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ABSTRACT 

AL-KABABJI, AYMAN, J., Masters: January: 2022, 

Masters of Science in Electrical Engineering  

Title: Diagnosing Liver's Lesions for Medical Analysis 

Supervisor of Thesis: Prof. Faycal Bensaali. 

Co-Supervisor of Thesis: Dr. Sarada Prasad Dakua. 

Machine learning (ML) and computer vision techniques have grown rapidly 

due to their automation, suitability, and ability to generate astounding results, 

especially the convolutional neural network (ConvNet). In this thesis, we survey the 

critical studies published between 2014 and 2020, showcasing the different ML 

algorithms researchers have used to segment the liver, hepatic-tumors, and hepatic-

vasculature structures. Following that, and stemming from the surveyed literature, we 

propose our methodology that tackles a famous dataset named Medical Segmentation 

Decathlon Challenge Task 8: Hepatic Vessels (MSDC-T8), which has all the liver 

tissues manually segmented (liver, tumors, and vessels). This dataset is also 

considered the largest publicly available dataset for tackling the liver tissues 

delineation challenge. It encapsulates a total of 443 contrast-enhanced computerized 

tomography (CE-CT) scans, where the ground-truth liver masks are available for all 

the volumes, and the tumors and vessels segmentations are known for 303 of them. 

Correspondingly, this methodology is applied for each tissue of interest (TOI), as we 

first tackle the liver segmentation, followed by the tumors and vessels segmentation in 

parallel. 

We compare different training environment parameters via famously used 

percentile and distance metrics. In our results, our liver segmentation ConvNet has 

surpassed the state-of-the-art performance by scoring a Dice of 98.12% on the 
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MSDC-T8. Moreover, the tumors and vessels segmentation ConvNets compete with 

the state-of-the-art, scoring a ~60% Dice for tumors’ segmentation task (with the best 

model scoring 65.95%) and ~50% for the vessels’ segmentation task (with the best 

model scoring 51.94%). Finally, when all the masks are segmented, a 3D interpolation 

is created for the liver (showing its tumors and blood vessels) and is exported into 

both .obj and .mtl files, which are 3D printing friendly. To manifest the usefulness of 

our work, we create a user-friendly desktop application that allows clinicians to 

import CT scans of selected patients. This desktop application's output is the 

aforementioned 3D interpolated object represented by the .obj and .mtl files.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Unfortunately, liver-related diseases reap the lives of a vast number of people 

yearly around the globe. Approximately two million deaths around the world are 

credited to hepatic diseases annually [1]. Half of these deaths are related to 

complications caused by liver cirrhosis, and the other half are due to hepatitis and 

hepatocellular carcinoma (HCC) [1]. Additionally, it is also a hub for metastasis 

originating from adjacent organs such as the colon, rectum, pancreas, stomach, 

esophagus, breasts, lungs, to name some [2]. Regardless of the tumors' origin, the 

liver and its lesions are routinely analyzed in primary tumor staging [3]. In particular, 

HCC comprises a genetically and molecularly heterogeneous group of cancers 

commonly arising in chronically damaged livers [3]. 

Many imaging modalities have been developed, such as computerized 

tomography (CT), magnetic resonance imaging (MRI), positron-emitting tomography 

(PET-CT), and ultrasound (US), to enable clinicians to look inside the human body. 

Consequently, they have become vital biomedical tools for the liver’s morphological 

and volumetric analysis, along with the diagnosis of associated diseases [4], [5]. 

These modalities are deemed valuable, especially for their ability to provide surgeons 

non-invasively with insights regarding the current state of organs. With such 

modalities, computer-aided detection and diagnosis (CAD) systems have become 

significantly important. Furthermore, CT, MRI, and PET-CT can generate 2-

dimensional (2D) slices of the human body, which can be combined to create 3D 

holistic organ volumes for surgeons to analyze. Thus, they bear more advantages than 

the US modality, especially in providing more informative image slices. 

Moreover, the CT scans’ higher signal-to-noise ratio (SNR) and better spatial 



 

2 

resolution produce more accurate anatomical information about the visualized 

structures, making it the imaging technique preferred by diagnosticians [5]. Moreover, 

relative to MRI, CT scans have a shorter acquisition time [4]. In contrast, the patient 

is more exposed to radiation in modalities like CT. Additionally, the chances of 

developing fatal cancers from CT scans are 1 in 2,000, which is relatively small; 

however, the stakes become higher with the increased number of scans [6]. 

As previously mentioned, these modalities allow clinicians to have a clear 

insight of the body organs non-invasively. CT scans, for instance, provide three 

different anatomical views for the organs from transversal, sagittal and coronal 

planes, giving clinicians the ability to tackle the organ of interest from various 

viewing angles, thus, examining organs holistically. Such modalities are utilized 

extensively by clinicians for countless clinical applications, including organic cancer 

diagnosis, organ transplantation, and surgical planning [7]. All these procedures are 

applicable in the case of the liver, where different types of cancerous cells exist, such 

as HCC, cysts, and metastases. Additionally, such modalities are used for adaptive 

radiation therapy (ART), a radiation treatment plan that imposes modifications based 

on the patient’s functional changes during a course of radiation [8]. In another clinical 

procedure, a pre-procedural CT or MRI scan can help in interventional endoscopy for 

pancreatic and biliary diseases as image-guidance can be supportive in intra-

procedural navigation [9]. Also, medical image registration can aid clinicians in 

observing intra-patient organs’ motion mid-operatively [10]. Furthermore, tumor 

burden quantification, which measures the volume of all tumors within the liver, is 

essential when discussing tumors' progression within the liver. A follow-up CT scan 

segmenting the liver and its tumors is crucial since disease progression can be 

documented for further analysis and treatment procedure planning. 
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However, the downside becomes apparent when many patients are being 

treated simultaneously, resulting in an enormous amount of CT scans needed to be 

examined. It is time-consuming for clinicians to extract meaningful information from 

CT scans, let alone create a holistic delineation of an organ. Currently, the norm in 

clinical routines is to manually or semi-automatically segment the liver from CT and 

MRI modalities. In some scenarios, these techniques can be more accurate than fully-

automated ones [11]; however, they suffer from subjectivity (i.e., dependency on the 

radiologists' experience), intra- and inter-radiologist variance, and time-consumption 

[12], especially for experts whose time are precious. Thus, comes the importance of 

using automatic methods with high segmentation performance. 

Many devised automatic segmentation techniques have been applied in the last 

two decades. They can be categorized into statistical-based and learning-based 

approaches. On the one hand, the former can be represented by scans intensities' 

statistical distribution, including atlases, statistical shape models (SSM), active shape 

models (ASM), level-set methods (LSM), and graph-cut (GC) methods [13]. Usually, 

these methods are challenged by boundary leakage and under- or over-segmentation 

[11]. On the other hand, the latter depends on either hand-crafted features as in 

conventional machine learning (ML) algorithms or empirically found features like 

convolutional neural networks (ConvNet) and their deep counterpart. The medical 

image segmentation field made the most significant leap riding on the wave of deep 

ConvNets [7], where they reached a state of capability that enabled them to generate 

expert-like segmentations in minimal time. 

However, creating an accurate segmentation of the liver, hepatic tumors, and 

veins is a challenging task that can be further enhanced. During data acquisition, 

different scanning protocols with varying voxels densities and scanners resolution and 
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contrasting agents with unstandardized levels of contrast enhancements [3] can lead to 

avoidable variance within the dataset, affecting the model's performance. On the other 

hand, from an organs point of view, the low-contrast boundaries exhibited between 

the liver and surrounding organs create areas of fuzziness that are hard for models to 

classify, which are translated into over- or under-segmentation [12]. Moreover, the 

highly varying liver shapes and sizes among people, especially abnormalities 

introduced by surgical resection [3], make it harder for techniques, particularly SSM 

and similar predictors [12], to segment the liver. Challenges of segmenting what is 

within the liver are introduced by the heterogeneity of tumors' sizes and shapes, and 

intra-hepatic veins (vessels) irregularities, which further complicates the segmentation 

task [3], [12]. Thus, creating a detailed 3D liver segmentation portraying the exact 

tissues is one of the most challenging tasks that needs further enhancements. 

1.2 Thesis Objectives 

The objective behind this thesis can be described on multi-folds:  

1) Generate a comprehensive literature review of the fully automated delineation 

techniques of the liver tissues where ML is fully/partially utilized. 

2) Identify all the publicly available datasets that can be used for the liver tissues 

delineation task. 

3) Implement, train, and evaluate ConvNet-based models via a high-performance 

computer (HPC) for the following tasks:  

a. Segmentation of the liver parenchyma. 

b. Segmentation of the tumors and vessels within the liver. 

4) Generate a 3D printable object of the liver with all the delineation masks. 

5) Create an extremely friendly and simple-to-use desktop application for 

clinicians to segment the liver from any CT scan. 
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1.3 Thesis Organization 

The remainder of this thesis is organized as follows: Chapter 2 delivers a 

comprehensive review on recent studies that deployed automated techniques for liver, 

tumors, vessels delineation, or any combination of the three, along with varying input 

shapes and different datasets and challenges. In Chapter 3, a step-by-step reporting of 

the methodology is detailed, highlighting the utilized dataset, the image pre-

processing techniques, the operated network, the evaluation metrics, and the 3D 

printing aspect. In Chapter 4, the experimental setup is highlighted for each of the 

liver tissues delineation tasks, where the acquired results are discussed and analyzed. 

Finally, Chapter 5 outlays the conclusions and suggests future directions related to the 

delineation of the liver tissues.  
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CHAPTER 2: LITERATURE REVIEW 

This chapter analyzes and discusses the surveyed literature, highlighting 

possible research gaps in the last section. 

2.1 Inclusion and Exclusion Criteria 

For conducting this survey, the most significant studies that have been 

published between 2014 and 2020 have been included. Choosing this period stems 

from the fact that in 2014, noticeable automated ML techniques were introduced into 

the medical field, demonstrating their superiority to classical methods. Moreover, the 

focus was on Q1 and Q2 journals in Elsevier, Springer, and IEEE, along with 

conference papers published in the Medical Image Computing and Computer Assisted 

Interventions (MICCAI). Lastly, some articles from other known publishing 

companies such as Wiley, Hindawi, and arXiv are also included. It is worth 

highlighting that the included studies used ML algorithms (partially or fully) to 

automatically segment one of the liver’s tissues (parenchyma, tumors, or vessels). 

The papers that included user interactions anywhere in the model have been excluded 

as the aim is to automate the whole process. 

2.2 Related Works Categorized based on Delineated Tissue 

Since it is desired to automatically obtain accurate and real-time results for the 

liver delineation problem, it is intuitive that ML algorithms are utilized. However, 

providing a measure for selecting a particular ML algorithm for a specific 

segmentation task would undoubtedly help, especially with the technological 

advancements we are currently witnessing. Thus, this section categorizes the 

unsupervised and supervised ML algorithms based on the segmented tissue, namely 

liver, tumors, and blood vessels. As an output of the conducted literature survey, 

Figure 1 (on page 7) and Figure 2 (on page 18) have been created, detailing different 

ML algorithms, supervised and unsupervised, tackling the issue of liver tissues 
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segmentation. There are notable intersections highlighted (in light brown) among the 

liver's three tissues of interest (TOI). Moreover, we detail the different input shapes 

inserted into the ConvNet and the datasets/challenges used for the liver tissues 

segmentation challenge. 

2.2.1 Liver/Liver Parenchyma 

This subsection shows all the related works found relevant to the liver 

parenchyma tissue segmentation. Figure 1 details all the key algorithms found in the 

literature. 

 

 

Figure 1. Liver segmentation techniques from the reviewed literature. 
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2.2.1.1 Miscellaneous Unsupervised 

Unsupervised ML algorithms have been reasonably utilized in the liver 

segmentation task. They work because the liver is a single large continuous organ 

with relatively similar pixels' intensities in the same CT/MRI volume. The most 

prominent unsupervised algorithms are the k-means clustering and fuzzy c-means 

(FCM) clustering. The former only enables hard membership of a particular voxel to a 

specific clustering centroid. In contrast, the latter allows the voxel to belong to 

multiple centroids, with a certain probability (soft). In [14], k-means clustering is used 

for liver localization in CT slices as a basis for thresholding, followed by modified 

GC segmentation. However, in [15], a 4D k-means on multi-phase MRI volumes for 

liver segmentation is utilized, aided by the ASM technique. It is worth noting that 

vessels extraction is implemented through multi-scale vesselness filters. 

On the other hand, FCM clustering in [16] calculates the degree of belonging 

for each voxel to three cluster classes, where one of these centroids represents the 

liver voxels. In [17], FCM-t provides the choice of an optimum threshold that best 

determines the degree of belonging a voxel should convey to be considered a liver 

voxel. Other researchers use FCM, or an enhanced version of it, for the liver 

delineation task. For instance, FCM is used with the grey wolf optimization (GWO) 

algorithm in [18]. At the same time, a fast version of FCM (FFCM) is utilized with 

neutrosophic sets (NS) and particle swarm optimization (PSO) techniques in [19]. 

Lastly, in [20], another modified version of FCM that is both fast and able to compute 

a kernel function (FKFCM) is used to segment the liver. 

2.2.1.2 Miscellaneous Supervised 

Laplacian forest (LF), an improved version of random forests (RF), is used in 

[21] for the liver segmentation task, among other organs. Other works use RF as a 

landmark detection tool for 3D SSM [22], while cascaded random forest (CaRF) 
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classifiers are used for liver parenchyma segmentation in [23]. 

An ensemble of weak classifiers has also been used for the liver segmentation 

task. Adaptive boosting (AdaBoost) is used to segment the liver with the aid of 

random walks (RW) algorithm in [24]. A similar work uses the same combination 

with additional improvements on the RW algorithm in [25], and finally, a three-level 

ASM is guided by the AdaBoost algorithm in [26]. 

In [8], speeded up, robust features (SURF) (blob-type) and binary, robust, 

invariant, scalable key points (BRISK) (corner-type) features are used in a top-bottom 

flow. Moreover, the model is aided by the support vector machine (SVM) to segment 

the liver in the bottom-up pathway. 

2.2.1.3 GAN 

Generative adversarial network (GAN) is also employed for this critical task, 

wherein [13], a 3D deep image-to-image network (DI2IN) is used to segment the 

liver. On the other hand, in [27], cascaded conditional GANs (CCGAN) are used for 

the same task but in 2D form. In [28], a GAN network incorporates the knowledge of 

a deep atlas prior (DAP), where the generator that is based on DeepLab (ResNet101) 

is used for the liver segmentation. The discriminator is a simple 2D fully 

convolutional network (FCN) used to challenge the generator segmentation. 

2.2.1.4 2D FCN 

FCNs have become the natural choice from the pool of various ML 

algorithms, especially when the tackled data have a more complex form than the 1D 

one. FCNs are a sector of ConvNet algorithms, where fully connected layers at the 

end of the network are replaced by convolutional ones, reducing the number of 

parameters. Moreover, FCN is more appropriate for the segmentation task as the 

output's form of such networks is much like the input’s form. Nonetheless, FCNs are 
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used for various problems and purposes. 

In [29], a 2D FCN is utilized for liver segmentation, then used for diagnosis 

report generation. In [7], a 2D FCN-8s training is done via a newly-devised sample 

selection idea named relaxed upper confident bound (RUCB). In [30], cascaded 2D 

FCN (CFCN) is used for liver segmentation, where the first FCN coarsely segments 

the liver and the second one refines it. In [11], a 2D FCN is used for the liver 

segmentation, followed by a 3D deformable model optimization (3D DMO) that is 

based on local cumulative spectral histograms and non-negative matrix factorization 

(NMF). 

In [31], a 2D multi-channel FCN (MC-FCN) takes six slices as input from 

multi-phase MRI imagery, where the used structure outperforms the U-Net on the 

utilized dataset. In [32], superpixels are computed, forming a map using a simple 

linear iterative clustering (SLIC) algorithm, and then the map is introduced into the 

2D FCN to segment the liver. 

