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Abstract— Coronavirus disease (COVID-19) has been the main
agenda of the whole world ever since it came into sight. X-ray
imaging is a common and easily accessible tool that has great
potential for COVID-19 diagnosis and prognosis. Deep learning
techniques can generally provide state-of-the-art performance
in many classification tasks when trained properly over large
data sets. However, data scarcity can be a crucial obstacle when
using them for COVID-19 detection. Alternative approaches such
as representation-based classification [collaborative or sparse
representation (SR)] might provide satisfactory performance with
limited size data sets, but they generally fall short in perfor-
mance or speed compared to the neural network (NN)-based
methods. To address this deficiency, convolution support estima-
tion network (CSEN) has recently been proposed as a bridge
between representation-based and NN approaches by providing
a noniterative real-time mapping from query sample to ideally
SR coefficient support, which is critical information for class
decision in representation-based techniques. The main premises
of this study can be summarized as follows: 1) A benchmark
X-ray data set, namely QaTa-Cov19, containing over 6200 X-ray
images is created. The data set covering 462 X-ray images from
COVID-19 patients along with three other classes; bacterial
pneumonia, viral pneumonia, and normal. 2) The proposed
CSEN-based classification scheme equipped with feature extrac-
tion from state-of-the-art deep NN solution for X-ray images,
CheXNet, achieves over 98% sensitivity and over 95% specificity
for COVID-19 recognition directly from raw X-ray images
when the average performance of 5-fold cross validation over
QaTa-Cov19 data set is calculated. 3) Having such an elegant
COVID-19 assistive diagnosis performance, this study further
provides evidence that COVID-19 induces a unique pattern in
X-rays that can be discriminated with high accuracy.

Index Terms— Coronavirus disease (COVID-19) recognition,
representation-based classification, severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) virus, transfer learning.

I. INTRODUCTION

CORONAVIRUS disease 2019 (COVID-19) has been
declared as a pandemic by the World Health Organi-

zation (WHO) a few months after its first appearance. It has
infected more than 70 million people, caused a few million
causalities, and has so far paralyzed mobility all around the
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world. The spreading rate of COVID-19 is so high that the
number of cases is expected to be doubled every three days
if the social distancing is not strictly observed to slow this
accretion [1]. Roughly around half of the COVID-19 positive
patients also exhibit a comorbidity [2], making it difficult
to differentiate COVID-19 from other lung diseases. Auto-
mated and accurate COVID-19 diagnosis is critical for both
saving lives and preventing its rapid spread in the commu-
nity. Currently, reverse transcription-polymerase chain reaction
(RT-PCR) and computed tomography (CT) are the common
diagnostic techniques used today. RT-PCR results are ready at
the earliest 24 h for critical cases and generally take several
days to conclude a decision [3]. CT may be an alternative
at initial presentation; however, it is expensive and not easily
accessible [4]. The most common tool that medical experts use
for both diagnostic and monitoring the course of the disease
is X-ray imaging. Compared to RT-PCR or CT test, having
an X-ray image is an extremely low cost and a fast process,
usually taking only a few seconds. Recently, WHO reported
that even RT-PCR may give false results in COVID-19 cases
due to several reasons such as poor quality specimen from the
patient, inappropriate processing of the specimen, taking the
specimen at an early or late stage of the disease [5]. For this
reason, X-ray imaging has a great potential to be an alternative
technological tool to be used along with the other tests for an
accurate diagnosis.

In this study, we aim to differentiate X-ray images of
COVID-19 patients among other classes; bacterial pneumonia,
viral pneumonia, and normal. For this work, a benchmark
COVID-19 X-ray data set, Qata-Cov19 (Qatar University
and Tampere University COVID-19 Data set) that contains
462 X-ray images from COVID-19 patients was collected. The
images in the data set are different in quality, resolution, and
SNR levels as shown in Fig. 1. QaTa-Cov19 also contains
many X-ray images from the COVID-19 patients who are in
the early stages; therefore, their X-ray images show mild or no-
sign of COVID-19 infestation by the naked eye.1 Some sample
images are shown in Fig. 2(b). Another fact that makes the
diagnosis far more challenging is that interclass similarity can
be very high for many X-ray images as some samples are
shown in Fig. 2(a). Against such high interclass similarities
and intraclass variations, in this study, we aim for a high
robustness level.

In numerous classification tasks, deep learning techniques
have been shown to achieve state-of-the-art performance in

1The statements belong to the medical doctors whose names are listed in
the Acknowledgment section.
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Fig. 1. Sample COVID-19 X-ray images from QaTa-Cov19.

terms of both recognition accuracy and their parallelizable
computing structures which play an important role, especially
in real-time applications. Despite their advantages, in order to
achieve the desired performance level in a deep model, proper
training over a massive training data set is usually needed.
Nevertheless, this is unfortunately unfeasible for this problem
since the available data is still rather limited.

