correctly 

labels negative. 

 False positive (FP): An outcome that the prediction model incorrectly 

labels positive. 

 False negative (FN): An outcome that the prediction model incorrectly 

labels negative. 
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Table 12. Evaluation Metrics of Prediction Models 

Metric Formula 

Accuracy  (TP + TN) / (TP+TN+FP+FN) 
Sensitivity  TP / (TP+ FN) 
Specificity TN / (TN + FP) 
Precision 
(positive 
predictive value) 

TP / (TP + FP) 

Negative 
predictive value 
(NPV) 

TN / (TN + FN) 

F-score  (2 * Precision*Sensitivity) / (Precision + 
Sensitivity) 

 

 

In addition to the above metrics, we used the Area Under the Receiver 

Operating Characteristics Curve (AUC), which is another metric for evaluating 

models’ accuracy and discrimination capacity (93). Models with 100% wrong 

predictions have an AUC of 0, while those with 100% accurate predictions have 

an AUC of 1; when the AUC is 0.5, the model has no separation or 

discrimination capacity.  

Presentation of Results 

Results were presented in several ways based on the study objectives 

and the chrematistics of the prediction model. The presentation of results is an 

essential step to effectively communicate potentially actionable insights that 

may support clinical decision making. For example, the results of the LR models 

were tabulated to show the predictors’ significance and odds ratio. Furthermore, 

we illustrated the predictors’ importance for all prediction models consistent with 

the common practice in ML studies. In ML, the contribution of every predictor 

to the overall model’s capacity to produce accurate predictions is usually 

presented in the form of predictors’ importance (90). The first predictor is 



  

93 

 

usually the most important predictor relative to the model’s capacity, after which 

other predictors’ importance values are ranked in relation to the first ranked 

predictor.  

Collaborative Work Environment 

We emphasized the involvement of HMC trauma surgery clinicians, the 

NTR administrator, and the Trauma Surgery Research Director in every step in 

this project, to satisfy the key principles for the reconciliation framework that we 

proposed in the previous chapter. All the studies were conducted based on their 

aim to obtain a new insight about real clinical problems they are facing in the 

Trauma Surgery Section. Mutual understanding was reached about every 

variable, and insights were exchanged throughout the project. Importantly, all 

the findings and reported outcomes were refereed by senior trauma surgery 

consultants to determine their consistency with the past literature and their 

potential to influence the clinical practices. As a result of this collaboration, there 

are serious discussions to embed selected ML algorithms in the NTR and 

electronic health records to provide real-time clinical decision support to the 

trauma clinicians in selected scenarios.  
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Figure 7. Summary of research methodology. 
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Figure 8. Records inclusion and exclusion process. 

 

 

Limitations 

One of the most important limitations in this project was faced during 

data processing and preparation. Although the data repository in the NTR is 

complaint with the standards of the NTDB and the Trauma Quality Improvement 

Program (TQIP) of the American College of Surgeons-Committee on Trauma 

(ACS-COT), which provide uniform data elements, several variables in the NTR 

are recorded as text-free and are prone to dictation errors, which complicates 

the data preparation process. Therefore, there were several unobtainable but 

potentially useful predictors, such as laboratory results, received medications, 
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surgical procedure and diagnostic study details.  

Secondly, the empirical work was limited to the predictive modeling, 

because the agreement with the trauma surgery was to design predictive 

models to help address some real clinical problems. Therefore, the sample was 

limited to TBI patients, which left a relatively small sample. Hence, the potential 

of conducting reasonable quality clustering algorithms was minimal.  

Furthermore, the deployment of the ML models to support clinical 

decision making was another significant challenge due to several reasons, such 

as the questionable reliability of the non-traditional predictive techniques, 

attributable to a certain extent to the lack of awareness among clinicians about 

AI potentials to support clinical decision-making processes. Very importantly, 

unlike the logistic regression for instance, the standardized coefficients and the 

odds ratios pertaining to each predictor in the SVM or in the ANN were not 

obtainable, which makes the interpretation of results more complex compared 

to using traditional computational techniques.  

The sample size in some of our studies was small. For example, the 

sample in predicting mortality in mechanically ventilated patients was 785 

records, this is considered small for studies that use ML techniques. The 

relatively small sample size complicated data processing and partitioning, and 

model training, validation, and testing. Nevertheless, the size of data set used 

and the variables included in the study are still comparable with the previous 

studies, supporting the validity of the results.  

Furthermore, the lack of standard definitions was a challenge in some 

studies. For example, there is no agreed upon definition for prolonged 

mechanical ventilation. This complicates the classification mission. There are 
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no previous studies that define PMV to be 10 days. This cut-off was determined 

based on the result that tracheostomy conducted after 10 days of mechanical 

ventilation is considered late tracheostomy, and is associated with unfavorable 

outcomes. However, we utilized that definition in an attempt to showcase that 

ML is capable of providing novel insight that may influence the clinical practice, 

to reap the evident benefits of early tracheostomy and to overcome the well-

known complications of prolonged mechanical ventilation.  
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CHAPTER 6: PREDICTION OF IN-HOSPITAL MORTALITY IN TBI 

PATIENTS USING NTR AND ML APPROACH 

Background 

TBI is defined as a brain injury caused by external trauma (170). TBI 

causes death and disabilities more than any other trauma (171), significantly 

reducing life expectancy and increasing the mortality rate by 30-70% (170, 

172). TBI affects millions of people around the world yearly, causing a major 

global burden (172). Globally, 64-74 million individuals around the world are 

estimated to sustain TBI every year, with the greatest disease burden in the 

Southeast Asia and Western Pacific regions (171). Mortality is associated with 

the age and severity of TBI. It was found that the 14-day in-hospital mortality 

following severe TBI reaches up to 24.5% in adults between 16-65 years, and 

is greater than 40% in patients over 65 years old (173). There are several 

published and widely used prognostic/ outcome predictive models that 

demonstrate good predictive and discrimination power. Table 14 shows some 

of the widely used prognostic models and their performance as measured by 

AUC (5-15).  

In addition, scholars designed several predictive models that aim to help 

the clinicians and the researchers predict TBI prognosis and outcomes. Jacobs 

et al. (174) designed a predictive model to predict the outcomes of moderate to 

severe TBI using demographic and clinical data (e.g. vital signs, pupil reaction, 

and GCS) and radiological parameters (brain CT scan findings). The study 

found that age, pupil responses, GCS score, the occurrence of a hypotensive 

episode post-injury, and having several CT scans are good predictors of TBI 

outcomes.  
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The use of ML techniques to predict disease outcomes has grown 

significantly in the last decade. Several studies prove that the ML predictive 

techniques outperform classical multivariate techniques (175, 176). In a 

systematic review of 30 studies that used ML techniques to predict several 

neurosurgical outcomes (including mortality) following TBI, ML techniques 

outperformed several well-known classical predictive tools and performed 

similar or better than field experts in some instances (177). Rau et al. (166) 

used ML techniques to predict the moderate to severe TBI mortality. The 

authors used age, sex, use of helmet, co-morbidities, GCS, and vital signs as 

predictors. They used LR, ANN, DT, SVM, and NB to classify patients based 

on the survival outcomes. They compared the performance of the models in 

terms of accuracy, sensitivity, specificity and AUC. ANN yielded the best 

performance amongst all tested classifiers, with 0.968 AUC, 92% accuracy, 

84.4 sensitivity, and 92.8 specificity.  

Hale et al. (178) used ANN ML technique to predict six-month favorable/ 

unfavorable outcomes (including mortality) among 565 pediatric patients who 

sustained TBI. They used GCS, pupil reactivity to light, blood glucose level, 

blood hemoglobin concentration, mass lesion, traumatic sub-arachnoid 

hemorrhage (SAH), cistern status, and midline shift to build the predictive 

model. They compared the performance of the ANN-based predictive models 

with three known classical predictive models, namely Helsinki, Rotterdam, and 

Marshall. The ML model not only achieved profound accuracy (> 94%), but also 

outperformed the three classical predictive tools. This finding supports Eftekhar 

et al. (175), who found that ANN significantly outperforms LR-based predictive 

models in predicting diseases outcomes, with AUC of 0.965 vs. 0.954 
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(respectively).  

This study aims to design a supervised ML predictive model for early 

prediction of in-hospital mortality in adult patients who sustained TBI and who 

were admitted to L1TC.  

 

 

Table 13. Examples of Popular TBI Prognostic Models  

Objective(s) Variables Performance 
 

Trauma Injury Severity Score (TRISS) – Trauma patients treated at 
hospitals with or without TBI (179) 
Calculates the 
probability of survival. 

Age, revised trauma 
score (GCS, systolic 
blood pressure, 
respiratory rate), 
trauma type and injury 
severity score (ISS) 
(179). 

Good discrimination 
power. 
Not specifically designed 
for TBI (166). 
Prone to poor 
performance in severe 
TBI (179). 
AUC in previous studies: 
0.89 (179), 0.9 (180) and 
0.92 (181). 

International Mission for Prognosis and Analysis of Clinical Trials in TBI 
(IMPACT) – Adult patients 
(age ≥14 years) with TBI and GCS ≤ 12 
Predicts 6-month 
mortality and 
unfavorable outcomes 
(179). 

Age, GCS motor scale, 
pupils reactivity, 
hypoxia, hypotension, 
CT results (epidural or 
subarachnoid 
hemorrhage), lab 
values (blood glucose 
level and hemoglobin 
concentration) (182). 

Good discrimination 
power.  
Accurate outcome 
prediction when large 
sample size is utilized 
(179, 182). 
Poor precision at the 
individual patient level 
(183). 
AUC in previous studies: 
0.8 (181), 0.83 (184), 
0.85 (180) and 0.86 
(182).  
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Objective(s)                       Variables                         Performance  
 

Corticosteroid Randomization After Significant Head injury (CRASH) – Adult 
patients (age ≥ 16 years) with TBI and GCS ≤14 (182) 
Predicts probabilities 
of 14-day mortality 
and 6-month 
unfavorable outcome 
(182). 

Age, GCS, pupil 
reactivity, major 
extracranial 
hemorrhage and CT 
findings (midline shift, 
obliteration of third 
ventricle, subarachnoid 
hemorrhage, petechial 
hemorrhage, and non-
evacuated 
mass) (181). 

Good discrimination 
power (182). 
Accurate outcome 
prediction when large 
sample size is utilized 
(181, 182). 
Poor precision at the 
individual patient level 
(183). 
AUC in previous studies: 
0.86 (180), 0.87 (182) 
and 0.89 (181). 

Marshall Scale – Patients who sustained TBI 
Grades the TBI and 
predicts the TBI 
outcomes on the basis 
of CT scan findings. 

Presence of mass 
lesion, 
midline shift, and 
status of the peri-
mesencephalic 
cisterns. 

Simple to use. 
Reasonable 
discrimination power.  
Narrow scope (limited to 
3 variables). 
Limited applicability to 
clinical practice (178). 
AUC in previous studies: 
0.71 (185), 0.635 (186) 
and 0.78 (178). 

Rotterdam CT scoring – Patients who sustained TBI 
Grades the TBI and 
predicts the TBI 
outcomes on the basis 
of CT scan findings. 

Presence of mass 
lesion, 
midline shift, status of 
the peri mesencephalic 
cisterns and the 
presence of traumatic 
intra-ventricular or sub-
arachnoid hemorrhage 
(SAH) (185). 

Reasonable 
discrimination power. 
Does not differentiate 
between the type and 
size of the mass lesion 
(178). 
AUC in previous studies: 
0.698 (186) 0.84 (178) 
and 0.85 (187). 
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Helsinki Computerized Tomography Score Chart – Patients who sustained 
TBI 
Grades the TBI and 
predicts the TBI 
outcomes on the basis 
of CT scan findings. 

Mass lesion type and 
size, presence of 
intraventricular 
hemorrhage, 
suprasellar cistern. 

Superior to Marshall and 
Rotterdam scales. 
Good accuracy and 
discrimination power. 
Lower performance when 
used alone as a 
predictive method (178, 
186). 
Reported AUC: 0.717 
(178) and 0.746 (186).  

 

Methodology  

This study aims to utilize NTR data to design an ML predictive model to 

predict in-hospital mortality in adult patients who sustained moderate to severe 

TBI and who were admitted to L1TC.  

Only adult patients (aged ≥ 14-years-old) who sustained moderate to 

severe TBI (HAIS ≥ 3) were included in the study. Patients who sustained other 

systematic injuries with AIS > HAIS were excluded, to ensure that the primary 

injury was TBI. Records with missing data were eliminated. Subsequently, 1620 

eligible patients were included in the study. The detailed information about the 

methodology is described in chapter 5.  

Outcome Measure 

The outcome measure is the in-hospital mortality during the initial 

hospitalization following moderate to severe TBI. It is a dichotomous variable 

(0 = alive and 1 = dead). Patients who were discharged from the Trauma 

Surgery Section or who were transferred to another hospital were considered 

alive.  

Prediction Models 

Two of the powerful supervised ML techniques were utilized to allow us 
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to compare their performance with each other and with previous studies in order 

to recommend the model that achieves the optimal performance and highest 

practicality in supporting clinical decisions. ANN and SVM are widely used in 

predicting in-hospital mortality, therefore they were selected to provide base 

line comparative performance. SPSS modeler 18.1 was used to conduct the 

analysis. To prevent overfitting and to validate the models’ performance, we 

partitioned the data into training and testing sets, with the overfit prevention set 

at 30%. Table 15 explains the data partitions.  

 

 

Table 14. Data Partitions 

Set Proportion No. of cases No. of alive 
patients 

No. of dead 
patients 
 

Training set 70% 1120 977 143 
Testing set 30% 500 440 60 
Total 100% 1620 1417 203 

 

 

Artificial Neural Network (ANN) 

ANN is a widely used ML technique that performs powerfully in 

classification and pattern identification (92). When used for classification, ANN 

is seen as a set of connected input/output units in which each connection has 

an associated weight representing the strength of the connection between the 

units (93). Although scholars consider ANN to be a black-box analytical model, 

it has great potential to support clinical practice through engagement with EBM 

(178). Usually, the performance of the neural network is optimized through 

partitioning data into training and testing data sets, which helps prevent 
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overfitting. The training continues until the error is not further reducible (188). 

Once trained, the ANN can be used for future cases where the outcome is 

unknown (189).  

Support Vector Machine (SVM) 

SVM is a powerful classification ML algorithm that can be used for linear 

and non-linear data sets (92). When using SVM for classification purposes, it is 

very important to decide which kernel function better achieves the optimal 

hyperplane that separates the classes (190). Linear kernel was used in this 

study, as it optimized the predictive performance in the preliminary assessment 

compared to other functions (i.e. polynomial, sigmoid or Radial Basis functions).  

