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,is paper proposes new nonparametric hybrid exponentially weighted moving average (HEWMA) control charts based on
simple random sampling (SRS) and ranked set sampling (RSS) techniques using the Wilcoxon rank-sum (W) statistic. ,e in-
control robustness and out-of-control (OOC) performances are thoroughly investigated using extensive simulations. ,e
HEWMA W chart is shown to be superior to the basic exponentially weighted moving average (EWMA) and double EWMA W

charts in many cases under normal and nonnormal distributions. Moreover, the OOC sensitivities of the new HEWMA W-type
control charts are further improved by using supplementary 2-of-2 and 2-of-3 standard and improved runs-rules approaches. It is
found that the proposed HEWMA W-type charts with runs-rules perform better than the basic HEWMA W SRS and RSS charts.
Real-life data based on the impurity of iron ore are used to illustrate the design and implementation of the new control charts.

1. Introduction

Control charts (also known as monitoring schemes) are
statistical tools that help to efficiently monitor a wide range
of industrial and nonindustrial processes. ,ese tools are
expected to give an out-of-control (OOC) signal as soon as
possible when there is a significant change (or shift) in the
process parameters or the distribution of the quality char-
acteristic from an in-control (IC) state. Control charts are
classified into two main classes, namely, the memoryless
(such as the Shewhart chart) and memory-type (such as the
exponentially weighted moving average (EWMA) and cu-
mulative sum (CUSUM) charts); see, for example, the study
of Montgomery [1], Qiu [2], and Chakraborti and Graham
[3]. ,e Shewhart-type control charts are the oldest and

most popular monitoring schemes. ,ese tools are preferred
because of their simplicity and high speed in detecting large
shifts in the process parameters. Note though that they are
relatively slow in detecting small-to-moderate shifts in the
process parameters. To overcome this problem, the statistical
process monitoring (SPM) literature recommends the use of
the memory-type (i.e., CUSUM and EWMA) control charts.
,e latter schemes are fast in detecting small-to-moderate
shifts and slow in monitoring large shifts. For more details
on the enhancement of memory-type schemes, readers are
referred to the study carried out by Haq [4], Haq [5], Khoo
et al. [6], Adeoti [7], Alevizakos et al. [8], Alevizakos et al.
[9], and the references therein. For other alternative ap-
proaches of control charts, such as the parametric and
nonparametric Kullback–Leibler divergence, see, for
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instance, the study carried out by Bakdi and Kouadri [10],
Bakdi et al. [11], and Bounoua et al. [12].

In general, the challenge in SPM is to design a control
chart which is able to efficiently monitor all ranges of shifts
(i.e., small, moderate, and large shifts). Shamma and
Shamma [13] introduced the double EWMA (DEWMA) X

chart in order to improve the performance of the EWMA X

chart in detecting small shifts in the process mean. ,e
DEWMA-type chart is designed by applying the EWMA
statistic twice using the same smoothing parameter (denoted
as η, with 0< η≤ 1). In other words, the DEWMA chart is the
mixture of two EWMA charts using the same value of η.
Zhang and Cheng [14] and Alevizakos et al. [8] also showed
that the basic and modified DEWMA charts perform better
than the corresponding EWMA charts in detecting small
mean shifts. Moreover, they also reported that the perfor-
mances of the EWMA and DEWMA charts are almost
similar in monitoring large shifts in the process parameters.
When different values of η (say, η1 and η2) are used, the
DEWMA chart is termed hybrid EWMA (HEWMA); see
Haq [4]. Other authors (see, for instance, [15–17]) have also
reported on the performance of the HEWMA chart as being
superior to the EWMA chart in detecting small and mod-
erate process mean shifts. More recently, another hybrid-
type scheme based on the homogeneously weighted moving
average (HWMA) charting statistics was discussed by Adeoti
and Koleoso [18], Malela-Majika et al. [19], and Alevizakos
et al. [8].

,e aforementioned control charts are based on one
sample plotting statistics (or point) plotted against the upper
control limit (UCL) and lower control limit (LCL).,ey give
an OOC signal when, at any sampling time, a point plots
beyond the control limits; otherwise, the process is con-
sidered to be IC. ,is rule is known as the 1-of-1 rule, and a
control chart based on such rule is called a basic control
chart. In the last three decades, many authors developed
various rules in order to improve the performance of the
existing control charts. ,ese rules are known as runs-rules
(or stopping rules). For more details on the different types of
runs-rules, readers are referred to Klein [20], Khoo and
Ariffin [21], Antzoulakos and Rakitzis [22], and Shongwe
[23] as well as Adeoti and Malela-Majika [24]. In this paper,
the standard runs-rules (SRR) and the improved runs-rules
(IRR) approaches are considered. In short, the 2-of-2 SRR
approach gives an OOC signal when two successive points
plot above (below) the UCL (LCL), respectively. However,
the IRR approach has the upper and lower warning limits
(denoted as UWL and LWL) in addition to the UCL and LCL
such that LCL< LWL<UWL<UCL. ,us, the 2-of-2 IRR
approach gives an OOC signal when either a single point
plots beyond the LCL/UCL, or two successive points plot
either between the UCL and UWL or between the LCL and
LWL.

Many authors have suggested improving memory-type
charts by using supplementary runs-rules. For instance,
Sheu and Lin [25] and Riaz et al. [26] proposed the use of
runs-rules to improve the performance of the generally
weighted moving average (GWMA) and CUSUM charts,
respectively. Abbas et al. [27] used the 2-of-2 SRR approach

to improve the basic EWMA chart in detecting sudden small
shifts in the process mean parameter and used simulations to
investigate the performance of the proposed chart. Mar-
avelakis et al. [28] introduced an exact method based on
integral equations to investigate the performance of the
EWMA chart with runs-rules. Khoo et al. [6] presented a
Markov chain approach for evaluating the performance of
the EWMA chart with runs-rules to monitor the process
location and showed that their performances are not as good
as reported in Abbas et al. [27]. Note though that Khoo et al.
[6] did not consider the use of the IRR approach, which
actually increases considerably the ability to detect large
shifts. Despite Khoo et al. [6] warning about the perfor-
mance of the memory-type charts, we believe that the use of
runs-rules applied to these charts must not yet be discarded
since Khoo et al. [6] did not investigate the performance of
nonparametric EWMA and other memory-type charts (such
as the DEWMA, HEWMA) supplemented with SRR and
IRR approaches to check whether the findings remain the
same. To this end, Adeoti and Malela-Majika [24] proposed
the DEWMAX control charts with SRR and IRR approaches
and observed that it has very interesting run length prop-
erties when supplemented with IRR under the assumption of
normality. In this paper, we also consider SRR and IRR
applied to the DEWMA chart; however, in a nonparametric
scenario.

Nonparametric control charts are typically used when
the assumption of normality fails to hold or if there is a
doubt about the nature of the underlying process dis-
tribution; see Qiu [2] and Chakraborti and Graham [3]. A
well-known nonparametric test is based on the Wilcoxon
rank-sum (W) statistic [29]. In the SPM context, control
charts based on the W statistic have been studied by Li
et al. [30], Malela-Majika and Rapoo [31], Mukherjee et al.
[32], Chong et al. [33], Mabude et al. [34], Tercero-Gomez
et al. [35], Triantafyllou [36], and Letshedi et al. [37]. Most
of the latter articles were studied under the assumption of
simple random sampling (SRS) technique. Note though
that structured sampling strategies like the ranked set
sampling (RSS) have been recommended in the SPM
literature because they reduce variability and thus im-
prove performance of the corresponding control chart;
see, for instance, Haq et al. [38], Awais and Haq [39], and
Noor-ul-Amin and Tayyab [40]. ,e RSS technique has
many applications in fields like life sciences, agriculture,
and medical and environmental sciences because it pro-
vides more structure to the gathered observations and
increases the amount of information present in the
sample; see Singh and Vishwakarma [41]. For other
nonparametric procedures based on ranked set sampling
in the context of information theory, survival analysis,
reliability, and medicine, the readers are referred to the
study carried out by Terpstra and Liudahl [42], Chen et al.
[43], Mahdizadeh and Strzalkowska-Kominiak [44],
Mahdizadeh [45], and Mahdizadeh [46].

In the nonparametric scenario, Malela-Majika and
Rapoo [47] and Malela-Majika [48] investigated the per-
formance of the EWMA and DEWMA W charts using the
RSS and SRS techniques, respectively. In this paper, a new
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nonparametric HEWMA chart based on W statistic using
the SRS and RSS techniques for monitoring the location
parameter is proposed. Moreover, the new HEWMA W

chart is further enhanced using SRR and IRR w-of-(w+ v)
approaches, with w= 2 and v= 0 and 1; henceforth, these are
denoted by SRR2-of-(2+v) and IRR2-of-(2+v), respectively.