An important FCN architecture that revolutionized the biomedical 

segmentation field is the U-Net [33], playing a similar role to the AlexNet, but for the 

biomedical field. Thus, it was natural for researchers to use it and inspire by it. In [3], 

[34], a 2D FCN following the U-Net architecture is utilized along with a 3D 

conditional random field (3D CRF) for liver segmentation. In [35], a 2D U-Net is 

used as the primary model, while SegNet is utilized in [36]. In [37], the U-Net acts as 

a coarse liver segmenter; however, in [38], U-Net is used as a replacement for the 

finite element method (FEM) to approximate the elastic deformation caused in 

hyperelastic objects, such as the liver. Interestingly in [39], the 2D U-Net is used to 

segment the liver, but the work focuses on examining whether a slice can be used to 

make a diagnostic decision or not. 
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The U-Net structure inspires other researchers, wherein [40], a 2D FCN 

(modified U-Net version) is employed for segmenting the liver parenchyma, 

excluding vessel ducts, from T1-MRI scans. In [41], 16 phases (echoes) of the same 

slice are generated by employing the multi-echo gradient from the MRI imaging 

modality. The kernels at the first layer of the 2D U-Net are modified to accept 16 

slices as an input. In a similar approach, unenhanced multi-echo spoiled gradient-echo 

slices from MRI scans are initially used to train a 2D U-Net. It is followed by a 

transfer learning training step on contrast-enhanced CT scans (CE-CT) and contrast-

enhanced MRI scans (CE-MRI) to segment the liver from both modalities [42]. 

Additionally, in [43], an ensemble of three U-Net-like 2D FCN models is used for the 

liver segmentation task, and the final mask is the average of those three. Authors in 

[44] utilized the same segmentation network as in [43], but the interest is in tumor 

classification. In [45], the skip connections between the encoder and decoder are 

modified to eliminate the redundant inclusion of low-resolution information, and the 

network is named modified U-Net (mU-Net). In [46], the semantic segmentation of 

multiple organs, including the liver, is carried via a 2D ResNet equipped with 

partially dilated convolutions, multiple concatenations, and fusion stages. 

On the one hand, a multi-planar network (MPNet) is employed to segment the 

liver in any view (transversal, sagittal, or coronal) in [47], [48]. An ensemble of three 

MPNets is trained to segment the liver from all viewing angles in their work. The 

outputs of these three MPNets are fused to generate the final mask. On the other hand, 

in [49], a multi-planar U-Net (MPU-Net) is utilized to capture the organ of interest 

from different viewing angles (generalizing to more views than the three conventional 

ones). Similar to [47], [48], the outputs of all planar segmentation are fused to 

generate the final mask. In [50], a domain adaptation pipeline is created because the 
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authors aim to create an algorithm that achieves excellent results on both CT and MRI 

scans. The first module is concerned with finding a common space between CT and 

MRI via variational autoencoders (VAEs) and GANs. The second module takes the 

common space output from the first module and inserts it into a 2D U-Net to segment 

the liver, outperforming a CycleGAN-based solution. In [51], a 2D liver extraction 

residual convolutional network (LER-CN), similar to U-Net architecture, is utilized to 

segment liver from low-dose CT scans using two main components: noise removal 

component (NRC) and structural preservation component (SPC). 

Other researchers opt to introduce more modifications to the U-Net structure. 

For instance, in [52], a 2D FCN based on U-Net is equipped with ResNet dense 

forward connections (U-ResNet) for liver segmentation in digitally reconstructed 

radiographs (DRR) from X-rays created via a task-driven generative adversarial 

network (TD-GAN). In [53], cascaded U-ResNet (CU-ResNet) is used for liver 

segmentation, concatenating the middle outputs from the liver U-ResNet with the 

corresponding output layers in the lesions' network. The work also compares various 

loss functions, creating an ensemble of models incorporating different loss functions 

[53]. In [54], densely connected U-Net (DenseU-Net) is used for the liver 

segmentation task, and in [55], a comparison between DenseU-Net and atlas-based 

segmentation models is conducted, proving the efficacy of the former to be used in a 

future clinical environment. A similar architecture is utilized in [56], where the 2D 

FCN is based on DenseU-Net, but interestingly, utilized a shallower decoder scheme 

where they did not witness any reduction in the liver's (and other organs) 

segmentation performance. In [57], both global and local context U-Net (GLC-UNet) 

are used to incorporate the global and local context, which also attempts to create 

Couinaud segmentation of the liver. In another study, a multiple-input and multiple-
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output feature abstraction network (MIMO-FAN) model adapted the U-Net 

architecture to generate multi-scale outputs for multi-scale inputs and fuse them to 

achieve the final segmentation for liver in [58], and on partially labeled datasets for 

multiple organs in [59]. 

Sometimes a different backbone architecture is preferred by some of the 

researchers. For instance, a 2D FCN based on volume attention Mask-RCNN (VA 

Mask-RCNN) to incorporate volume information is employed for liver segmentation 

[60]. In [61], a 2D FCN based on DeepLabV3 is used for liver segmentation, followed 

by Pix2Pix GAN in a two-player game competition to enhance the segmentation 

mask. In [62], Faster R-CNN is used for liver localization, while a DeepLabV2 

network is used for the segmentation. In [63], a complementary network (CompNet) 

is employed for the segmentation task by attempting to incorporate non-TOI voxels 

into the learning of TOI ones [64]. A pairwise segmentation technique for sharing 

supervised segmentation between two paths is investigated by the conjugate FCN 

(CoFCN) [65]. It takes 2.5D input and explicitly learns from adjacent slices what the 

segmentation mask should be. In [66], 2D deep belief network (DBN) is deployed to 

segment the liver, aided by ASM for post-processing refinement. 

2.2.1.5 3D FCN 

To further involve the volumetric information, some researchers opt for the 3D 

FCN, bearing in mind that 3D FCN is accompanied by expensive memory usage and 

high computational complexity. 

One of the early works of using 3D FCNs is [67], whereas a 3D FCN is used 

to segment the liver and is aided by the GC algorithm. In [12], [68], the authors base 

their implementation over the 3D FCN employed in [67], increasing the kernels' size 

and modifying some of the activation functions. Then, the 3D FCN output is 
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incorporated in an energy function, which is optimized globally. In [69], [70], a 3D 

FCN is equipped with a deep supervision mechanism creating a 3D deeply supervised 

network (3D DSN) aided by 3D CRF to refine the segmentation output as a 

postprocessing step. In [71], the DeepMedic network, which relies on 3D ConvNet 

and 3D CRF [72], is used to segment the liver for selective internal radiation therapy 

(SIRT). In [73], a 3D FCN with dilated convolutional layers is developed for multi-

organ segmentation, including the liver. Following their work in [73], another 3D 

FCN based on Dense V-Net is subsequently built to segment multi-organs, including 

the liver [9]. The result is extended to create a framework called NiftyNet on the 

famous Python programming language [74], intended to make it easier to deploy 

biomedical segmentation algorithms. Another work utilizing Dense V-Net is [75], 

where a deeply self-supervised scheme based on adaptive contour features is being 

used for the liver segmentation task alone. In [76], a 3D anisotropic hybrid network 

(3D AH-Net) transforms 2D weights trained on a 2D encoder into their 3D 

counterpart and then is used for the liver segmentation task. In a model called 

Sensor3D [77], a 3D cascaded convolutional long short-term memory (C-LSTM) in a 

U-Net architecture theme is used for the segmentation task. 

To further incorporate the global context information, authors in [78] 

developed project and excite (PE) modules and employed them within a 3D FCN. A 

similar approach is utilized in [79], where spatial squeeze and channel excitation 

(cSE) 3D modules aid a 3D FCN, based on ResNet architecture, in the liver 

segmentation task. Moreover, in [80], a 3D FCN composed of multiple attention 

hybrid connection blocks, hence the name (AHCNet), have densely connected long 

and short skip connections, and soft self-attention modules, where two cascaded 

AHCNets are used for liver localization and segmentation, respectively. In [81], to 
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take advantage of the multi-phase volumes obtained by MRI scans, a multi-channel 

3D FCN based on ResNet (3D MC-FC-ResNet), or 4D FC-ResNet, is used to segment 

the liver, utilizing the information each phase provides. 

It is needless to say that the U-Net architecture also befits in the 3D context 

[82]. In [83], a 3D U-Net segments the liver organ, while in [84], a 3D U-JAPA-Net 

model has a generalized 3D U-Net serving as a pipeline for all organs and a 

specialized one designed for each organ. To segment organs from different 

modalities, a 3D universal U-net (3D U2-Net) is built where domain-specific 

convolution layers are used for each modality, and a single pipeline of convolution 

layers is shared across the different modalities [85]. In [86], 3D patches are inserted 

into a 3D U-Net-like network with context-aware units for multi-phase MRI volumes 

in a multi-scale fashion. In [87], 3D patches were also used; however, some 

modifications were applied to the 3D U-Net architecture on the pooling layers, 

activation functions, and channels' depth. Moreover, the work takes advantage of 

convolutional denoising auto-encoders (CdAE) to create shape prior knowledge and 

embeds it into a deep data-driven loss (DDL) to enhance the segmentation result. 

Finally, a 3D U-Net with a multi-scale pyramid-like liver segmentation scheme is 

employed in [88]. It is extended in [89] to segment 20 organs in total via transfer 

learning from the original segmented 8 organs in the abdomen. 

It is worth mentioning that some studies use FCNs as a complementary part to 

the core algorithm. In the case of [90], a mean shape fitting (MSF) algorithm, which 

creates an average shape of the liver, is complemented by a 3D FCN that generates a 

dense deformation field via the calculation of 3D vector of displacements for each 

voxel to deform the created prior as necessary. Another work analyzes the inserted CT 

scans via 3D FCN based on DenseVoxNet. It deforms an initial sphere mesh through 
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3D graph convolutions-based ResNet (G-ResNet), creating an elegant and smooth 3D 

mesh representation of the liver [91]. 

2.2.1.6 Hybrid 

In [92], a 2D residual attention-aware U-Net (RA-UNet) coarsely segments 

the liver, then fed into a 3D RA-UNet counterpart to finely delineate the liver. In [93], 

both 2D and 3D DenseU-Net models, constituting a hybrid DenseU-Net (H-

DenseUNet), are used for liver segmentation. In [94], a redesigned U-Net model, 

called U-Net++, creates an ensemble mechanism from within the architecture itself, 

allowing the customizability of having DenseU-Nets at various levels. It is also 

supported by the deep supervision technique, thus, generating outputs at all levels, 

serving as ensemble models. Quickly after that, in [95], the U-Net++ model is slightly 

modified and used for both liver segmentation and registration between pre-operative 

MRI and intra-operative CT scanning. In [96], attention mechanism and nested U-Net 

(ANU-Net) build over the 2D version of the U-Net++, where modifications are 

applied on the loss function and the dense connections between the nested 

convolutional blocks. 

In [97], a prior-aware neural network (PaNN) single-handedly segments the 

liver, among other organs, trained over partially labeled datasets, similar to the 

training scheme deployed in [59]. Both 2D and 3D versions of the network are tested 

and compared with other available networks. 

In [98], Models Genesis is a framework that can create a basis for transfer 

learning to any other organ segmentation via self-supervised training on unlabeled 

data instead of relying on ImageNet trained weights. The motivation is that the 

ImageNet dataset is different from the biomedical ones, creating an inappropriate 

transfer learning process. In their work, 2D and 3D models are initially trained on 
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unlabeled data and then transferred for application-specific biomedical segmentation 

tasks. 

From Figure 1, it is evident that the ML supervised algorithms of favor are the 

ones utilizing FCN as the main model, where they have become robust to tackle many 

problems (localization, registration, classification, or segmentation) in many fields. 

Moreover, most FCN models have utilized 2D network models with inclusion 

techniques for volume information such as 2.5D inputs. The 2D models are usually 

preferred over the 3D ones due to expensive computations and heavy memory 

shortages in the graphical processing units (GPUs). 

2.2.2 Tumors/Lesions & Vessels 

This subsection mentions all the critical algorithms used for the tumors and 

vessels segmentation challenges. Figure 2 has been created to highlight all the related 

vital studies. 

2.2.2.1 Tumors/Lesions 

To segment tumors, [99] initially uses a Kernelized version of FCM (KFCM), 

then utilizes spatial-FCM in [100] for the tumor segmentation task, followed by a 

4.5C decision tree (DT) algorithm to classify segmented tumors. In [19], the 

combination of PSO and FCM is used for tumor segmentation, while fast FCM 

(FFCM) is utilized for the tumor segmentation task in [18], [101]. 

2D ConvNet with fully connected layers is used in [102] to segment tumors in 

the form of patches, testing different patch sizes for optimal performance. Patching 

the slices allows the model to focus on the tumor(s) instead of processing many 

unrelated voxels simultaneously, as tumors are generally sparse. Also, a comparison is 

drawn against other ML algorithms such as AdaBoost, RF, and SVM, proving the 

superiority of ConvNet-based techniques. In [103], a 2D FCN taking a single-phase 
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CT, and a 2D MC-FCN utilizing three phases of CE-CT scans, are utilized to segment 

tumors within the liver. Initially, both networks are trained on the liver segmentation 

task to enable faster convergence when trained on the tumor segmentation challenge. 

In [104], a DenseU-Net is utilized for the tumor segmentation task, where post-

processing for object identification is based on RF to reduce FPs. 

 

 

Figure 2. Tumors and vessel segmentation techniques from the reviewed literature. 

 

An interesting approach is investigated on imprecise labeling of tumors, 

named “response evaluation criteria in solid tumors” (RECIST). Due to the abundance 

nature of this kind of data, in [105], the authors use such CT slices for the tumor 

segmentation via a holistic nested network (HNN), which is initially built for edge 

detection throughout multiple levels within the network [106]. Thus, it utilizes weakly 

labeled data instead of relying on pixel-wise labeling. In a similar approach in [107], a 
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2D FCN is used to regress biomarker information (area or volume) on CT slices to 

segment the tumors, instead of using manually labeled-pixels datasets, which are 

harder to obtain. 

Some of the mentioned above liver segmentation studies use the same model 

for tumor segmentation as well. For example, the 2D FCN aided by the 3D DMO and 

NMF in [11], the 2D FCN in [29], the 2D FCN VA Mask-RCNN in [60], the 

DeepLabV3 followed by Pix2Pix GAN in [61], the ensemble of the three U-Net-like 

2D FCN in [43], [44], the mU-Net in [45], the CU-ResNets [53], the 3D AH-Net in 

[76], the 3D U-Net with context-aware modules in [86], and the H-DenseUNet in 

[93], all of them segment the tumors along with the liver simultaneously. In [63], the 

first 2D CompNet, aforementioned in the liver segmentation technique, helps segment 

large tumors, followed by a 3D CompNet to segment the smaller ones. In [23], the 

same CaRF used for liver parenchyma segmentation is also used for viable tumor 

tissue, and necrosis tissues segmentation. 

In contrast, some works opt to use an extra network for the tumor 

segmentation task cascadingly. In [3], [34], and after using 2D FCN to segment the 

liver, a cascaded 2D FCN is used to delineate the tumors within. Both FCNs are 

followed by the 3D CRF that refines the output of the CFCN model. Similarly, in 

[54], another DenseU-Net delineates tumors within the segmented liver from the first 

DenseU-Net. In [30], a third 2D FCN, following the first two, which segmented the 

liver, is used for the tumor segmentation task. Moreover, in [108], a third 3D RA-

UNet segments tumors from the liver mask outputted from the first two (2D and 3D) 

RA-UNets networks. Similarly, a third AHCNet is used for tumor segmentation on 

the segmented liver from the first two AHCNets [80]. On the other hand, in [35], after 

segmenting the liver with a single U-Net, two other cascaded U-Nets are used for 
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tumor (and its viability) segmentation. In [36], the authors opt for a different network 

than the SegNet employed for segmenting the liver. Laws texture energy measure 

(LTEM) features are extracted for tumor detection using a normal ANN optimized by 

a genetic optimizer algorithm (LTEM-GO-ANN), and then followed by a 2D U-Net 

performing the tumors segmentation on detected tumor regions. Similarly, in [48], 

after segmenting the liver using the MPNet, a 3D densely connected GAN (DC-GAN) 

is used for the tumor segmentation within the segmented liver. In [83], after 

segmenting the liver using a 3D U-Net, a multi-scale candidate generation (MCG) 

generates candidate tumor areas based on superpixels, which are inserted into a 3D 

fractal residual network (FRN), and an ASM algorithm refines the output. In [31], 

after segmenting the liver using a 2D MC-FCN, another network with dual-pathways 

is used to segment the tumors using 9-phase slices. In [37], after coarsely segmenting 

the liver using a 2D U-Net, a 3D FCN is used to segment the tumors within, followed 

by an LSM algorithm to refine the tumors segmentation. GANs are also used in the 

tumor segmentation task. For instance, in [109], a radiomics-guided GAN utilizes a 

dilated DenseU-Net as the generator (segmenter), and a VGG network as the 

discriminator, whereas the discriminator extracts radiomics features to aid segmenter 

in tumor segmentation. However, in [110], a 2D CTumorGAN is used for the tumor 

segmentation task in multiple organs, including the liver, and it incorporates a novel 

generator scheme that integrates a noise vector with the encoder part to generate 

segmentation masks. 