Results 

Among the 1620 patients who were included in this study, 203 (12.5%) 

died in the hospital during their initial hospitalization. The mean age was 34.4 

years, and the mean age at death was 37.2 years. The most common 

mechanism of injury was fall from height (34%) followed by motor vehicle crash 

(30%). The most common CT finding/mass lesion was subdural hemorrhage 

(28.1%), followed by extradural hemorrhage (22.9%) with 22% of the patients 

sustaining midline shift. Tables 16 and 17 show the sample characteristics and 

the descriptive statistics for the study sample.  
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Table 15. Sample Characteristics – Continuous Variables 

Variable N Mean SD Mean at 
death 
 

Age 1620 34.4 13.9 37.2 
ED systolic blood 
pressure (SBP) 

1620 127.66 22.6 118 

ED heart rate (HR) 1620 93 22.9 108.5 

 

 

Table 16: Sample Characteristics – Nominal and Ordinal Variables 

Variable Category Count/% With 
Outcome 0 
(Alive)/% 

With 
Outcome 1 
(Dead)/% 
 

Race Asian 977/60.3 858/87.8 119/12.2 
Other 643/39.7 559/86.9 84/13.1 

Mechanism of 
injury (MOI) 

Motor vehicle 
crash 

486/30 413/85 73/15 

Fall 551/34 495/89.8 56/10.2 
Pedestrian 268/16.5 216/80.6 52/19.4 
Other 315/19.4 293/93 22/7 

Arrival mode Ambulance 1350/83.3 1167/86.4 183/13.5 
Other 270/16.7 250/92.6 20/7.4 

Midline shift No 1260/77.8 1155/91.7 105/8.3 
Yes 360/22.2 262/72.8 98/27.2 

CT findings/mass 
lesion 

 Subdural 
hemorrhage 

455/28.1 380/83.5 75/16.5 

Epidural 
hemorrhage  

371/22.9 352/94.9 19/5.1 

Subarachnoid 
hemorrhage 

152/9.4 114/75 38/25 

Hemorrhagic 
contusions 

321/19.8 303/94.4 18/5.6 

Diffuse 
axonal injury 

120/7.4 99/82.5 21/17.5 

Other 201/12.4 169/84.1 32/15.9 
Cerebral edema  No 1517/93.6 1370/90.3 147/9.7 

Yes 103/6.4 47/45.6 56/54.4 
Facial bones 
fracture 

No 981/60.6 857/87.4 124/12.6 
Yes 639/39.4 560/87.6 79/12.4 

Lung contusion No 1273/78.6 1152/90.5 121/9.5 
Yes 347/21.4 265/76.4 82/23.6 

Hemothorax No 1482/91.5 1319/89 163/11 
Yes 138/8.5 98/71 40/29 

Pneumothorax  No 1387/85.6 1251/90.2 136/9.8 
Yes 233/14.4 166/71.2 67/28.8 



  

106 

 

 

 

Performance of ML models 

To calculate the models’ performance metrics, we first constructed the 

confusion matrix that displays the relationship between the actual observations 

and the predicted conditions.  

Table 18 shows the performance evaluation metrics for the two ML 

techniques in the test data partition. Both models achieved accuracy greater 

than 91%. Nevertheless, since accuracy alone is an insufficient measure to 

evaluate model performance, AUC, precision, NPV, sensitivity, specificity, and 

F-score measures were taken into consideration. SVM achieved the best 

performance. 

 

 

Variable Category Count/% With 
Outcome 0 
(Alive)/% 

With 
Outcome 1 
(Dead)/% 

Abdominal Organ  No 1417/87.5 1278/90.2 139/9.8 
injuries Yes 203/12.5 139/68.5 64/31.5 
GCS category 13-15 893/55.1 875/98 18/2 
 9-12 122/7.5 113/92.6 9/4.4 
 ≤ 8 605/37.3 429/70.9 176/29.1 
Shift 7am-6:59pm 858/53 758/88.3 100/11.7 
 7pm-6:59pm 762/47 659/86.5 103/13.5 
Known No 1328/82 1167/87.9 161/12.1 
comorbidities Yes 292/18 250/85.6 42/14.4 
Intubation No 848/52.3 847/99.9 1/0.1 
 Yes 772/47.7 570/73.8 202/26.2 
Venous 
thromboembolism 
prophylaxis 

No 656/40.5 537/81.9 119/18.1 
Yes 964/59.5 880/91.3 84/8.7 

Blood transfusion No 1013/62.5 989/97.6 24/2.4 
Yes 607/37.5 428/70.5 179/29.5 

 Total/% 1620/100 1417/87.5 203/12.5 
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Table 17. Performance of the Classification Models 

Model No. of 
predic
tors 
 

Accuracy
% 

AUC PPV  NPV Sensitivity Spec
ificity 

F-
Score 
 

SVM 21 95.6 0.96 0.88 0.97 0.73 0.99 0.8 

ANN 21 91.6 0.93 0.66 0.96 0.62 0.96 0.64 

 

 

In-Hospital Mortality Risk Factors 

SVM utilized all the 21 variables in predicting the in-hospital mortality. 

Figure 9 shows the predictors’ importance. SVM revealed that receiving 

endotracheal intubation during resuscitation plays the most important role in 

predicting in-hospital mortality.  

 

 

 

Figure 9. Predictors’ importance in SVM. 
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  Discussion 

The early prediction of in-hospital mortality in TBI patients is of utmost 

importance. Early and powerful prediction of mortality helps clinicians and 

healthcare managers optimize the management of medical resources, initiate 

appropriate diagnostics and interventions in a timely manner, conduct 

comparative audits, and ensure that the patients’ families and significant others 

receive appropriate guidance (166, 172). However, the prediction of disease 

prognosis and outcomes requires developing good prognostic models that 

include large samples and enjoy high external and internal validity in order to 

be generalizable beyond a specific research setting (191). Many prognostic 

models were published over the years, but few of them achieved sample validity 

requirements (192). Usually, clinicians use certain prognostic factors such as 

Glasgow Coma Scale (GCS) to guide their therapeutic decisions and to 

estimate prognostic outcomes (172, 192). Nonetheless, such predictors may 

be affected by several factors such as alcohol use, which negatively affects 

prediction success and the discriminatory power of the model (178, 184). Thus, 

for accurate outcome prediction, multiple risk factors (e.g. age, GCS, and 

others) need to be considered jointly in developing a prognostic model (192, 

193).  

In terms of models’ performance, SVM outperformed the ANN in all the 

performance evaluation metrics (Table 18). Therefore, SVM is the chosen 

model for deployment. 

On a wider scale, in this study, the SVM outperformed the conventional 

multivariate LR based models that utilize the conventional TBI prognostic 

models, as reported in Table 14. The highest reported AUC when using the 
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conventional prognostic models was 0.92 (174, 178, 181). Furthermore, when 

comparing this study’s ML models’ performance with the published literature on 

TBI, we found that the performance of the SVM model was higher or similar to 

the performance of the ML models in similar studies (166, 177). This 

comparison is crucial when considering the external validity of this study’s 

findings.  

This study ranked intubation as the most important predictor for post-TBI 

in-hospital mortality. Almost 26% of patients who were intubated in the first 24 

hours post-injury died during their initial hospitalization, compared to 0.1% of 

those who were not intubated. This could be attributed to the severity of TBI, as 

the more severe the injury, the higher the likelihood of patient intubation. 

Moreover, intubation increases the length of stay in the hospital and increases 

the risks of in-hospital complications (e.g. VAP), which contribute significantly 

to increasing mortality (194). The need for blood transfusion during 

resuscitation has a significant relationship with in-hospital mortality. 29% of 

patients who received blood transfusion during resuscitation died compared to 

2.4% mortality among those who did not receive blood. The need and the 

consequences of blood transfusion in TBI are still debatable. Several studies 

reported that blood transfusion in TBI is associated with unfavorable outcomes 

(195, 196). This could also be explained by the fact that patients who needed 

blood transfusion are those who had more severe injuries and had lost 

significant amounts of blood; such patients are inherently predisposed to poor 

TBI outcomes. 

Consistent with the previous literature, this study found that patients who 

receive VTE prophylaxis have better survival rates compared to those who do 
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not (197). 18.1% of those who did not receive the VTE prophylaxis died during 

their initial hospitalization, compared to 8.7% of those who did received it. 

Further explanation about the relationship between the VTE and TBI outcomes 

is provided in the next chapter. Also, this study found that 54.4% of patients 

who developed CED following the primary TBI died in-hospital, compared to 

9.7% of those who did not develop CED. This finding is consistent with Jha et 

al., who reported that cerebral edema is a leading cause of in-hospital mortality, 

as it occurs in more than 60% of patients with mass lesions, including post-TBI 

hemorrhage (198). Cerebral edema is a secondary complication of TBI in which 

brain tissue water increases following injury. This is why significant efforts in 

TBI management are devoted to the prevention of the secondary brain injury 

and maintaining adequate cerebral perfusion pressure (CPP) (199, 200).  

Midline shift is a major post-traumatic complication that leads to serious 

unfavorable effects, including mortality (178, 182, 201). Around 27% of patients 

who had midline shift died compared to 8.3% of those who had no midline shift 

reported in their CT scan. TBI diagnosis as per brain CT scan result plays an 

integral role in predicting post-TBI in-hospital mortality. Interestingly, 25% of 

those who had SAH following the TBI died, compared to 17.5% and 16.5% for 

those with DAI and SDH respectively. It is documented in the literature that SAH 

has a significant effect on in-hospital mortality (177, 178, 182).  

Presenting heart rate (HR) is an indicator of the patient’s hemodynamic 

stability following any type of trauma, particularly TBI. High HR (> 100 bpm) 

(202), especially when associated with low SBP (< 90 mmHg ) (200), may 

indicate hypovolemic shock state, which leads to poor CPP. This study found a 

positive relationship between the HR and in-hospital mortality. The HR in this 
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study was collected upon arrival to the ED following trauma. The mean HR upon 

admission was 93 bpm. The mean HR for those who survived was 90.8 while it 

was 108.5 bpm for those who later died in the hospital. Interestingly, the 

mortality rate increases significantly when patients with TBI have associated 

abdominal injuries (203). Mortality among those with associated abdominal 

injury is 31.5%, compared to 9.8% among those with no associated abdominal 

injury.  

Finally, the tenth most-important variable was the arrival mode. Patients 

who arrived at the trauma center via ambulance had higher mortality compared 

to those who arrived to the trauma center via another mode (13.5% vs. 7.4%). 

This is consistent with previous literature, which found that mortality patterns 

are affected by the mode and the time of arrival to the emergency room 

following TBI or polytrauma (204, 205). This could be due to the assumption 

that the time between the injury and the arrival of the ambulance at the hospital 

is relatively longer than in cases of arrival via a private vehicle (205), or simply 

the assumption that the more severe the injury, the higher the likelihood that a 

patient gets transported to the hospital via ambulance. 

Conclusion 

This study demonstrated that the performance of the ML techniques is 

superior to the conventional multivariate models. Furthermore, the results were 

consistent with the known body of knowledge. Thus, with the availability of 

massive data sets in the electronic medical records and other structured 

registries, clinical evidence could be made available quickly and with less effort.  

From another perspective, the results of this study may encourage 

decision makers in the trauma surgery to integrate the ML techniques with the 
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NTR and the electronic medical records. This may help clinicians plan their 

preventive efforts and mobilize the necessary resources in an early stage of 

patient treatment, which could improve the care outcomes.  
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CHAPTER 7: PREDICTION OF IN-HOSPITAL MORTALITY IN TBI 

PATIENTS ON MECHANICAL VENTILATION – ML APPROACH 

Background 

This study is a subgroup analysis which aims to design an ML algorithm 

to help predict in-hospital mortality in patients with TBI who received 

mechanical ventilation (MV). More than 70 million people worldwide sustain TBI 

every year (171). Compared to other injuries, TBI leads to the highest mortality 

and permanent disability rates (170, 172). Mortality in TBI is known to be highly 

associated with the severity of the TBI and patient age (173). Severe TBI is one 

of the common causes for the use of MV (206, 207). Although MV is a common 

intervention in intensive care units, and has saved countless lives since it was 

first used in 1950s (176), patients receiving MV are prone to several 

complications and have higher mortality rates compared to other patients (208). 

The early prediction of in-hospital mortality in patients with TBI is of utmost 

importance. Early and powerful prediction of mortality helps clinicians and 

healthcare managers optimize the management of medical resources, initiate 

appropriate diagnostics and interventions in a timely fashion, conduct 

comparative audits, and ensure that patients’ families and significant others 

receive appropriate guidance (166, 172).  

Many prognostic models were published over the years, but none of 

these models was designed exclusively to predict the mortality in TBI patients 

who receive MV. For example, Trauma Injury Severity Score (TRISS) aims to 

calculate the probability of survival and the outcomes in admitted trauma 

patients with or without TBI or MV (179). Similarly, the International Mission for 

Prognosis and Analysis of Clinical Trials in TBI (IMPACT), Marshal scale, 
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Helsinki CT score, Corticosteroid Randomization After Significant Head injury 

(CRASH), and Rotterdam CT score are all prognostic models that aim to predict 

mortality in adult patients with TBI, but which are not exclusive for patients with 

moderate to severe TBI who received MV (Table 14). 

Methodology 

This study aims to utilize the NTR data to design an ML predictive model 

to predict in-hospital mortality in adult patients who received MV following 

moderate to severe TBI who were admitted to L1TC.  

Only adult patients (aged ≥ 14-years-old) who sustained moderate to 

severe TBI (HAIS ≥ 3) and who had received MV following TBI were included 

in the study. Patients who sustained other systematic injuries with AIS > HAIS 

were excluded, to ensure that the primary injury of participants was TBI. 

Records with missing data were eliminated. Subsequently, 785 eligible patients 

were included in the study. Detailed information about the methodology is 

explained available in chapter 5.  

Outcome Measure 

The outcome measure was in-hospital mortality during the initial 

hospitalization following moderate to severe TBI. It is a dichotomous variable 

(0 = alive and 1 = dead). Patients who were discharged from the Trauma 

Surgery Section or who were transferred to another hospital were considered 

alive.  

Prediction Models 

The objective of this study is to develop a supervised ML predictive 

model to predict the in-hospital mortality in patients who received MV following 

moderate to severe TBI. Two supervised ML techniques were utilized to 
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compare their performance with each other and with previous studies in order 

to recommend the model that achieves the optimal performance and highest 

practicality in supporting clinical decisions. LR and ANN are widely used in 

predicting in-hospital mortality. Therefore, they were selected to provide base 

line comparative performance. SPSS modeler 18.1 was used to conduct the 

analysis. Data were partitioned into three sets: the training set (60%), validation 

set (20%), and testing set (20%). Furthermore, the overfit prevention was set 

at 30%. Table 19 explains the data partitions.  

 

 

Table 18. Data Partitions 

Set Proportion No. of cases No. of alive 
patients 

No. of dead 
patients 
 

Training set 60% 462 336 (72.7%) 126 (27.3%) 
Validation set 20% 161 123 (76.4%) 38 (23.6%) 
Testing set 20% 162 122 (75.3%) 40 (24.7%) 
Total 100% 785 581 (74%) 204 (26%) 

 

 

Logistic Regression (LR) 

LR is a typical technique for predicting binary, binomial, or multinomial 

outcomes (88). It usually describes the relationship between a dichotomous 

dependent variable and a set of predictor variables that can be either numerical 

or categorical/ dummy variables. Typically, LR is used for the prediction of the 

probability of the occurrence of an event by fitting data to a sigmoidal (S-shape) 

logistic curve. Usually, LR uses a numerical cutoff value (0.5), whereby cases 

> 0.5 are classified as 1 = success, and the rest are categorized as 0 = failure 

(189). Thus, logistic regression is an appropriate procedure for predicting 
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mortality in TBI patients who received MV. Bi-directional step-wise LR was used 

in this study to control the effect of confounding variables and to measure the 

independent risk factors for post TBI mortality (166).  