Section 2 provides the basic design of the nonparametric
EWMA, DEWMA, and HEWMA control charts. ,e design
procedures of the SRR2-of-(2+v) and IRR2-of-(2+v) approaches
are given in Section 3. Section 4 introduces the design and
implementation of the new control charts. Section 5 in-
vestigates and discusses the IC robustness and OOC per-
formances as well as the comparison with other existing
memory-type W charts. Illustrative examples using real-life
data are given in Section 6. Finally, concluding remarks are
given in Section 7.

2. Distribution-Free EWMA, DEWMA, and
HEWMA W Control Charts

,is section presents the theoretical framework adopted for
the design of the basic EWMA, DEWMA, and HEWMA
control charts based on W statistic using the SRS and RSS
techniques.

2.1. SRS and RSS Techniques. ,e SRS technique is the
simplest way to get a sample by randomly selecting n ob-
servations (or items) from the target population where every
element has the same chance of being selected. However,
Ganeslingam and Ganesh [49] stated that since quantifi-
cation of the variable of interest often requires expensive
measurements, in some situations in practice, the obser-
vations are usually ranked using a cost-effective measurable
covariate and, in that case, the RSS technique is preferred
because of its low cost and efficiency. ,e RSS method
consists of drawing a set of n simple random samples, each of
size n, from a target population and ordering the obser-
vations within each sample with respect to a variable of
interest from the smallest to the largest. ,e sample of in-
terest is obtained by taking the first observation from the first
sample of n observations, the second observation from the
second sample, the third observation from the third sample,
and so forth (see Table 1). ,e rank set sample is then
equivalent to the vector of the main diagonal of an n × n

matrix (i.e., n SRS vectors of size n) with ordered obser-
vations. Haq et al. [38] showed that the RSS technique re-
duces variability in the sample of interest and, consequently,
improves the sensitivity of any control chart when compared
to the SRS technique.

2.2. Wilcoxon Rank-Sum Statistic for Two-Sample Test Using
SRS. Let XSRS � xi, i � 1, 2, . . . , m  be a Phase I (or

reference) sample of size m collected from an IC process
with an unknown continuous cumulative distribution
function (cdf) F(x) and YSRS � y

q
j , q �

1, 2, . . . ; j � 1, 2, . . . , n}, the qth Phase II (or test) sample of
size nq, nq � n∀q. Let Gq(y) be the cdf of the distribution of
the qth test sample and assumeGq(y) � G(y)∀q.,e process
is IC in Phase II when G � F. ,is means that
G(t) � F(t − δ),∀t, where δ is the shift in the mean pa-
rameter. ,us, the process is IC if δ � 0. Wilcoxon [29]
introduced the W test based on the sum of ranks of a
reference sample XSRS when compared with the test sample
YSRS. When combining these two samples in an ascending
order, a new set of sizes (m+ n), XSRS′ � x1′,

x2′, . . . , xi
′, . . . , xm+n− 1′ , xm+n

′ }, can be formed, where xk
′ � xi

if xi is the kth smallest observation in the combined sample,
and xk
′ � yj if yj is the kth smallest observation in the

combined sample; k ∈ [1: m + n], i ∈ [1: m] and j ∈ [1: n].
After defining XSRS″ � x(1)

′ , x(2)
′ , . . . , x(i)

′ , . . . , x(m+n− 1)
′ ,

x(m+n)
′ }, the W statistic is then defined as

WSRS � 
m+n

i�1
i · x(i)
′ , (1)

where x(i)
′ � 1 if xi

′ comes from the test sample and x(i)
′ � 0 if

xi
′ comes from the reference sample.
,e expected value and variance of WSRS under the

assumption of identical distributions are given by (see [30])

E WSRS(  � μWSRS
�

m(m + n + 1)

2
, (2a)

and

Var WSRS(  � σ2WSRS
�

mn(m + n + 1)

12
, (2b)

respectively.

2.3. Wilcoxon Rank-Sum Statistic for Two-Sample Test Using
RSS. Let

YRSS � yh
(s)j; s � 1, 2, . . . , n; j � 1, 2, . . . , n; h ∈ N  be a RSS

of size n obtained from n independent random samples of
size n, each associated with the SRS observations for h cycles
with a continuous cdf G∗(τ). Assume XRSS �

xk
(i)t; i � 1, 2, . . . , m; t � 1, 2, . . . , m; k ∈ N  is a RSS of size

m obtained from m independent samples each associated
with the SRS observations for k cycles with a continuous cdf
F∗(τ), with G∗(τ) � F∗(τ − δ), for all τ, where δ is the shift
(or change) in the mean (i.e., location) parameter and
− ∞< δ <∞. Under the IC state, F∗ ≡ G∗. ,us, Bohn and
Wolfe [50] showed that under perfect judgement ranking,
the RSS pooled sample observations are independent order
statistics with a joint probability density function (pdf)
defined by (see also [51] and [52])
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f
∗
RSS x(i), y(s)  � 

m

i�1
(m − i + 1)

m

i − 1
  F

∗
x(i)  

i− 1
1 − F
∗

x(i)  
m− 1

f
∗

x(i) 
⎧⎨

⎩

⎫⎬

⎭

× 
n

s�1


m

i�1
(n − s + 1)

n

s − 1
  F

∗
x(s)  

s− 1
1 − F
∗

x(s)  
n− 1

f
∗

x(s) 
⎧⎨

⎩

⎫⎬

⎭,

(3)

wheref∗(·) is a continuous pdf of a RSS.
Amro and Samoh [53] showed that the W test statistic

using RSS is defined by

WRSS � 

m

s�1


k

t�1
Rst, (4)

where Rst is the rank of Y(s)t in the combined sample
X(i)j, Y(s)t: i � 1, 2, . . . , m, s � 1, 2, . . . , n  of size n + m.
Hence,

WRSS �
1
2

mk(mk + 1) + URSS, (5)

where the test statistic URSS � 
m
i�1 

h
j�1 

n
s�1


k
t�1 I(X(i)j <Y(s)t) is the number of X’s less than or equal to

Y’s in the RSS of the combined sample. ,us, the expected
value of the two-sample U statistic is defined by

E URSS(  �
1
2

mnhk 1 + 2
δ

0

∞

− ∞
f(y)f(y − x)dydx ,

(6)

where f(·) is a continuous pdf of the SRS technique.
In control, F∗ ≡ G∗(δ � 0). Let us assume we have c

cycles for both phases; that is, h � k � c. ,en,

E URSS(  �
1
2

mnc
2
. (7)

Hence, the expectation of the W statistic is given by

E WRSS(  � μWRSS
�
1
2

mc[(m + n)c + 1]. (8)

When h � k � 1 (i.e., c � 1),

μWRSS
� μWSRS

�
m(m + n + 1)

2
. (9)

Note that when h � k � c≠ 1, the variance of the two-
sample statistic is defined by

Var WRSS(  � σ2WRSS
� Var WSRS(  −

1
cm

2 

c

t�1
μW[t]

− μWRSS
 

2
,

(10)

where μW[t]
is the mean of the W test statistic using RSS at the

tth cycle, μWRSS
is defined in (8) or (9), and

Var(WSRS) � σ2WSRS
� (mn(m + n + 1)/12).

2.4. >e EWMA W Control Charts. ,e plotting statistic of
the EWMA chart of Li et al. [30] is denoted by W-EWMA.
,us, the W-EWMA statistics based on the WSRS and WRSS
statistics at time t are defined by

YSRSt
� ηWSRSt

+ (1 − η)YSRSt− 1
, for t � 1, 2, 3, . . . ,

(11a)

and

YRSSt
� ηWRSSt

+ (1 − η)YRSSt− 1
, for t � 1, 2, 3, . . . ,

(11b)

respectively, where 0< η≤ 1 is a constant known as the
smoothing parameter. ,e initial values YSRS0 and YRSS0 are
set to be equal to the mean; i.e., YSRS0 � E(WSRS) and
YRSS0 � E(WRSS).

,e expected values and exact variances of YSRSt
and

YRSSt
are given by

E YSRSt
  � μWSRS

,

Var YSRSt
  � σ2WSRS

η
2 − η

  1 − (1 − η)
2t

 ,

(12a)

and

E YRSSt
  � μWRSS

,

Var YRSSt
  � σ2WRSS

η
2 − η

  1 − (1 − η)
2t

 ,

(12b)

respectively.
However, when the charts have been running for a very

long time, the term (1 − (1 − η)2t)⟶ 1; thus, the expected
values and asymptotic variances of the proposed W-EWMA
SRS and RSS plotting statistics are then defined by

Table 1: ,e sampling procedure of the RSS technique.