2.2.2.2 Vessels 

Application of unsupervised-based ML algorithms towards segmentation of 

vessels is rare and only available in [111], where Jerman’s vesselness filter based on 

K-means clustering is followed by an improved fuzzy connectedness (FC) algorithm 
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to segment the vessels. On the other hand, the only supervised-based ML study that 

segments all the liver's tissues, i.e., liver parenchyma, tumors, and blood vessels, is in 

[23], using the same CaRF mentioned above for blood vessels segmentation. 

The majority of existing studies employ supervised-based ML algorithms. In 

[112], an anisotropic filter is used to suppress noise and simultaneously maintain 

boundary details. Followed using the four filters: 1) Sato; 2) Frangi 3) offset 

medialness; and 4) strain energy to extract vessel features, that are then normalized. 

Finally, an extreme learning machine (ELM) is applied to recognize liver vessels from 

the background. In [113], a more ML-dependent approach is followed. A 2D DSN 

based on VGG-16 is used on liver vessels segmentation from US imagery. DSN has 

three types of layers: 1) object boundary definition prediction by fine resolution layers 

aided by auxiliary losses; 2) coarse resolution layers to discriminate object regions 

within the boundary; and 3) a trainable fusion layer. In [114], a 2D VesselNet 

describes an architecture that utilizes three DenseNets aimed for segmenting 

orthogonal patches, pre-processed by a Frangi filter, from the three planar views 

(transversal, sagittal, coronal). Thus, vesselness probability maps are inserted into the 

orthogonal DenseNets, which are then fused to generate the final segmentation mask. 

To incorporate the 3D context even further, some researchers developed 3D networks. 

In [115], a 3D U-Net is employed, which is vital in the case of tubular structures 

traversing narrowly through the slices. The work emphasizes the issue of data 

imbalance and attempts to solve it by data augmentation schemes and loss function 

careful design. In [116], a 3D ConvNet for vessel enhancement is used to highlight 

the vessel centerlines. A 3D tree tracing algorithm initializes the vessel graph tracing 

with high sensitivity and low specificity. Then, a graph neural network (GNN) 

equipped with graph attention layers (GAT) is utilized to prune the false-positive 
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branches. 

2.3 Related Works Categorized based on Input Shape 

When reviewing the literature, slices are inserted into the networks in different 

shapes and dimensions. ConvNets, by their many forms, can accept inputs with 

different dimensions. The importance of discussing the input dimensions prevails 

when we know that these dimensions affect the ConvNet architecture, where filter 

sizes, convolutional layers, and pooling layers will be designed differently. This 

section highlights works that utilized different input dimensions, namely, 2D, 3D, 

2.5D, 4D, hybrid, patches, or multi-level scaled-down slices. 

2.3.1 2D Input 

Originally, ConvNets were developed to work with inputs in their 2D form, 

i.e., images. Many studies utilize 2D inputs, where CT or MRI slices are inserted into 

the ConvNet slice-by-slice. Each slice is segmented in a single forward pass isolated 

from adjacent slices as in [34], where a 3D CRF is used to impose 3D context. If the 

slices were fed sequentially (for the same volume) into the ConvNet model, but with 

randomizing the records, the model can implicitly understand the existence of a 3D 

context within. However, the emphasis is weak, and this 3D context quickly dissipates 

if the training is randomized within volumes. 

2.3.2 3D Input 

3D inputs are used to involve the volumetric context in the segmentation task. 

It is helpful to use slices in their 3D form, meaning multiple slices are inserted into a 

single ConvNet, and the segmentation is carried out in one shot over all of them in the 

forward pass. In this manner, the network learns the 3D context, and thus, inter-slice 

information is preserved compared with its 2D counterpart. For instance, the famous 

2D U-Net [33] and its 3D form [82] demonstrate the changes in the network 



 

23 

architecture that follow the transition from receiving a 3D input instead. However, 

complications arise when using the 3D volumes; due to the limitations in the GPU 

memory and the accompanying heavy calculations required by the implementation of 

3D ConvNets. Thus, researchers would then have to deal with patches of the original 

volume or a coarsely down-scaled version of it. 

2.3.3 2.5D Input 

2.5D is the middle-ground between the 2D and 3D inputs, where it utilizes the 

3D context and information while it restrains the segmentation to a single slice in a 

single forward pass. The input is multiple slices adjacent to one another, creating an 

odd number of slices 2(𝑘 − 1) inserted into the ConvNet model, but the segmentation 

is produced for the center slice only. The neighboring input slices serve only as 3D 

context and spatial information providers. By essence, the ConvNet is built to receive 

inputs of 2D nature, with multiple channels. The idea in itself is not new, it is clearly 

stated in [117], but many works opt for this method as it harnesses the benefits of both 

inputs' dimensions and disposes of their disadvantages as in [28], [43], [54], [56], 

[65], [93], [104], and others. 

2.3.4 4D Input 

As controversial as it sounds, a 4D concept comes from the MRI modality 

since it generates multi-phase 3D volumes of the same shape with a difference in 

temporal acquisition. They can be grouped when used for segmentation. In [15], the 

multi-phase volumes are used in 4D K-means clustering aided by active contour 

refinement. On the other hand, in [81], the 3D volumes are inserted into a 3D ResNet-

based ConvNet, where the input is multi-channel (effectively making it 4D). 

However, this does not reflect architecture change as it can be resolved by channel 

depth design at the first layer. 
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2.3.5 2D & 3D Patches 

Taking patches entails that the programmer extracts small portions of the 

slice/volume and then inputs them into the FCN to perform the segmentation. 

Theoretical background for why it works is provided in [118], and some of the 

reasons are mentioned here. For the 3D case, GPU and extensive computations are the 

barriers to evaluating volumes in one shot. Thus, researchers opt to take 3D chunks 

from the volumetric scan to process, which can have homogeneous dimensions as in 

[51], [86], [119], or can have heterogeneous dimensions [89]. It is worth noting that in 

[89], the effect of overlapping patches is also studied against non-overlapping ones. In 

general, and for 2D and 3D, it helps the model generalize better to unseen real-life 

scenarios when the segmentation is done over patches instead of the whole 

slice/volume. Moreover, as in [102], 2D patches are very convenient when the TOI is 

small, e.g., tumors and vessels within the liver, as processing the whole liver would be 

redundant when segmenting such tissues. 

2.3.6 Multi-Scaled Input 

In more recent works, researchers opt to fuse segmentations that are produced 

at different scales. Such algorithms take multi-scaled inputs, concatenate them, and 

combine them on many levels of the network to generate the segmentation mask, 

either in a sequential manner as in [34] or in one shot as in [58]. 

2.3.7 Hybrid Input (Sequential) 

Hybrid input emphasizes the employment of sequential models with different 

dimensions, whereas the model can utilize an input with distinct dimensions 

compared to the previous/following one. To increase segmentation accuracy, [92] 

utilized a 2D network to acquire a coarse liver segmentation, which is sequentially 

inserted into a 3D network for segmentation refinement. Another approach is jointly 
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using 2D and 3D networks for liver and tumor segmentation and fusing both 

networks' outputs [93]. Other methodology uses the first 2D ConvNet to segment the 

liver and the large tumors and the sequential 3D ConvNet to focus on segmenting the 

small ones [63]. It is worth noting that the training methodology followed in [76] 

initially relied on developing the weights in a 2D network, which is then extrapolated 

into their 3D counterpart. 

2.4 Related Works Categorized based Datasets/Challenges 

This section provides a historical background and a summary of the 

datasets/challenges' specifications found within the literature. Each dataset’s origins 

and specifications are discussed and then summarized in Table 2. Some of the 

mentioned datasets/challenges were hosted by well-known medical conferences such 

as the Medical Image Computing and Computer Assisted Intervention (MICCAI) and 

the IEEE International Symposium on Biomedical Imaging (ISBI). The organizers 

would present the datasets as challenges pushing researchers to participate by creating 

healthy peer-pressure environments. Other datasets were shared publicly by different 

research institutions to encourage researchers to develop better algorithms1. 

2.4.1 Historical Background about Datasets/Challenges 

This thesis comprehensively highlights and presents datasets that include liver, 

tumors, or vessels delineations, solely or with other organs' ground-truth masks. 

However, if the ground-truth labels for either liver, tumors, or blood vessels were not 

included, we refrain from adding that particular dataset. Lastly, we define ground-

truth labels as the delineation (i.e., segmentation) of tissues, not the localization of 

such tissues. 

 

1 Some of the datasets were investigated with the aid of ITK-SNAP [150]. Available at: 

www.itksnap.org 
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2.4.1.1 Segmentation of the LIVER Competition [2007] (SLIVER07) 

In October, the SLIVER07 competition took place in a workshop named “3D 

Segmentation in the Clinic: A Grand Challenge” in conjunction with MICCAI 2007. 

The results of that workshop are summarized in [120]. The dataset has 30 CE-CT 

scans divided into 20 training volumes and 10 testing volumes. The intra-slice 

resolution varies between 0.54 and 0.86 mm, while the inter-slice space varies 

between 0.5 and 5 mm. The number of pixels is the same for all slices within all 

volumes (512×512), with varying slices between 64 and 502. 

2.4.1.2 3D Image Reconstruction for Comparison of Algorithm Database (3D-

IRCADb) [≤ 2010] 

3D-IRCADb is a database gathered by the IRCAD institute in France, where it 

includes anonymized medical images of patients. In total, the dataset has 22 venous 

phase CE-CT scans divided into: 1) 3D-IRCADb-01 that contains 10 male and 10 

female with 75% having hepatic tumors; 2) 3D-IRCADb-02, which contains 2 CT 

scans with other abdominal organs segmented. The entire dataset's intra-slice 

resolution varies between 0.56 and 0.96 mm, while the inter-slice distance varies 

between 1 and 4 mm. On the other hand, (512×512) pixels are used per slice, while 

the number of slices ranges between 74 and 260. It is worth noting that the majority of 

literature focuses on the 3D-IRCADb-01 part and is typically divided into training and 

testing records accordingly. 

2.4.1.3 MIDAS Liver Tumor (MIDAS-LT) Segmentation Dataset [2010] 

MIDAS-LT, an acronym we created, is a part of a bigger initiative to provide a 

collection of archived, analyzed, and publicly accessed datasets called MIDAS [121]. 

The MIDAS-LT is funded by the National Library of Medicine (NLM) in the USA 

under the Imaging Methods Assessment and Reporting (IMAR) project. The dataset 

contains 4 CT scans with (up to) 3 radiologists’ manual segmentation for liver tumors 
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per volume, without a mask of the liver. All the dimensions (inter- and intra-slice) 

vary between 1.73 and 1.85 mm. On the other hand, pixels in a slice vary between 177 

and 189, while the number of slices ranges between 98 and 259. It is worth noting that 

the original dataset had homogeneous specifications, but the dimensions reported here 

are for the segmented volumes. 

2.4.1.4 Multi-Atlas Labeling Beyond the Cranial Vault (BtCV) - Workshop and 

Challenge [2015] 

This workshop is the last of a series of workshops introduced by Landman et 

al. from Vanderbilt University [122] hosted by MICCAI. This workshop aims to 

extend multi-atlas segmentation beyond the skull vault to include the cervix and 

abdomen segmentation. Thus, the liver and other organs (such as kidneys, gallbladder, 

esophagus, and stomach) are segmented. The dataset contains many organs’ 

segmentations and registrations. Still, the number of liver segmentation records is 50 

venous phase CE-CT scans, divided into 30 training and 20 testing records found 

under the `RawData' file. The intra-slice resolution is between 0.54 and 0.98 mm, 

while the inter-slice distance is within the 2.5 to 5 mm range. In contrast, the number 

of pixels is 512×512, with varying slices between 85 and 198. 

2.4.1.5 Pancreas-CT [2015] 

Pancreas-CT is a portal venous CE-CT dataset that contains pancreas manual 

delineations available on The Cancer Imaging Archive (TCIA) website [123]. It 

originally had 82 records when first published in 2015. However, in 2020, 2 volumes 

were removed (#25 and #70) as they were duplicates of Record #2 with slight 

variations. The intra-slice resolution varies between 0.66 and 0.98 mm for the voxels' 

physical dimensions, while the inter-slice distance ranges between 0.5 to 1 mm. On 

the other hand, the number of pixels is 512×512, with the number of slices being 

between 181 and 466. This dataset is included because the liver delineations are 
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created along with other organs for 43 records (42 after removing the duplicate 

Record #25) from this dataset [9]. It is worth noting that the specifications mentioned 

in Table 2 are for those records with liver delineation provided in [9]. These records 

are representative of all the dimensions of the original dataset; however, the minimum 

number of slices is 186 instead. 

2.4.1.6 Visual Concept Extraction Challenge in Radiology (VISCERAL) 

Anatomy3 [2016] 

The challenge took place in three consecutive years (2014 - 2016) in 

conjunction with the ISBI. The challenge targets multi-organ segmentation by 

providing ground-truth labels for up to 20 organs (liver, pancreas, spleen, kidneys, 

lungs, aorta, urinary bladder, gallbladder, to name some). The complete list can be 

found in [124], and the results of all the workshops are summarized in [125]. The 

dataset has 120 records, from CT and MRI modalities, with and without contrast-

enhancing agents (refer to Table 2 for further details). The intra-slice resolution varies 

between 0.60 and 1.40 mm for the CT records, while the inter-slice distance is fixed 

to 3 mm [125]. The slice resolution is between 0.84 and 1.30 mm for the MRI scans, 

while the inter-slice depth varies between 3 and 8 mm [125]. 

2.4.1.7 Liver Tumor Segmentation Challenge (LiTS) [2017] 

This challenge was conducted in ISBI (18/04/2017) and MICCAI 

(14/09/2017) to provide researchers with ground-truth labels for the liver and tumors 

within. The challenge is to automatically segment liver tumors/lesions in CT volumes 

and estimate tumors' burden, along with the typical liver segmentation challenge. The 

dataset has 201 CE-CT records in total, divided into 131 training and 70 testing scans. 

The dataset can be found in [126], and the summary of the challenge results is in 

[127]. Noting that 3D-IRCADb-01 is part of the training set of LiTS (Records 28 - 47 

[80]), care must be taken when both 3D-IRCADb and LiTS datasets are used to train 
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the model. Using them both for training will make the model biased towards the 

common records since it is trained on the duplicate records twice every epoch. Also, it 

is inappropriate to train on the entire training set of LiTS and test on 3D-IRCADb, as 

the testing set would be exposed to the model in the training phase beforehand. For 

the physical dimensions, the intra-slice resolution varies between 0.55 and 1.00 mm, 

while the inter-slice distance ranges between 0.45 to 6.0 mm [127]. In contrast, the 

number of pixels is 512×512, with slices ranging between 42 and 1026. 

2.4.1.8 Medical Segmentation Decathlon Challenge (MSDC) [2018] 

MSDC was held in MICCAI 2018, where it uniquely focuses on the 

segmentation generalizability of a model on 10 different biomedical challenges. In 

this review, we only report the liver-related tasks, namely, Task 3 and Task 8. 

Nonetheless, details regarding all the tasks are summarized in [128]. We refer to Task 

3 and Task 8 datasets as MSDC-T3 and MSDC-T8, respectively. 