ANN 

In this study, the ANN architecture was a standard feed-forward, back-

propagation multi-layer perception (MLP) ANN. This MLP ANN consists of three 

layers; one input layer that had the study predictors, one hidden layer that 

consisted of six inaccessible neurons, and one output layer. We opted to design 

ANN using the MLP as it outperformed Radial Basis Function (RBF) during the 

initial assessment, with accuracy/AUC of 80.9%/0.875 vs. 77.9%/0.795. 

One of the most important caveats in ANN is that it is prone to overfitting 

compared to LR, because the training makes the model perfectly fit the data 

set. Thus, with new data sets, prediction might be poor (189).  

Ayer et al. compared between the two methods in several aspects and 

concluded that using LR requires more statistical knowledge than ANN, but 

ANN is more powerful in capturing complex relationships and determining 

interesting patterns in data. LR is easier to interpret and to identify important 

predictors compared to the black-box ANN (209). The discrimination power and 

the prediction performance for both methods are good in general, which makes 

it difficult to determine the superiority of one method over the other. Although 

the majority of studies that compared the performance of the two methods 

reported that one of them outperformed the other, the performance in general 

was similar (175, 189, 209, 210).  

Results 

This study of 785 participants with a mean age of 33 years included 204 
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patients (26%) who died in the hospital during their initial hospitalization., with 

a mean age at death of 36.9 years. The most common mechanism of injury was 

motor vehicle crash (37.5%) followed by fall from height (25.4%). The most 

common CT finding was subdural hemorrhage (29%), followed by extradural 

hemorrhage (21%), and 33.6% of patients sustained a midline shift. Tables 20 

and 21 show the sample characteristics and the descriptive statistics for the 

study sample.  

 

 

Table 19. Sample Characteristics – Continuous Variables 

Variable N Mean SD Mean at 
death 
 

Age 785 33 13.4 36.9 
Injury severity 
score (ISS) 

785 28.2 10.4 33.8 

ED systolic blood 
pressure (SBP) 

785 126.34 27.7 119 

ED heart rate (HR) 785 102.8 25 107.7 

 

 

Table 20. Sample Characteristics – Nominal and Ordinal Variables 

Variable Category Count/% With 
Outcome 0 
(Alive)/% 

With 
Outcome 1 
(Dead)/% 

Race Asian 456/58.1 337/73.9 119/26.1 
Other 329/41.9 244/74.2 85/25.8 

Mechanism of 
injury (MOI) 

Motor vehicle 
crash 

294/37.5 222/75.5 72/24.5 

Fall 199/25.4 142/71.4 57/28.6 
Pedestrian 162/20.5 110/67.9 52/32.1 
Other 130/16.6 107/82.3 23/17.7 

Mode of arrival Ambulance 639/81.4 455/71.2 184/28.8 
Other 146/18.6 126/86.3 20/13.7 

Multiple rib 
fractures 

No 600/76.4 454/75.7 146/24.3 
Yes 185/23.6 127/68.6 58/31.4 

Lung contusion No 509/64.8 387/76 122/24 
Yes 276/35.2 194/70.3 82/29.7 
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Variable Category Count/% With 
Outcome 0 
(Alive)/% 

With 
Outcome 1 
(Dead)/% 

Hemothorax No 678/86.4 514/75.8 164/24.2 
Yes 107/13.6 67/62.6 40/37.4 

Pneumothorax No 594/75.7 456/76.8 138/23.2 
Yes 191/24.3 125/65.4 66/34.6 

Midline shift No 521/66.4 416/79.8 105/20.2 
Yes 264/33.6 165/62.5 99/37.5 

TBI diagnosis/ CT 
findings 

Subdural 
hemorrhage 

207/26.4 142/68.6 65/31.4 

Extradural 
hemorrhage  

155/19.8 138/89 17/11 

Subarachnoid 
hemorrhage 

67/8.5 46/68.7 21/31.3 

Hemorrhagic 
contusions 

98/12.5 89/90.8 9/9.2 

Diffuse 
axonal injury 

104/13.2 85/81.7 19/18.3 

Cerebral 
edema 

84/10.7 29/24.5 55/65.5 

Other 70/8.9 52/74.3 18/25.7 
Head AIS (HAIS) 3 241/30.7 218/90.5 23/9.5 

4 187/23.8 140/74.9 47/25.1 
5 357/45.5 223/62.5 134/37.5 

Face AIS (FAIS) 0 399/50.8 276/69.2 123/30.8 
1 85/10.8 70/82.4 15/17.6 
2 (AIS 2-5) 301/38.3 235/78.1 66/21.9 

Chest AIS (CAIS) 0 353/45 282/79.9 71/20.1 
1 (AIS 1-2) 120/15.3 82/68.3 38/31.7 
2 (AIS 3-5) 312/39.7 217/69.6 95/30.4 

Abdomen AIS 
(AAIS) 

0 610/77.7 473/77.5 137/22.5 
1 (AIS 1-2) 104/13.2 67/64.4 37/35.6 
2 (AIS 3-5) 71/9 41/57.7 30/42.3 

Spine AIS (SAIS) 0 538/68.5 402/74.7 136/25.3 
1 (AIS 1-5) 247/31.5 179/72.5 68/27.5 

Extremities AIS 
(EAIS) 

0 416/53 316/76 100/24 
1 (AIS 1-2) 262/33.4 194/74 68/26 
2 (AIS 3-5) 107/13.6 71/66.4 36/33.6 

Known 
comorbidities 

No 659/83.9 496/75.3 163/24.7 
Yes 126/16.1 85/67.5 41/32.5 

Intubation location In-hospital 267/34 210/78.7 57/21.3 
Pre-hospital 518/66 371/71.6 147/28.4 

Venous 
thromboembolism 
prophylaxis 

No 180/22.9 60/33.3 120/66.7 
Yes 605/77.1 521/86.1 84/13.9 

Blood transfusion No 252/32.1 228/90.5 24/9.5 
Yes 533/67.9 353/66.2 180/33.8 

Total/%  785/100 581/74.1 204/25.9 
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Performance of ML models  

Table 22 shows the performance evaluation metrics for the two ML 

techniques in the test data partition. To obtain a comprehensive overview of the 

models’ performance, the analysis considered their accuracy, AUC, precision, 

negative predictive value, sensitivity, specificity, and F-score measures. LR 

achieved better performance than ANN, with AUC of 0.905 and accuracy of 

87%.  

 

 

Table 21. Performance of the Classification Models 

Model No. of 
predict
ors 

Accur
acy 

AUC Precisi
on 

NPV 
 

Sensiti
vity 

Specifici
ty 

F-
Scor
e 
 

LR 6 87% 0.90 0.81 0.89 0.63 0.95 0.7 

ANN 24 80.9% 0.87 0.6 0.89 0.68 0.85 0.64 

 

 

In-Hospital Mortality Risk Factors 

LR identified six predictors (administration of VTE prophylaxis, HAIS, 

TBI diagnosis/CT finding, the need for blood transfusion during resuscitation, 

ED HR, and age) as independent risk factors for the in-hospital mortality of the 

intubated patients with moderate to severe TBI (Table 23). The administration 

of VTE prophylaxis was ranked first in the predictors’ importance (0.37), 

followed by severity of head injury as measured by AIS (HAIS) (0.21). Figure 
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10 shows the predictors’ importance ranking.  

On the other hand, ANN used all the 24 predictors to predict the in-

hospital mortality. ANN achieved 80.9% accuracy and 0.875 AUC, with ISS 

ranked first in the predictors’ importance (0.12). Figure 11 ranks the top ten 

predictors based on their importance.  

 

 

Table 22. Significant Predictors Estimation and Likelihood Ratio Assessment 

Predictor B 
coefficient 

P 
value 

EXP 
(B) 

95% 
confidence 
interval 

Venous thromboembolism 
(VTE) prophylaxis 
No 
Yes: reference 

 
3.435 

 
< 0.05 

 
31.035 

 
14.198-
67.837 

HAIS 
3 
4 
5: reference 

 
-2.153 
-0.311 

 
< 0.05 
0.403 
 

 
0.116 

 
0.045-0.299 
 

TBI diagnosis/CT finding 
(EDH) 
SDH 
EDH 
SAH 
Contusions 
DAI 
Cerebral edema  
Others: reference 

 
0.654 
-1.22 
0.609 
-0.788 
-0.313 
2.045 
 

 
0.263 
0.066 
0.435 
0.33 
0.644 
< 0.05 
 

 
7.733 

 
2.088-28.635 

Blood transfusion 
No 
Yes: reference  

 
-1.655 

 
< 0.05 

 
0.191 

 
0.086-0.422 

ED HR 0.028 < 0.05 1.028 1.015-1.042 
Age 0.035 < 0.05 1.036 1.013-1.059 
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Figure 10. Predictors’ importance in logistic regression. 

 

 

 

Figure 11. Predictors’ importance in ANN. 

 

 

Discussion 

Consistent with the previous literature, this study found that patients who 

receive venous thromboembolism (VTE) prophylactic agents have better 

survival rates compared to those who do not (197). 66.7% of the patients who 

did not receive VTE prophylaxis died, compared to 13.9% of those who did 

receive it. The odds of mortality given that a patient does not receive VTE 

prophylaxis following moderate to severe TBI increases 31-fold compared to 
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those who receive it. The previous literature reported a significant association 

between TBI and VTE (e.g. deep vein thrombosis and pulmonary embolism) 

(211, 212). Although there is a debate concerning the potential to increase 

hemorrhagic risk among patients with TBI by administering VTE prophylaxis, 

the literature suggests that administering VTE prophylaxis 24 to 48 hours 

following TBI is safe, following a proper risk assessment (197, 213). Thus, we 

argue that the lack of or delayed administration of VTE prophylaxis may lead to 

VTE events that may contribute to increased mortality. Therefore, considering 

the early administration of VTE prophylaxis could improve TBI patients’ 

prognosis and reduce the risk of mortality that is associated with coagulation 

related complications.  

Additionally, we observed that patients who sustained more severe TBI 

(as measured by AIS) were more likely not to receive VTE prophylaxis. 17.4% 

of those with HAIS 3, 17.6% with HAIS 4, and 29.4% with HAIS 5 did not receive 

VTE prophylaxis. This is consistent with Nathens et al. (214) who concluded 

that doctors are conservative in administering VTE prophylaxis for patients with 

severe TBI. They found that patients with severe TBI, no injuries in their 

extremities, and those who received blood transfusions were more prone to 

delayed VTE prophylaxis administration. Accordingly, we conducted secondary 

analysis to test the association between the severity of TBI (HAIS), blood 

transfusion during resuscitation, and severity of extremities injury with the 

administration of VTE prophylaxis in order to understand the doctors’ VTE 

prophylaxis prescription behavior. Chi square analysis revealed significant 

association between the HAIS and VTE (Chi2 = 15.57 and P value < 0.05), which 

is consistent with past research (214). On the other hand, we found no 
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significant association between blood transfusion or extremities’ AIS with VTE 

prophylaxis administration (Chi2 < 5 and P value > 0.05). We further evaluated 

if there was any association between the TBI diagnosis and the administration 

of the VTE prophylaxis. We found a significant association (Chi2 = 13.498 and 

P value < 0.05).  

Patients with cerebral edema are more likely not to receive VTE 

prophylaxis (34.5%) compared to patients with subdural hemorrhage (24.6%), 

extradural hemorrhage (22.6%), subarachnoid hemorrhage (20.9%), brain 

contusions (21.4%), and diffuse axonal injury (20%). It is important to note that 

AIS is not necessarily available information for the treating doctor at the time of 

making the decision to administer VTE prophylaxis. Therefore, we argue that 

the perceived severity of TBI as per patient presentation and clinical 

examination influence physicians’ VTE prescribing behavior. Importantly, this 

finding may support the argument that the relation between the VTE prophylaxis 

and the mortality does not reflect causality, but it is more associated with the 

severity of injury that influences the doctors’ VTE prophylaxis prescription 

behaviors.  

It is widely accepted that the more severe the head injury, the higher the 

probability of mortality and unfavorable outcomes (174, 179, 215). This study 

proved that patients with higher HAIS (AIS 5) have higher likelihood of mortality 

compared to those with lower HAIS (AIS 3). Only 9.5% of the patients who had 

HAIS 3 died, compared to 25.2% and 37.5% of patients who had HAIS 4 and 5 

(respectively). The odds of mortality given that a patient have severe TBI (HAIS 

= 5) increase significantly by 88.4% compared to those with HAIS 3. We found 

no significant difference in the mortality between patients who had HAIS 4 and 
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HAIS 4. 

The TBI diagnosis as identified by the initial brain CT scan plays a role 

in determining patients at risk of in-hospital mortality. Cerebral edema was 

found to play a significant role in predicting mortality in ventilated patients 

following TBI. More than 65% of the patients who had cerebral edema died 

compared to patients with subdural hemorrhage (31.4%), subarachnoid 

hemorrhage (31.3%), diffuse axonal injury (18.3%), extradural hemorrhage 

(11%), and brain contusions (9.2%). The odds of mortality given that a patient 

sustained cerebral edema are seven times higher than for patients with other 

TBI findings.  

Interestingly, it is found that patients who underwent blood transfusion 

have higher odds of in-hospital mortality compared to those who have not 

received blood during resuscitation. Of those who received blood transfusion 

during resuscitation, 33.8% have died compared to 9.5% of those who did not 

need blood transfusion during resuscitation. The odds of mortality given that a 

patient receives blood during resuscitation increase significantly by 80.9% 

compared to those who do not require blood transfusion during resuscitation.  

The need and the consequences of blood transfusion in TBI are 

debatable. Several studies have reported that blood transfusion in TBI is 

associated with unfavorable outcomes (195, 196). This could be explained by 

the fact the patients who needed blood transfusion are those who had more 

severe injuries and had lost significant amounts of blood which makes the 

patients prone to poor TBI outcomes. We argue that blood transfusion per say 

does not have a direct causal relationship with the mortality, but the reasons 

that indicate the need for blood transfusion during resuscitation (i.e. bleeding or 
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hypovolemia) should be considered predictors of mortality.  

The patient heart rate upon arrival to the ED is an indicator of the organ 

perfusion adequacy. The mean heart rate upon admission to the emergency 

room following the TBI was 102.8 while the mean heart rate upon arrival for 

those who died was 107.7 beats per minute. An increase in HR by one unit may 

change the odds of mortality by approximately 3% (odds ratio = 1.028, P< 0.05). 

Age is also found to play a significant role in predicting in-hospital 

mortality in patients with TBI who receive MV (166). An increase by one year of 

age increases the likelihood of mortality by more than 3.6%. (Odds ratio = 

1.036, P <0.05). The patients’ mean age in this study was 33 years. However, 

the mean age of those who died during their initial hospitalization was 36.9 

years.  