Sets of n unordered observations Sets of n ordered observations Final RSS sample

1: x11 x21 . . . xn1
2: x12 x22 . . . xn2
⋮ ⋮ ⋮ ⋮ ⋮
n: x1n x2n . . . xnn

x(1)1 x(2)1 . . . x(n)1
x(1)2 x(2)2 . . . x(n)2
⋮ ⋮ ⋮ ⋮
x(1)n x(2)n . . . x(n)n

x(1)2, x(2)2, . . . , x(n)n 
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E YSRSt
  � μWSRS

,

Var YSRSt
  � σ2WSRS

η
2 − η

 ,

(12c)

and

E YRSSt
  � μWRSS

,

Var YRSSt
  � σ2WRSS

η
2 − η

 ,

(12d)

respectively.
For simplicity, this paper will focus on the asymptotic

case (hereafter, Case A). ,us, the asymptotic UCL and LCL
of the W-EWMA chart using SRS and RSS are defined by

EUCLSRS
ELCLSRS

� μWSRS
± LESRS

σWSRS

�����η
2 − η



, (12e)

and
EUCLRSS
ELCLRSS

� μWRSS
± LERSS

σWRSS

�����η
2 − η



, (12f)

respectively, where the control limit constants LESRS
and LERSS

are chosen according to design conditions (i.e., choice of η
and the nominal ARL0 value). ,e basic W-EWMA chart
with SRS (RSS) gives a signal if YSRSt

(YRSSt
) falls outside of

the control limits; that is, YSRSt
(YRSSt

)≥EUCLSRS(EUCLRSS)
or YSRSt

(YRSSt
)≤ELCLSRS(ELCLRSS).

2.5. >e DEWMA W Control Charts. ,e DEWMA W

control chart (hereafter, W-DEWMA) is a weighted com-
bination of the current and previous information (i.e., ob-
servations) by performing exponential smoothing procedure
twice. From Malela-Majika [48], the charting statistic of the
W-DEWMA control chart using SRS, denoted as ZSRSt

, is
defined by

ZSRSt
� ηYSRSt

+ (1 − η)ZSRSt− 1
, (13)

where YSRSt
is defined in (11a) and WSRSi

is defined in (1).
,e starting values YSRS0 and ZSRS0 are equal to the μWSRS

(i.e.,
YSRS0 � ZSRS0 � μWSRS

).
It can be shown that (13) can also be written as [54]

ZSRSt
� η2 

t

j�1
(t − j + 1)(1 − η)

t− j
WSRSj

+ tη(1 − η)
t
YSRS0

+ (1 − η)
t
ZSRS0.

(14)

,e asymptotic expected value and variance of the
W-DEWMA statistic are given as

E ZSRSt
  � μZSRS

� μWSRS
(15a)

and

Var ZSRSt
  � σ2ZSRS

�
η 2 − 2η + η2 

(2 − η)
3 σ2WSRS

, (15b)

where μWSRS
and σ2WSRS

are defined in Section 2.3.
From (11b), the charting statistic of the W-DEWMA

control chart using RSS, denoted ZRSSt
, is defined as follows:

ZRSSt
� ηYRSSt

+ (1 − η)ZRSSt− 1
, (16)

where YRSSt
� ηWRSSt

+ (1 − η)YRSSt− 1
, WRSSt

is the charting
statistic of the tth RSS test sample. ,e starting values YRSS0
and ZRSS0 are typically taken to be equal to the μWRSS

(i.e.,
YRSS0 � ZRSS0 � μWRSS

) where μWRSS
is defined in Section 2.3.

,e properties of the W-DEWMA chart using RSS can
be defined in a similar way to those of theW-DEWMA chart
using SRS by replacing the subscript SRS with RSS. ,e
asymptotic UCL and LCL of the W-DEWMA control chart
using SRS and RSS are given by

DUCLSRS
DLCLSRS

� μWSRS
± LDSRS

σWSRS

������������

η 2 − 2η + η2 

(2 − η)
3




, (17a)

and

DUCLRSS
DLCLRSS

� μWRSS
± LDRSS

σWRSS

������������

η 2 − 2η + η2 

(2 − η)
3




, (17b)

respectively, where LDSRS
and LDRSS

are the control limit
constants of the W-DEWMA chart and they are chosen
according to design conditions (i.e., choice of η and the
nominal ARL0 value).

,e W-DEWMA chart gives an OOC signal if the
plotting statistic falls outside of the control limits. Hence-
forth, the W-DEWMA control charts based on the W using
SRS and RSS will be denoted as W-DEWMA SRS and
W-DEWMA RSS control charts, respectively.

2.6.>eProposedHEWMAWControl Charts. ,eHEWMA
W control chart (hereafter, W-HEWMA) is a weighted
combination of the current and previous information by
applying the W-EWMA statistic twice using different
smoothing parameters. ,e plotting statistics of the
W-HEWMA chart using SRS and RSS, denoted as HSRSt

and
HRSSt

, are defined by

HSRSt
� η2YSRSt

+ 1 − η2( HSRSt− 1
, 0< η2 ≤ 1, (18a)

and

HRSSt
� η2YRSSt

+ 1 − η2( HRSSt− 1
, (18b)

respectively, where YSRSt
� 2009; η1WSRSt

+ (1 − η1)YSRSt− 1
and YRSSt

� η1WRSSt
+ (1 − η1)YRSSt− 1

with 0< ητ ≤ 1 (with
τ � 1 and 2); WSRSt

and WRSSt
are the charting statistics of

the tth SRS and RSS test samples, respectively. ,e starting
values HSRS0 and HRSS0 are also taken to be equal to the μWSRS
and μWRSS

, respectively.
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By following a similar approach to that of Haq [4], the
asymptotic expected value and variance of the W-HEWMA
statistic using SRS are given as

E HSRS(  � μHSRS
� μWSRS

, (19a)

and

Var HSRS(  � σ2HSRS
�

η21η
2
2

η1 − η2( 
2

η1′( 
2

1 − η1′( 
2 +

η2′( 
2

1 − η2′( 
2 −

2η1′η2′
1 − η1′η2′

⎧⎨

⎩

⎫⎬

⎭σ2WSRS
, (19b)

respectively, where η1′ � 1 − η1, η2′ � 1 − η2, with μWSRS
and

σ2WSRS
defined in Section 2.3.,e asymptotic properties of the

W-HEWMA chart using RSS technique can also be defined
in a similar manner. ,us, the asymptotic UCL and LCL of
the W-HEWMA chart using SRS and RSS are defined by

HUCLSRS
HLCLSRS

� μWSRS
± LHSRS

σHSRS
, (20a)

and
HUCLRSS
HLCLRSS

� μWRSS
± LHRSS

σHRSS
, (20b)

respectively, where σ2HRSS
� (η21η

2
2/( η1 − η2)

2) ((η1′)
2/

1 − (η1′)
2) + ((η2′)

2/1 − (η2′)
2) − (2η1′η2′/1 − η1′η2′)}σ2WRSS

.
Note that LHSRS

and LHRSS
are the control limit constants of

the W-HEWMA chart and they are chosen according to
design conditions (i.e., choice of η1 and η2 as well as the
nominal ARL0 value). ,e W-HEWMA chart gives an OOC
signal if a plotting statistic falls beyond the control limits in
(20a) and (20b). Henceforth, the W-HEWMA control charts
using SRS and RSS techniques will be referred to as
W-HEWMA SRS and W-HEWMA RSS control charts,
respectively.

To improve the newly proposed W-HEWMA charts as
well as theW-EWMA andW-DEWMA SRS and RSS control
charts, this study proposes the addition of the SRR2-of-(2+v)
and IRR2-of-(2+v). ,e design procedure of the enhanced
control charts is given in the next section.

3. The Proposed W-HEWMA Chart with
Supplementary Runs-Rules

SRR and IRR are usually added to the basic control chart to
improve their detection ability of small, moderate, and large
shifts in the process. In this paper, the SRR2-of-(2+v) and IRR2-

of-(2+v) schemes are used to increase the sensitivity of the
proposed memory-type control charts. In this section, three
rules are given to describe the proposed control charts where
the charting statistics HSRSt

and HRSSt
are simply denoted by

Ht, YSRSt
and YRSSt

by Yt, and finally ZSRSt
and ZRSSt

by Zt.