As a matter of fact, MSDC-T3 is the same as the LiTS dataset, where the 

training sets are identical, but the testing set in MSDC-T3 is shuffled compared to its 

counterpart in LiTS. On the other hand, the MSDC-T8 dataset contains 443 portal 

venous phase CE-CT scans with segmented tumors and vessels only, where 303 are 

designated as training and the remaining 140 records as testing. The intra-slice 

resolution varies between 0.56 and 0.98 mm, while the inter-slice distance ranges 

between 0.80 and 8 mm. The slices have the standard number of pixels for CT scan 

(512×512), with a varying number of slices between 24 and 251. It is worth noting 

that the authors in [57] created the liver annotations within the MSDC-T8 443 CT 

records and shared them publicly. Additionally, Couinaud's segmentation of 193 

livers among the 443 records is also shared. 
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2.4.1.9 CT Volumes with Multiple Organ Segmentations (CT-ORG) Dataset 

[2019] 

CT-ORG is an extension of the LiTS dataset, and it is publicly accessible via 

the TCIA website [129]. It contains 140 CT scans where the creators [130] added 9 

extra PET-CT scans over the LiTS training set and extended the segmentation to 

multiple organs (lungs, bones, liver, kidneys, bladder, and brain). Most provided 

segmentations are golden-corpus (manually labeled), while lungs and bones in the 

training set are silver-corpus (automatically segmented). The intra-slice resolution 

varies between 0.55 and 1.37 mm for the voxels' physical dimensions, while the inter-

slice distance ranges from 0.7 to 5 mm [127]. On the other hand, the number of pixels 

is 512×512, with varying slices between 74 and 987. The difference between LiTS 

dimensions mentioned earlier and CT-ORG is contributed to the testing set of LiTS, 

which is not included in CT-ORG. We have verified this difference by developing a 

Python code to find the minimum and maximum of each quantity in both datasets. 

2.4.1.10 Combined (CT-MR) Healthy Abdominal Organ Segmentation 

(CHAOS) Challenge [2019] 

CHAOS was held in ISBI 2019, aiming to segment abdominal multi-organ 

tumor-free CT and MRI data. The dataset has both CT and MRI (T1 and T2 weighted) 

parts, where there is no inter-modality connection (i.e., the CT and MRI data are from 

random patients, not counterparts for the same patient). The summary of this 

challenge is reported in [131]. 

The CT dataset contains 40 CE-CT records for patients with the ground-truth 

label for healthy livers (potential liver donors) acquired at the portal venous phase. 

The intra-slice resolution varies between 0.7 and 0.8 mm, while the inter-slice space 

varies between 3 and 3.2 mm [132]. The resolution is similar to other datasets 

(512×512), and the number of slices ranges between 77 and 105 [132]. On the other 
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hand, the MRI dataset has ground-truth labeling for the liver, kidneys, and spleen, 

containing 120 records of both 80 T1-Dual (40 in-phase and 40 out-phase) and 40 T2-

SPIR weighted records. The MRI records from different enhancing protocols are for 

the same patient. For instance, patient 20 has three MRI records falling into the three 

previously mentioned categories. Intra-slice resolution varies between 1.36 and 1.89 

mm, while the inter-slice distance is bounded between 5.5 and 9 mm [132]. It is worth 

noting that the resolution here is different (256×256), and the number of slices varies 

between 26 and 50 [132]. The intra-modality acquisition protocol in this dataset is 

consistent where we see minor variations between different records belonging to the 

same modality. Further details can be found in [132], including the used acquisition 

devices and the different contrast-enhancing phases for MRI. 

2.4.2 Summary of Challenges/Datasets 

Table 1 shows the pros and cons each dataset has relative to other available 

datasets. Moreover, Table 2 summarizes reviewed challenges and datasets. 

 

Table 1. Advantages and limitations of the available datasets. 

Dataset Advantages Limitations 

SLIVER07 
- The earliest publicly available 

dataset to have liver masks 

- Small size 

- Not challenging anymore 

- Does not have liver tumors 

and vessels 

3D-IRCADb 

- First dataset to include liver 

tumors 

- The records metadata are 

mentioned for each record 

- Small size 

- The majority do not have 

liver vessels 

MIDAS-LT - N/A 
- Minimal size 

- Very few segmented tumors  

BtCV 

- Only dataset to have many 

segmented organs (13 ground-

truth organs) 

- Medium size 

Pancreas-CT 

- It has Pancreas segmented as 

well along with liver masks  

- High resolution 

 

- Medium size 

- Does not have liver tumors 

and vessels 
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Dataset Advantages Limitations 

VISCERAL 

Anatomy3 

- Multiple modalities 

- Large size, the first dataset to 

have more than 100 ground-

truth labeling  

- Hard to access 

- Does not have liver tumors 

and vessels 

LiTS 

- Large size 

- Many tumors are segmented in 

131 records 

- Does not have liver vessels 

MSDC-T8 

- Largest abdominal dataset with 

manual segmentation 

- Contains all liver tissues (liver, 

tumors, vessels) 

- N/A 

CT-ORG 

- Builds up over LiTS and adds 9 

more records  

- Has other organs segmented 

- Does not have liver vessels 

CHAOS 
- Multiple modalities 

- Large size 

- Does not have liver tumors 

and vessels 

 

Table 2 highlights the website where researchers can retrieve the datasets, the 

type of modality used, the inclusion of contrast enhancement agents, the available 

masks, the overall dataset size, and the voxels’ dimensions. 

 

Table 2. Summary of available datasets. 

Dataset Modality 
Available 

Masks 

Size 

(Train/Test) 

Voxels Dimensions (Height 

× Width × Depth) mm3 

SLIVER07 

[133] 
CE-CT Liver 30 (20/10) 

(0.54 ~ 0.86) × (0.54 ~ 0.86) 

× (0.5 ~ 5) 

3D-IRCADb 

[134] 
CE-CT 

Liver 

(Tumors, 

Vessels) 

22 (N/A) 
(0.56 ~ 0.96) × (0.56 ~ 0.96) 

× (1 ~ 4) 

MIDAS-LT 

[135] 
CT 

Tumors 

in Liver 
4 (N/A) 

(1.73 ~ 1.85) × (1.73 ~ 1.85) 

× (1.73 ~ 1.85) 

BtCV [122] CE-CT 
Liver & 

Others 
50 (30/20) 

(0.54 ~ 0.98) × (0.54 ~ 0.98) 

× (2.5 ~ 5) 

Pancreas-CT 

[123] 
CE-CT 

Pancreas 

[123], 

Liver & 

Others 

[9] 

42 (N/A) 
(0.66 ~ 0.98) × (0.66 ~ 0.98) 

× (0.5 ~ 1) 

VISCERAL 

Anatomy3 

[124] 

CT 
Liver & 

Others 
30 (20/10) 

(0.97 ~ 1.40) × (0.97 ~ 1.40) 

× 3 

CE-CT 
Liver & 

Others 
30 (20/10) 

(0.60 ~ 0.79) × (0.60 ~ 0.79) 

× 3 
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Dataset Modality 
Available 

Masks 

Size 

(Train/Test) 

Voxels Dimensions (Height 

× Width × Depth) mm3 

MRI 
Liver & 

Others 
30 (20/10) 1.25 × 1.25 × 5 

CE-MRI 
Liver & 

Others 
30 (20/10) 

(0.84 ~ 1.30) × (0.84 ~ 1.30) 

× (3 ~ 8) 

LiTS [126] CE-CT 
Liver 

(Tumors) 

201 

(131/70) 

(0.55 ~ 1.00) × (0.55 ~ 1.00) 

× (0.45 ~ 6) 

MSDC-T8 

[136] 
CE-CT 

Liver 

[57] 

(Tumors 

& 

Vessels 

[128] 

443 

(303/140) 

(0.56 ~ 0.97) × (0.56 ~ 0.97) 

× (0.8 ~ 8) 

CT-ORG 

[130] 

CT, 

CE-CT, 

PET-CT 

Liver 

(Tumors) 

& Others 

140 

(119/21) 

(0.55 ~ 1.37) × (0.55 ~ 1.37) 

× (0.7 ~ 5) 

CHAOS 

[132] 

CE-CT Liver 40 (20/20) 
(0.70 ~ 0.80) × (0.70 ~ 0.80) 

× (3 ~ 3.2) 

MRI 

Liver, 

Kidneys 

& Spleen 

120 (60/60) 
(1.36 ~ 1.89) × (1.36 ~ 1.89) 

× (5.5 ~ 9) 

 

2.5 Outlook 

Many insights can be drawn from the above survey: 1) Most studies in the 

liver delineation task utilize supervised ML algorithms, especially the 2D and 3D 

FCN-based models as depicted by Figure 1, the reason behind this phenomenon is the 

powerfulness of ConvNets in automatically extracting the discriminative features, 

through the trained filters’ coefficients, to optimally reduce the objective function, 

instead of having to manually extract those features, which include untested 

assumptions in a trial-and-error process; 2) The vast advancements in the ML field to 

tackle the biomedical problems, like using 3D or 2.5D instead of 2D to fathom the 

liver's 3D complex structure; 3) The usage of different algorithms aiming to segment 

multiple tissues, showing an initiative towards creating a complete algorithm for full 

liver delineation; 4) The number of studies investigating tumors and vessels 

delineation, shown in Figure 2, are low when compared with the ones exploring the 
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liver's delineation, especially the vessels segmentation studies that are rare, pointing at 

a research area worth further investigation; and 5) The severe absence of studies that 

tackle all liver's different tissues delineation problem. 

Moreover, from a computational complexity point of view, unsupervised ML 

techniques are more expensive than their supervised peers [137]. It is attributed to the 

fact that unsupervised techniques typically need extensive data to generate significant, 

meaningful clustering [137]. In contrast, the supervised ones can generate good 

results from a small dataset if carefully designed [137]. Moreover, with labels’ 

existence finding the optimal solution becomes a guided training process, unlike 

unsupervised techniques where the learning process is blind [137]. Hence, supervised 

learning algorithms can generate better results due to the manual labeling applied to 

the dataset, allowing the machines to learn from the humans’ expertise. 

Due to the absence of a large number of slices in earlier datasets, some authors 

opted to augment the data, as in [36], by transitioning the slices 10 pixels in each 

direction and then horizontally flipping all the slices to generate a new dataset that is 

10 times bigger. It is worth noting that they also applied bilateral filters to remove 

granular noise [36]. Others opt to finely rotate the slices by 5 – 10o to generate new 

slices to train the algorithm further and allow it to generalize better to unseen data, 

where the human body is slightly rotated. 
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CHAPTER 3: METHODOLOGY 

In this chapter, the followed methodology is explained with in-depth details, 

easing the process of reproducibility. It goes through the used datasets, the image pre-

processing techniques, the training environment parameters, the input shapes, the 

neural network models, the evaluation metrics, and the 3D construction and printing.  

It is worth mapping out the schema of our system to tackle the liver, tumors, 

and vessels segmentation challenges in Figure 3. It shows the liver segmentation 

being tackled by the first ConvNet. The first ConvNet’s output is multiplied by the 

original CT slices to keep the liver’s voxels and remove other voxels considered as 

background. Then, the CT slices, with liver voxels only, are fed into the tumors and 

vessels ConvNets in parallel to generate these tissues masks. Lastly, the output of the 

three ConvNets is then combined and interpolated to create the 3D object of the liver, 

ready to be visualized and printed. 

 

 

Figure 3. ConvNets sequential training scheme. 
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One important point to highlight is that the created code used in this thesis was 

backed up using a GitHub repository, where anyone can freely start a private/public 

repository. Although it is used primarily by collaborators on the same project, it is 

also an excellent tool for having cloud-backup code, along with a Version Control 

feature allowing version reversion.  

The followed methodology is summarized in Figure 4, highlighting different 

aspects, including 1) utilized dataset; 2) data pre-processing; 3) input shape; 4) 

downloaded network models; 5) loss functions; and 6) evaluation metrics. 

 

 

Figure 4. Summary of the followed methodology. 

 

3.1 Utilized Datasets 

This thesis aims to segment the liver parenchyma, tumors, and vessels; 

therefore, a complete dataset containing the manual segmentation for all three tissues 

must be attained. From the conducted literature review, it is evident that the dataset 
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qualifying for this role is the MSDC-T8 dataset. To re-iterate, it contains 443 CE-CT 

scans of a varying number of slices and voxels’ dimensions. The liver ground-truth 

labels are provided in [57], while the tumors and vessels manual masks are provided 

by the challenge organizers in [128]. The liver masks are publicly available for the 

443 records; however, the tumors and vessels masks are known for 303 only. 

Moreover, it is worth noting that the dataset mainly focuses on the human body’s 

abdominal part. The goal of this dataset is primarily to challenge the participants to 

delineate the tumors and vessels within. 

3.2 Data Pre-processing 

Once the dataset has been chosen, a set of pre-processing techniques has been 

selected to boost the deployed convolutional neural network (ConvNets). 

3.2.1 Volumetric Rotation 

 CT scans come in various orientations, given that different hospitals can have 

different protocols. Fortunately, the orientation information can be found in the 

Neuroimaging Informatics Technology Initiative (NIfTI) files’ metadata. CT scans, 

along with their masks, are made to face the same direction (to the right) so that 

avoidable variability is discarded, instead of dealing with the most generic case of 

having CT scans of patients facing different directions. 

3.2.2 Volume Rescaling 

 A rescaling of ½ is applied to the input CT scans because ConvNets like U-

Net have many weight parameters, and after each batch feedforward iteration, a 

backpropagation process is commenced. Thus, it is highly encouraged to downsample 

the inputs’ sizes to reduce the computational complexity. A 2D input size will be 

512×512 (263,680) for every single input if no rescaling is applied, while it is 

256×256 (65,536) with rescaling (i.e., a reduction in the input size by a factor of ~¾). 
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It is worth noting that rescaling is applied to all the training, validation, and testing 

volumes and masks. However, downsampling is not applied on the testing masks 

because the resulting segmentation masks are re-scaled to the original shape 512×512. 

By doing so, we intend to make the comparison as close as possible to the clinical 

environment. Moreover, the 3D object creation has better resolution when more 

voxels are involved. 

3.2.3 Intensity Clipping 

According to Yuan [30], voxels’ intensities are clipped to be in the [-100, 400] 

range to segment the liver and tumors within. Yuan [30] argues that all the liver 

voxels’ intensity values are retained in that range. Clipping is implemented as 

illustrated by equation (1): 

 
𝑉(𝑥,𝑦,𝑧) ∶  {

𝑉(𝑥,𝑦,𝑧) =  −100 𝑖𝑓 𝑉(𝑥,𝑦,𝑧) <  −100

𝑉(𝑥,𝑦,𝑧) =  𝑉(𝑥,𝑦,𝑧)  𝑖𝑓 − 100 <  𝑉(𝑥,𝑦,𝑧) < 400

𝑉(𝑥,𝑦,𝑧) =  400     𝑖𝑓 400 <  𝑉(𝑥,𝑦,𝑧)

} 
(1) 

where 𝑉(𝑥,𝑦,𝑧) represents the intensity value for volume 𝑉 at the x, y, and z 

coordinates. 

Figure 5 shows the effect that clipping has on the CT scan voxels, as it 

increases the contrast between the liver and its surroundings. 

3.2.4 Intensity Range Standardization 

 Large datasets, like the MSDC-T8, have volumes with varying upper and 

lower bounds for voxels’ intensities. As an example, some of the volumes have 

voxels’ that range between -1100 and 3024, while others can be in the range of -1000 

to 1200. This issue can be traced back to the employment of different machines to 

create these files; hence, they can be using different standards. Nonetheless, all the 

volumes are standardized to have an identical floating range that varies between 0 and 

1, which is achieved by implementing equation (2): 
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a) Before clipping     b) After clipping 

Figure 5. Cross-sectional slice from a CT scan during clipping. 

 

 
𝑉(𝑥,𝑦,𝑧) =

𝑉(𝑥,𝑦,𝑧) − min(𝑉(𝑥,𝑦,𝑧))

max(𝑉(𝑥,𝑦,𝑧)) − min(𝑉(𝑥,𝑦,𝑧))
 

(2) 

However, because clipping is applied earlier, the range of voxels’ values has 

become within the [-100, 400] range. Thus, it becomes straightforward to subtract -

100 and divide by 500 for all the voxels by equation (2). 