Limitations 

785 patients in five years is considered a small sample in the field of ML. 

The size of this sample posed challenges in several respects, including class 

imbalance, management of missing data, and cross validation. Qatar has a 

relatively small population, therefore regional or international multicenter 

studies could help overcome this limitation. Furthermore, some of the 

potentially important predictors such as time to surgical procedures and other 

unfavorable outcomes were not captured in the data set. The availability of such 

variables may enhance the predictive performance and improve the clinical 

insight that can be obtained by the findings of the study.  

Conclusion 

Although plenty of literature focuses on predicting mortality in TBI 

patients, there is a dearth of research exploring the deployment of ML 
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techniques to predict in-hospital mortality in intubated patients with TBI. 

Accordingly, this study provides a valuable contribution to this pioneering field 

of research. 

This study demonstrates that LR provides better performance than ANN 

in predicting the in-hospital mortality for patients who received MV following 

moderate to severe TBI.  

The results are encouraging and provide an opportunity to integrate the 

ML techniques with the NTR and electronic medical records to provide instant 

clinical decision support to healthcare providers. In addition, with limited data 

size, ML algorithms demonstrate powerful predictive power, which opens the 

door for integrating the AI modalities with medical practice to enhance patients’ 

treatment outcomes.  
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CHAPTER 8: USING NTR DATA TO PREDICT PROLONGED MECHANICAL 

VENTILATION IN PATIENTS WITH TBI – ML APPROACH 

Background  

Patients with severe TBI are prone to impaired arousal, which warrants 

protecting their airway by MV (216). Therefore, they are at higher risk of 

prolonged mechanical ventilation (PMV) than any other critical patients (207). 

In 2007, the European Respiratory Journal published guidelines on weaning 

from mechanical ventilation, to describe the entire process of liberating patients 

from the ventilator (217). Nonetheless, due to the lack of robust evidence in the 

literature, there were no clear recommendations about the weaning process in 

neurocritical care settings, and the decision to extubate patients remains a 

complex issue (207).  

Although MV is a lifesaving intervention, it has several complications, 

such as ventilator-induced lung injury, VAP, prolonged hospitalization, and 

increased mortality (208, 218). These risks increase with PMV (218, 219). 

Approximately 30% of critically ill patients will require PMV at some stage (206, 

218, 220), and more than 600,000 patients were expected to require PMV in 

2020 (221). Several strategies, such as minimizing sedation and performing 

daily spontaneous breathing trials, have been adopted to mitigate the risks 

associated with the MV and to prevent PMV (222, 223).  

Hence, predicting patients at risk for PMV is of utmost importance to help 

clinicians design individualized plans of care that mitigate the risk of PMV. This 

includes the decision of early use of tracheostomy, which has proven beneficial 

when MV is still required (220, 224-226). There are several studies that aimed 

to determine the significant predictors of PMV. However, it remains difficult to 
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determine a set of key predictors due to the differences in patients’ clinical 

features and clinical settings. Furthermore, there is no consensus on the 

definition of PMV. The PMV period in the published literature ranges from 5 

hours to 1 year, with > 21 days being the most common definition (227). Table 

24 shows examples of the previously published literature in predicting PMV 

highlighting the patients’ characteristics, PMV duration, predictors used, and 

predictive models’ performance measures.  

In a recent Cochrane systematic review, the early tracheostomy (<10 

days from the start of MV) was found to be associated with significant 

improvement of patient treatment outcomes (120). This finding supports the 

previous randomized clinical trial by Young et al., which found that early 

tracheostomy replacement (< 10 days) is beneficial to patients and is 

associated with improved outcomes (228). Besides favorable clinical outcomes, 

early tracheostomy is associated with improved economic outcomes, such as 

reduced ICU costs (229) and hospital length of stay (120). Furthermore, early 

tracheostomy was found to significantly improve patient QoL compared to the 

endotracheal ventilation when prolonged ventilation is required (230). 

Therefore, defining the PMV to be longer than 10 days could be of a great value 

in term of early liberation from MV, early tracheostomy replacement, improving 

QoL, and cost-effectiveness.  

Most previously published studies that aimed to predict PMV used 

conventional multivariate techniques, particularly LR, and yielded low to 

moderate accuracies (0.53- 0.75) and AUC (0.65-0.75) (220, 226). The 

implementation of the ML to predict the PMV has achieved a relatively higher 

performance than the conventional predictive models, with accuracy of 83.2% 
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and AUC of 0.82 (220). Accordingly, we decided in this study to evaluate the 

predictive performance of selected ML models when PMV is defined as > 10 

days. At the same time, we will conduct another two sets of predictive models 

in which PMV is defined as > 7days and > 14 days in order to compare the 

predictive performance of the ML models in the three sets. 

Methodology 

This study utilized the NTR data to design supervised ML algorithms to 

predict the PMV (> 7 days, > 10 days, and > 14 days) for patients who received 

MV following moderate to severe TBI. We hypothesized that the ML algorithms 

would outperform the conventional multivariate predictive techniques in terms 

of accuracy, sensitivity, specificity, and precision, negative predictive value 

(NPV), F-score, and AUC. Also, consistent with the Cochrane’s systematic 

review results, we hypothesized that defining PMV to be greater than 10 days 

would optimize the prediction performance of the ML models used in this study. 

We constructed three sets of predictive models based on the definition of the 

PMV. Set A defines PMV as > 7 days, set B defines PMV as > 10 days, and set 

C defines PMV as >14 days.  

Data Preparation 

To achieve the objectives of this particular study, the following inclusion 

and exclusion criteria were applied in the selection of patient records. 

Patient Inclusion Criteria  

 Adult patients older than 14 years with TBI.  

 Patients whose Abbreviated Injury Score for head region (HAIS) ≥ 3  
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 Patients who underwent intubation following the injury either at the scene 

by the ambulance crew or in the hospital within the first 24 hours from 

the arrival to the hospital. 

Patient Exclusion Criteria 

 Patients with any regional injuries with AIS greater than the HAIS, to 

ensure that the TBI assumes the highest effects on the dependent 

variable.  

 All patients who died or were discharged within 7 days for set A, within 

10 days for set B, and within 14 days for set C.  

Importantly, due to the criticality of the subject, we decided that all 

records with missing values would be deleted. Therefore, no imputation was 

needed. All variables with no predictive power (e.g. health record number, date 

of admission, and date of disposition) or those that were severely imbalanced 

(e.g. gender, where female patients were approximately 4% in the three data 

sets) were excluded. Subsequently, 674 records in set A, 643 records in set B, 

and 622 records in set C were eligible for the study. Figure 12 explains the 

records’ inclusion and exclusion procedure. Further details about the 

methodology are provided in chapter 5. 

Outcome Measure 

The dichotomous outcome measure for this study is prolonged 

mechanical ventilation (PMV). PMV is defined as the stay on mechanical 

ventilation support for > 7 days in set A, > 10 days in set B, and > 14 days in 

set C, from the initial intubation that was performed within the first 24 hours from 

the injury. PMV0 means that the patient was extubated before the sets’ period, 
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and PMV1 means that the patient stayed on MV longer than the sets’ period.  

 

 

 

Figure 12. Records’ inclusion and exclusion process. 
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 Table 23. Examples of Previous PMV Prediction Studies 

 

Patient group PVM 
duration 

Predictors Predictive 
technique 

Model’s 
performance 
(AUC) 
 

Parreco et al. (2018) (220); PMV > 7 days; predictive: Gradient-boosted DTA 

All ventilated 
level 3 ICU 
patients (2001-
2012) 

Oxford Acute Severity of Illness Score 
(OAISIS), Sequential Organ Failure 
Assessment, Simplified Acute Physiology 
Score (SAPS), Simplified Acute Physiology 
Score II (SAPS II), Acute Physiology Score 
III, Logistic Organ Dysfunction Score (LODS), 
Sepsis Related Organ Failure Assessment 
(SOFA)  

Mean AUC 
0.820 ± 
0.016 

Chang et al. (2018) (231); PMV > 21 days; predictive: LR 
ICU patients 
who survived 
sepsis/ septic 
shock and 
respiratory 
failure  

Demographics 
Acute Physiology, Age, Chronic Health 
Evaluation (APACHE II) 
Comorbidities 
Lab findings (hematology, liver function, 
coagulation, urea electrolytes, arterial blood 
gases),Ventilator settings 

AUC 0.725 

Agle et al. (2006) (224); PMV > 14 days; predictive: LR 
Torso trauma 
patients who 
met specific 
criteria for shock 
resuscitation 
and required 48 
hours of MV 

Demographics, facial trauma, chest trauma 
severity (AIS), ventilator settings  

AUC 0.79  

Clark and Lettieri (2013) (218); PMV > 14 days; predictive: LR 
Adult patients 
requiring MV 
support in a 
medical ICU 

Demographics, vital signs, laboratory values 
(hematology, renal and liver function tests, 
HCO3), APACHE 2 

AUC 0.75 
 

Dimopoulou et al. (2003) (225); PMV > 7 days; predictive: LR 
Adult patients 
with thoracic 
trauma requiring 
MV support in 
ICU  

Demographics, injury characteristics, injury 
severity score, AIS of other associated 
injuries (head, neck, face, pelvis and 
extremities) and ventilator settings 

Not declared  

Figueroa-Casas et al. (2015) (226); PMV > 7 days; predictive: LR 
ICU patients 
receiving MV 

Demographics, SOFA score on intubation, 
comorbidities, location before ICU admission, 
diagnosis category  

AUC 0.65-
0.70 
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ML Prediction Models 

A group of supervised ML techniques were utilized to compare their 

performance with each other and with previous studies in order to recommend 

the model that achieves the optimal performance and highest practicality in 

supporting the clinical decision. LR, RF, ANN, C.5DT and SVM were selected 

to provide base line comparative performance.  

To prevent overfitting and to validate the models’ performance, we 

partitioned the data into training set (70%) and testing set (30%), and overfit 

prevention was set at 30%. The data partitioning was executed automatically 

by the analytical software based on the partition command we provided. Table 

25 explains the data partitions.  

 

 

Table 24. Data Partitions 

Set A 
PMV 
>7 
days 

Set Proportion  No. of 
cases 

Ventilator 
days ≤ 7 

Ventilator 
days > 7 
 

Training 
set 

70% 472 183 289 

Testing set 30% 202 87 115 
Total 100% 674 270 404 

Set B 
PMV 
>10 
days 

Set Proportion No. of 
cases 

Ventilator 
days ≤ 10 

Ventilator 
days > 10 

Training 
set 

70% 446 239 207 

Testing set 30% 197 114 83 
Total 100% 643 353 290 

Set C 
PMV 
>14 
days 

Set Proportion No. of 
cases 

Ventilator 
days ≤ 14 

Ventilator 
days > 14 

Training 
set 

70% 432 312 120 

Testing set 30% 190 138 52 
Total 100% 622 450 172 
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Logistic Regression (LR) 

Bidirectional step-wise LR was used in this study to control the effect of 

confounding variables and to measure the independent risk factors for post-TBI 

PMV (166).  

Random Forest (RF) 

RF is a powerful supervised ML technique that is used widely for 

classification problems (88, 232). RF is proven to have improved accuracy in 

comparison to other ML techniques. The reason is that RF uses bootstrapping 

to grow a forest of uncorrelated trees, with a high degree of randomness in 

feature selection, which contributes to reducing errors significantly (90)  

SVM 

We used Linear Kernel function in this study as it provided better 

predictive performance in the preliminary assessment.  

ANN 

We used MLP ANN architecture as it optimized the predictive 

performance compared to the other architectures.   

C.5 Decision Tree (C.5DT) 

C.5DT is the successor of the C.4.5 DT classification data mining 

algorithm. A DT is a “classification algorithm in which each non-leaf node 

indicates a test on an attribute of the input cases; each branch corresponds to 

an outcome of the test; and each leaf node indicates a class prediction” (88). 

Generally, DT classification algorithms are powerful, logical, and easy to 

interpret and understand (89).  
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Results 

In set A (PMV> 7days), 674 eligible cases were included, of which 404 

(59.9%) had more than seven ventilator days. The overall mean age was 32.3 

years, and the mean age for patients with PMV was 33.6. Fifty-three percent of 

the patients sustained chest trauma, of whom 61.7%, 24%, and 46.5% 

sustained lung contusion, hemothorax, and pneumothorax, respectively. The 

most common TBI diagnosis was subdural hemorrhage (SDH) (25%), and more 

than 30% of them developed midline shift on the computed tomography head 

images.  

In set B (PMV >10 days), 643 eligible cases were included, of which  290 

(45%) had more than 10 ventilator days. The overall mean age was 32.1 years, 

and the mean age of patients with PMV was 33.6 years. Almost half of the 

patients sustained chest trauma, including 63%, 22%, and 43% with lung 

contusion, hemothorax, and pneumothorax, respectively. SDH was the most 

common TBI diagnosis (25%), and 29% of patients had midline shift. Tables 26 

and 27 show the sample characteristics in set B.  

