

OPEN ACCESS

Qatar Health 2020 Conference

Patient factors associated with enrollment, adherence, and change in cardiac risk factors among cardiac rehabilitation patients in Qatar

Rahma Saad^{1,*}, Mohamed Alhashemi², Theodoros Papasavvas², Karam Adawi¹

ABSTRACT

Background: Cardiovascular disease is the number one killer in Qatar¹. Cardiac rehabilitation (CR) is a secondary prevention model of care for cardiac patients. It is well-documented that CR reduces cardiovascular morbidity and mortality by 20%². However, CR is underutilized worldwide, with low enrolment and adherence rates³. This study aims to investigate factors associated with enrolment and adherence, and to examine the relationship between adherence and change in cardiac risk factors. Methods: There were 714 cardiac patients, aged ≥18 years, referred to a CR program in Qatar. Retrospective cohort study using data from (January 2013-September 2018) were analyzed. Logistic regression models were used to assess factors associated with enrolment, adherence, and predictors of adherence. A paired sample t-test was used to identify mean change in cardiac risk factors: body mass index, low-density lipoprotein, high-density lipoprotein and total cholesterol) pre/post-CR. An independent sample t-test was used to identify change between groups (adherents vs. non-adherents). **Results:** The majority of our patients were males (n=641, 89.8%) and non-Qatari (n=596, 83.5%), i.e., similar to the Qatar population profile of 75% males and 15% Qatari, one fourth were smokers (n=185, 25.91%), and one fifth (n=128, 18.8%) were diagnosed with severe depression. Significant patient factors positively associated with enrolment (p < 0.05) were nationality, percutaneous coronary intervention (PCI), coronary artery bypass grafting, and coronary artery disease (Table 1). The number of sessions attended by patients is shown in Figure 1. Patients with American Association of Cardiovascular and Pulmonary Rehabilitation (AACVPR) moderate and high-risk levels were more likely to adhere compared to those with low risk. Percutaneous coronary intervention (PCI) and musculoskeletal disease were negatively associated with adherence (Table 1). We found clinically significant health improvements among adherents compared to non-adherents; reduction of 10% in cholesterol, and 15% in LDL (low-density lipoprotein).

Conclusion: This study provides new insights into the factors that lead patients to enrol in and adhere to CR in the Qatar setting. These factors represent opportunities for targeted interventions to improve CR utilization.

Keywords: cardiac rehabilitation, patient compliance

¹Department of Public Health, Qatar University, Doha, Qatar ²Rehabilitation Program, Heart Hospital, Hamad Medical Corporation, Doha,

*Email: rs1203827@qu.edu.qa

Qatar

http://dx.doi.org/ 10.5339/jemtac.2020.qhc.12

© 2021 Saad, Alhashemi, Papasavvas, Adawi, licensee HBKU Press. This is an open access article distributed under the terms of the Creative Commons Attribution license CC BY-4.0, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Cite this article as: Saad R, Alhashemi M, Papasavvas T, Adawi K. Patient factors associated with enrollment, adherence, and change in cardiac risk factors among cardiac rehabilitation patients in Qatar, Journal of Emergency Medicine, Trauma & Acute Care, Qatar Health 2020 Conference 2020:12 http://dx.doi.org/10.5339/jemtac.2020.qhc.12

Table 1. Patient factors associated with enrolment in the cardiac rehabilitation program (univariate logistic regression) and predictors of adherence to cardiac rehabilitation (multivariable logistic regression)