3.1. Rule 1: RR1-of-1 (or Basic) Scheme. ,e RR1-of-1 control
scheme gives a signal whenever the plotting statistic falls on
or above the UCL1 or falls on or below the LCL1. ,e
subscript indicates the rule number in order to show that the
values of the control limits for the three rules are different.
Note that the control chart based on the RR1-of-1 rule cor-
responds to the traditional (or basic) control chart.

3.2. Rule 2: SRR2-of-(2+v). Let Pt (with t � 1, 2, 3, . . .) repre-
sents the plotting statistic of either the W-HWMA,
W-EWMA, or W-DEWMA chart and let (LCL2,UCL2)
represent their corresponding rule 2 pair of control limits.
For instance, for the W-HWMA chart, Pt � Ht and
(LCL2,UCL2) � (HLCL2,HUCL2). ,e SRR2-of-(2+v)
scheme (with v= 0 and 1) gives an OOC signal when two out
of 2 + v consecutive charting statistics, say, Pt and Pt+1, both
fall above (below) the UCL3(LCL3), which are separated by
at least v charting statistics that fall below (above) the
LCL2(UCL2), respectively. ,erefore, the two-sided SRR2-of-

2 scheme gives an OOC signal at time t if

Min
t

Pt, Pt+1( ≥UCL2

or Max
t

Pt, Pt+1( ≤ LCL2.
(21)

However, for the two-sided SRR2-of-3 scheme, the process
is OOC at the sampling time t if one of the following
conditions holds:

(i) Mint(Pt, Pt+1)≥UCL2 or Maxt(Pt, Pt+1)≤ LCL2
(ii) Mint(Pt, Pt+2)≥UCL2 or Maxt(Pt, Pt+2)≤ LCL2
(iii) Mint(Pt+1, Pt+2)≥UCL2 orMaxt(Pt+1, Pt+2)≤ LCL2

3.3.Rule3: IRR2-of-(2+v). Let (LWL3,UWL3) and Pt represent
rule 3 pair of the warning limits and plotting statistic of
either the W-HWMA, W-EWMA, or W-DEWMA chart.
For instance, for the W-HWMA chart, Pt � Ht and
(LWL3,UWL3) � (HLWL3,HUWL3). ,us, the warning
limits, LWL3 and UWL3, of the IRR2-of-(2+v) W-HEWMA,
W-EWMA, and W-DEWMA charts are given by

μW ± LH3
σW

��������������������������������������

η21η
2
2

η1 − η2( 
2

η1′( 
2

1 − η1′( 
2 +

η2′( 
2

1 − η2′( 
2 −

2η1′η2′
1 − η1′η2′

⎧⎨

⎩

⎫⎬

⎭




,

(22a)

μW ± LE3
σW

�����η
2 − η



, (22b)

and

μW ± LD3
σW

������������

η 2 − 2η + η2 

(2 − η)
3




, (22c)

6 Mathematical Problems in Engineering



respectively, where μW andσW represent the expected value
and standard deviation of theW statistic using either the SRS
or RSS, respectively, and LH3

, LE3
, and LD3

represent the
distances of the warning limit (WL) from the CL of the
W-HEWMA, W-EWMA, and W-DEWMA control charts,
respectively. ,ese distances are chosen such that the
attained ARL0 is in the close vicinity of the nominal ARL0
value.

,erefore, the IRR2-of-3 scheme gives an OOC at time t if
one of the following conditions is satisfied:

(i) Pt < LCL3 or Pt >UCL3
(ii) Mint(Pt, Pt+1)≥UWL3 or Maxt(Pt, Pt+1)≤ LWL3
(iii) Mint(Pt, Pt+2)≥UWL3 or Maxi(Pt, Pt+2)≤ LWL3
(iv) Mint(Pt+1, Pt+2)≥UWL3 or Maxt(Pt+1, Pt+2)≤

LWL3
Here, LCL3 and UCL3 are equivalent to the control limits

defined in Section 2. ,us, the IRR W-HEWMA chart has a
pair of control limit constants, i.e., (LH, LH3

).

4. Design Considerations of the Proposed
W-HEWMA Control Charts

,e following steps show how to design the W-HEWMA
SRS and RSS charts when the process parameters are un-
known with one cycle for the RSS case:

Step 1. Draw a reference (i.e., Phase I) sample X �

(x1, x2, . . . , xm) from a selected distribution using an
SRS or RSS.
Step 2. Draw a test (i.e., Phase II) sample
Y � (y1, y2, . . . , yn) from the same distribution as the
one in Step 1 using SRS or RSS such that, for the IC
state, δ � 0 so that the two distributions (i.e., the ones
for Phases I and II) are identical. For the OOC state, the
two distributions differ only in the location parameters;
we say there is a shift in the mean parameter (i.e., δ ≠ 0).
Step 3. ,e W statistic using SRS and RSS is computed
by combining the reference and test samples as
explained in Section 2.1 (see also (1) and (4)).
Step 4. Compute the expected value and variance of W

based on SRS and RSS when the process is deemed to be
IC using (12c) and (12d), respectively.
Step 5. (a) To build the W-HEWMA SRS chart, we use
the WSRSt

statistic from (18a). (b) To build the
W-HEWMA RSS chart, we use the WRSSt

statistic from
(18b).
Step 6. ,e control limit constants and the design
parameters of the process are selected such that the
attained ARL0 value is the close vicinity of the nominal
ARL0 � 500.

(a) ,e steady state (or asymptotic) control limits and
warning limits for the W-HEWMA SRS chart are
calculated using (20a) and (22a), respectively. ,e
RR1-of-1, SRR2-of-(2+v), and IRR2-of-(2+v) charts give a
signal if rules 1, 2, and 3 are satisfied, respectively.

(b) ,e asymptotic control limits and warning limits of
the W-HEWMA RSS chart are calculated using
(20b) and (22a), respectively. ,e RR1-of-1, SRR2-of-

(2+v), and IRR2-of-(2+v) charts give a signal if rules 1,
2, and 3 are satisfied, respectively.

5. Empirical Discussion of the W-HEWMA
Chart with and without Runs-Rules

In this section, intensive Monte Carlo simulations with
50000 iterations are used in SAS®9.4/IML11.42 to evaluate
the performance of the proposedW-HEWMA control charts
in terms of characteristics of the run length (RL) such as the
average RL (ARL) and standard deviation of the RL (SDRL)
as well as the 5th, 25th, 50th, 75th, and 95th percentiles of the
RL (PRL) which are denoted as P5, P25, P50, P75, and P95,
respectively.

Note that the aforementioned performance measures are
used to investigate the sensitivity of a control chart for a
specific shift (δ). However, to evaluate the sensitivity of a
control chart for a range of shifts (or overall performance),
the expected ARL (EARL) and expected SDRL (ESDRL)
metrics are often recommended (see [55]). ,e EARL and
ESDRL are mathematically defined by

EARL �
1
Δ



δ�δmax

δ�δmin

ARL(δ) (23a)

and

ESDRL �
1
Δ



δ�δmax

δ�δmin

SDRL(δ), (23b)

respectively, where ARL(δ) and SDRL(δ) represent the ARL
and SDRL for a specific shift of δ standard deviation and Δ is
the number of increments between δmin and δmax. Note that
the smaller the EARL or ESDRL value, the better the
performance.

5.1. Robustness of the W-HEWMA SRR and RSS Charts.
A control chart is said to be IC robust if the IC characteristics
of the RL distribution are approximately the same across
different continuous probability distributions, for instance,
when the IC ARL remains closer or equal to the nominal
ARL across all continuous distributions; see Chakraborti
and Graham [3]. In this paper, to investigate the IC ro-
bustness of the proposed charts, three continuous distri-
butions are used, namely, the standard normal distribution
(denoted as N(0,1)), the Student’s t distribution with degrees
of freedom κ � 5, 15, 30 (denoted as t(κ)), and the gamma
distribution with shape parameter α � 1, 15, 30 and scale
parameter β � 1 (denoted as G(α, β)). Table 2 displays the IC
RL characteristics of the W-HEWMA charts using the SRS
and RSS techniques along with the corresponding control
limit coefficient values when (m, n) � (100, 5), η1 ∈
0.05, 0.1, 0.25, 0.5, 0.75{ }, and η2 ∈ 0.1, 0.25, 0.5, 0.75, 0.9{ }

for a nominal ARL0 value of 500.
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From Table 2, it can be seen that when η1, η2, and L (i.e.,
LHSRS

and LHRSS
) are kept fixed, the variation in the IC

characteristics of the RL distribution of the basic
W-HEWMA chart using the SRS and RSS techniques is not
significant across various probability distributions consid-
ered in this paper. For instance, when (m, n) � (100, 5), then
for the SRS with η1 � 0.5, η2 � 0.75, and LHSRS

� 2.9729, the
W-HEWMA chart yields attained IC ARL values of 499.4,
492.0, and 497.0 under the N(0,1), t(5), and G(1,1) distri-
butions, respectively. Moreover, other IC characteristics of
the RL distribution are also closer to each other; for instance,
the attained P50 (also known as the median RL) values are
given by 262, 259, and 255 under the N(0,1), t(5), and G(1,1)
distributions, respectively. It is important to note that the
variability in the IC RL distribution of the W-HWMA chart
using SRS technique is larger compared to the one of the RSS
technique; see the IC SDRL values. Finally, the control limit
coefficients (i.e., LHSRS

) of theW-HEWMA charts for the SRS
technique are larger compared to those of the RSS technique,
which implies that the control limits of theW-HEWMA SRS
chart are wider than the ones of the W-HEWMA RSS chart.