In set C (PMV >14 days), 622 eligible cases were included, of which 172 

(28.5%) had more than 14 ventilator days. The overall mean age was 32 years, 

and the mean age for patients with PMV was 33.9 years. There were 329 

patients (52.9%) who sustained chest trauma, of whom 64% suffered lung 

contusion, 22.8% had hemothorax, and 42% had pneumothorax. One quarter 

of the patients sustained SDH, and 28.8% of them had midline shift.  
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Table 25. Sample Characteristics (set B) – Continuous Variables 

Variable N               Mean             SD        Mean when                
                                PM> 10 
                

Age 643 32.1 12.9 33.6 

ISS 643 26.8 9.5 29.5 
ED SBP 643 128.2 26.1 126.6 
ED HR 643 101.8 24.6 103.4 

 

 

Table 26. Sample Characteristics (Set B) - Nominal and Ordinal Variables 

Variable Category Count/% PMV = 0  PMV = 1 
 

Race Asian 365/56.8 218/59.7 147/40.3 
Other 278/43.2 135/48.6 143/51.4 

Mechanism of 
injury (MOI) 

Motor vehicle crash 247/38.4 128/51.8 119/48.2 
Fall 159/24.7 100/62.9 59/37.1 
Pedestrian 125/19.4 59/47.2 66/52.8 
Other 112/17.4 66/58.9 46/41.1 

Multiple rib 
fractures 

No 497/77.3 294/59.2 203/40.8 
Yes 146/22.7 59/40.4 87/59.6 

Lung contusion No 427/66.4 246/57.6 181/42.4 
Yes 216/33.6 107/49.5 109/50.5 

Hemothorax No 567/88.2 325/57.3 242/42.7 
Yes 76/11.8 28/36.8 48/63.2 

Pneumothorax No 495/77 297/60 198/40 
Yes 148/23 56/37.8 92/62.2 

Midline shift No 456/70.9 264/57.9 192/42.1 
Yes 187/29.9 89/47.6 98/52.4 

TBI diagnosis/ CT 
findings  

Subdural 
hemorrhage  

162/25.2 89/54.9 73/45.1 

Epidural 
hemorrhage  

141/21.9 100/70.9 41/29.1 

Subarachnoid 
hemorrhage  

53/8.2 24/45.3 29/54.7 

Hemorrhagic 
contusions 

93/14.5 63/67.7 30/32.3 

Diffuse axonal 
injury  

93/14.5 28/30.1 65/69.9 

Cerebral edema 45/7 15/33.3 30/66.7 
 Other 56/8.7 34/60.7 22/39.3 
Head AIS (HAIS) 3 225/35 153/68 72/32 

4 157/24.4 86/54.8 71/45.2 
5 281/40.6 114/34.2 147/65.8 

Face AIS (FAIS) 0 313/48.7 169/54 144/46 
1 74/11.5 36/48.6 38/51.4 
2 (AIS 3-5) 256/39.8 148/57.8 108/42.2 
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Variable Category Count/% PMV = 0  PMV = 1 
 

Chest AIS (CAIS) 0 302/47 197/65.2 105/34.8 
1 (AIS 1-2) 100/15.5 42/42 58/58 
2 (AIS 3-5) 241/37.5 114/47.3 127/52.7 

Abdomen AIS 
(AAIS) 

0 515/80.1 301/58.4 214/41.6 
1 (AIS 1-5) 128/19.9 52/40.6 76/59.4 

Spine AIS (SAIS) 0 443/68.9 262/59.1 181/40.9 
1 (AIS 1-5) 200/31.1 91/45.5 109/54.5 

Glasgow Coma 
Score (GCS) 
category 

13-15 85/13.2 56/65.9 29/34.1 
9-12 72/11.2 53/73.6 19/26.4 
≤ 8 486/75.6 244/50.2 242/49.8 

Known 
comorbidities  

No 537/83.5 311/57.9 226/42.1 
Yes 106/16.5 42/39.6 64/60.4 

Intubation location In-hospital 231/35.9 142/61.5 89/38.5 
Pre-hospital 412/64.1 211/51.2 201/48.8 

Blood transfusion No 235/36.6 189/80.4 46/19.6 
Yes 408/63.5 164/40.2 244/59.8 

Ventilator 
associated 
pneumonia (VAP) 

No 478/74.3 311/65 167/35 
Yes 165/25.7 42/25.5 123/74.5 

Sepsis No 583/90.7 343/58.8 240/41.2 
Yes 60/9.3 10/16.7 50/83.3 

Total  643/100 353/54.9 290/45.1 

 

 

Performance of the ML models 

Table 28 shows the performance evaluation metrics for the five ML 

techniques in the test data partition. All models achieved moderate accuracy 

(66%-79%). Nevertheless, since accuracy alone is insufficient measure to 

evaluate the overall model’s performance, AUC, precision, NPV, sensitivity, 

specificity, and F-score measures were taken into consideration. In set A, LR 

and SVM achieved relative similar performance in all performance metrics. 

Nonetheless, LR is the preferred model for deployment, as it demonstrated 

higher discrimination power, which is of great importance to the classification 

function (AUC 0.83 vs. 0.8), as well as its parsimony. LR achieves similar 

performance with fewer dimensions. In Set B, SVM achieved the highest 
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performance. In set C, ANN and SVM achieved similar performance, but ANN 

was the preferred model, as it gave higher accuracy, specificity, and positive 

predictive power (precision).  

Comparing the discrimination power between the three sets, set B 

(which defines PMV to be greater than 10 days) performs better than Sets A 

and C, with AUC ranging from 0.77 to 0.84, while set A (PMV > 7days) AUC 

ranges from 0.65 to 0.83, and set C (PMV > 14 days) AUC ranges from 0.65 to 

0.75. This implies that the discrimination power and the accuracy were more 

optimized when PMV was defined to be greater than 10 days.  

 

 

Table 27. Performance of the Prediction Models 

 No. 
of 
predi
ctors 
 

Accur
acy% 

Area 
under 
curve 

Precis
ion 

NPV 
 

Sensit
ivity 

Specif
icity 

F-
score 

Set A (PMV > 7days) 
LR 7 75 0.83 0.77 0.72 0.80 0.68 0.78 
SVM 23 76 0.80 0.77 0.74 0.83 0.67 0.79 
RF  23 73 0.77 0.77 0.69 0.76 0.70 0.76 
ANN 23 69 0.78 0.72 0.66 0.77 0.60 0.74 
C.5DT 19 66 0.65 0.70 0.60 0.70 0.61 0.70 
Set B (PMV > 10 days) 
SVM 23 79 0.84 0.75 0.82 0.76 0.82 0.75 
ANN 23 77 0.84 0.71 0.81 0.76 0.77 0.73 
LR 7 75 0.82 0.70 0.78 0.69 0.79 0.70 
RF  23 75 0.80 0.67 0.84 0.81 0.71 0.73 
C.5DT 17 71 0.77 0.66 0.75 0.65 0.75 0.65 
Set C (PMV > 14 days) 
ANN 23 76 0.72 0.64 0.77 0.27 0.94 0.38 
SVM 23 74 0.74 0.54 0.77 0.29 0.91 0.38 
LR 6 73 0.75 0.52 0.77 0.29 0.90 0.37 
RF 23 71 0.73 0.47 0.80 0.46 0.80 0.47 
C.5DT 10 71 0.65 0.43 0.76 0.25 0.88 0.32 
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Prolonged Mechanical Ventilation Predictors 

In set A (PMV > 7 days), the LR model used seven predictors to classify 

the patients into two classes based on their mechanical ventilation dependency 

period. Figure 13 shows the predictors’ importance in LR. Receiving blood 

during resuscitation scored the highest predictors’ importance value (0.24).  

In set B (PMV > 10 days), the SVM used all 27 predictors to classify the 

patients into the two outcome classes. Development of VAP scored the highest 

predictors’ importance value of 0.16. Figure 14 ranks the top ten predictors 

based on the predictors’ importance index.  

In set C (PMV > 14 days), ANN used all the 27 predictors to classify the 

patients into the two classes. Injury Severity Score (ISS) scored the highest 

predictors’ importance value (0.12). Figure 15 ranks the top ten predictors 

based on their importance.  

Obviously, ML algorithms in set B demonstrated a higher discrimination 

power as presented by AUC. It is uncommon to define PMV to be greater than 

10 days. This selection was related to the fact that the earlier liberation from 

MV is associated with improved patient outcomes. In addition, 10 days was 

identified to be the optimal period to perform a tracheostomy if ventilator support 

was still required (228). Therefore, defining PMV as >10 days seems to be more 

beneficial to devise an early individualized patient treatment plan.  
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Figure 13. Predictors’ importance chart – logistic regression (PMV> 7 days). 

 

 

 

Figure 14. Predictors’ importance chart – SVM (PMV> 10 days). 

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3

Age

ED Glasgow Coma Score

TBI diagnosis

Sepsis

Ventilator associated pneumonia

Injury severity score

Blood transfusion

PREDICTORS’ IMPORTANCE - LR

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Abdomen AIS

Midline shift

Pneumothorax

Sepsis

Chest AIS

Head AIS

TBI diagnosis

ED Glasgow Coma Score

Blood transfusion

Ventilator associated pneumonia

PREDICTORS’ IMPORTANCE - SVM



  

141 

 

 

Figure 15. Predictors’ importance chart – ANN (PMV> 14 days). 

 

 

Discussion 

Predicting PMV in patients with TBI is of utmost importance as early 

liberation from mechanical ventilation yields improved outcomes (120, 220). 

Nevertheless, predicting PMV is proven to be a difficult mission due to several 

factors such as lack of consensus on the PMV definition and the poor outcomes 

of the conventional analytical techniques used to make predictions. Traditional 

statistical techniques help clinicians predict PMV with only 59% accuracy (220, 

226).  

Hence, it is very important to help clinicians early identify patients at risk 

for PMV in order to design an individualized care plan and to decide on early 

tracheostomy, to help patients achieve better outcomes if MV is still required. 

The lack of a consensual definition of PMV makes the determination of the 

optimal MV duration and the tracheostomy decision very difficult. We opted for 

10 days to be the cutoff point to differentiate between the PMV and the non-

PMV, based on a prior Cochrane review which found that 10 days is the optimal 
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duration when moving patients to tracheostomy, which results in better 

outcomes (120).  

This study demonstrated that the application of supervised ML 

techniques yields moderate overall performance for all the ML models in the 

three sets. Nevertheless, set B achieved more stable performance and higher 

discrimination power than sets A and C, with average AUC 0.813 for the five 

prediction models, compared to the average AUC values of 0.76 for set A and 

0.72 for set C. SVM was the chosen prediction algorithm for set B, with accuracy 

of 79% and AUC of 0.84. The importance of this finding is that the optimal 

prediction performance is achieved when PMV is defined as >10 days, which 

is the optimal period for early tracheostomy (120, 228).  

The ML models in the three sets achieved better performance than the 

traditional predictive techniques that recorded mild accuracies ranging between 

0.60-0.69 and mild AUCs ranging between 0.52 and 0.67. This proves that the 

ML techniques outperform the conventional analytical techniques and can 

provide more support to the clinicians to make higher quality decisions that 

improve patient treatment outcomes.  

In set B, SVM achieved the optimal performance with accuracy of 79% 

and AUC of 0.84. In addition, it performed moderately in the other measures 

(precision = 0.75, NPV = 0.82, sensitivity = 0.76, specificity = 0.82 and F-score 

= 0.75). The development of VAP ranked first in predictors’ importance (0.16). 

Three-quarters of patients who developed VAP ended up with PMV> 10 days, 

compared to 35% of patients who did not develop VAP. VAP is known to be 

associated with poor outcomes, including PMV and mortality (194). This finding 

may not necessarily help early prediction of PMV, as VAP is not a condition that 
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a patient presents with when sustaining TBI. However, knowing that VAP 

contributes significantly to the PMV warrants the early implementation of the 

preventive measures, such as VAP bundle of care (233), which is becoming the 

standard of quality care in critical care medicine for ventilated patients.  

The need for blood transfusion during resuscitation ranked second in 

predictors’ importance, with a score of 0.15. 59.8% of patients who received 

blood for resuscitation needed PMV compared to 19.6% of the patients who did 

not require blood for resuscitation. The need to administer blood transfusion to 

resuscitate patients who sustain severe trauma could indicate the severity of 

injury, and perhaps a hypovolemic shock that contributes to poor patient 

outcomes. This affirms the findings of Ghiani et al. (234), who reported that 

blood transfusion is independently correlated with worse outcomes. 

Nevertheless, they concluded that blood transfusion is an indicator for disease 

severity rather than directly impacting the prognosis. Lai et al. found that the 

low hemoglobin level is associated with difficult weaning from MV and may lead 

to PMV (235). Also, Zubrow et al. (2018) found that the transfusion of Red Blood 

Cells (RBCs) in pediatrics with acute respiratory distress syndrome is 

associated with PMV (236). 

The GCS of patients presenting to the ED is a significant predictor, with 

a predictors’ importance score of 0.1. In this study, 49.8% of patients who 

presented to the ED with GCS ≤ 8 stayed on MV longer than 10 days, compared 

to 34.1% of patients who presented to the ED with GCS 13-15, and 26.4% of 

those who had GCS of 9-12. This finding is consistent with the previous 

literature which proves that patients with lower GCS are at higher risk of post-

TBI complications, including death (225, 237).  
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TBI diagnosis (CT scan finding) scored predictors’ importance of 0.09. 

69% of patients who had diffuse axonal injury (DAI) and 66.7% of those who 

had cerebral edema stayed on a mechanical ventilator for longer than 10 days. 

Both cerebral edema and DAI are associated with significant mortality and 

morbidity (198, 238).  

Furthermore, it is found that the greater the HAIS, the greater the risk of 

PMV. Almost 66% of patients who had HAIS = 5 ended with PMV, compared to 

32% and 45.2% for HAIS 3 and 4 respectively. It is well documented that the 

more severe the TBI, the higher the risk of comorbidities and mortality (166). 

The same applies for predicting PMV (225).  

Also, chest AIS scored 0.04 in predictors’ importance. More than 50% of 

the patients who sustained chest injury with AIS between 1 and 5 had PMV 

compared to about 34% of the patients who didn’t sustain chest trauma (chest 

AIS= 0). Previous literature found that chest AIS helps predict the PMV (224). 

Okabe found that the severity of blunt chest trauma is significantly associated 

with the risk of PMV (239).  

Sepsis was also found to be among the top ten important predictors for 

the PMV (predictors’ importance = 0.04). 83.3% of patients who suffered sepsis 

following TBI had PMV > 10 days. Like VAP, patients may not present to the 

ED with sepsis right after the TBI. However, knowing that sepsis contributes 

significantly to the PMV warrants the early implementation of the preventive 

measures i.e. six-hour sepsis bundle (240), which is a standard of critical care 

medicine.  

Furthermore, 62.2% of patients who sustained pneumothorax stayed on 

MV longer than 10 days. Pneumothorax scored 0.04 in predictors’ importance. 
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It is evident in the literature that pneumothorax and prolonged chest tube 

duration are associated with poor outcomes, such as PMV, increased ICU 

length of stay, and mortality (241). 

In this study, midline shift is ranked number nine, with predictors’ 

importance of 0.04. Midline shift is defined as the “displacement of septum 

pellucidum in relation to the midline in millimeters” (242). 52.4% of patients who 

sustained midline shift had PMV compared to 42.1% of those who did not have 

midline shift. Midline shift is a commonly used variable in predicting post-TBI 

unfavorable outcomes (e.g. CRASH and IMPACT tools) (181, 182, 201). 

The tenth ranked predictor was abdominal AIS (predictors’ importance 

0.03). 59.4% of patients who had abdominal trauma with AIS (1-5) had PMV, 

compared to 41.6% of those who did not sustain abdominal injury. Although 

Blaser et al. found that there is a strong correlation between intra-abdominal 

hemorrhage and the ICU length of stay and the PMV (243), the severity of the 

abdominal injury as measured by the AIS was found to be an insignificant 

predictor of PMV in other studies (224, 225). This could be attributed to different 

data processing and inclusion criteria that were followed in every study.  

Wellbeing and Economic Values 

Predicting PMV is proven beneficial in several aspects. Besides the 

proven clinical value added, predicting PMV supports the decision of early 

tracheostomy, which is economically beneficial. PMV is associated with several 

complications that contribute to increasing ICU and hospital length of stay, and 

significantly escalated costs of care. Early tracheostomy is associated with 

reduced ICU and hospital length of stay (120, 244). It is estimated that the 

average daily cost of ICU in the USA ranges between $1,300 and $9,400, 
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depending on the specialization and complexity of patient disease (245). The 

daily cost in the ICU increases when mechanical ventilation is required (246). 

Therefore, it was found that the early tracheostomy contributes to a significant 

reduction in the ICU daily cost compared to delayed tracheostomy (229).  

Usually, patients’ treatment plans do not concentrate merely on 

addressing the acute and the chronic healthcare problems, but focus strongly 

on enhancing patient QoL. Patients who require mechanical ventilation suffer 

severe deterioration in QoL (247). It was found that early liberation from 

ventilator or early tracheostomy are associated with enhanced QoL (230). 

Therefore, this study adds value in several aspects that include the clinical, 

wellbeing, and economic aspects.  