3.2.5 Contrast Enhancement via CLAHE 

 Contrast limited adaptive histogram equalization (CLAHE) is used to enhance 

the inter-organs borders, as well as the intra-liver borders (parenchyma, tumors, and 

blood vessels). Ordinary histogram equalization works well when the distribution of 

pixels/voxels' values is similar across the whole image/volume. However, when the 

image contains significantly lighter or darker regions relative to other parts of the 

image, CLAHE performs better as the histogram equalization for a pixel/voxel is 

calculated based on the neighboring pixels/voxels instead of the whole image. 

Figure 6 shows the effect CLAHE carries on a CT slice by displaying the slice 

before and after applying CLAHE on a 3D volume. Figure 6 shows a cross-sectional 

slice from the actual volume. Moreover, when the CLAHE algorithm is applied, it is 

applied in a 3D manner, meaning that the neighboring voxels from adjacent slices are 
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considered to apply the local histogram equalization. For documentation purposes, it 

is worth noting that the slice shown in Figure 5 and Figure 6 is slice 25 in 

hepaticvessel_001 record from the MSDC-T8 dataset. 

 

 

a) Before applying CLAHE    b) After applying CLAHE 

Figure 6. Cross-sectional slice from a CT scan during applying CLAHE. 

 

3.2.6 Volume Normalization 

 Moreover, normalization is applied to accelerate the training process. Firstly, 

the mean and the standard deviation are calculated over all the voxels in all the 

volumes. Then, the mean is subtracted, and the standard deviation is divided by as 

shown by equation (3): 

 
𝑉(𝑥,𝑦,𝑧) =

𝑉(𝑥,𝑦,𝑧) − 𝜇𝑉

𝜎𝑉
 

(3) 

where 𝜇𝑉 and 𝜎𝑉 are the mean and standard deviation, respectively, of all the voxels 

found in all the volumes. 

3.2.7 Volume Slicing 

 Lastly, before feeding volumes into the ConvNet, data are transformed from 

their initial state (3D volumes) into either 2D or 2.5D input. This transformation is 

done by importing the NIfTI files/volumes and saving them as a Tag Image File 
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Format (TIFF). The reason for using TIFF instead of other available formats is 

because it retains the floating points value and saves the files without any loss of 

information. Moreover, it is possible to save multiple images into the same file 

(creating a 3D image), making it an essential feature for data preparation, especially 

for creating 2.5D inputs into the ConvNet. 

3.3 Input Shape 

After completing the volumes’ pre-processing stage, another stage follows, 

correctly ordering the images/slices to be inserted into the ConvNet. An exciting idea 

mentioned in the literature regarding the input for 2D ConvNets is stacking the 

adjacent slices as extra channels (as with RGB pictures) to be inserted into the 2D 

ConvNet. The reason behind shaping the input in this manner is to provide the 

ConvNet with volumetric context, which is extremely important in volumes 

segmentation. The natural alternative is to use 3D ConvNets, which are memory and 

computationally expensive, to learn the volumetric context. Hence, it is favored to use 

the 2.5D technique with a 2D ConvNet instead. Figure 7 shows how the stacking of 

adjacent slices is done. 

 

 

Figure 7. Creating 2.5D input. 

 

 Moreover, a question would arise on how marginal slices are being treated. 

One possible solution is to pad zeros (empty slices) above the top marginal slice and 
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below the bottom marginal slice. Another alternative is to replicate the marginal slices 

𝑘−1

2
 times, where 𝑘 is the number of slices that will be put together into the ConvNet. 

The second approach is less erroneous as the ConvNet is still fed CT-related slices, 

unlike the first approach where blank slices are given to the ConvNet, which is further 

from reality than the second alternative. In this thesis, 5 slices (2.5D input) are 

inserted into the ConvNet, and hence, the marginal slices must be repeated 2 times to 

be able to use all the slices within the volume in the training process. 

 The best file format to save the preprocessed slices in their 2.5D shape to be 

easily imported during the training phase is the TIFF files. As mentioned earlier, the 

file format saves 3D arrays into a single file, rendering the data loading of training 

and testing samples much more effortless. Figure 8 shows how the training samples 

are saved within the MSDC-T8. 

 

 

Figure 8. 2.5D training sample storage. 

 

Once opened, the user can see there are 7 adjacent slices/images within each 

training sample. The reason for making it 7 is to allow the variability for the 
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programmer to choose an input shape that is within {1, 3, 5, 7} without having to do 

the pre-processing phase again. It is worth noting that the slices look black and white 

because the software shows them this way; however, the values range in ~[-1, 5] due 

to the applied normalization from equation (3). The 4th slice (middle slice) is always 

the targeted training sample, and 1 → 3 and 5 → 7 are the adjacent slices. In the 

results chapter, a comparison of the most suitable input shape for the liver 

segmentation is also conducted. 

3.4 High-Performance Computer (HPC) Specifications 

After defining the CT slices' pre-processing steps, it is vital to mention the 

platform where these processes occur. This thesis uses an HPC provided by Texas 

A&M in Qatar (TAMUQ) to pre-process the selected dataset and create ConvNet 

models trained on the 3 TOIs. The HPC flagship system is called “Raad2” ( 2رعد  in 

Arabic), translating into Thunder2 in English. The name is befitting as it contains 

4,128 cores from Intel Xeon Gold central processing units (CPUs), distributed over 

172 computing nodes (i.e., 24 cores per computing), and 128 Gigabyte (GB) of RAM 

per computing node [138]. The usable capacity of this HPC is 800 Terabyte, where 

500GB are given for each user. Moreover, it uses the SLURM workload manager as 

the medium to submit jobs for the HPC to process. Additionally, the state-of-the-art 

NVIDIA Volta V100 16GB VRAM GPU, along with Intel Xeon Skylake CPUs, can 

be used to run a job, with multiple CUDA versions installed [10.1, 10.2, 11.0, 11.1, 

11.2] to be loaded and used based on the specifications of the Python library 

(TensorFlow/PyTorch). Appendix A further elaborates on how to use the TAMUQ 

Raad2 HPC. 

3.5 Training Parameters 

In ConvNets, there are many hyperparameters to be tuned such that the best 

performance can be attained. In Table 3, the constant hyperparameters and training 
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parameters are mentioned, where later, the changing parameters based on the 

segmentation task at hand will be mentioned. 

 

Table 3. Hyperparameters and training parameters’ values. 

Parameter Value 

Train/Val Ratio (number of folds) 80/20 (5 folds) 

Image Rescaling factor ½  

Batch Size (batch_size) 32 

Input Shape (in_channel) 2.5D (5 slices) 

Optimizer (optim) Adam 

Learning Rate Scheduler (scheduler) 

ReduceLRonPlateau [139] (Patience = 3 

Epochs, Factor = 1 10⁄ ) 

/ OneCycleLR [140] 

Maximum epochs (epochs) 75 

Early Stopping (epochs_patience) Patience = 6 Epochs 

 

The optimal batch size is usually a power of 2 due to the specifically 

manufactured hardware configurations with the “bit” mentality. It renders any other 

batch size less optimal even if larger (The maximum batch size used on TAMUQ’s 

Raad2 is 36 with the 2.5D 5 slices input; however, it was slower in execution). Lastly, 

early stopping is implemented and is critical to ensure that the training will stop if the 

model has converged where no further performance enhancements can be observed on 

the validation set. The goal is to reduce wasted time in the training process. Figure 9 

illustrates the optimal place to stop, given that no improvements have been witnessed 

in the model’s performance. 
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Figure 9. Early stopping reasoning. 

 

3.6 Neural Network Model 

 As can be noticed from the conducted literature review, many ConvNet 

architectures have been introduced in the literature and the previous studies. It is 

cumbersome to try many different ConvNets to achieve similar results to the recent 

studies. Each study has its add-ons in terms of pre-processing and post-processing 

(and possibly on different datasets). The authors in [141] demonstrate that the U-Net 

ConvNet is still a viable solution but only needs fine-tuning to get the optimal results 

that can compete with the state-of-the-art techniques and the newly devised ConvNets 

architectures in the literature. Thus, this thesis focuses on the original U-Net, already 

a significant network architecture deemed powerful for the biomedical segmentation 

challenge. Figure 10 shows the famous U-Net architecture adapted from their original 

paper [33]. 𝑛 portrays the number of slices inserted into the U-Net, and 𝑚 portrays the 

number of output channels if a multi-label classification task is being tackled, where 

the Softmax activation function is used. 
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Figure 10. The famous U-Net ConvNet (adapted from [33]). 

 

The developed U-Net is quite similar to the original one in [33]. The numbers 

“above and below” conv operation output blocks show the number of channels this 

output has, while the vertical text to the bottom left of the block is the width and 

height of the output block. For instance, at the first level and first conv output block, 

the number of channels is 64, and the width and height are both 256.  

The following minor changes are applied. Firstly, the input to our U-Net is of 

size 𝑛 × 256 × 256 to reduce the computational complexity (where 𝑛 = 5 slices in 

our case as we are utilizing 2.5D input), unlike the original one that has an input shape 

of 1 × 572 × 572. Secondly, we apply padding and stride of 1 throughout the 

ConvNet to generate output blocks of equal sizes. Applying a stride and padding of 1 

is in line with equation (4) 

 𝑊𝑛𝑒𝑤 =
𝑊𝑜𝑙𝑑 − 𝑓𝑤 + 2𝑝

𝑠
+ 1,    𝐻𝑛𝑒𝑤 =

𝐻𝑜𝑙𝑑 − 𝑓ℎ + 2𝑝

𝑠
+ 1 (4) 

where 𝑊𝑜𝑙𝑑, 𝐻𝑜𝑙𝑑 is the width and height of the input features, respectively, and 

𝑊𝑛𝑒𝑤, 𝐻𝑛𝑒𝑤 are the width and height of output features, respectively. 𝑓𝑤 = 𝑓ℎ = 𝑓 is 
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the width and height of the kernels, 𝑝 is the amount of padding applied, and 𝑠 is the 

number of pixels/voxels the filter steps between two adjacent operations. With 𝑓 = 3, 

𝑝 = 1, and 𝑠 = 1, we are always guaranteed to have 𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 and 𝐻𝑛𝑒𝑤 = 𝐻𝑜𝑙𝑑. 

 Thirdly, the number of filters the last level has is 512 instead of 1024. The 

reason is to reduce the number of parameters to tune from 9,438,208 to 2,359,808 per 

convolutional operation at that level2. In the copy and concatenate stage, we do not 

need to crop any copied outputs because the dimensions of the encoder and decoder 

sides are identical. For the final output layer, 𝑚 = 1 is used for binary-case 

classification as either TOI or background. 

3.7 Performance Evaluation Metrics 

This section mentions the most famous metrics within the liver segmentation 

literature, highlighting used notations and their significance. 

3.7.1 Notations 

The following are basic notations that help in understanding the equations for 

the evaluation metrics: 

• 𝐴 refers to the ground-truth label voxels set 

• 𝐵 refers to the predicted voxels set by the created models 

• | ∙ | defines the set cardinality, i.e., number of voxels 

• ‖ ∙ ‖ represents the Euclidean distance 

• 𝑆( ∙ ) indicates the set of surface voxels 

• True positive (𝑇𝑃) is the set of correctly classified TOI pixels/voxels 

• True negative (𝑇𝑁) is the set of correctly classified background pixels/voxels, 

noting that background voxels describe any voxel, which does not belong to 

the TOI of the study 

 

2 3x3x1024x1024+1024 = 9,438,208 parameters        ;         3x3x512x512+512 = 2,359,808 parameters 
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• False positive (𝐹𝑃) is the set of incorrectly classified background 

pixels/voxels 

• False negative (𝐹𝑁) is the set of incorrectly classified TOI pixels/voxels 

3.7.2 Percentile Metrics 

3.7.2.1 Jaccard Index (JI) 

JI is a fundamental metric to understand how closely the generated prediction 

overlaps with the ground-truth label. It is also known as the Tanimoto index or 

intersection-over-union (IoU) metric [120]. Equation (5) shows two equivalent 

definitions of the JI metric. 

 
𝐽𝐼 =

|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(5) 

Intuitively, perfect prediction is when JI is equal to 1, meaning that |A ∩ B| is 

the same as |A ∪ B|. In other words, there are no wrong predictions (i.e., 𝐹𝑃 and 𝐹𝑁 = 

0), and the volumes are perfectly similar. In contrast, JI equating to 0 means that no 

intersection whatsoever exists between the ground-truth and prediction, or 𝑇𝑃 is 0, 

meaning that the TOI is completely misclassified. 

3.7.2.2 Precision/Positive Predictive Value (PPV) 

Precision aims to investigate the over-segmentation aspect of the model by 

dividing the total number of correctly classified TOI voxels over the total positively 

classified voxels (i.e., true and false) as indicated by equation (6). 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛/𝑃𝑃𝑉 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(6) 

Where a value of 1 indicates an ideal segmentation scenario of classifying 

background voxels correctly. In contrast, a value of 0 is the extreme case of 

incorrectly classifying all TOI voxels. 

3.7.2.3 Recall/Sensitivity/True Positive Rate (TPR) 

On the other hand, recall investigates the under-segmentation aspect of the 
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model by dividing the correctly classified TOI voxels over the “actual” number of 

TOI voxels, as shown by equation (7). 

 
𝑅𝑒𝑐𝑎𝑙𝑙/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/𝑇𝑃𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(7) 

Recall varies between 0 and 1, where 1 indicates perfect segmentation of all 

TOI voxels, and 0 indicates the exact opposite. 

3.7.2.4 Dice Similarity Coefficient (DSC/Dice) 

DSC (or Dice) is the F1 Score counterpart for images, a harmonic mean of 

precision and recall. In a sense, it measures the similarity between ground-truth set 𝐴 

and generated prediction 𝐵. The original Dice for a single image is defined in 

equation (8). 

 
𝐷𝑖𝑐𝑒 = 2

|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(8) 

Similar to the JI metric, the two extreme cases are 0 and 1, where the former 

emphasizes the absence of any similarity and the latter shows a perfect similarity 

between 𝐴 and 𝐵. 

3.7.2.5 Specificity/True Negative Rate (TNR) 

Depicted in equation (9), specificity investigates the model capability in 

classifying background voxels correctly; it is the same as the Recall but for the 

negative class. 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦/𝑇𝑁𝑅 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(9) 

Ranging between 0 and 1, the former denotes a misclassification of all 

background voxels, and the latter resembles a proper classification for all background 

voxels. 

3.7.2.6 Volumetric Overlap Error (VOE) 

VOE is the complementary metric of JI, also known as the Jaccard distance, 
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knowing that VOE is a particular case for volumetric sets. It measures the spatial error 

represented between the voxels of 𝐴 and 𝐵 [120] and is described by equation (10). 

 
𝑉𝑂𝐸 = 1 − 𝐽𝐼 = 1 −

|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(10) 

VOE ranges between 0 and 1, where the former means that the voxels of 𝐵 are 

perfectly and correctly lying over 𝐴's voxels, where the latter indicates the absence of 

overlapping voxels between the voxels of 𝐴 and 𝐵. 

3.7.2.7 Relative Volume Difference (RVD) 

RVD measures the difference between volume 𝐴 and 𝐵, and is an indicator of 

whether the set of voxels encompassed by 𝐵 is an under- or over-segmentation by 

comparing it with 𝐴's voxels [120]. Equation (11) highlights this metric. 

 
𝑅𝑉𝐷(𝐴, 𝐵) =

|𝐵| − |𝐴|

|𝐴|
 

(11) 

This metric can be positive, negative, or zero, whereas positive indicates that 

𝐵 is over-segmenting the original volume, negative indicates an under-segmentation 

case, and zero as having identical volumes. RVD should not be used alone as it does 

not necessarily indicate an overlap between 𝐴 and 𝐵 [120]. 

3.7.3 Distance Measurements 

The distance measurements extensively used in literature are mentioned here, 

each measurement captures a specific spatial aspect, and all of them are measured in 

millimeters [mm]. 