Variables	OR	95%CI		P-value	
Age	1.02	1.01	1.05	< 0.001	
Gender			-		
Female	Ref				
Male	1.28	0.78	2.11	0.34	
Nationality		,		31	
Qatari	Ref				
Non-Qatari	1.81	1.18	2.77	0.006	
AACVPR Risk Category			//		
Low risk	Ref				
Moderate risk	12.67	7.89	20.34	< 0.001	
High risk	10.41	6.46	16.77	< 0.001	
Cardiac Depression Scale (CDS)	10.41	0.40	10.//	< 0.001	
No depression	Dof				
	Ref				
Moderate-mild depression	0.85	0.52	1.39	0.53	
Severe depression	0.92	0.62	1.36	0.68	
Smoking					
No	Ref		= 4		
Yes	0.60	0.43	0.86	0.01	
I ndications PCI					
No	Ref				
Yes	0.61	0.44	0.92	< 0.004	
CABG	0.01	0.44	0.83	< 0.001	
	Def				
No	Ref				
Yes	1.68	1.16	2.44	0.01	
Coronary artery disease					
No	Ref				
Yes	1.42	1.05	1.93	0.021	
Myocardial infarction					
No	Ref				
Yes	1.04	0.76	1.41	0.83	
Heart failure					
No	Ref				
Yes	1.26	0.56	2.82	0.57	
Valve replacement					
No	Ref				
Yes	1.15	0.53	2.53	0.72	
Angina	1.12	0.))	رر.2	0.72	
No	Ref				
Yes		0.20	7.98	0.61	
Valve disease	1.53	0.29	7.90	0.01	
	Dot				
No Voc	Ref	0.51	2.70	0.70	
Yes	1.19	0.51	2.78	0.70	
Comorbid conditions					
Diabetes mellitus	ъ.				
No	Ref		_		
Yes	1.35	0.99	1.83	0.05	
HTN					
No	Ref				
Yes	1.09	0.81	1.48	0.57	
Back pain	•		•	- ·	
No	Ref				
Yes	0.22	0.07	0.60	< 0.001	
Musculoskeletal disease		- /			
No	Ref				
Yes	0.28	0.10	0.76	0.013	
Body mass index (Kg/m²)	1.01	0.10			
			1.04	0.381	
Systolic blood pressure (mmHg)	1.01	1.00	1.02	0.01	
LDL (mmol/L)	0.94	0.81	1.08	0.38	
HDL (mmol/L) Cholesterol (mmol/L)	0.40	0.29	0.54	< 0.001	
I DOIASTATOI IMMOI/I I	0.90	0.79	1.03	0.12	

Table 1 - Continued

Variables	OR	95	%CI	P-value					
Predictors of adherence to CR (multivariable logistic regression)									
Age (years)	1.01	0.98	1.04	0.42					
Gender			·	,					
Female	Ref								
Male	1.20	0.53	2.74	0.66					
AACVPR Risk Category		33	, ,						
Low risk	Ref								
Moderate risk	12.71	7.81	20.68	< 0.001					
High risk	10.60	6.44	17.44	< 0.001					
PCI									
No	Ref								
Yes	0.39	0.17	0.89	0.03					
CABG		,		-					
No	Ref								
Yes	0.49	0.19	1.28	0.14					
Musculoskeletal diseases	12			'					
No	Ref								
Yes	0.15	0.06	0.5	0.003					

P-value < 0.05 is considered significant. OR: Odd ratio. Cl: Confidence interval. AACVPR: American Association of Cardiovascular and Pulmonary Rehabilitation. CR: cardiac rehabilitation. HTN: hypertension. LDL: low-density lipoprotein. HDL: high-density lipoprotein. PCI: percutaneous coronary intervention. CABG: coronary artery bypass grafting.

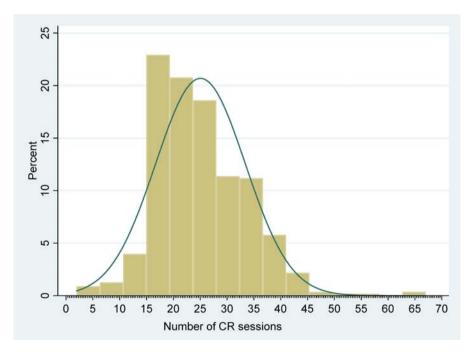


Figure 1. Distribution of CR sessions attended by the patients

Notes: This study was classified as exempt by the Medical Research Center of Hamad Medical Corporation [MRC-01-18-430] and the Qatar University Institutional Review Committee [QU-IRB 1039-

We would like to acknowledge the Department of Cardiac Rehabilitation and the staff of the Hamad Medical Corporation Heart Hospital for their outstanding support to this Master's Thesis undertaken at Qatar University.

REFERENCES

- [1] State of Qatar MoPH. Qatar Public Health Strategy 2017-2022 [online]. Available from: https://www.moph.gov-qa/english/strategies/Supporting-Strategies-and-Frameworks/QatarPublicHealthStrategy/Pages/default.aspx
- [2] Turk-Adawi K, Sarrafzadegan N, Grace SL. Global availability of cardiac rehabilitation. *Nat Rev Cardiol.* 2014; 11(10):586–596. doi:10.1038/nrcardio.2014.98.
- [3] Anderson L, Oldridge N, Thompson DR, Zwisler AD, Rees K, Martin N, Taylor RS. Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease: Cochrane Systematic Review and Meta-Analysis. *J Am Coll Cardiol*. 2016; 67(1):1–12. doi:10.1016/j.jacc.2015.10.044.