Conclusion 

The importance of mechanical ventilation in critical care settings is 

increasing due to the increasing demand on the critical care intervention 

worldwide. Nonetheless, dependence on mechanical ventilation is associated 

with several serious outcomes. Therefore, the early liberation from mechanical 

ventilator is of utmost importance. Predicting patients at risk of PMV helps 

clinicians devise personalized care plans in order to mitigate the risk of PMV 

and to decide on tracheostomy in a timely fashion in case ventilator support is 

still required. Predicting patients at risk of PMV will not only help improve 

patients’ clinical outcomes, but also help reduce critical care costs and enhance 

patients’ QoL, while enabling the optimum deployment of healthcare services 

to meet user needs (e.g. freeing up ICU beds for other patients due to reduced 

hospitalization). 

The study showed that it is possible to improve predictive power when 
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using ML approach, but the most important requirement is to enhance the 

quality of data in the NTR or electronic medical records to help improve the 

quality of predictions. Moreover, deploying such models into clinical practice 

and making them available in a user-friendly way to the clinicians to support 

their decision-making will be of great value.  



  

148 

 

CHAPTER 9: USING NTR DATA TO PREDICT VENTILATOR-ASSOCIATED 

PNEUMONIA IN PATIENTS WITH MODERATE TO SEVERE TBI: C.5 

DECISION TREE APPROACH 

Background 

MV is one of the most common interventions in the critical care settings 

(176). Although it saves lives, MV is associated with several complications, 

including increased mortality (208). One of the most frequent complications that 

are associated with MV is VAP (248). VAP is “the pneumonia that occurs 48–

72 hours or thereafter following endotracheal intubation, characterized by the 

presence of a new or progressive infiltrate, signs of systemic infection (fever, 

altered white blood cell count), changes in sputum characteristics, and 

detection of a causative agent” (249, 250). Approximately a fourth of all 

mechanically ventilated patients are at risk of VAP, which makes it one of the 

most common nosocomial infections in ICUs (251). More than 10% of deaths 

among mechanically ventilated patients are related to VAP (252, 253). 

Interestingly, the rate of VAP in trauma patients is four times higher than among 

non-trauma patients (254). This could be due to the fact that patients with 

trauma have more risk factors for developing VAP than non-trauma patients, 

such as pre-hospital or emergency intubation and polytrauma, including chest 

injuries (255). Several studies found that severe TBI is associated with 

increased risk of nosocomial pneumonia, which may lead to increased risk of 

mortality (256, 257). It was found that the risk for early onset VAP is frequent 

after severe TBI, with an overall rate of 61% (258).  

VAP is associated with significant morbidity and mortality, and also with 

increased healthcare costs (254). The cost burden of treating VAP in the USA 
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was estimated in several studies to be between $10,000 to $40,000 per patient 

(259-261). In a study conducted in a cardiac intensive care unit in the UK, the 

cost of post-operative recovery after cardiac surgery for patients with VAP was 

at least two times greater than the cost of recovery for patients with no VAP 

(261).  

The prediction of VAP in patients with TBI is of utmost importance. Early 

and powerful prediction of VAP helps clinicians and healthcare managers 

devise personalized intervention plans that help prevent the occurrence of VAP, 

thereby improving treatment outcomes and saving significant costs for patients 

and the healthcare system. The limited research predicting VAP in TBI mainly 

utilized conventional multivariate LR, with no reported area under the curve, 

accuracy, or positive predictive value. Aside from pioneering the ML predictive 

approach, this study is amongst the first studies to utilize NTR data to predict 

VAP in patients with TBI. This study designs a supervised ML model to predict 

the occurrence of VAP in adult patients who sustained moderate to severe TBI 

and who were admitted to L1TC.  

Methodology 

Data Preparation  

Only adult patients (aged ≥ 14-years-old) who sustained moderate to 

severe TBI (HAIS ≥ 3) and who had received MV following the TBI were 

included in the study. Patients who sustained other systematic injuries with AIS 

> HAIS were excluded, to ensure that the primary injury was TBI. The retrieved 

data included the following variables: age, gender, mechanism of injury, mode 

of arrival, alcohol blood level, blood pressure, heart rate, GCS, CT findings, 

ISS, AIS per body region, intubation status and location, date/time of injury, 
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time of admission to ED, known comorbidities, performed procedures, blood 

transfusion, administration of VTE prophylaxis, in-hospital complications, 

outcome and date of disposition. Some other important variables such as time 

from injury until arrival to the ED were calculated secondarily. We hypothesized 

that the longer the time from injury until a patient reaches to the ED, the higher 

the likelihood of developing VAP, which could be due to the reduced level of 

consciousness and the increased risk of aspiration (255).  

In this study, time from injury to ED is the only variable that was imputed. 

Patients who arrived via ambulance or helipad have their time to ED captured 

in the NTR. On the other hand, those who arrived via private vehicle (11%) did 

not have their time to ED captured in the NTR. Accordingly, the mean time to 

ED (118.7 minutes) was used for imputation when patients had VAP. Similarly, 

the mean time to ED (110.3 minutes) was used for imputation when patients 

had no VAP. On the other hand, records with missing values other than time to 

ED were eliminated from the study. Therefore, the final number of eligible 

patients was 772 patients. The detailed methodology is described in chapter 5. 

Outcome Measure 

The dichotomous outcome measure for this study is VAP. VAP0 

indicates that the patient had no VAP reported during hospitalization, and VAP1 

means that the patient had VAP during the hospitalization period. 

Prediction Model 

The objective of this study is to develop a supervised ML model that uses 

C.5DT to predict the occurrence of VAP in patients who received MV following 

moderate to severe TBI.  
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C.5 Decision Tree (C.5DT) 

The DT is “a flowchart-like tree structure, where each internal node (non-

leaf node) denotes a test on an attribute, each branch represents an outcome 

of the test, and each leaf node (or terminal node) holds a class label. The 

topmost node in a tree is the root node”. DT helps extract IF-THEN rules which 

are considered easy to understand and interpret (93).  

C.5DT is a widely used ML technique in the medical field (262). C.5DT 

is the successor of the C. 4.5 DT classification data mining algorithm. It works 

on the principle of information gain that reflects how much more information a 

predictor gives or contributes to reducing the entropy (impurity). The predictor 

that contributes more to reducing entropy will be the first split, and then the 

splitting continues until no more predictors significantly reduce entropy (263).  

To prevent overfitting and to validate the models’ performance, we 

partitioned the data into training and testing sets (70% vs. 30% respectively). 

Data are portioned randomly by the analytical software based on the partition 

command. Furthermore, the overfit prevention was set at 30%. Table 29 

explains the data partitions.  

 

 

Table 28. Data Partitions 

Set Proportion No. of cases No. of no-VAP 
patients 
 

No. of VAP 
patients 

Training set 70% 541 423 (78.2%) 118 (21.8%) 
Testing set 30% 231 180 (77.9%) 51 (22.1%) 
Total 100% 772 603 (78.1%) 169 (21.9%) 
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Results 

Of the 772 eligible patients (with a mean age of 33.1 years), 169 (21.9%) 

developed VAP during their hospitalization. The most common mechanism of 

injury was motor vehicle crash (37.8%), followed by fall from height (25.1%). 

The most common CT finding/ mass lesion was subdural hemorrhage (26.6%), 

followed by extradural hemorrhage (19.7%), with 34% of the patients sustaining 

midline shift. Tables 30 and 31 show the sample characteristics and the 

descriptive statistics for the study sample. 

 

 

Table 29. Sample Characteristics – Continuous Variables 

Variable N Mean Mean 
with 
VAP 
 

Age 722 33.1 33.7 
Injury severity 
score (ISS) 

722 28.2 28.9 

ED systolic blood 
pressure (SBP) 

722 126.3 126.3 

ED heart rate (HR) 722 103 102.8 
Time from injury to 
ED 

722 112.1 118.6 
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Table 30. Sample Characteristics – Nominal and Ordinal Variables 

Variable Category Count/% With 
Outcome 0 
(Alive)/% 

With 
Outcome 1 
(Dead)/% 

Race Asian 451/58.4 360/79.8 91/20.2 
Other 321/41.6 243/75.7 78/24.3 

Mechanism of 
injury (MOI) 

Motor vehicle 
crash 

292/37.8 222/76 70/24 

Fall 194/25.1 157/80.9 37/19.1 
Pedestrian 161/20.9 124/77 37/23 
Other 125/16.2 100/80 25/20 

Arrival mode Ambulance 629/81.5 492/78.2 137/21.8 
Other 143/18.5 111/77.6 32/22.4 

Multiple ribs 
fracture 

No 589/76.3 463/78.6 126/21.4 
Yes 183/23.7 140/76.5 43/23.5 

Lung contusion No 500/64.8 384/76.8 116/23.2 
Yes 272/35.2 219/80.5 53/19.5 

Hemothorax No 666/86.3 519/77.9 147/22.1 
Yes 106/13.7 84/79.2 22/20.8 

Pneumothorax No 582/75.4 458/78.7 124/21.3 
Yes 190/24.6 145/76.3 45/23.7 

Midline shift No 509/65.9 404/79.4 105/20.6 
Yes 263/34.1 199/75.7 64/24.3 

TBI diagnosis Subdural 
hemorrhage 

205/26.6 166/81 39/19 

Epidural 
hemorrhage 

152/19.7 119/78.3 33/21.7 

Subarachnoid 
hemorrhage 

67/8.7 51/76.1 16/22.1 

Hemorrhagic 
contusions 

91/11.8 89/79.5 23/23.9 

Cerebral 
edema 

84/11.9 66/78.6 18/21.4 

Diffuse 
axonal injury 

104/13.5 70/67.3 35/32.7 

Other 69/8.9 55/79.7 14/20.3 
Head AIS (HAIS) 3 231/29.9 186/80.5 45/19.5 

4 185/24 150/81.1 35/18.9 
5 356/46.1 267/75 89/25 

Chest AIS (CAIS) 0 344/44.6 268/77.9 76/22.1 
1 (AIS 1-2) 119/15.4 94/79 25/21 
2 (AIS 3-5) 309/40 241/78 68/22 

Abdomen AIS 
(AAIS) 

0 601/77.8 463/77 138/23 
1 (AIS 1-5) 171/22.2 140/81.9 31/18.1 

Spine AIS (SAIS) 0 531/68.8 420/79.1 111/20.9 
1 (AIS 1-5) 241/31.2 183/75.9 58/21.4 

Extremities AIS 
(EAIS) 

0 408/52.8 331/81.1 77/18.9 
1 (AIS 1-2) 258/33.4 191/74 67/26 
2 (AIS 3-5) 106/13.7 81/76.4 25/23.6 
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Variable Category Count/% With 
Outcome 0 
(Alive)/% 

With 
Outcome 1 
(Dead)/% 

Glasgow Coma 
Score (GCS) 
category 

13-15 93/12 69/74.2 24/25.8 
9-12 78/10.1 71/91 7/9 
≤ 8 601/77.8 463/77 138/23 

Known 
comorbidities 

No 646/83.7 520/80.5 126/19.5 
Yes 126/16.3 83/65.9 43/34.1 

Venous 
thromboembolism 
prophylaxis 

No 176/22.8 165/93.8 11/6.3 
Yes 596/77.2 438/73.5 158/26.5 

Blood transfusion No 249/32.3 225/90.4 24/9.6 
Yes 523/67.7 378/72.3 145/27.7 

Total  772/100 603/78.1 169/21.9 

 

 

Performance of the ML models 

Table 32 shows the performance evaluation metrics for the C.5DT in the 

test data partition. C.5DT scored low sensitivity (0.43). This could be attributed 

to the quality of the data, particularly data imbalance. Two methods were 

considered to improve sensitivity. Both random over-sampling and random 

under-sampling were used to improve data quality and to improve sensitivity. 

Both techniques scored lower sensitivity (0.18 and 0.29, respectively), and 

more importantly significantly lowered the precision, F-score, and specificity. 

Therefore, we determined that the current form is the optimal form of data to 

achieve the best possible performance measures.  
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Table 31. Performance of the Classification Models 

Model No. of 
predic
tors 
 

Accurac
y% 

AUC Precisi
on 

NPV Sensiti
vity 

Specif
icity 

F-
Score 
 

C.5DT 5 83.5 0.8 0.71 0.86 0.43 0.95 0.54 

 

 

VAP Risk Factors 

Out of 24 predictors, C.5DT identified five predictors as significant for 

predicting VAP in patients with moderate to severe TBI: time from injury to ED, 

blood transfusion during resuscitation, known comorbidities, ISS, and 

pneumothorax, in descending order of importance (Figure 16).  

 

 

 

Figure 16. Predictors’ importance in C.5DT. 
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VAP is one of the most frequent complications in intubated patients that 

increase hospital length of stay and may lead to mortality. Therefore, early 

0.03

0.05

0.07

0.12

0.73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Comorbidity

Pneumothorax

ISS

Blood transfusion

Time to ED

PREDICTORS’ IMPORTANCE



  

156 

 

prediction of VAP may guide early personalized preventive measures. 

Understanding VAP risk factors facilitates early preventive efforts, reducing the 

risk of VAP and its consequences and helping reduce the costs of healthcare 

while improving patient QoL and clinical outcomes. The prediction of disease 

prognosis and outcomes requires developing good prognostic models that 

include large samples and enjoy high external and internal validity in order to 

be generalizable beyond a specific research setting (191).  

Previous literature identified several risk factors for developing VAP 

among trauma patients. The presence of polytrauma (256), the intubation 

location (prehospital vs. trauma resuscitation room) (255), failed prehospital 

intubation (264), the presence of chest injury (such as rib fractures and 

pulmonary contusion) (194, 255, 264, 265), severity of head and neck injury 

(266), severity of chest injury as measured by the Abbreviated Injury Scale 

Score (chest AIS) (258), injury severity score (ISS), coma upon admission, age, 

and GCS (194) are all significant predictors of VAP.  

The C.5DT model yielded moderate predictive performance, with 83.5% 

accuracy, 0.805 AUC, 0.71 precision (PPV), 0.86 NPV, 0.43 sensitivity, and 

0.95 specificity. In the training C.5DT model, the depth was 5, the number of 

nodes was 16, and the number of terminal nodes was 9. We identified five 

variables that significantly predict VAP among patients with moderate to severe 

TBI. 

Similar to previous literature (169), time from injury until arrival to the ED 

was found to be a significant predictor for the development of VAP in patients 

with TBI. C.5DT identified time from injury to ED to be the most significant 

predictor in predicting VAP in patients with TBI. The average injury to ED time 
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was 112.1 minutes, while the time from injury to ED in patients who developed 

VAP was 118.6 minutes. The time from injury to ED was first split at 113.5 

minutes. 47.6% (49 out of 103 patients) of those who arrived at the ED after 

113.5 minutes following TBI developed VAP, compared to 15.8% (69 out of 438 

patients) who arrived at the ED ≤ 113.5 minutes following the TBI. The second 

split was for those who arrived at ED in shorter or equal to 113.5 minutes at the 

level of 110.15 minutes, where all 69 patients (24.1%) who arrived at the ED in 

a shorter time than 110.15 minutes developed VAP; while none of those who 

arrived between 110.15 minutes and 118.8 minutes developed VAP. For the 

group who arrived at the ED after 113.5 minutes (103 patients), of the 32 who 

arrived in a time shorter than 118.8 minutes, 31 of them (96.9%) developed 

VAP, while of the remaining 71 patients who arrived at the ED after 118.8 

minutes, only 25% (18 patients) developed VAP.  