An alternative supervised approach, which requires a limited
number of training samples to achieve satisfactory classifi-
cation accuracy is representation-based classification [6]–[8].
In representation-based classification systems, a dictionary,
the columns of which consist of the training samples that are
stacked in such a way that a subset of them corresponding
to a class, is predefined. A test sample is expected to be a
linear combination of all points from the same class as the test
sample. Therefore, given a predefined dictionary matrix, D and
a test sample y, we expect the solution x̂ from y = Dx, carry
enough information about the class of y. Overall, in this study,
we draw a convolutional support estimation network (CSEN)
[9]-based solution pipeline, which fuses the representation-
based classification scheme into a neural network (NN) body.

The rest of this article is organized as follows. In Section II,
notations and mathematical preliminaries are given with
emphasis on sparse representation (SR) and sparse support
estimation (SE). Then in Section III, a literature review on
deep learning models over X-ray images and representation-
based classification is presented. The proposed CSEN-based
COVID-19 recognition system is introduced in Section IV
along with two recent alternative approaches that are used as
the competing methods. The data collection is also explained
in this section. Experimental setup and the main results are
provided in Section V. Finally, Section VII concludes this
article and suggests topics for future research.

II. PRELIMINARIES AND MATHEMATICAL NOTATIONS

A. Notations

In this study, the �p-norm of a vector x ∈ R
n is defined

as ‖x‖�n
p
= (∑n

i=1|xi |p
)1/p

for p ≥ 1. On the other hand,

Fig. 2. Sample QaTa-Cov19 X-ray images. (a) X-ray images from different
classes. (b) X-ray images from the COVID-19 patients who are in the different
stages.

the �0-norm of the vector x ∈ R
n is defined as ‖x‖�n

0
=

lim p→0
∑n

i=1|xi |p = #{ j : x j �=0} and the �∞-norm is defined
as ‖x‖�n∞ = maxi=1,...,n(|xi |). A signal s is called strictly
k-sparse if ‖x‖0 ≤ k. Sparse support set or simply support
set, � ⊂ {1, 2, 3, . . . , n} of sparse signal x can be defined as
the set of nonzero coefficients’ location, i.e., � := {i : xi �= 0}.

B. Sparse Signal Representation

SR of a signal s ∈ R
d in a predefined set of waveforms,

� ∈ R
d×n , can be defined as representing s as a linear

combination of only a small subset of atoms in the dictionary
�, i.e., s = �x. Defining these sets, which dates back to
Fourier’s pioneering work [10], has been excessively studied in
the literature. In the early approaches, these sets of waveforms
have been selected as a collection of linearly independent and
generally orthogonal waveforms (which are called a complete
dictionary or basis, i.e., d = n) such as Fourier transform,
DCT, and wavelet transform, until the pioneering work of
Mallat [11] on overcomplete dictionaries (n 
 d). In the
last decade, interest in SR research increased tremendously.
Their wide range of applications includes denoising [12],
classification [13], anomaly detection [14], [15], deep learning
[16], and compressive sensing (CS) [17], [18].

With a possible dimensional reduction that can be satisfied
via a compression matrix A ∈ R

m×d (m � d), sample can be
obtained from s

y = As = A�x = Dx (1)

where D ∈ R
m×n can be called the equivalent dictionary.

Because (1) describes an underdetermined system of lin-
ear equations, finding the representation coefficient vector x
requires at least one more constraint to have a unique solution.
Using the prior information about sparsity, the following
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representation:
min

x
‖x‖0 s.t. Dx = y (2)

which is also an SR of x has a unique solution provided that x
is strictly sparse and D satisfies some required properties [19].
For instance, if ‖x‖0 = k, the minimum number of linearly
independent columns of D, spark(D), should be greater than
2k, i.e., spark(D) ≥ 2k in order to not to have Dx′ = Dx′′ for
distinct k-sparse signals, x′ and x′′ [19]. However, the opti-
mization problem in (2) is a NP-hard. Fortunately, the follow-
ing relaxation:

min
x
‖x‖1 s.t. Dx = y (3)

produces exactly the same solution as that of (2) provided that
D obeys some criteria: the equivalence of �0–�1 minimization
problems can be guaranteed when D satisfies a notation
of null space property (NSP) [20], [21] not only for exact
sparse signals but approximately sparse signals. Furthermore,
the query sample y can be corrupted with an additive noise
pattern. In this case, the equality constraint in (3) can be
further relaxed such as in the basis pursuit denoising (BPDN)
[22]: minx‖x‖ s.t. ‖y − Dx‖ ≤ ε, where ε is a small constant
that depends on the noise level. In this case, a stronger property
which is known as restricted isometry property (RIP) [23],
[24] is frequently used which both cover conditions satisfying
exact recovery of BP and stable recovery of BPDN, e.g.,
exact recovery of x from (3) is possible when D has RIP
and m > k(log(n/k)).