,e patterns of the IC RL characteristics of the SRR2-of-

(2+v) and IRR2-of-(2+v) are similar to the ones in Table 2; for
brevity, they are not shown here. ,us, it can be concluded
that the W-HEWMA SRS and RSS with and without runs-
rules are IC robust.

5.2.OOCPerformanceof theW-HEWMASRSandRSSCharts.
In Table 3, four important deductions can be observed.
Firstly, it can be observed that, for small η1 values, both the
W-HEWMA SRS and RSS schemes perform worst for small
η2 values. Secondly, the ARL and EARL of the RSS technique
are much smaller than those of the SRS technique. To il-
lustrate the latter two deductions empirically, consider
Table 3 under the N(0, 1) distribution, with η1 small (i.e.,
η1 � 0.05): when η2 � 0.1, 0.25, 0.5, 0.75, and 0.9, the
W-HEWMA SRS chart yields EARL values (using (23a) and
the ARL values shown in Table 3, with δmin � 0.25 and
δmax � 2) of 19.5, 17.9, 16.9, 15.8, and 16.0, respectively.
,ese show that when η2 is small, the corresponding ARL
values at different shift values are generally higher than those
when η2 is higher. Next, since the W-HEWMA RSS chart
yields EARL values of 8.1, 6.2, 5.3, 4.7, and 4.6, respectively,
these show that the EARLs of the SRS are higher than those
of corresponding RSS technique. A similar pattern is ob-
served under the t(5) and G(1,1) distributions.,irdly, it can
be observed from Table 3 that the W-HEWMA charts
perform better under skewed and heavy-tailed distributions,
as compared to the normal distribution. It is worth men-
tioning that the sensitivity of the W-HEWMA chart with
smoothing parameters (η1, η2) is equivalent to the one of
(η2, η1); that is, when the smoothing parameters are re-
versed, the performance is the same. Finally, the OOC SDRL
values of theW-HEWMA RSS chart are significantly smaller
than those of the corresponding W-HEWMA SRS chart.

Figures 1(a) and 1(b) compare the OOC performances of
the basic W-HEWMA SRS and RSS charts, respectively,
when (m, n) � (100, 5), and η1 ∈ 0.05, 0.5, 0.9{ } with η2 fixed

at 0.75 under the N(0,1) distribution. Moreover, the cor-
responding results of the W-HEWMA SRS and RSS charts
under the t(5) distribution are displayed in Figures 1(c) and
1(d), respectively. From Figure 1, it can be seen that re-
gardless of the nature of the underlying distribution, with η2
fixed to a large value, for small shifts in the process pa-
rameters, the W-HEWMA SRS chart performs better with
small η1 values; on the other hand, for large shifts, it per-
forms better with large η1 values. Note though that the
corresponding W-HEWMA RSS chart with small η1 values
performs better for small shifts, while the one with moderate
η1 values performs better for moderate shifts, and for large
shifts, it performs similarly for moderate and large values of
η1. Note that the sensitivity of the W-HEWMA SRS and RSS
charts for large shifts is higher when both η1 and η2 are large.
,e pattern of the ARL profile of the W-HEWMA SRS and
RSS charts under the G(1,1) using the above scenario is
similar to the ones displayed in Figures 1(c) and (1d); hence,
for brevity, they are not shown here.

5.3. >e W-HEWMA Chart versus SRR2-of-(2+v) W-HEWMA
Chart. Figure 2 shows OOC performance comparison be-
tween the W-HEWMA scheme (without runs-rules) with
the ones with the SRR2-of-(2+v) when v ∈ 0, 1{ } and (η1, η2) �

(0.25, 0.75) under theN(0,1) and t(5) distributions. It can be
seen that, for small shifts, the W-HEWMA charts are less
sensitive than the SRR2-of-(2+v) W-HEWMA charts regard-
less of the type of the sampling technique. However, for
moderate-to-large shifts, the W-HEWMA chart without
runs-rules has better performance.

5.4. >e W-HEWMA Chart versus IRR2-of-(2+v) W-HEWMA
Charts. Figure 3 compares the OOC performances of the
W-HEWMA chart with the ones of the IRR2-of-(2+v)
W-HEWMA charts when v ∈ 0, 1{ } and (η1, η2) �

(0.25, 0.75) under the N(0,1) and t(5) distributions. It is
observed that, for small shifts in the process location, the
IRR2-of-(2+v) W-HEWMA SRS and RSS charts perform better
than the W-HEWMA SRS and RSS charts, respectively.
However, for large shifts, the W-HEWMA SRS chart out-
performs the IRR2-of-(2+v) W-HEWMA SRS chart, while the
performances of the W-HEWMA and IRR2-of-(2+v)
W-HEWMA charts using the RSS technique are almost
similar regardless of the nature of the underlying
distribution.

5.5. >e SRR2-of-(2+v) W-HEWMA Charts versus IRR2-of-(2+v)
W-HEWMA Charts. Figure 4 compares the OOC perfor-
mances of the SRR2-of-(2+v) W-HEWMA schemes with the
ones of the IRR2-of-(2+v) W-HEWMA schemes when
v ∈ 0, 1{ } and (η1, η2) � (0.5, 0.9) under the N(0,1) and t(5)
distributions. For small-to-moderate shifts, the sensitivities
of the SRR2-of-(2+v) and IRR2-of-(2+v) W-HEWMA SRS charts
are almost similar regardless of the nature of the process
underlying distribution, whereas, for large shifts, the IRR2-of-

(2+v) W-HEWMA SRS chart is more sensitive than the SRR2-

of-(2+v) W-HEWMA SRS chart. However, for small shifts in
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the process location, the SRR2-of-(2+v) and IRR2-of-(2+v)
W-HEWMA RSS charts are similar in performance,
whereas, for moderate-to-large shifts, the IRR2-of-(2+v)
W-HEWMA RSS chart is more sensitive than the SRR2-of-

(2+v) W-HWMA RSS chart regardless of the nature of the
process underlying distribution.

5.6. Comparison with the Existing W-EWMA and
W-DEWMACharts. In this section, the performance of the
proposed W-HEWMA chart is compared to that of the
existing W-EWMA and W-DEWMA charts using SRS and
RSS techniques by Li et al. [30], Malela-Majika and Rapoo
[47], andMalela-Majika [48]. In Table 4, the performances of
the W-HEWMA chart is compared to the W-DEWMA and
W-EWMA schemes under the N(0,1), t(5), and G(1,1)
distributions when η � 0.05, (η1, η2) � (0.05, 0.9). Firstly, it
is observed that RSS technique’s ARL and EARL values are
smaller than those of the corresponding SRS technique.
Secondly, under the SRS technique, it can be observed that
the W-HEWMA chart outperforms the W-DEWMA chart
for small-to-large shifts, and it is more sensitive than the
W-EWMA chart for small-to-moderate shifts in the process

location; on the other hand, for large shifts, the W-HEWMA
and W-EWMA charts are almost similar in ARL perfor-
mance. Moreover, the W-DEWMA chart outperforms the
basic W-EWMA chart for small shifts and the converse is
true for moderate-to-large shifts in the process location.
,irdly, under the RSS technique, the W-HEWMA chart
outperforms the W-EWMA chart for small shifts, whereas,
for moderate-to-large shifts, the two charts are almost
equivalent. Moreover, the W-HEWMA chart is superior to
the W-DEWMA chart regardless of the size of the shift, and
the W-DEWMA chart outperforms the W-EWMA chart
except for moderate-to-large shifts. Finally, the SDRL results
show that, under symmetric distributions, W-HEMWA SRS
chart is preferred over the W-EWMA and W-DEWMA SRS
charts for small and large shifts. Under skewed and heavy-
tailed distributions, the W-DEWMA SRS chart is more
reliable for small shifts than the W-EWMA and
W-HEWMA SRS charts, whereas for moderate shifts the
W-HEWMA SRS chart is more reliable. However, for large
shifts, the three charts are equivalent in terms of the OOC
SDRL values. ,eW-DEWMA and HEWMA RSS charts are
both more reliable than theW-EWMARSS chart in terms of
the OOC SDRL profile for small shifts; however, for