3.7.3.1 Average Symmetric Surface Distance (ASD) 

ASD measures the minimum distance that can be found between a surface 

voxel in 𝐴 to another surface voxel in 𝐵. Since the metric is symmetric, the same 

applies to 𝐵 with respect to 𝐴. Then, the average is taken over all the calculated 

distances. Surface voxel is a name given to a voxel with at least one non-TOI voxel 
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(i.e., background voxel) from its 18-neighboring voxels, as shown in Figure 11. 

 

 

Figure 11. A surface voxel (red) with 1 non-TOI adjacent voxel (white) and 17 TOI 

voxels (grey). 

 

It is necessary to define the minimum distance between an arbitrary voxel 𝑣 

and the set of surface voxels 𝑆(𝐴) to define ASD, as follows: 

 
𝑑(𝑣, 𝑆(𝐴)) = min

𝑠𝐴∈ 𝑆(𝐴)
‖𝑣 − 𝑠𝐴‖ 

(12) 

where 𝑠𝐴 is a single surface voxel from the surface voxels set 𝑆(𝐴). Using equation 

(12), it is possible now to define ASD as follows: 

 
𝐴𝑆𝐷(𝐴, 𝐵) =

1

|𝑆(𝐴)| + |𝑆(𝐵)|
( ∑ 𝑑(𝑠𝐴, 𝑆(𝐵))

𝑠𝐴∈ 𝑆(𝐴)

+ ∑ 𝑑(𝑠𝐵, 𝑆(𝐴))

𝑠𝐵∈ 𝑆(𝐵)

) 
(13) 

From equation (13) and the definition of Euclidean distance in equation (12), 

it is observed that this metric is always positive. The value converges to 0 when the 

highest spatial similarity is achieved. However, the larger the value, the worse the 

overlap between volumes 𝐴 and 𝐵 is noticed, and dissimilarity starts to be observed. 

3.7.3.2 Root-Mean-Square Symmetric Surface Distance (RMSD) 

RMSD is significantly related to the ASD definition described by equation 

(13). The root-mean-square of ASD is the summation of distances squared under the 
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square root as defined by equation (14). 

 
𝑅𝑀𝑆𝐷(𝐴, 𝐵) = √

1

|𝑆(𝐴)| + |𝑆(𝐵)|
( ∑ 𝑑2(𝑠𝐴, 𝑆(𝐵)

𝑠𝐴∈ 𝑆(𝐴)

) + ∑ 𝑑2(𝑠𝐵, 𝑆(𝐴))

𝑠𝐵∈ 𝑆(𝐵)

) 
(14) 

The benefit of defining such a metric is the amount of weight bestowed over 

large deviations, making the metric more sensitive to outliers [120]. Equivalently, the 

best value for this metric should be 0, and the bigger it is, the worse the volumes' 

overlap is. 

3.7.3.3 Maximum Symmetric Surface Distance (MSD) 

MSD, famously known as Hausdorff Distance (HD) as well, searches for the 

maximum distance, defined by equation (15), that can be found between volumes 𝐴 

and 𝐵. 

 𝐻𝐷(𝐴, 𝐵) = max ( 𝑚𝑎𝑥
𝑠𝐴∈ 𝑆(𝐴)

𝑑(𝑠𝐴, 𝑆(𝐵)) , 𝑚𝑎𝑥
𝑠𝐵∈ 𝑆(𝐵)

𝑑(𝑠𝐵, 𝑆(𝐴))) (15) 

This metric gives the maximum distance error between 𝐴 and 𝐵, and thus, is 

extremely sensitive to outliers [120]. A 95% HD variant takes the maximum distance 

on 95% of sorted distances; hence, 95% HD will always be less than HD. 

3.8 3D Construction and Printing 

Once the models with the highest performance have been developed and 

identified, it is possible to use them in a clinical environment to aid surgeons and 

physicians in performing hepatectomy. A script has been implemented to interpolate a 

3D object out of the 2D segmented slices from a CT scan to make it smoother and 

more human-friendly to visualize the liver’s tissues. Consequently, it will be possible 

for the clinicians to see the liver, along with its tumors and vessels, in a 3D form that 

can be easily accessed over a typical computer or 3D printed for them to conduct a 

trial operation. The end goal is to have the liver as seen in Figure 12 (the parenchyma 

is colored as white, but the color has been slightly modified to show in this report). 
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Figure 12. 3D object interpolation of record 294 from the MSDC-T8 dataset. 

 

Figure 12 is the product of the developed 3D interpolation script, where the 

2D ground-truth slices, fetched from both the organizers [128] and the researchers 

[57], are being interpolated. 

It is worth noting that an algorithm called “The Marching Cubes” from the 

scikit-image library on Python [142] is utilized to interpolate the 2D cross-sectional 

slices into their 3D counterpart. It is deemed suitable for the case of this thesis as our 

investigation is more towards the ML part implemented on the 2D slices. However, 

the algorithm can do the 3D interpolation only, but combining them into a single .obj 

file and utilizing a .mtl file to add the coloring and textures has been implemented on 

Python from scratch. 

Firstly, the 3 tissues’ masks are loaded into the script after being generated by 

the designated ConvNets, via the nibabel Python library. Then, the 3D Lewiner 

interpolation using “The Marching Cubes” algorithm, from the scikit-image Python 

library, is used to create the 3D object of each tissue (the .obj file). It is worth noting 

that 4 mandatory types of parameters are mentioned in the .obj file, namely, the vertex 
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(v), the vertex texture (vt), the vertex normal (vn), and the face (f). Figure 13 shows 

the different information needed to construct the .obj file. 

 

 

Figure 13. Mandatory components of a .obj file. 

 

The (v)s define the coordinates of vertices in the 𝑥, 𝑦, 𝑧 3D space. On the 

other hand, the (vt)s and (vn)s are not as important, but the (vt) aid in making the 3D 

object more realistic by mapping a pre-defined texture map on the faces, and the (vn) 

aid in specifying the direction of the normal vector [143]. Lastly, the (f)s combine the 

three above components in the following order as shown by equation (16): 

 
𝑓   𝑣1[/𝑣𝑡1][/𝑣𝑛1]   𝑣2[/𝑣𝑡2][/𝑣𝑛2]   𝑣3[/𝑣𝑡3][/𝑣𝑛3] . . . 𝑣𝑥[/𝑣𝑡𝑥][/𝑣𝑛𝑥] (16) 

where 𝑥 is the number of vertices designated for each face 𝑓, as it can have as many 

vertices as needed [144]. 
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The square brackets [ ] in equation (16) indicate that these values are optional. 

Moreover, because the scikit-image library produces vertices linked generating 

triangular faces, 3 vertices are needed to build each face. 

 Once the .obj file has been created for each tissue, the statement “mtllib 

<material_filename>.mtl” is added, enabling linking with the .mtl file. The linking 

allows importing the defined texture and color onto different surfaces. Moreover, the 

statement “usemtl <tissue_material>” precedes the faces of an object in that file, 

allowing any software to assign the material color/texture to that object. Lastly, .obj 

files for all tissues are then combined by placing all the (v)s of each .obj at the 

beginning, followed by all the (vt)s beneath the (v)s, and followed by the (vn)s 

beneath both (v)s and (vt)s. The same is applied to the (f)s; however, because more 

(v)s, (vt)s, and (vn)s have been added within the same file, the 2nd, 3rd, 4th,…, xth 

vertices for the (f)s have to account for the number of vertices that are reserved for the 

preceding objects. Figure 14 elaborates more on the idea of combining different .obj 

files into a single one, where it can be noticed that the tumor object uses vertices 

starting from the 1380161st vertex, as the previous 1380160 are used to construct the 

liver object. 

Lastly, it is well-known that there is available software that can do the 2D to 

3D interpolation. However, the reasoning behind implementing it on Python is to have 

an end-to-end tool for surgeons and clinicians to use such that it eliminates the 

necessity of third-party software. The end-users interactions are intended to be 

brought down to the minimum, to feed the CT scan into the desktop application and 

expect the output to be a 3D interpolated object ready to be visualized and printed. In 

the upcoming results chapter, we show the developed desktop application to achieve 

this goal. 
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Figure 14. Resulting .obj and .mtl files main components. 

 

To extend our work beyond just a mere visualization tool of liver tissues, it is 

also possible to have it printed for the end-user to hold physically. Hence, many 

companies have been contacted to query regarding their 3D printing services within 

the biomedical field. We contacted the following 5 companies to evaluate their 

services (see Table 4). 

Out of these five companies, two companies were highly responsive and 

professional, which are i.Materialise and Axial3D. Both have shown interest in our 

work; however, i.Materialise was much more expensive than what we could afford. 

Contrastingly, with Axial3D, we were able to negotiate a 50% discount on our order 

given that we are one of the first customers situated in Qatar, and they would like to 
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expand their market share here. Thus, we decided to work with Axial3D as their 

services are more within our budget. 

 

Table 4. Companies that are involved in 3D printing and have been contacted. 

Company 
Ability to 

Print 
Country Delineate 

Printing 

Quality 
Expert Cost 

i.Materialise 
Yes 

(DICOM) 
Belgium Yes 

Rubber 

Parenchyma 
Great 

$$$$

$ 

Axial3D 
Yes 

(NIfTI) 
UK Yes 

Solid 

Parenchyma 
Superb $$$ 

Deed3D 
Yes 

(NIfTI) 
China No 

Solid 

Parenchyma 
Good N/A 

B9Creations No US N/A N/A Bad N/A 

RapidMade N/A US N/A N/A N/A N/A 

 

To conclude, the details behind our implementation are thoroughly discussed 

in this chapter: the utilized dataset, the data pre-processing techniques, the input shape 

transformation, the HPC platform, the training parameters, the ConvNet U-Net model, 

the performance metrics, and the 3D construction and printing. Our detailed 

explanation should allow researchers to replicate our work and compare their results 

with ours.  
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CHAPTER 4: EXPERIMENTAL RESULTS AND DISCUSSION 

This chapter depicts and discusses the experimental results generated from the 

applied preprocessing techniques and the chosen ConvNet. This thesis tackles three 

main segmentation tasks: liver segmentation, tumors (within liver) segmentation, and 

vessels (within liver) segmentation. Each segmentation task is further elaborated in a 

section of its own. It is worth noting that the framework of choice is PyTorch (torch 

version==1.8.1+cu102), which is responsible for the results that are mentioned below. 

All the displayed results are the outcomes of a 5-fold cross-validation (80% 

training/20% validation) procedure. The maximum number of epochs per fold is 75, 

but early stopping is utilized to avoid unnecessary training time (𝑒𝑝𝑜𝑐ℎ𝑠_𝑠𝑡𝑜𝑝 = 6). A 

𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 of 32 is used to maximize the learning speed of the model, consequently 

reducing the training time for the 5-fold cross-validation. Adam optimizer is used in 

general for all the tasks below. Lastly, it is worth mentioning and praising the Raad2 

HPC provided by TAMUQ, as we utilized the NVIDIA Tesla V100 GPU and the Intel 

Xeon Skylake CPU in this thesis. 

4.1 Liver Segmentation 

The liver should be initially segmented with high precision and accuracy to 

segment tumors and vessels successfully. Logically, it makes the liver segmentation a 

high priority, which will then be used to localize the segmentation area for both 

tumors and vessels. The liver-related slices and voxels will be the input to both the 

tumors and vessels ConvNets, as shown previously in Figure 3. 

It is vital to explicitly mention the CT records being used in the testing set 

such that interested researchers can confidently replicate our results and possibly 

surpass them by testing on the same records. They were selected randomly from the 

MSDC-T8 dataset, and they sum up to 23 records in total. They are the following: 
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[003, 012, 045, 072, 090, 105, 117, 129, 141, 153, 169, 178, 193, 205, 220, 236, 246, 

258, 268, 280, 294, 304, 320] for the liver segmentation task. When implementing the 

5-fold cross-validation, ~24K slices end up in the 4 training folds, and ~6K slices end 

up in the validation fold. For the tumors and vessels segmentation tasks, the records 

are less, given that not all the 23 volumes have the tumors and vessels masks, and 

subsequently, the number of slices for both is different. 

We investigate the best model by studying the best input shape inserted into 

the U-Net ConvNet, then checking different learning rates (LRs) and scheduling 

techniques that influence the LR throughout the training phase. 

4.1.1 Optimal Input Shape Investigation 

 In this subsection, the optimal ConvNet’s input shape is investigated, as from 

the previously conducted literature survey, it has been established that different input 

shapes are fed into the ConvNets. Given that this thesis uses a 2D ConvNet 

architecture, the 2D and 2.5D input shapes are the shapes of interest in this subsection 

as they are easily created and input into the ConvNet. Table 5 shows the comparison 

between 2D (1 slice) and 2.5D (3, 5, and 7 slices) input shapes. It can be observed 

from the portrayed results that the 2.5D (5 slices) is the optimal input shape for the 

liver segmentation challenge on the MSDC-T8 dataset. 

Moreover, a gradual increase in performance can be observed until the peak 

performance is reached at 2.5D (5 slices), and then it slightly declines when 7 slices 

are inserted into the ConvNet. Although the ConvNet performs well for all different 

input shapes, the optimal input shape is the 2.5D input shape. It provides the ConvNet 

with the volumetric context without overdoing it, as sometimes the inter-slices 

distance is significant for the volumetric context to be captured. The effect of 

capturing volumetric context information via the 2.5D input shape can be observed on 
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the distance measurement, as the 2D version has the highest distance errors. 

 

Table 5. Different input shapes into U-Net performance comparison. 

 

4.1.2 Scheduling Techniques and LRs Variations 

 In this part, we investigate the different suitable schedulers along with the 

various LRs, while keeping other variables as constants. The comparison is between 

two powerful schedulers, ReduceLRonPlateau [139] and OneCycleLR [140]. Each 

scheduler has a different philosophy behind its creation. On the one hand, the idea 

behind the ReduceLRonPlateau is to reduce the LR when the model converges to the 

cost function’ local minimum that it is approaching. By doing so, we can squeeze the 

most out of the model and tune the weight to be as close as we can to the local 

minimum. On the other hand, OneCycleLR attempts to prevent the model from falling 

into a local minimum suitable for the training set (overfitting). It prevents the model 

from overfitting by gradually boosting the LR to get stuck at a “better” cost function’s 

minimum. In a sense, it is considered as a regularization step in the model training 

[145]. Figure 15 shows the difference in the incurred LR values during the training 

phase, assuming that the early stopping does not intervene to stop the model’s 

training. Both are implemented on PyTorch, making it easy to “plug and play” both 

schedulers, testing their efficacy with the liver segmentation task. 

Input shape 
Dice 

(%) 

IoU 

(%) 
RVD 

ASD 

(mm) 

RMSD 

(mm) 

HD 

(mm) 

95% HD 

(mm) 
Epoch 

2D (1 slice) 
97.84 

(0.21) 

95.81 

(0.38) 

-0.01 

(0.003) 

0.902 

(0.564) 

3.16 

(1.62) 

35.94 

(5.65) 

6.49 

(5.35) 

18.6 

(3) 

2.5D (3 slices) 
98.04 

(0.07) 

96.17 

(0.13) 

-0.01 

(0.003) 

0.596 

(0.184) 

2.34 

(0.81) 

26.94 

(3.48) 

2.66 

(0.46) 

22 

(1.7) 

2.5D (5 slices) 
98.12 

(0.04) 

96.33 

(0.07) 

-0.008 

(0.002) 

0.624 

(0.443) 

2.15 

(1.40) 

27.16 

(4.53) 

4.10 

(4.37) 

22.0 

(1.6) 

2.5D (7 slices) 
98.02 

(0.13) 

96.15 

(0.24) 

-0.008 

(0.005) 

0.763 

(0.639) 

2.41 

(1.5) 

29.73 

(1.71) 

4.48 

(4.38) 

20.2 

(2.5) 



 

61 

 

                          (a)             (b) 

Figure 15. LR change via (a) OneCycleLR and (b) ReduceLRonPlateau. 

 

Table 6 shows the mean and standard deviation from the 5-fold cross-

validation implemented per scheduler and LR. Results are reported using the mean 

(standard deviation) of 5-fold cross-validation. 

 

Table 6. Both schedulers with different LRs are reported for each metric. 