The second most important variable was blood transfusion during 

resuscitation. This finding is consistent with previous literature, which found a 

significant association between blood transfusion and risk of developing VAP 

(267-269). 217 patients arrived at the ED within 110.15 minutes, of whom 203 

received blood during resuscitation, compared to 83 who did not receive blood. 

62 patients among those who received blood (30.5%) developed VAP, while 

only 7 patients (8.4%) of those who did not receive blood developed VAP.  

Pneumothorax was found to be a significant predictor for VAP. There 

were 71 patients who arrived at the ED in a longer time than 118.8 minutes 

following trauma. Of them, 18 patients (25.4%) developed VAP. Among the 71 

patients, 11 sustained pneumothoraxes. 7 out of the 11 patients (63.6%) 

developed VAP compared to 11 out of the 60 patients who did not sustain 
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pneumothorax (18.3%) who developed VAP. This result is consistent with 

previous literature which found that pulmonary parenchymal injury caused by 

pneumothorax after chest tube insertion could increase the risk of developing 

VAP (270, 271). Interestingly, 100% of the 7 patients who sustained 

pneumothorax and took longer than 135.5 minutes to arrive to the ED following 

TBI developed VAP.  

Patients with chronic morbid conditions were found to have higher risk 

of developing VAP (270, 272). Amongst patients who received blood during 

resuscitation, there were 34 with known comorbid conditions such as diabetes, 

hypertension, and coronary artery disease etc., of whom 18 patients (53%) 

developed VAP, compared to 44 out of 169 patients (26%) who developed VAP 

after receiving blood who were free of comorbidities. Finally, ISS was found to 

play a significant role in predicting VAP. This result is consistent with the 

previous research (194, 255, 266, 273). 18 out of 25 patients (72%) who had 

ISS of 34 or less and who were known to have a chronic morbid condition 

developed VAP, while none of those who were known to have comorbid 

conditions with an ISS greater than 34 developed VAP.  

Finally, to summarize the identified potentially interesting patterns, VAP 

was developed by 72% of the patients who: had ISS ≤ 34; were known to have 

one or more comorbidities; received blood during resuscitation; and arrived at 

the ED within 110.15 minutes after the trauma developed. The second pattern 

was that 100% of those who arrived the ED after more than 135.5 minutes and 

who were diagnosed with traumatic pneumothorax developed VAP (Figure 17). 
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Figure 17. VAP predictors by C.5DT. 

 

 

Conclusion 

Implementing ML methods in predicting VAP in patients with moderate 

to severe brain injury is beneficial and may enhance the preventive efforts of 

the healthcare providers. Deploying C.5DT may require collaboration between 

clinicians and data scientists in order to integrate the ML predictive models with 

electronic medical records. This integration helps provide timely decision 

support to the care givers to improve patients’ treatment outcomes. This 

integration also facilitates timely discharge from the hospital, and reduces 

healthcare costs for patients and their families, and healthcare systems. 
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CHAPTER 10: USING ARTIFICIAL NEURAL NETWORK TO PREDICT 

PROLONGED HOSPITAL LENGTH OF STAY IN PATIENTS WITH TBI 

Background 

Hospitals are entrusted to provide timely care to the patients while 

maintaining efficient resources utilization (274). One of the most essential 

resources in hospitals is beds, and to provide timely patient care, hospitals are 

always under pressure to keep beds available (275). PLOS and Bed Turnover 

Rate (BTR) are among the indicators that reflect hospitals’ performance (276). 

BTR is an indicator of productivity. It is measured by dividing the total number 

of discharges (including deaths) over the total number of available beds. 

Accordingly, longer hospital LOS negatively affects BTR, and makes the 

timeliness of care delivery a challenging task (276, 277). Besides the efficiency 

and the timeliness of care delivery, reducing LOS helps reduce costs for 

patients and healthcare systems (278).  

Several determinants of hospital PLOS in trauma have been identified in 

prior research. Moore et al. identified age, ISS, known comorbid conditions, and 

discharge destination as significant determinants of LOS following trauma 

(279). Chen et al. (280) found that the extent to which care providers interact 

with each other in the care of the trauma patients significantly affects LOS. 

Others found that in-hospital complications such as renal failure, respiratory 

failure, sepsis, ISS, blood transfusion, invasive ventilation, and initial GSC 

score (≤8) have significant impacts on ICU LOS for trauma patients (281, 282). 

The mechanism of injury also has a significant association with the extended 

length of stay for pediatric patients with trauma (283), as well as receiving blood 

during resuscitation and surgical procedures among adult trauma patients 
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(284). Also, age, ISS, pre-existing morbid conditions such as renal disorders 

and some infectious complications were found to be significant predictors for 

LOS greater than 30 days in the trauma ICU (285). On the other hand, 

Hwabejire et al. found that the PLOS is not necessarily associated with injury 

severity. They found that system and operational related issues are the leading 

cause of the PLOS (286).  

An important aspect of PLOS is its cost considerations. In the USA, the 

annual cost of trauma care is greater than $37 billion (287). In Canada, more 

than 200,000 admissions following trauma were calculated to have cost more 

than $11 billion (279). The estimated daily cost in the ICU varies based on the 

hospital day and the required interventions, such as mechanical ventilation 

(246). For example, the average cost of day 1 in the ICU (without mechanical 

ventilation) is approximately $6,600 and with mechanical ventilation it is > 

$10,000. The cost reduces on day 2 to $3,500 and $4,700 for non-intubated 

and intubated patients, respectively. In addition, the cost changes significantly 

between medical and surgical inpatient unit admissions. Li et al. (288) found 

that the cost per day in the acute surgical inpatient units is significantly higher 

than in medical units, with $18,000 and $6,000, respectively. Furthermore, they 

found that the cost per additional day increases by $112 in surgical units 

compared to $79 in medical units. The cost varies among countries based on 

several factors, such as cost of living, average wage, healthcare subsidies, and 

healthcare professional to service user ratios, etc.  

Very importantly, there is significant association between the length of 

stay and several unfavorable outcomes such as in-hospital mortality and 

morbidity (289, 290). Mathew et al. (291) found that every extra day of stay in 
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hospital after completing medical treatment increases the odds of developing 

complications by 5%. From another perspective, in-hospital LOS predicts 

patient and family satisfaction with trauma center services, which is another 

important hospital performance measure (292). Therefore, predicting PLOS 

early may help the hospital administration and clinicians mobilize the required 

resources to facilitate early discharge, which contributes to improved patient 

treatment outcomes, cost reduction, and improved patient and family 

satisfaction.  

There is no single agreed upon definition for PLOS in the literature. 

Some scholars defined PLOS based on previous literature as ≥21 days (283, 

293), while others defined it as ≥ two standard deviations (SDs) above the mean 

LOS of the diagnosis-related group (286). For example, the mean LOS for the 

forearm fracture without complications or comorbidities for patients older than 

17 years is 3 days. So, 2 SDs above the mean was calculated to be 9 days, 

greater than the upper quartile of all the cases or greater than the 95th percentile 

of all the cases (278, 290, 294). Additionally, some defined PLOS to be greater 

than 30 days from the time of admission (285, 291). This study, similar to Krell 

et al. (295), defines PLOS to be greater than the 75th percentile of the entire 

cohort, which is 23 days.  

Methodology 

This study aims to design a supervised ANN ML model to predict in-

hospital PLOS for adult patients who sustained moderate to severe TBI and 

admitted to L1TC.  

Data Preparation  

Only adult patients (≥ 14-years-old) who sustained moderate TBI (HAIS 
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= 3 or HAIS = 4) to severe TBI (HAIS = 5) were included in the study. Records 

with missing data were eliminated. Furthermore, all patients who died during 

their initial hospitalization were excluded. Subsequently, 1417 eligible patients 

were included in the study.  

Outcome Measure 

The outcome measure is the in-hospital PLOS, which is staying in the 

hospital more than 23 days from the day of initial admission following the 

trauma. 23 days is the 75th percentile of all the cases. Staying more than 23 

days was coded 1, while less than or equal to 23 days was coded 0. Transfer 

to another hospital for rehabilitation was considered as discharge.  

ML Prediction Model 

This study uses ANN for the early prediction of PLOS for patients with 

moderate to severe TBI. In this study, we used the MLP architecture, as it 

outperformed RBF architecture during the initial assessment (with accuracy of 

85.6% vs. 81.9%, AUC of 0.91 vs. 0.862, and precision of 0.71 vs. 0.60, 

respectively).  

Typically, MLP network consists of at least three layers of neurons: one 

input layer that represents the predictors, one or more hidden layer(s) 

representing computational neurons, and an output layer representing the 

outcome variable(s) (296). MLP usually uses sigmoidal activation function, and 

the training is conducted using backpropagation.  

To prevent overfitting and to validate the models’ performance, we 

partitioned the data into training set (75%) and testing set (25%), with the overfit 

prevention set at 30%. The partitioning was done randomly by the analytical 

software, based on the partitioning node specification. Table 33 explains the 
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data partitions.  

 

 

Table 32. Data Partitions 

Set Proportion No. of cases No. of patients 
without PLOS 

No. of patients 
with PLOS 
 

Training set 75% 1055 790 265 
Testing set 25% 362 277 85 
Total 100% 1417 1067 350 

 

 

Results 

We included 1417 patients in the study, of whom 350 (24.7%) stayed in 

the hospital longer that 23 days (PLOS) from the day of admission. The mean 

age of all patients was 34 years. The most common mechanism of injury was 

fall from height (34.9%), followed by motor vehicle crash (29.1%). The most 

common CT finding/ mass lesion was subdural hemorrhage (26.1%), followed 

by extradural hemorrhage (24.7%) with 18.5% of the patients sustaining midline 

shift. Tables 34 and 35 show the sample characteristics and the descriptive 

statistics for the study sample.  

 

Table 33. Sample Characteristics – Continuous Variables 

Variable N Mean SD Mean at 
PLOS 
 

Age 1417 34 13.5 34.6 
Injury severity 
score (ISS) 

1417 20.7 9.3 27.7 

ED systolic blood 
pressure (SBP) 

1417 129 20.3 128.5 

ED heart rate (HR) 1417 90.8 21.6 99.8 
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Table 34. Sample Characteristics – Nominal and Ordinal Variables 

Variable Category Count/% With 
Outcome 0 
(no PLOS)/% 
 

With 
Outcome 1 
(PLOS)/% 

Gender Male 1339/94.5 1011/75.5 328/24.5 
Female 78/5.5 56/71.8 22/28.2 

Race Asian 858/60.6 665/77.5 193/22.5 
Other 559/39.4 402/71.9 157/28.1 

Mechanism of 
injury (MOI) 

Motor vehicle 
crash 

413/29.1 274/66.3 139/33.6 

Fall 495/34.9 414/83.6 81/16.4 
Pedestrian 216/15.2 141/65.3 75/34.7 
Other 293/20.7 238/81.2 55/18.8 

Midline shift No 1155/81.5 914/79.1 241/20.9 
Yes 262/18.5 153/58.4 109/41.6 

CT findings/mass 
lesion 

Subdural 
hemorrhage 

370/26.1 277/74.9 93/25.1 

Epidural 
hemorrhage 

350/24.7 291/83.1 59/16.9 

Subarachnoid 
hemorrhage  

110/7.8 79/71.8 31/28.2 

Hemorrhagic 
contusions 

285/20.1 241/84.6 44/15.4 

Cerebral 
edema 

47/3.3 25/53.2 22/46.8 

Diffuse 
axonal injury 

99/7 30/30.3 69/69.7 

Other 156/11 124/79.5 32/20.5 
Head AIS (HAIS) 3 794/56 683/86 111/14 

4 302/21.3 208/68.9 94/31.1 
5 321/22.7 176/54.8 145/45.2 

Face AIS (FAIS) 0 842/59.4 664/78.9 178/21.1 
1 151/10.7 108/71.5 43/21.5 
2 (AIS 3-5) 424/29.9 295/69.6 129/30.4 

Chest AIS (CAIS) 0 960/67.8 808/84.2 152/15.8 
1 (AIS 1-2) 145/10.2 96/66.2 49/33.8 
2 (AIS 3-5) 312/22 163/52.2 149/47.8 

Abdomen AIS 
(AAIS) 

0 1271/89.7 1006/79.2 265/20.8 
1 (AIS 1-5) 146/10.3 61/41.8 85/58.2 

Spine AIS (SAIS) 0 1091/77 863/79.1 228/20.9 
1 (AIS 1-5) 326/23 204/62.6 122/37.4 

Extremities AIS 
(EAIS) 

0 917/64.7 761/82.9 156/17.1 
1 (AIS 1-2) 380/26.8 244/64.2 136/35.8 
2 (AIS 3-5) 120/8.5 62/51.7 58/48.3 

Glasgow Coma 
Score (GCS) 
category 

13-15 875/61.8 799/91.3 76/8.7 
9-12 113/8 86/76.1 27/23.9 
≤ 8 429/30.3 182/42.4 247/57.6 
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Variable Category Count/% With 
Outcome 0 
(no PLOS)/% 
 

With 
Outcome 1 
(PLOS)/% 

Known 
comorbidities 

No 1167/82.4 896/76.8 271/23.2 
Yes 250/17.6 171/68.4 79/31.6 

Intubation No 847/59.8 803/94.8 44/5.2 
Yes 570/40.2 264/46.3 306/53.7 

Venous 
thromboembolism 
prophylaxis 

No 537/37.9 520/96.8 17/3.2 
Yes 880/62.1 547/62.2 333/37.8 

Blood transfusion No 989/69.8 878/88.8 111/11.2 
Yes 428/30.2 189/44.2 239/55.8 

Total/%  1417/100 1067/75.3 350/24.7 

 

 

Performance of the ANN Prediction Model 

To calculate the model’s performance metrics, we first constructed the 

confusion matrix that displays the relationship between the actual observations 

and the predicted conditions. The model’s performance is evaluated in terms of 

several metrics: accuracy, Area Under the Curve (AUC), precision (positive 

predictive value), negative predictive value, sensitivity, specificity, and F-score.  

The model achieved good discrimination power (AUC = 0.911), positive 

predictive value (0.73), negative predictive value (0.88), and accuracy (0.854). 

Table 36 shows the performance metrics of the prediction model.  

 

 

Table 35. ANN Performance Metrics 

 No. of 
predic
tors 

Accuracy
% 

AUC Precis
ion 

NPV Sensiti
vity 

Specifici
ty 

F-
Scor
e 
 

ANN 20 85.4 0.91 0.73 0.8 0.6 0.93 0.66 
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In-Hospital PLOS Risk Factors 

ANN utilized all the 20 variables in predicting the in-hospital PLOS. 

Figure 18 ranks the predictors based on their PI. The most important predictor 

is the patient’s age (0.13), followed by the receiving intubation (0.12).  