Table 3: OOC ARL and SDRL profiles of the basic W-HEWMA chart using the SRS (and RSS in parentheses) when η1 � 0.05,
η2 ∈ 0.1, 0.25, 0.5, 0.75, 0.9{ }, and (m, n) � (100, 5) for a nominal ARL0 � 500

Shift
η2 � 0.1 η2 � 0.25 η2 � 0.5 η2 � 0.75 η2 � 0.9

N(0,1) t(5) G(1,1) N(0,1) t(5) G(1,1) N(0,1) t(5) G(1,1) N(0,1) t(5) G(1,1) N(0,1) t(5) G(1,1)

ARL

0.25 72.8
(16.7)

51.6
(15.0)

31.7
(11.6)

76.5
(14.0)

54.1
(12.3)

29.5
(9.0)

76.1
(13.2)

51.2
(11.3)

26.2
(7.9)

71.3
(12.8)

50.1
(10.9)

33.2
(7.5)

73.5
(12.9)

51.6
(11.0)

32.1
(7.4)

0.5 17.5
(10.0)

15.6
(9.3)

12.8
(7.9)

14.6
(7.6)

12.7
(7.0)

10.0
(5.9)

13.7
(6.4)

11.6
(5.8)

8.7
(4.7)

13.3
(6.0)

11.2
(5.3)

8.4
(4.2)

13.3
(5.9)

11.1
(5.2)

8.3
(4.1)

0.75 12.5
(7.8)

11.6
(7.3)

10.3
(6.3)

9.7
(5.8)

8.8
(5.4)

7.7
(4.9)

8.5
(4.6)

7.6
(4.3)

6.5
(3.9)

8.1
(4.2)

7.2
(3.8)

6.0
(3.2)

8.0
(4.0)

7.1
(3.7)

5.9
(3.1)

1 10.4
(6.7)

9.8
(6.3)

9.1
(6.0)

7.8
(4.9)

7.3
(4.6)

6.7
(4.0)

6.5
(3.8)

6.0
(3.6)

5.5
(3.1)

6.1
(3.3)

5.6
(3.1)

5.0
(3.0)

6.0
(3.2)

5.5
(3.0)

4.9
(2.9)

1.5 8.5
(5.6)

8.2
(5.3)

8.0
(5.0)

6.2
(4.0)

6.0
(4.0)

5.9
(4.0)

5.0
(3.0)

4.7
(3.0)

4.6
(3.0)

4.5
(2.7)

4.3
(2.5)

4.1
(2.2)

4.3
(2.4)

4.1
(2.2)

4.0
(2.0)

2 7.6
(5.0)

7.4
(5.0)

7.4
(5.0)

5.4
(3.8)

5.3
(3.6)

5.3
(4.0)

4.2
(3.0)

4.2
(3.0)

4.1
(3.0)

4.0
(2.1)

3.9
(2.1)

4.0
(2.0)

3.7
(2.0)

3.6
(2.0)

3.7
(2.0)

2.5 7.1
(5.0)

7.1
(5.0)

7.1
(5.0)

5.0
(3.1)

5.0
(3.1)

5.0
(3.0)

4.0
(2.9)

4.0
(2.9)

4.0
(3.0)

3.6
(2.0)

3.5
(2.0)

3.7
(2.0)

3.2
(2.0)

3.2
(2.0)

3.2
(2.0)

EARL 19.5
(8.1)

15.9
(7.6)

12.3
(6.7)

17.9
(6.2)

14.2
(5.7)

10.0
(5.0)

16.9
(5.3)

12.8
(4.8)

8.5
(4.1)

15.8
(4.7)

12.3
(4.2)

9.2
(3.4)

16.0
(4.6)

12.3
(4.2)

8.9
(3.4)

SDRL

0.25 244.1
(4.1)

153.5
(3.2)

213.8
(1.4)

251.2
(4.6)

208.1
(3.4)

179.0
(1.5)

272.2
(4.9)

174.1
(3.8)

132.8
(1.6)

221.1
(5.0)

148.8
(3.8)

265.3
(1.7)

242.7
(5.1)

189.6
(4.0)

302.4
(1.8)

0.5 6.8
(1.3)

4.9
(1.1)

2.3
(0.6)

6.7
(1.3)

4.8
(1.0)

2.3
(0.5)

7.4
(1.3)

4.7
(1.1)

2.5
(0.6)

7.9
(1.4)

4.9
(1.1)

2.7
(0.5)

7.6
(1.5)

4.8
(1.2)

2.6
(0.5)

0.75 2.1
(0.7)

1.7
(0.7)

1.1
(0.5)

2.1
(0.7)

1.7
(0.6)

1.0
(0.3)

2.3
(0.7)

1.7
(0.6)

1.1
(0.3)

2.4
(0.7)

1.8
(0.7)

1.1
(0.4)

2.5
(0.8)

1.9
(0.7)

1.1
(0.3)

1 1.3
(0.6)

1.0
(0.5)

0.7
(0.1)

1.2
(0.5)

1.0
(0.5)

0.7
(0.2)

1.2
(0.5)

1.0
(0.5)

0.6
(0.3)

1.3
(0.5)

1.1
(0.5)

0.7
(0.3)

1.3
(0.5)

1.1
(0.5)

0.7
(0.3)

1.5 0.6
(0.5)

0.6
(0.5)

0.6
(0.1)

0.6
(0.3)

0.5
(0.5)

0.4
(0.2)

0.6
(0.5)

0.6
(0.5)

0.5
(0.0)

0.6
(0.5)

0.5
(0.5)

0.3
(0.1)

0.6
(0.5)

0.5
(0.4)

0.4
(0.0)

2 0.5
(0.1)

0.5
(0.1)

0.5
(0.0)

0.5
(0.2)

0.2
(0.4)

0.4
(0.1)

0.4
(0.5)

0.4
(0.4)

0.3
(0.0)

0.3
(0.3)

0.4
(0.3)

0.2
(0.0)

0.5
(0.0)

0.5
(0.0)

0.4
(0.0)

2.5 0.2
(0.0)

0.3
(0.0)

0.2
(0.0)

0.2
(0.2)

0.2
(0.3)

0.1
(0.0)

0.1
(0.4)

0.1
(0.4)

0.1
(0.0)

0.3
(0.1)

0.4
(0.1)

0.2
(0.0)

0.4
(0.0)

0.4
(0.0)

0.3
(0.0)

ESDRL 36.5
(1.0)

23.2
(0.9)

31.3
(0.4)

37.5
(1.1)

30.9
(1.0)

26.3
(0.4)

40.6
(1.3)

26.1
(1.0)

19.7
(0.4)

33.4
(1.2)

22.6
(1.0)

38.6
(0.4)

36.5
(1.2)

28.4
(1.0)

44.0
(0.4)
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Figure 1: OOC log(ARL) profiles comparisons of the W-HEWMA SRS and RSS charts when η1 ∈ 0.05, 0.50, 0.90{ }, η2 � 0.75, (m, n) �

(100, 5) for a nominal ARL value of 500. (a) SRS technique under N(0,1) distribution. (b) RSS technique under N(0,1) distribution. (c) SRS
technique under t(5) distribution. (d) RSS technique under t(5) distribution.
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Figure 2: OOC log(ARL) profiles comparisons of the SRR2-of-(2+v) W-HEWMA SRS and RSS charts with and without runs-rules when
v ∈ 0, 1{ }, (m, n) � (100, 5), (η1, η2) � (0.25, 0.75) for a nominal ARL of 500. (a) SRS technique underN(0,1) distribution. (b) RSS technique
under N(0,1) distribution. (c) SRS technique under t(5) distribution. (d) RSS technique under t(5) distribution.
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Figure 3: OOC log(ARL) profiles comparisons of the IRR2-of-(2+v) W-HEWMA SRS and RSS charts with and without runs-rules when v= 0
and 1, (m, n) � (100, 5), (η1, η2) � (0.25, 0.75) for a nominal ARL of 500. (a) SRS technique under N(0,1) distribution. (b) RSS technique
under N(0,1) distribution. (c) SRS technique under t(5) distribution. (d) RSS technique under t(5) distribution.
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Figure 4: OOC ARL profiles comparisons of the SRR2-of-(2+v) and IRR2-of-(2+v) W-HEWMA SRS and RSS schemes when v ∈ 0, 1{ },
(m, n) � (100, 5), and (η1, η2) � (0.5, 0.9) for a nominal ARL of 500. (a) SRS technique under N(0,1) distribution. (b) RSS technique under
N(0,1) distribution. (c) SRS technique under t(5) distribution. (d) RSS technique under t(5) distribution.
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Table 6: Phase I sample of the iron ore data.