We may refer to the sparse SE problem as finding the
indices a set, �, of nonzero elements of x [25], [26]. Indeed,
in many applications, SE can be more important than finding
the magnitude and sign of x as well as �, which refers to the
sparse signal recovery (SSR) via a recovery technique, such
as (3). For example, in a sparse representation-based classi-
fication (SRC) system, a query sample y can be represented
with sparse coefficient vector, x, in the dictionary, D in such
a way that when we recover this representation coefficient
from y = Dx, the solution vector x̂ is expected to have a
significant number of nonzero coefficients coming from the
particular locations corresponding to the class of y.

Readers are referred to [9] for a more detailed literature
review on SE and its applications. In the sequel, we briefly
summarize the building blocks of the proposed approach.

III. BACKGROUND AND PRIOR ART

A. CheXNet

In the proposed approach, we first use the pretrained deep
network, CheXNet, to extract discriminative features from
raw X-ray images. CheXNet was developed for pneumonia
detection from the chest X-ray images [27]. In [27], it was
claimed that CheXNet can perform even better than expert
radiologists in the pneumonia detection problem. This deep
NN design is based on the previously proposed DenseNet [28]
that consists of 121 layers. It is first pretrained over ImageNet
data set [29] and performed transfer learning over 112120
frontal-view chest X-ray images in the ChestX-ray14 data
set [30].

B. Representation-Based Classification

Consider we are given a test sample y, which represents
either the extracted features, s, or their dimensionally reduced
version, i.e., y = As. In developing the dictionary, training
samples are stacked in the dictionary D with particular loca-
tions in such a way that the optimal support for a given query
y should be the set of all points coming from the same class
as y. Therefore, a solution vector, x̂ of y = Dx is supposed to
have enough information, i.e., the sparse support should be the
set of location indices of the training sample from the same
class as y. This strategy is generally known as representation-
based classification. However, a typical solution x̂ of y = Dx
is not necessarily a sparse one especially when its size
grows with more training samples, which results in a highly
underdetermined system of linear equations. Fortunately, if one
estimates the representation coefficient vector with a sparse
recovery design such as �1-minimization as in (3), we can
expect that the important nonzero entries of the solution, x̂,
are grouped in the particular locations that correspond to the
locations of the training samples from the same class as y. This
can be a typical example of scenarios where SE can be more
valuable than the magnitudes and sign recovery as explained
in Section II-B.

For instance, Wright et al. [8] proposed a systematic way of
determining the identity of face images using �1-minimization.
The authors develop a three-step classification technique that
includes: (i) normalization of all the atoms in D and y to have
unit �2-norm; (ii) estimating the representation coefficient vec-
tor via sparse recovery, i.e., x̂ = arg minx‖x‖1 s.t.‖y − Dx‖2;
and (iii) finding the residuals corresponding to each class via
ei = ‖y − Dix̂i‖2, where x̂i is the group of the estimated
coefficients, x̂, that correspond to class i .

This technique, which is known as SRC, and its variants
have been applied to a wide range of applications in the
literature [31], [32], e.g., human action recognition [33], and
hyperspectral image classification [34], to name a few. Despite
the good recognition accuracy performance of SRC systems,
their main drawbacks is the fact that their sparse recovery
algorithms (e.g., �1-minimization) are iterative methods and
computationally costly, rendering them infeasible in real-time
applications. Later, the authors of [6] introduced collaborative
representation-based classification (CRC), which is similar
to SRC except for the use of traditional �2-minimization in
the second step; x̂ = arg minx

{‖y − Dx‖2
2 + λ‖x‖2

2

}
. Thus,

CRC does not require an iterative solution to obtain rep-
resentation coefficient thanks to that �2-minimization has a
closed form solution, x̂ = (

DTD+ λIn×n
)−1

DTy. Although,
the sparsity in x̂ cannot be guaranteed, it has often been
reported to achieve a comparable classification performance,
especially in small-size training data sets.

IV. PROPOSED APPROACH

For a computer-aided COVID-19 recognition system design,
our primary objective is to achieve the highest sensitivity
possible in the diagnosis of COVID-19 induced pneumonia
with an acceptable false-alarm rate (e.g., specificity > 95%).
In particular, the misdiagnosis of a COVID-19 X-ray image
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Fig. 3. Proposed approach for Covid recognition from X-ray images. The proposed convolution support estimator network (CSEN) which can be trained from
a moderate size training set. The pipeline employs the pretrained deep NN for feature extraction. A is the dimensional reduction (PCA) matrix, the coarse
estimation of representation coefficient (sparse in ideal case), x̂ is obtained via the denoiser matrix, B = (

DT D+ λI
)−1DT , where D = A� and � is the

predefined dictionary matrix of training samples (before dimensional reduction).

as a normal case should be minimized whilst a small number
of false negatives (FNs) is tolerable.