Scheduler 
LR 

(10-5) 

Dice 

(%) 

IoU 

(%) 
RVD 

ASD 

(mm) 

RMSD 

(mm) 
HD (mm) 

95% HD 

(mm) 
Epochs 

O
n

eC
y

cl
eL

R
 (

M
ax

 L
R

) 

2 
97.67 

(0.12) 

95.48 

(0.23) 

-0.008 

(0.004) 

1.055 

(0.509) 

3.81 

(1.15) 

44.00 

(4.43) 

5.13 

(4.03) 

42.6 

(2.6) 

4 
97.72 

(0.15) 

95.58 

(0.28) 

-0.009 

(0.004) 

1.002 

(0.522) 

3.70 

(1.58) 

41.58 

(7.41) 

5.09 

(4.12) 

34.0 

(3.1) 

8 
97.93 

(0.09) 

95.97 

(0.17) 

-0.009 

(0.005) 

0.576 

(0.089) 

2.51 

(0.30) 

37.78 

(1.86) 

2.82 

(0.70) 

29.4 

(2.2) 

16 
98.01 

(0.06) 

96.12 

(0.11) 

-0.008 

(0.005) 

0.521 

(0.110) 

2.05 

(0.45) 

31.51 

(6.71) 

2.68 

(0.67) 

29.0 

(2.9) 

24 
98.07 

(0.11) 

96.24 

(0.21) 

-0.005 

(0.003) 

0.482 

(0.076) 

1.88 

(0.29) 

29.25 

(5.18) 

2.43 

(0.59) 

30.0 

(3.8) 

32 
98.03 

(0.10) 

96.16 

(0.19) 

-0.004 

(0.005) 

0.606 

(0.147) 

2.47 

(0.71) 

34.31 

(3.11) 

2.61 

(0.45) 

25.0 

(3.7) 

40 
98.04 

(0.17) 

96.17 

(0.32) 

-0.007 

(0.003) 

0.503 

(0.131) 

1.97 

(0.74) 

33.17 

(8.63) 

2.56 

(0.82) 

25.8 

(2.0) 

R
ed

u
ce

L
R

o
n
P

la
te

au
 

0.4 
97.20 

(0.13) 

94.60 

(0.24) 

-0.009 

(0.004) 

1.541 

(0.276) 

5.59 

(0.63) 

59.02 

(7.91) 

10.63 

(3.15) 

72.8 

(3.9) 

0.8 
97.40 

(0.15) 

94.96 

(0.27) 

-0.010 

(0.003) 

1.097 

(0.238) 

4.47 

(0.86) 

59.47 

(7.83) 

5.56 

(3.35) 

48.6 

(4.0) 

2 
97.69 

(0.13) 

95.51 

(0.24) 

-0.011 

(0.003) 

0.751 

(0.130) 

3.03 

(0.61) 

40.43 

(1.46) 

3.40 

(0.76) 

30.6 

(1.3) 

4 
97.87 

(0.06) 

95.86 

(0.11) 

-0.011 

(0.003) 

0.625 

(0.142) 

2.57 

(0.84) 

38.26 

(7.34) 

2.73 

(0.12) 

23.0 

(2.8) 

8 
98.04 

(0.10) 

96.18 

(0.19) 

-0.009 

(0.003) 

0.528 

(0.104) 

1.99 

(0.52) 

27.03 

(6.55) 

2.67 

(0.73) 

20.8 

(3.6) 

16 
98.12 

(0.04) 

96.33 

(0.07) 

-0.008 

(0.002) 

0.624 

(0.443) 

2.15 

(1.40) 

27.16 

(4.53) 

4.10 

(4.37) 

22.0 

(1.6) 

32 
98.02 

(0.10) 

96.15 

(0.19) 

-0.006 

(0.004) 

0.515 

(0.062) 

2.09 

(0.52) 

33.87 

(10.39) 

2.58 

(0.42) 

18.8 

(4.2) 

        

        

        

        

        

        

                 

      

                                            

        

        

        

        

        

        

                 

      

                                     

Max LR 
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The mentioned LRs for the OneCycleLR scheduler are the maximum LRs that 

the scheduler will reach (refer to Figure 15b). 

4.1.3 Best Model Selection and Discussion 

The best results per metric are bolded in Table 6. Firstly, it is worth noting that 

the achieved results using the original U-Net in 2D and 2.5D modes outperform the 

ones described in [57]. It achieves a better Dice result than the 2D (with and without 

convolutional long short-term memory (LSTM)), the 2.5D, and the 3D U-Net 

counterparts in the liver segmentation task. Moreover, it comes highly close to the 

proposed GLC-UNet (98.18 ± 0.85)% in [57], while the best run from 

ReduceLRonPlateau (with LR=16×10-5 achieves (98.12 ± 0.04)% in Dice. This 

outcome shows that it is possible to extract even higher results from their GLC-UNet 

if they adopt our pre-processing and scheduling techniques. Additionally, the obtained 

results per fold are close to each other as the reported standard deviation are relatively 

small. 

The chosen LR must not be too small, so the network avoids getting stuck at a 

local minimum, consequently having prolonged training periods and worse 

performance on the validation set. This point is evident for both schedulers by 

observing that higher LRs tend to generate ConvNets that generalize better (more 

finely tuned) with less training time. In comparing both scheduling techniques in the 

generated results, the best result from ReduceLRonPlateau (LR = 16×10-5 with Dice = 

98.12 ± 0.04%) surpasses the best run from OneCycleLR (LRmax = 24×10-5 with   

Dice = 98.07 ± 0.11%). Moreover, it converged faster than the OneCycleLR since 

OneCycleLR initially starts with a small LR that gradually increases and reaches the 

peak around epoch 23 (refer to Figure 15b). In contrast, ReduceLRonPlateau starts 

strong with a high LR when compared to the OneCycleLR scheduler. 
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Figure 16 shows a convergence example from the two best runs from 

OneCycleLR and ReduceLRonPlateau schedulers, respectively, highlighting the point 

mentioned above on why ReduceLRonPlateau converges faster in this context. 

 

 

                    (a)          (b) 

Figure 16. Convergence plots for best fold run (a) ReduceLRonPlateau LR=16×10-5 

and (b) OneCycleLR with LR=24×10-5. 

 

Given that the best model has been found for the liver segmentation challenge, 

it is possible to tackle the following challenges, represented by the tumors and vessels 

segmentation. Additionally, it is worth noting that the segmented liver volume can be 

utilized to localize and remove background voxels from the input to both tumors and 

vessels ConvNets (as represented by Figure 3). Segmenting the liver beforehand 

allows both tumors and vessels ConvNets to focus on the critical voxels within the 

liver. Figure 17 shows an example of performing an element-wise multiplication 

operation between CT scan slice 128 (record #369) and its ground-truth mask to 

generate the segmented slices used as inputs to the following ConvNets. 
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Figure 17. Element-wise multiplication of the CT scan slice with its liver mask. 

 

4.2 Tumors and Vessels Segmentation 

Out of the 23 records in the testing set, the tumors and vessels' ground-truth 

masks are available for 14 only, making it a viable solution to test the tumors and 

vessels segmentation ConvNets. They are the following: [072, 090, 117, 129, 141, 

178, 193, 236, 246, 258, 268, 280, 294, 320] for the tumors and vessels segmentation 

tasks. When implementing the 5-fold cross-validation, ~12K slices end up in the 4 

training folds, and ~3K slices end up in the 5th validation fold. 

By obtaining the segmented liver via the produced liver masks from the liver 

ConvNet (as depicted by Figure 17), following tumors and vessels’ ConvNets can 

focus on the liver voxels by disregarding all other voxels as background because they 

will be equated to zero. However, to show the efficacy of multiplying the liver mask 

with the CT slices, Table 7 shows the “before and after” effect of applying the 

ground-truth liver masks for the tumors and vessels segmentation tasks. For the sake 

of this comparison, the OneCycleLR scheduler has been used, given it is 

outperforming the ReduceLRonPlateau scheduler in the tumors and vessels 

segmentation challenges. Table 7 shows that the tumors segmentation has 

significantly increased when the liver mask has been applied. In contrast, the vessels 

segmentation did not get improved; instead, the performance slightly worsened. This 

phenomenon can be attributed to two factors: 1) The liver’s vessels structure is 
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unique, so applying the liver mask does not add significant value; however, for the 

tumors, it did because they are easier to be confused with other organs looking like a 

tumor, such as the kidneys. Hence, by applying the liver mask, these organs are 

removed. 2) The method liver masks are created, as some do not include vessels as 

part of the liver, and when multiplied by the liver mask, the vessels’ voxels are 

discarded. Figure 18 shows two examples of vascular tissues that are discarded when 

multiplying with the generated liver mask. Green is the ground-truth liver mask, blue 

is the ground-truth tumors mask, and red is the ground-truth vessels mask. 

 

Table 7. Performance metrics of both tumors’ and vessels’ ConvNets before and after 

applying liver masks. 

TOI Stage LR (10-5) 
Dice 

(%) 

IoU 

(%) 
RVD 

ASD 

(mm) 

RMSD 

(mm) 

HD 

(mm) 

95% HD 

(mm) 

T
U

M
O

R
S

 

Before 

4 
38.62 

(3.54) 

27.66 

(2.78) 

-0.335 

(0.108) 

38.018 

(12.247) 

46.08 

(12.5) 

105.37 

(13.59) 

71.46 

(16.35) 

28 
51.18 

(4.08) 

39.09 

(3.72) 

-0.042 

(0.247) 

41.948 

(13.383) 

51.53 

(12.87) 

120.27 

(20.09) 

76.85 

(18.39) 

40 
53.24 

(4.03) 

40.53 

(3.88) 

0.252 

(0.371) 

31.109 

(11.35) 

41.67 

(9.68) 

120.55 

(17.12) 

69.11 

(10.34) 

After 

4 
57.73 

(1.1) 

45.19 

(0.86) 

0.040 

(0.162) 

25.299 

(16.011) 

32.15 

(15.2) 

89.57 

(11.13) 

51.03 

(14.22) 

28 
59.71 

(3.91) 

46.94 

(3.68) 

0.251 

(0.328) 

17.126 

(13.208) 

23.25 

(12.18) 

77.39 

(8.22) 

38.49 

(11.01) 

40 
57.86 

(2.41) 

45.22 

(2.65) 

0.312 

(0.514) 

11.445 

(1.618) 

18.04 

(1.73) 

68.95 

(5.63) 

38.57 

(5.92) 

V
E

S
S

E
L

S
 

Before 

4 
50.50 

(1.18) 

34.79 

(1.07) 

0.052 

(0.118) 

4.363 

(0.336) 

9.15 

(0.57) 

79.64 

(10.09) 

19.06 

(1.46) 

28 
52.68 

(1.38) 

36.85 

(1.06) 

0.065 

(0.094) 

4.563 

(0.376) 

10.27 

(1.98) 

72.09 

(17.79) 

19.81 

(0.87) 

40 
52.39 

(1.84) 

36.63 

(1.74) 

0.038 

(0.115) 

4.164 

(0.163) 

8.22 

(0.21) 

58.13 

(13.10) 

18.51 

(0.87) 

After 

4 
48.63 

(1.30) 

33.18 

(1.13) 

-0.098 

(0.133) 

4.230 

(0.395) 

7.97 

(0.54) 

49.25 

(6.05) 

18.34 

(1.33) 

28 
50.34 

(1.82) 

34.73 

(1.52) 

-0.045 

(0.144) 

4.186 

(0.350) 

7.95 

(0.44) 

44.70 

(3.64) 

18.96 

(1.30) 

40 
47.36 

(1.85) 

32.28 

(1.57) 

-0.244 

(0.065) 

4.800 

(0.473) 

8.61 

(0.56) 

42.88 

(1.34) 

20.46 

(1.23) 

 



 

66 

 

          (a) Hepaticvessel_294_slice_83        (b) Hepaticvessel_268_slice_27 

Figure 18. Examples of vasculature tissues, where example (a) shows vessels 

completely out of the liver, and example (b) shows vessels inside the liver organ, but 

outside the liver mask. 

 

After showing the pros and cons of applying the liver delineation, we have 

applied the masks for both the tumors and vessels tissues to maintain consistency; 

however, we plan to treat the vessels differently in the future. We now focus on the 

ConvNets trained on tumors and vessels segmentation after multiplying the liver 

masks with the CT slices. Both Table 8 and Table 9 show the deployed LRs for the 

tumors and vessels segmentation tasks, respectively. The portrayed results are the 

mean (standard deviation) of 5-fold cross-validation runs of these 5 runs. For the 

tumors’ segmentation results shown in Table 8, it is easy to notice that changing LRs 

did not significantly enhance any of the metrics, albeit their effect is more noticeable 

in Table 7. Moreover, although the Dice score average value is similar for LR 28x10-5 

and 150x10-5, the standard deviation is much smaller for the 150x10-5 LR. This result 

shows a less consistent behavior for the trained models under the 28x10-5 LR run. 
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Table 8. Performance evaluation of tumors’ ConvNets with different LRs. 

LR (10-5) 
Dice 

(%) 

IoU 

(%) 
RVD 

ASD 

(mm) 

RMSD 

(mm) 

HD 

(mm) 

95% HD 

(mm) 

4 
57.73 

(1.10) 

45.19 

(0.86) 

0.040 

(0.162) 

25.299 

(16.011) 

32.15 

(15.20) 

89.57 

(11.13) 

51.03 

(14.22) 

20 
59.02 

(3.64) 

46.79 

(3.73) 

0.174 

(0.231) 

24.834 

(15.989) 

31.23 

(15.40) 

80.61 

(14.21) 

50.58 

(15.24) 

28 
59.71 

(3.91) 

46.94 

(3.68) 

0.251 

(0.328) 

17.126 

(13.208) 

23.25 

(12.18) 

77.39 

(8.22) 

38.49 

(11.01) 

40 
57.86 

(2.41) 

45.22 

(2.65) 

0.312 

(0.514) 

11.445 

(1.618) 

18.04 

(1.73) 

68.95 

(5.63) 

38.57 

(5.92) 

60 
57.63 

(1.63) 

45.18 

(2.12) 

0.083 

(0.228) 

23.249 

(23.505) 

28.98 

(23.79) 

75.07 

(22.5) 

44.81 

(27.03) 

80 
58.75 

(2.27) 

46.38 

(1.98) 

0.310 

(0.184) 

17.490 

(13.207) 

23.94 

(12.10) 

74.02 

(11.71) 

42.82 

(11.36) 

100 
57.73 

(4.05) 

45.60 

(3.72) 

0.513 

(0.436) 

11.991 

(1.564) 

18.92 

(2.70) 

73.10 

(10.13) 

39.42 

(9.32) 

120 
59.51 

(3.00) 

47.08 

(3.49) 

0.467 

(0.431) 

11.954 

(2.613) 

17.92 

(2.99) 

72.46 

(7.52) 

34.43 

(3.84) 

150 
59.70 

(0.61) 

47.28 

(1.24) 

0.229 

(0.263) 

11.921 

(0.988) 

19.04 

(2.15) 

73.18 

(8.83) 

38.82 

(6.59) 

 

It is worth re-iterating that the results here are after applying the mask. Unlike 

the tumors’ results, the best performance for most metrics has been achieved with the 

LR = 28x10-5. 

 

Table 9. Performance evaluation of vessels’ ConvNets with different LRs. 