Sample number 1 2 3 4 5
1 3.05 1.13 1.17 1.33 1.21
2 2.10 1.79 1.08 1.81 1.65
3 1.01 1.33 1.64 1.85 1.58
4 1.09 1.88 2.20 1.48 1.42
5 2.15 1.22 1.63 1.38 1.80
6 1.91 1.90 1.28 1.24 2.43
7 1.25 1.84 1.26 1.37 1.19
8 1.44 1.06 1.60 1.16 1.09
9 2.72 1.52 1.44 4.15 4.95
10 1.32 1.85 2.05 2.59 1.50
11 2.29 1.74 1.43 1.71 1.62
12 3.96 1.63 1.57 2.05 1.39
13 3.36 1.01 2.06 3.36 3.36
14 0.97 3.80 3.36 1.73 3.36
15 1.69 2.56 1.47 1.90 1.90
16 1.63 1.61 1.79 2.05 2.93
17 2.04 1.30 1.44 1.32 1.59
18 1.49 2.05 2.36 2.34 1.33
19 2.10 1.48 1.51 2.77 3.42
20 1.67 1.48 1.48 1.88 2.16
21 2.10 1.74 1.79 2.44 1.88
22 1.81 1.67 2.10 1.78 2.54
23 1.58 1.57 1.45 1.92 2.20
24 1.62 1.71 2.65 1.72 2.44
25 5.21 1.10 1.61 2.72 1.94
26 3.01 1.61 1.45 1.69 1.62
27 1.70 1.89 2.28 2.45 2.14
28 1.72 1.66 1.92 2.71 1.73
29 1.83 1.47 1.35 1.58 1.74
30 1.24 1.47 1.10 1.87 1.62
31 1.76 1.94 1.46 1.39 1.91
32 1.87 1.98 2.32 2.22 1.57
33 1.68 2.08 1.78 1.18 2.32
34 2.30 1.56 2.32 1.48 1.13
35 1.39 3.63 2.80 1.69 4.32
36 2.01 3.56 1.65 1.48 2.10
37 2.23 1.64 2.67 1.92 3.14
38 2.81 2.01 2.22 2.64 3.84
39 2.40 2.40 2.40 1.37 2.40
40 1.59 1.44 2.40 1.78 2.40
41 2.68 1.60 1.04 2.40 1.56
42 1.10 1.10 1.02 2.40 1.10
43 1.20 1.00 1.09 3.70 3.17
44 1.69 1.86 1.44 1.49 2.19
45 1.05 3.21 1.62 1.22 1.10
46 0.96 1.81 1.33 0.86 3.27
47 3.27 1.09 4.15 3.81 1.40
48 1.86 1.22 1.99 1.45 4.09
49 4.83 2.17 1.64 1.63 1.69
50 1.63 1.42 1.95 1.94 2.61
51 1.93 1.53 4.92 1.93 1.22
52 2.21 2.21 2.26 1.33 1.93
53 1.24 2.04 3.21 1.76 1.41
54 1.67 1.74 1.93 2.41 1.46
55 1.75 1.27 1.13 1.78 3.06
56 2.40 1.80 2.31 2.56 1.50
57 1.26 3.17 4.73 2.28 1.14
58 1.79 1.28 1.52 1.17 1.14
59 1.76 2.42 1.28 2.12 1.11
60 1.19 1.01 1.28 3.14 1.55
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moderate-to-large shifts, the three competing charts are
almost equivalent.

Next, using η � 0.5 and (η1, η2) � (0.5, 0.9) in Table 5,
under SRS technique, it is observed that in general the IRR2-

of-3 W-DEWMA chart outperforms the other competitors
(see the EARL values), with the IRR2-of-3 W-HEWMA chart
in the second place. However, under RSS technique, the
IRR2-of-3 W-HEWMA chart outperforms the other charts in
terms of the EARL.

6. Illustrative Example

In this section, the proposed W-HEWMA SRS and RSS
schemes are implemented using mining real-life data to
monitor the silicon dioxide percentage in iron ore in order to
refine flotation process from Mukherjee et al. [32]. Silica
high concentration in the final ore is a sign of impurity and is
therefore not desired. ,us, it is very important to con-
tinuously monitor the flotation process of silica concentrate

Table 6: Continued.

Sample number 1 2 3 4 5
61 2.24 1.27 2.10 2.20 1.10
62 1.59 2.20 1.37 1.64 2.11
63 1.34 1.76 1.53 1.30 1.34
64 4.12 1.34 1.34 1.34 1.34
65 2.62 1.87 1.16 1.51 1.12
66 1.91 1.34 1.86 1.34 1.91
67 1.28 1.38 1.04 3.17 1.49
68 1.08 1.16 1.32 2.13 3.87
69 1.18 1.05 1.05 1.73 1.29
70 1.42 1.60 1.52 1.33 1.30
71 1.42 1.23 1.25 1.28 1.11
72 1.36 1.47 1.04 1.27 1.88
73 3.17 3.02 3.55 3.48 1.82
74 1.41 1.24 1.05 1.08 2.32
75 0.94 1.29 1.40 1.81 1.00
76 1.08 1.66 1.06 1.59 1.62
77 1.62 2.08 1.44 1.41 2.24
78 1.53 1.27 2.26 1.62 1.13
79 4.73 1.70 3.22 4.12 1.80
80 1.62 5.45 1.62 2.49 1.63
81 2.83 2.55 1.37 1.08 1.58
82 1.90 1.82 1.88 1.49 1.46
83 1.61 4.65 0.99 1.36 1.35
84 2.49 1.33 1.40 1.30 1.21
85 1.49 1.32 1.27 1.32 1.54
86 1.73 1.32 1.59 1.83 1.41
87 1.73 1.37 1.98 4.32 1.50
88 1.84 1.51 1.36 4.55 1.72
89 1.25 3.25 1.92 1.33 2.26
90 4.04 1.93 1.38 1.57 1.43
91 1.32 1.32 3.03 1.32 3.03
92 3.68 1.32 2.06 1.32 1.32
93 1.51 1.23 1.91 2.41 2.15
94 2.11 3.25 2.24 2.55 1.26
95 1.93 2.87 1.59 2.83 2.02
96 2.14 1.49 1.68 2.30 2.11
97 1.65 1.92 1.33 3.87 1.09
98 1.69 1.24 1.78 1.60 1.62
99 2.16 1.68 1.68 1.58 2.92
100 1.21 1.56 3.72 2.17 1.68
101 2.05 2.19 2.03 2.01 2.20
102 4.64 2.21 1.54 2.19 1.66
103 1.02 1.68 1.53 1.04 1.79
104 3.12 2.03 0.97 1.99 1.42
105 2.63 2.07 2.09 1.23 1.85
106 1.37 2.50 1.26 1.08 1.37
107 3.30 2.20 1.34 1.34 4.57
108 2.41 2.11 1.34 3.49 1.61
109 2.97 1.79 1.90 1.73 1.61
110 2.99 2.67 1.56 1.52 2.92
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Table 7: Phase II iron ore data.