 

 

 

Figure 18. Predictors’ importance 

 

 

Discussion 

Predicting PLOS is of utmost importance for the timeliness of care giving 

and for the healthcare economics. Researchers have identified several risk 

factors such as age, ISS, mechanism of injury, presenting vital signs, severity 

of TBI, and severity of associated injuries for PLOS. Moreover, scholars 

attempted to adjust several well-known mortality prediction models to predict 

LOS. Woods et al. evaluated the capacity of Acute Physiology and Chronic 
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Health Evaluation (APACHE) III system to predict ICU patients’ LOS, but the 

overall model performance was poor (297). In a similar vein, Chattopadhyay 

and Chatterjee (298) evaluated the performance of APACHE IV in predicting 

the LOS for ICU patients with severe sepsis. They found that APACHE IV poorly 

predicts ICU patients LOS. Vasilevskis et al. (299) compared the performance 

of a recalibrated acute physiology and chronic health evaluation (APACHE) IV-

LOS model with the mortality probability model III at zero hours (MPM (0)) and 

the simplified acute physiology score (SAPS) II mortality prediction model to 

predict LOS. Their study found that APACHE IV performs better than MPM0 

and SAPS II. By examining SAPSII in predicting LOS for ICU LOS, they found 

that the model’s performance is poor and tends to estimate patients’ LOS, with 

low discrimination power (AUC = 0.62). However, the updated SAPSIII 

performed better than SAPSII in predicting LOS of ICU patients, with an AUC 

of 0.85 (300). MPM0 performance was also evaluated in predicting ICU LOS 

and performed poorly (299, 300).  

This study identified several predictors for PLOS in patients with 

moderate to severe TBI. Patient’s age ranks first in predictor’s importance (PI 

= 0.13). This study found that the average age for patients who were discharged 

before 23 days was less than the average age for those who stayed longer than 

23 days (34.6 years vs. 33.8 years). This finding is consistent with previous 

literature, which found age to be a significant determinant of LOS following 

trauma (279, 285). Intubation in the first 24 hours following the TBI ranks 

second in the predictors’ importance (PI = 0.12). 54% of the patients who were 

intubated stayed in the hospital longer than 23 days compared to 5% only of 

those who were not intubated. Although intubation and mechanical ventilation 
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save lives, they are associated with increased length of stay and several 

serious complications, including VAP and mortality (208, 301). The third most 

important predictor was the initial heart rate recorded at the ED after the trauma 

(ED HR) (PI = 0.09). The average ED HR for patients who stayed in the hospital 

longer than 23 days was 99.8, compared to average ED HR of 87.9 for those 

who stayed shorter than 23 days. This result is consistent with Paterson et al. 

(302), who studied the impact of a standardized early warning score on 

predicting the in-hospital mortality and the length of stay. They found that the 

initial heart rate that is recorded at the point of entry to care plays a significant 

role in predicting the LOS.  

The TBI diagnosis as per the CT scan finding was the fourth most 

important predictor (PI = 0.07). Around 70% of patients who sustained diffuse 

axonal injury (DAI) had PLOS, compared to 28% and 25% for those who 

sustained subarachnoid hemorrhage and subdural hemorrhage respectively. 

This is consistent with the previous literature which found that TBI diagnosis, 

particularly DAI, is associated with several outcomes, including extended 

ICU/hospital LOS (215, 238).  

The ISS was the fifth most important predictor (PI = 0.07). The average 

ISS for patients with PLOS was approximately 28, compared to ISS of 18 for 

those with no PLOS. This is consistent with the previous literature that found 

ISS to be independent predictor for LOS (281, 285). 

Blood transfusion is also found to play a significant role in predicting the 

PLOS (PI = 0.07). 56% of patients who received blood transfusion during 

resuscitation had PLOS, compared to 11% only of those who did not receive 

blood transfusion during resuscitation. Malone et al. (303) found that blood 
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transfusion in the first 24 hours following the trauma serves as an independent 

predictor of the ICU LOS. This finding perhaps reflects a correlation rather than 

a causation relationship. Usually, patients who need resuscitative blood 

transfusion are those who have severe injuries and lost significant amounts of 

blood, which is associated with serious unfavorable outcomes. This may help 

explain why patients who receive resuscitative blood transfusion are more 

prone to PLOS than those who do not require resuscitative blood transfusion.  

The seventh important predictor is the initial Glasgow Coma Score 

category that is recorded in the emergency following trauma (ED GCS). 

Consistent with the previous literature (281, 282), this study found that around 

58% of those who presented to the ED with GCS ≤ 8 had PLOS compared to 

24% of those who presented with GCS between 9 and 12, and 9% of those who 

presented with GCS 13-15. 

The administration of VTE prophylaxis was found to be a significant 

predictor for the PLOS. The study found that those who receive VTE 

prophylaxis within the first 48 hours from admission are more prone to PLOS 

compared to those who have not received VTE prophylaxis (37.8% vs. 3.2% 

respectively). Interestingly, although the administration of VTE prophylaxis is 

associated with a higher survival rate in patients with TBI (197, 301), there is 

no evidence in the literature that the administration of VTE prophylaxis reduces 

the overall hospital LOS. Accordingly, this relationship, similar to blood 

transfusion, could reflect a correlation rather than a causation relationship as 

explained in chapter 7. 

The ninth ranked predictor (PI = 0.04) was HAIS. Patients with higher 

HAIS are at higher risk for PLOS. 45.2% of patients who had HAIS 5 had PLOS 
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compared to 14% and 31.1% for patients with HAIS 3 and 4 respectively. It is 

scientifically known that the more severe the TBI, the higher the risk of 

unfavorable outcomes (166), which is usually correlated with increased hospital 

LOS.  

The initial systolic blood pressure recorded in the ED following trauma 

(ED SBP) was found to be a significant predictor of LOS (PI = 0.04). This is 

consistent with Paterson et al. (302), who found that the initial SBP recorded at 

the point of entry to care after trauma plays a significant role in predicting 

hospital LOS.  

Healthcare Economics Implications 

Early prediction of patients prone to PLOS following TBI helps healthcare 

teams devise personalized plans of care that address risk factors. Besides 

reducing LOS, this helps reduce the healthcare bill and boost patient and family 

satisfaction and QoL. One of the motives of this work is that the costs of 

healthcare in Qatar are the highest in the region. According to the World Health 

Organization Choosing Interventions that are Cost Effective project (WHO-

CHOICE), the cost per bed day in the tertiary hospitals in Qatar is the highest 

in the Gulf Cooperation Council (GCC) countries. The cost per bed day in Qatar 

is around $270, compared to $224 in Bahrain, $223 in the United Arab 

Emirates, $209 in Kuwait, $170 in Saudi Arabia, and $158 in Oman. In 2013, 

Tuma et al. (304) estimated the cost of care per patient per ICU day in Qatar to 

be about $1,500. Furthermore, in a report published in the Qatari Peninsula 

Newspaper (305), the cost per night in the trauma surgery inpatient unit without 

the cost of surgery and medication ranges between $1,300-$1,900 and the cost 

per night in the trauma ICU is more than $2,700. In this study, the average LOS 
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for patients who stayed in the hospital for a period greater than 23 days was 47 

days. The average cost of the excess 24 days for the 350 patients (≈$1,900/ 

day) is estimated to be greater than $15 million during the study period. 

Therefore, reducing one day only for the 350 patients with PLOS would have 

saved more than $8000 daily.   

Beside the direct monetary cost per bed day, healthcare executives need 

to account for the opportunity cost of blocked beds, which delay specialized 

treatment for subsequent patients. This delay in care delivery is a key 

contributing factor to poorer disease prognosis, increased risk of comorbidity 

and mortality, reduced patient and family satisfaction, and very importantly a 

factor for increased PLOS. Sandmann et al. (306), calculated the opportunity 

cost of bed days in terms of health forgone for the second patient. The study 

found that the opportunity cost of the bed days consumed by the first patient is 

around £14,000 in terms of the net benefits forgone for the second patient. 

Unavailability of beds in a timely manner can also lead to higher healthcare 

costs to the individual or the country, as it can lead to seeking faster alternatives 

in other countries with major additional travel, healthcare, and social costs. 

This economic perspective could be a good avenue for future research 

that utilizes ML modeling techniques to estimate the cost burden of trauma 

patients, and to estimate the opportunity cost of reduced hospital beds turnover 

rate. 

Conclusion 

The study proves that the application of ML to predict PLOS may bring 

wellbeing and economic benefits to the patients and the healthcare system. 

ANN achieved good predictive performance. Therefore, utilizing ML techniques 
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presents an opportunity to enhance hospitals’ capacity to improve their bed 

turnover rate, timeliness of care delivery, and patient and family satisfaction, 

while reducing healthcare costs for service users, healthcare systems, and 

national economies. The results of this study may encourage decision makers 

in trauma surgery units to integrate ML techniques with the NTR and the 

electronic medical records. This may help clinicians plan their preventive efforts 

and mobilize necessary resources in an earlier stage of patient treatment, which 

could improve care outcomes and enable more effective and efficient 

deployment of healthcare system resources. Furthermore, the results were 

consistent with the known body of knowledge. Thus, with the availability of 

massive data sets in the electronic medical records and other structured 

registries, clinical evidence could be made available quickly and with less effort.  
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CHAPTER 11: PRACTICAL AND THEORETICAL SIGNIFICANCE AND 

IMPLICATIONS 

The motive of this doctoral dissertation was to answer the compelling 

question of why the benefits of ML in supporting clinical decisions are not fully 

realized. There is overwhelming evidence that other industrial sectors benefited 

significantly from the powerful computational capacity of AI modalities, and 

specifically ML. Following an extensive literature review, we realized that in 

order to answer the question, we needed to answer two important sub-

questions that reflect significant gaps in current knowledge:  

(a) How can ML be integrated with EBM to support clinical decision making?  

(b) Why is ML adoption in healthcare relatively slower than in other sectors?  

(c) How can ML adoption support clinical decision-making? 

Through reviewing the literature, we found that there is consensus that 

the potentials of ML in supporting clinical decision-making are undeniable. 

There are various avenues where ML can help advance clinical practice 

through engagement with EBM to provide real-time clinical evidence to better 

inform clinical decisions. Nevertheless, it was obvious that there are significant 

challenges that face the methods that abstract knowledge from data in clinical 

fields dominated by the EBM paradigm.  

We discussed that on top of these challenges there are epistemological 

barriers. EBM determines how the clinicians base their decisions on sound 

evidence that guarantees, to a great extent, the best possible treatment 

outcomes. Therefore, we discussed that the epistemological differences 

between the EBM and the data science paradigms are largely irreconcilable. 

Thus, it is epistemologically impossible to synthesize a third paradigm that 
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integrates both EBM and data science.  

Subsequently, we argued that the only way to benefit from the power of 

ML in supporting the clinical decision is through proposing a pragmatic and 

practical reconciliatory framework that transcends the epistemological 

differences of the two paradigms to capitalize on their synergistic effect, 

whereby one paradigm can address some of the challenges of the other.  

The utility of the framework lies in its ability to provide conditional 

guidance to clinical practitioners and researchers on when and how to benefit 

from both paradigms to produce sound evidence to support their clinical 

decisions. This framework can overcome one of the key challenges that EBM 

suffers from, which is the lack of sound and high-quality evidence to inform 

clinical decision making in some scenarios. With the abundance of clinical data 

that originates from the electronic health records, sensors, and medical 

devices, etc. we became able to provide the real-time information that can guide 

clinicians’ decisions with less efforts, time, and costs, using modern analytical 

approaches.  

Nonetheless, we took into consideration that there must be guiding 

principles that ensure the judicious utilization of data-driven knowledge in 

clinical decision-making. On top of the guiding principles is the need to referee 

the knowledge by the subject matter experts considering the known body of 

knowledge. This is crucial to ensure the safety of the patients. We implemented 

this in our empirical work, whereby all the predictive models’ outputs were 

evaluated by senior trauma surgery consultants and clinical researchers.  

On the other hand, it was necessary to emphasize the pragmatic aspects 

of the framework, through admitting that this framework will not address all the 
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challenges from which EBM and ML suffer. Instead, it transparently 

acknowledges that EBM will continue to have the upper hand in shaping the 

clinical decision-making process, and that the ML can effectively fill the gap in 

knowledge within a certain pre-determined context. This explains why we put 

significant emphasis on transforming the focus from the best available evidence 

to the best possible or feasible evidence. The term “best possible/feasible 

evidence” respects the principle of scientific knowledge tentativeness. In 

conditions where high-quality evidence is not obtainable using mainstream 

methods, ML can help provide the knowledge which can support the clinical 

decision until better quality evidence can be reached. Accordingly, the practical 

pragmatic framework answers the first sub-question about how to integrate the 

ML with the EBM.  

However, the practical framework will work only when the utility of the 

ML is realized by clinicians. It was found in several studies that clinicians’ 

awareness of the potentials of AI in general and ML in particular is poor. This 

was demonstrated in a recent market study conducted by McKinsey Global 

Institute in 2019, which reported that the healthcare industry is the slowest 

industry in adopting the AI (122). Thus, it was necessary to understand the 

underlying factors that lead to the slow adoption in order to theorize a 

framework that can guide the efforts to enhance the effective adoption of ML in 

clinical decisions support. Accordingly, we identified nine enablers that may 

lead to the desired outcome of enhancing clinicians’ intentions to adopt ML in 

their clinical practice.  

The framework that we presented provides a genuine logical roadmap 

that guides the efforts towards enhancing clinicians’ adoption of ML through 
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interrelated steps that are ordered based on their driving and dependence 

power. Despite our belief that the framework provides a theoretical foundation 

for the enhancement of the adoption of ML in the healthcare industry, we 

believe that significant work is still required to validate the framework and to 

ensure its comprehensiveness and value. This would be an area for future 

research that may pave the way for the healthcare industry to realize the 

benefits of AI and to be prepared for facing the challenges (and utilizing the 

opportunities) of the fourth industrial revolution.  

Consequentially, the answer to the second and third research questions 

were answered through providing the framework that identifies and defines the 

enablers of the way towards achieving the effective adoption of ML in 

supporting clinical decision making, which is an integral step towards reaping 

the full benefits of the ML in healthcare industry. 
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CHAPTER 12: MANAGERIAL IMPLICATIONS 

This doctoral dissertation provides theoretical and practical guidance to the 

clinicians, clinical researchers and the policy makers on how to benefit from the 

potentials of the ML in supporting clinical decisions. Very importantly, the scope 

of the work is to enhance the clinical decision making. It is undeniable that 

decision making, decision effectiveness and decision support are among the 

hot research avenues in several business fields and particularly in the 

management field.  

Accordingly, this dissertation is thought to contribute to the decision 

effectiveness in the healthcare industry which is one of the key sectors that 

influences the national economy performance. Clinical decisions are 

associated with resources allocation, financial costs, indirect and opportunity 

costs, and very importantly, wellbeing costs. Therefore, the opportunities that 

ML could provide to enhance the clinical decision effectiveness and success 

contribute not only to cost optimization but also in enhancing the overall national 

wellbeing which result in healthier communities and reduced expenditure on 

healthcare.  
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