LR (10-5) 
Dice 

(%) 

IoU 

(%) 
RVD 

ASD 

(mm) 

RMSD 

(mm) 

HD 

(mm) 

95% HD 

(mm) 

4 
48.63 

(1.30) 

33.18 

(1.13) 

-0.098 

(0.133) 

4.230 

(0.395) 

7.97 

(0.54) 

49.25 

(6.05) 

18.34 

(1.33) 

20 
48.39 

(2.19) 

33.04 

(1.81) 

-0.095 

(0.092) 

5.091 

(1.157) 

9.15 

(1.47) 

46.59 

(2.93) 

21.40 

(2.83) 

28 
50.34 

(1.82) 

34.73 

(1.52) 

-0.045 

(0.144) 

4.186 

(0.350) 

7.95 

(0.44) 

44.70 

(3.64) 

18.96 

(1.30) 

40 
47.36 

(1.85) 

32.28 

(1.57) 

-0.244 

(0.065) 

4.800 

(0.473) 

8.61 

(0.56) 

42.88 

(1.34) 

20.46 

(1.23) 

60 
49.72 

(2.40) 

34.34 

(2.01) 

-0.196 

(0.119) 

4.422 

(0.732) 

8.13 

(0.95) 

43.67 

(2.12) 

19.29 

(2.01) 

80 
48.95 

(3.01) 

33.61 

(2.63) 

-0.150 

(0.144) 

4.559 

(0.764) 

8.35 

(0.86) 

46.80 

(4.10) 

19.59 

(2.20) 

100 
47.66 

(0.96) 

32.39 

(0.89) 

-0.277 

(0.102) 

4.900 

(0.304) 

8.95 

(0.50) 

44.64 

(3.01) 

21.33 

(1.09) 
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LR (10-5) 
Dice 

(%) 

IoU 

(%) 
RVD 

ASD 

(mm) 

RMSD 

(mm) 

HD 

(mm) 

95% HD 

(mm) 

120 
49.03 

(4.02) 

33.62 

(3.36) 

-0.183 

(0.259) 

4.483 

(0.757) 

8.23 

(0.82) 

43.68 

(5.04) 

19.37 

(1.59) 

150 
48.58 

(1.87) 

33.30 

(1.61) 

-0.239 

(0.142) 

4.843 

(0.786) 

8.68 

(0.95) 

44.36 

(1.64) 

20.57 

(1.84) 

 

Overall, the results are more consistent within the vessels challenge, making 

LR change have minimal effect, even on the standard deviation of models’ 

performances. It is worth noting that we are not far off from the results portrayed on 

the MSDC challenge website for the Task 8 Hepatic Vessel challenge [146]. 

However, their models were created to tackle 7 tasks, and then they had the datasets 

for the Hepatic Vessel, Spleen, and Colon tasks to train over and submit the results 

once. Moreover, the submitted results appear to be a multi-class challenge, which in 

retrospect can be easier if it helps the model distinguish tumors from vessels tissues. 

4.3 Masks Integration and 3D Interpolation Showcase 

 This section showcases the segmentation of the best models for each task and 

visually compares them to the ground-truth counterpart. 

 Table 10 shows the best-ever trained ConvNets from the previously conducted 

5-fold cross-validation process. They are used to compare the performance of our 

ConvNets with the ground-truth masks throughout this section. 

 

Table 10. Best-ever trained fold ConvNets. 

TOI 
Sched-

uler* 

LR 

(10-5) 

Dice 

(%) 

IoU 

(%) 
RVD 

ASD 

(mm) 

RMSD 

(mm) 

HD 

(mm) 

95% 

HD 

(mm) 

Liver RLRP 16 98.2 96.4 -0.0109 0.407 1.44 25.69 2.14 

Tumors OCLR 28 66.0 52.9 0.0913 9.06 14.84 63.68 26.00 

Vessels OCLR 28 51.9 36.1 0.0778 3.85 7.53 45.33 17.90 

* RLRP = ReduceLRonPlateau; OCLR = OneCycleLR 
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Figure 19 shows a comparison between “Our Segmentation” that shows the 

segmentation of all 3 best-trained ConvNets and the “Ground-Truth” masks. For 

volume hepaticvessel_268, we can see that the liver segmentation is almost flawless 

for both slice 20 and slice 27. 
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Figure 19. Comparison between our models' performance and the ground-truth masks. 

Green shows liver mask border, blue shows tumors mask border, and red shows 

vessels mask border. 
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For the tumors’ segmentation, the ConvNet performs well in slice 20 but 

poorly on slice 27, missing the small tumor. We are missing some minor vessels for 

the vessels' segmentation in slice 20; contrastingly, the ConvNet performs 

significantly well, catching all the vessels, perhaps even better than the ground-truth 

mask. It is worth mentioning that the vessels ConvNet can catch the vessels outside 

the liver mask, even though we are multiplying the CT scan with the liver mask (as 

shown by Figure 17), effectively removing these vessels; however, the ConvNet 

seems to understand the existence of vessels in that area. 

 For hepaticvessel_294 volume in both slices 83 and 90, similar findings can be 

said about the liver segmentation, showing the powerfulness of our developed 

ConvNet. For tumors’ segmentation in slice 83, it captures the existence of the tumor 

and delineates it well with a high recall. The vessels’ ConvNet captures all the vessels 

tissues within the liver. We argue it is even better than the original mask; however, 

the vessels outside the liver area have not been captured due to multiplying with the 

liver mask. This phenomenon is an exciting finding because this tells us that 

multiplying with the liver mask has a different effect on the vessels depending on 

their whereabouts to the liver. To elaborate further, the vessels in hepaticvessel_268 

are within the liver but outside the liver mask, but they are captured. However, for 

hepaticvessel_294, the vessels are both outside the liver and the liver mask, and thus, 

they were missed. 

ConvNets with the best performance have been identified for each TOI (liver 

parenchyma, tumors, and vessels) as shown by Table 10, and the masks are generated 

for the whole test dataset, as shown by Figure 19. It is possible to integrate them into 

a 3D printable easy to visualize the object. Figure 20 and Figure 21 show the 3D 

interpolation of hepaticvessel_268 and herpaticvessel_294, respectively. 
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         (a) Ground-Truth       (b) Our Segmentation 

Figure 20. 3D interpolation of volume hepaticvessel_268. 

 

 

         (a) Ground-Truth       (b) Our Segmentation 

Figure 21. 3D interpolation of volume hepaticvessel_294. 

 

 The findings we have explored on the 2D slices in Figure 19 are being 

translated into the 3D object. The vessels have been well captured within 

hepaticvessel_268 volume, but some tumors have been missed due to their small size. 

Contrastingly for hepaticvessel_294, significant vessels have not been captured due to 

the multiplication with the liver mask, as shown by Figure 17. Additionally, there is a 

discontinuity in the segmented tumor, but most of the tumor has been outlined and 

captured. We have not applied any post-processing techniques, but this can be easily 

post-processed to make it a single object and close the gap. 
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4.4 Clinical Real-Time Implementation 

This section outlines the next steps after creating the 3 models developed to 

segment the 3 TOIs (liver parenchyma, tumors, and vessels). The whole reason 

behind working on this project is to aid surgeons, doctors, and clinicians diagnose and 

analyze liver-related diseases. From that perspective, such tools that aid clinicians 

should be designed with the idea of making it exceptionally end-user friendly and 

making it require a minimal amount of interactivity to avoid wasting their time. In 

other words, they need not know about the details of how such a tool works as long as 

it works accurately and generates expert-like segmentations. Moreover, it should be 

very intuitive, simple, and self-explanatory, such that anyone can utilize it without 

any extensive training. Thus, we have taken it upon ourselves to create a desktop 

application, as we know all the needed details to create such a tool and how it should 

operate in the most helpful manner. 

We specifically used the PyQt5 framework to build the desktop application 

[147], available in Python. Qt is a comprehensive GUI toolkit that can be used to 

build cross-platform applications [148]. PyQt5 is the set of bindings that link the 

Python programming language with Qt5 (Version 5 of Qt), making the Python 

language a proper replacement for the C++ programming language [147]. It offers a 

set of classes that can be used as off-the-shelf components in any application. Lastly, 

a programmer can either utilize the Qt “Designer” tool to create the GUI and then 

import the GUI into the application along with the components within or create the 

components programmatically. For our case, and given that the application is 

reasonably simple in terms of the frontend (GUI) and quite complex in the backend, 

we have opted to implement it using the latter method. 

Figure 22 shows the display that the end-users get prompted with when the 
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application is opened. The application is called “Liver Tissues Segmenter” and has a 

liver icon for a logo. 

 

 

Figure 22. GUI desktop application initial screen. 

 

Beneath that exists the Instructions and About Us menu tabs, which the first 

explains how the application should be used (Figure 23), and the latter mentions the 

source of the application and the people behind creating it (Figure 24). 

 

 

Figure 23. Instructions on how to use the desktop application. 
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Figure 24. The team behind creating this application. 

 

 When end-users press on the “Select” button, a prompt window appears, 

enabling them to select multiple CT scans (saved as NIfTI format). Figure 25 shows 

the files that are can only be imported, which need to be either nii/nii.gz, where it will 

not show any other file format. 

 

 

Figure 25. A prompt window to select the CT scans of NIfTI file type. 
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Once CT scans are selected, a table shows some of the records’ metadata for 

the end-user to see. Moreover, the user will have to select the PyTorch models trained 

to segment the liver, the tumors, and the vessels. Once selected, the application is all 

set to perform the segmentation. Figure 26 shows the effect of selecting multiple 

volumes for delineation and the selected models to perform the segmentation. The 

volumes are shown in a scrollable table such that it is scalable for as many CT records 

imported to the application. 

 

 

Figure 26. GUI after selecting to-be-segmented volumes and segmentation models. 

 

The record name is displayed for each selected volume and its resolution and 

dimensions, which specify the distance between adjacent voxels and the number of 

available voxels, respectively. 

Once the “Segment Volumes” button is pressed, the heavy-backend processes 

commence. Volumes go through the same preprocessing techniques that were applied 

to volumes when the models were being trained. This preprocessing stage includes 

volume rotation, rescaling, clipping, standardization, contrast enhancement via 
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CLAHE, normalization, and transformation into 2.5D inputs. They are all done in 

real-time and quite efficiently, especially when using the GPU. It is worth mentioning 

that cramming all the computations on the main thread is considered bad practice and 

should be avoided at all costs since it is responsible for all the GUI interactions. Since 

these processes take a considerate amount of time, it is opted to make all the 

segmentation computations on another thread to avoid freezing the GUI. Figure 27 

illustrates the progress made by the application via the progress bar and the status bar, 

which show the volume and the phase the application is currently processing. 

Showing progress enables clinicians to plan their time accordingly. 

 

 

Figure 27. Showing the progress in volumes processing. 

 

Once the segmented liver, tumors, and vessels of a single volume are 

completed, the 3D interpolation process for the 3 masks is commenced. The resulting 

masks and the 3D object are placed in a folder holding the same name as the 

segmented volume within the same directory. Figure 28 displays the resulting files 

after processing volume 294 from the MSDC-T8 dataset. 
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Figure 28. Resulting files for a particular CT scan/volume. 

  

 The resulting files can be used for numerous applications. The 

liver.nii.gz, tumors.nii.gz, and vessels.nii.gz have the segmented tissue in a separate 

file for easier access, such that any medical software can open these masks such as the 

ITK-Snap software, as seen in Figure 29. 

 

 

Figure 29. Opening segmented liver.nii.gz mask on ITK-Snap software. 
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 Moreover, the complete_model.obj has all the vertices and faces needed to 

visualize the volume in 3D form. Lastly, the .mtl file adds color to different tissues to 

easily differentiate between them. Exporting both the .obj file and the .mtl file is the 

best route for multi-colored 3D printing [143]. The 3D interpolated liver volumes can 

be immediately put into a 3D printer, and the clinicians can get the liver volume 

printed. In the absence of such 3D printers, or to reduce wasted plastic, clinicians can 

open the 3D interpolated object using the “3D Paint” program on any computer to 

rotate it along any axis (as seen in Figure 30). 

 

 

Figure 30. Opening 3D interpolated object on 3D Paint software in Windows 10. 

 

 To conclude, by creating this application, we provide clinicians an end-to-end 

user-friendly GUI tool for liver tissues’ segmentation that enables them to segment 

and 3D interpolate multiple records sequentially for medical analysis, with minimal 

possible human intervention. All they need to do is select the volume(s), select the 

models, and they will have to wait around 1 – 2 minutes for each volume to be 
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completed. It is worth re-iterating that volumes are done sequentially, meaning the 

doctors can look into the first processed volume while waiting for the remaining ones.  
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

Segmenting the liver, its tumors, and vessels plays a vital role in saving the lives 

of patients suffering from hepatic-related diseases. Moreover, it is crucial due to the 

tremendous fatality rate that accompanies such diseases. To this end, we surveyed the 

literature to understand the current state-of-the-art techniques and results that have been 

achieved in 2014 – 2020. From the surveyed studies, it was noticed that there is still 

room for improving the segmentation performance, especially for the tumors and 

vessels segmentation tasks. Additionally, there was a lack of studies that segment all 

those tissues in the same system to generate a complete liver delineation. Fortunately, 

we have found that a dataset called MSDC-T8 has all the necessary tissues to perform 

the complete delineation of the liver; thus, we can develop such models. 

Our methodology focuses on preprocessing the CT scans and transforming them 

into 2.5D input to a liver segmentation U-Net ConvNet. Model’s output is used to 

localize and delineate the liver for the following tumors and vessels ConvNets. The 

liver segmentation U-Net generated the state-of-the-art performance by scoring an 

average of 98.12% Dice on a test set containing 23 records from the MSDC-T8 dataset. 

Moreover, out of those 23 records, the tumors and vessels' ground-truth masks are 

available for 14, making it a viable solution to test the tumors and vessels segmentation 

ConvNets. An average of ~60% Dice score is achieved for the tumors’ segmentation, 

where the best model achieved a 65.95% in the Dice score. Moreover, an average of 

~50% Dice score has been achieved for the vessels’ segmentation, where the best model 

achieved a 51.94% in the Dice score metric. 

Once all masks have been acquired, they are combined and then interpolated, 

using “The Marching Cubes” algorithm, to create a 3D object that is 3D printable by 

creating both the .obj and .mtl files. Lastly, a desktop application has also been created 
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using the PyQt5 framework to deploy the devised algorithms to help and assist 

clinicians diagnose hepatic-related diseases. They have to feed the NIfTI volumes to the 

desktop application, and the output will be the mask of each tissue, along with the 3D 

object interpolation of said tissues. 

Some of the limitations in our methodology include the mistreatment of vessels’ 

voxels by eliminating them when multiplying the liver mask with the CT slices. 

Moreover, we have not “thoroughly” investigated other ConvNet architecture, which 

would have added more value to our work. Lastly, it is better to use PySide2 instead of 

PyQt5, as the license of PySide2 is slightly more flexible. 

In the future, we plan to enhance the performance of both the tumors and 

vessels segmentation algorithms to surpass the state-of-the-art results available in the 

literature. We plan to optimize the training area for the vessels ConvNet by better 

methodology than simply multiplying with the liver mask. Moreover, 

hepaticvessel_072 was always an issue for our tumors ConvNets, and their 

performance was always low on this record. Hence, understanding why this happens 

will significantly increase the tumor ConvNets performance (by 4 – 5%). 

Additionally, we plan to explore ways of smoothening the surface of the interpolated 

liver, especially for those volumes with significant inter-slice distance (depth), where 

the interpolated liver has staircase borders. 
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APPENDIX A: TAMUQ’S RAAD2 HPC USAGE 

In order to obtain access to this HPC, a form must be submitted, where it 

deems the requesters as eligible if they are affiliated to TAMUQ or any academic 

institution inside Qatar. Once the application has been processed and accepted, end-

users can log into the system and issue computing requests remotely via a Windows 

10 toolbox named MobaXterm. The toolbox allows easy access to different remote 

network tools such as secure shell (SSH) and secure file transfer protocol (SFTP), and 

from which jobs can be submitted and files can be transferred, respectively [149]. 

Figure 31 shows the initial graphical user interface (GUI) when logging into the 

specific node (CPU/GPU). 

 

 

Figure 31. MobaXterm interface when connecting to Raad2. 
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However, to use it outside the campus of TAMUQ, it is necessary to access it 

through a virtual private network (VPN) connection to be linked to the TAMUQ Wi-

Fi via “Cisco AnyConnect Secure Mobility Client” software. It is also equipped with 

a 2-factor authentication for safer use and access to the HPC.  

In order to submit a job for the HPC to process, a job file must be submitted to 

instruct the HPC detailing all the necessary information, as shown in Figure 32. 

 

 

Figure 32. Example of a job file used to execute Python code. 

 

Within this file, parameters are set by specifying the needed time to do the 

process (24 hours), the GPU to run it on (gpu:v100:1), the name of the output file 

(train_liver_<job_number>.out), the CUDA version to be used (11.1), the virtual 

environment to be used (thesis), and the Python script to be run (train-liver.py). 

Lastly, Figure 33 illustrates how to check the jobs currently running/waiting in the 

queue, how to submit a new job, and how to cancel a submitted job. 
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Figure 33. Submitting a job, checking current jobs, and canceling a job. 

 