Sample number 1 2 3 4 5
1 2.08 2.08 2.08 2.08 2.08
2 2.08 2.08 2.08 2.08 2.08
3 2.08 2.08 2.08 2.08 2.08
4 2.08 2.08 2.08 2.08 2.08
5 2.08 2.08 1.59 2.08 2.08
6 1.65 2.08 2.08 2.08 2.08
7 4.32 1.67 2.05 5.42 3.84
8 1.75 5.42 5.35 4.33 4.33
9 2.1 3.64 3.88 3.07 2
10 2 1.24 3.64 3.13 3.13
11 1.79 1.97 2.36 2.41 2.47
12 4.52 2.44 1.69 1.73 1.73
13 1.13 1.55 1.25 1.08 1.58
14 1.04 1.42 1.09 1.16 1.16
15 1.02 1.34 1.92 4.7 2.39
16 1.21 0.91 1.27 1.32 1.32
17 1.49 2.32 2.06 1.39 2.17
18 3.36 2.16 4.65 1.56 1.56
19 1.56 1.66 1.56 3.8 2.62
20 5.52 1.47 4.14 1.57 1.57
21 1.22 1.84 1.29 1.68 1.82
22 1.15 1.66 1.97 2.29 2.29
23 1.92 1.33 1.25 1.2 1.31
24 0.74 0.6 1.29 1.11 1.11
25 2.49 2.59 1.17 2.64 1.70
26 2.72 2.65 1.3 1.88 1.88
27 1.39 1.57 2.61 1.48 2.64
28 1.86 1.35 1.25 1.28 1.28
29 1.66 1.8 2.21 1.59 2.21
30 1.72 1.96 2.21 1.68 1.68
31 2.06 1.17 1.35 1.57 2.19
32 1.37 2.1 1.51 1.49 1.49
33 1.19 1.19 1.19 1.19 1.19
34 1.19 1.19 1.19 1.19 1.19
35 4.86 1.19 1.67 1.19 2.12
36 1.66 2.47 3.69 1.61 1.61
37 2.92 2.51 5.53 2.25 1.88
38 2.13 4.33 2.02 3.58 3.58
39 1.58 1.51 2.16 2.17 1.87
40 4.14 3.66 1.26 3.18 3.18
41 1.89 1.35 1.24 4.35 4.57
42 1.78 1.2 1.29 1 1
43 1.11 1.42 1.14 0.94 1.02
44 1.37 1.54 1.19 1.26 1.26
45 2.46 1.39 1.23 2.33 1.33
46 2.92 2.46 1.73 1.41 1.41
47 1.31 2.93 2 2.2 1.27
48 1.7 2.12 1.79 1.44 1.44
49 0.84 1.45 2.12 3 1.21
50 1.18 2.3 0.87 1.56 1.56
51 1.52 1.49 1.29 1.51 1.24
52 1.28 1.81 1.39 3.39 3.39
53 1.52 2.24 1.84 1.3 1.59
54 1.44 1.14 1.42 1.75 1.75
55 3.53 1.81 2.85 5.53 1.67
56 4.71 1.35 1.13 2.85 2.85
57 4.06 2.04 3.77 4.07 3.95
58 2.82 3.66 1.63 2.58 2.58
59 4.61 4.14 2.72 5.08 3.50
60 4.99 4.62 4.04 4.79 4.79
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Table 7: Continued.

Sample number 1 2 3 4 5
61 2.49 1.63 1.53 4.12 2.09
62 2.77 4.07 1.97 1.76 1.76
63 3.2 2.55 1.96 1.4 1.58
64 1.41 1.6 1.41 3.18 3.18
65 3.98 1.33 1.24 4.44 1.00
66 1.31 5.29 1.15 1.65 1.65
67 3.71 2.7 1.66 3.95 1.57
68 1.22 1.76 3.16 2.31 2.31
69 2.47 2.3 2.41 2.25 2.83
70 2.71 4.89 4.08 4.87 4.87
71 1.78 1.49 2.48 1.29 1.60
72 2.74 1.73 1.82 3.31 3.31
73 2.57 3.01 2.41 1.76 1.49
74 2.47 2.46 1.21 2.23 2.23
75 1.42 1.25 1.5 1.65 1.57
76 1.79 1.99 2.4 1.77 1.77
77 2.36 1.83 1.93 2.87 2.46
78 1.71 1.7 3.07 1.71 1.71
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Figure 5: Continued.
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in iron ore in order to fix any abnormality or problem that
may arise. ,erefore, in this paper, the W-HEWMA scheme
with and without runs-rules is used for this purpose.

,e mining data contains two sets of data considered as
Phases I and II data, shown in Tables 6 and 7, respectively.
However, in addition to the data from Mukherjee et al. [32],
in this paper, we assume that every half an hour a subgroup
of size five is taken. ,us, in Phase I, 110 samples of size 5
(i.e., m= 550) are collected when the process is deemed IC.
In Phase II, there are 78 subgroups of size 5 (i.e., n= 5) each.
In case of the RSS, at each sampling time t, the judgement
ranking begins by collecting (or considering) 5 samples of
size n= 5, ordering them according to the operator judge-
ment from the smallest to the largest, and lastly selecting the
n diagonal elements. In this example, it is assumed that there
is a perfect judgement ranking. ,e W-HEWMA schemes
are implemented when (η1, η2) � (0.5, 0.9) with a nominal
ARL0 of 500. ,e control limit constants of the basic, SRR2-

of-3, and IRR2-of-3 W-HEWMA SRS schemes are found to be
equal to 2.9689, 2.4074, and (2.4906, 2.4033) so that they
yield the attained ARL0 values of 502.7, 501.9, and 500.8,
respectively. However, the control limit constants of the
basic, SRR2-of-3, and IRR2-of-3 W-HEWMA RSS schemes are
found to be equal to 1.7512, 1.3904, and (1.4716, 1.3916) so
that they yield the attained ARL0 values of 500.6, 501.7, and
502.0, respectively. ,e plots of the proposed W-HEWMA
schemes are shown in Figure 5. From this figure, it can be
seen that, on the one hand, the basic W-HEWMA SRS
scheme gives a signal for the first on the 60th subgroup (see
Figure 5(a)), whereas both the SRR2-of-3 and IRR2-of-3
W-HEWMA SRS schemes give a signal on the 14th subgroup
in the prospective phase (i.e., Phase II); see Figures 5(c) and
5(e). On the other hand, the basic W-HEWMA RSS scheme
gives a signal for the first on the 12th subgroup (see
Figure 5(b)), whereas both the SRR2-of-3 and IRR2-of-3
W-HEWMA RSS schemes give a signal on the 2nd subgroup;
see Figures 5(d) and 5(f).

,erefore, this real-life illustrative example shows that
the SRR2-of-3 and IRR2-of-3 W-HEWMA schemes are more
sensitive than the basic W-HEWMA schemes in this par-
ticular case.

7. Concluding Remarks

New distribution-free HEWMA monitoring schemes based
on the W statistic using SRS and RSS sampling designs based
on perfect judgement ranking are proposed. ,e proposed
W-HEWMA SRS and RSS schemes are further improved
using supplementary standard and improved runs-rules.,e
abilities of the new distribution-free HEWMA monitoring
schemes are evaluated in terms of the ARL and SDRL
profiles. ,e characteristics of the proposed schemes
revealed that they perform better under skewed and heavy-
tailed distributions. It is also found that the choice of the
magnitude of the smoothing parameters depends on the
shift of interest. For instance, when the detection of large
shifts is of interest, it is recommended that two large
smoothing parameters are combined. However, when the
detection of small shifts is of interest, it is recommended that
small smoothing parameters are combined. In case the
detection of moderate shifts is of interest, the combination of
moderate values of the smoothing parameters is recom-
mended. Small-to-large shifts will be detected quickly when
combining small and large smoothing parameters. From the
results obtained in this study, in terms of the performance
ability of the proposed schemes, operators are recommended
to use the proposed IRR2-of-(2+v) W-HEWMA scheme based
on SRS or RSS technique when small-to-large shifts are of
interest. Moreover, the basic W-HEWMA schemes are most
preferred over the basic W-EWMA and W-DEWMA
schemes.

Since this research is based on perfect judgement
ranking, the corresponding research on imperfect judge-
ment ranking is already under way. For future research
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Figure 5: Illustration examples of the proposed W-HEWMA SRS and RSS charts with and without runs-rules using the iron ores data.
(a) W-HEWMA SRS chart. (b) W-HEWMA RSS chart. (c) SRR2-of-3 W-HEWMA SRS chart. (d) SRR2-of-3 W-HEWMA RSS chart. (e) IRR2-

of-3 W-HEWMA SRS chart. (f ) IRR2-of-3 W-HEWMA RSS chart.
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purpose, interested researchers can also investigate the
performance of the composite Shewhart-HEWMA scheme
based on the W statistic using the SRS and RSS schemes.,e
synthetic W-HEWMA scheme using SRS and RSS tech-
niques can also be investigated. Finally, only the basic RSS
design is considered here; hence, other modifications of the
RSS can also be studied in the future, i.e., extreme, median,
neoteric, ordered perfect, and imperfect RSS (see, for in-
stance, [38, 56]).

Data Availability

,e raw data used to illustrate the implementation of the
proposed control chart is given in Tables 6 and 7, and its
characteristics are explained in Section 6.
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