Our interest in representation-based classification is that
they perform well in classification tasks even in the cases
where training data is scarce. As mentioned, the two well-
known representation-based classification methodologies are
SRC [7] and CRC [6]. Among them, SRC provides slightly
improved accuracy by solving an SR problem, i.e., producing
a sparse solution x̂ from y = Dx. Then, the location of
the nonzero elements of x̂, which is also known as support
set, provides the class information of the query y. Despite
improved recognition accuracy, SRC solutions are iterative
solutions and can be computationally demanding compared to
CRC. In a recent work [9], a compact NN design that can be
considered as a bridge between NN-based and representation-
based methodologies was proposed. The so-called CSEN uses
a predefined dictionary and learns a direct mapping using
moderate/low size training set, which maps query samples,
y, directly to the support set of representation coefficients, x
(as it should be purely sparse in the ideal case).

In this study, to address the data scarcity limitations
in COVID-19 diagnosis from X-ray images we propose
a CSEN-based approach. Since a relatively larger set of
COVID-19 X-ray images ever compiled is used in this study,
the proposed approach can be evaluated rigorously against
a high level of diversity to obtain a reliable analysis. The
general pipeline of the proposed CSEN-based recognition
scheme is illustrated in Fig. 3. In order to obtain highly
discriminative features, we use the recently proposed CheXNet
[27], which is the fine-tuned version of 121 layer Dense
Convolutional Network (DenseNet-121) [28] by using over
100 000 frontal view X-ray images form 14 classes. Having
the pretrained CheXNet for feature extraction, we develop
two different strategies to obtain the classes of query X-ray
images: 1) using CRC with proper preprocessing; 2) a slightly
modified version of our recently proposed convolution support
estimator (CSEN) models. In the sequel, both techniques will
be explained in detail as well as alternative solutions.

A. Benchmark Data Set: QaTa-Cov19

Accordingly, there are several recent works [35]–[38] that
have been proposed for COVID-19 detection/classification
from X-ray images. However, they use a rather small data set

(the largest containing only a few hundreds of X-ray images),
with only a few COVID-19 samples. This makes it difficult to
generalize their results in practice. To address this deficiency
and provide reliable results, in this study the researchers of
Qatar University and Tampere University have compiled a
bechmark Covid-19 data set, called QaTa-Cov19. Compared
to the earlier benchmark data set created in this domain, such
as COVID Chestxray Data set [39] or COVID-19 DATA SET
[40], QaTa-Cov19 has the following unique benchmarking
properties. First, it is a larger data set, not only in terms
of the number of images (more than 6200 images) but its
versatility, i.e., QaTa-Cov19 contains additional major pneu-
monia categories, such as viral and bacterial, along with the
control (normal) class. Moreover, this is a diverse data set
encapsulating X-ray images from several countries (e.g., Italy,
Spain, China, etc.) produced by different X-ray machines.

COVID-19 chest X-ray images were gathered from
different publicly available but scattered image sources.
However, the major sources of COVID-19 images are
Italian Society of Medical and Interventional Radiol-
ogy (SIRM) COVID-19 Database [40], Radiopaedia [41],
Chest Imaging (Spain) at thread reader [42] and online articles
and news portals [43]. The authors have carried out the task
of collecting and indexing the X-ray images for COVID-
19 positive cases reported in the published and preprint articles
from China, South Korea, USA, Taiwan, Spain, and Italy,
as well as online news-portals (up to 20th April 2020).
Therefore, these X-ray images represent different age groups,
gender, ethnicity, and country. Negative Covid19 cases were
normal, viral, and bacterial pneumonia chest X-ray images and
collected from the Kaggle chest X-ray database. Kaggle chest
X-ray database contains 5863 chest X-ray images of normal,
viral, and bacterial pneumonia with varying resolutions [44].
Out of these 5863 chest X-ray images, 1583 images are normal
images and the remaining are bacterial and viral pneumonia
images. Sample X-ray images from QaTa-Cov19 data set are
shown in Fig. 4.

B. Feature Extraction

With their outstanding performance in image classifica-
tion along with other inference tasks, deep NNs became
a dominant paradigm. However, these techniques usually
necessitate a large number of training samples (e.g., several
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Fig. 4. Samples from the benchmark QU-Chest data set.

hundred-thousand to millions depending on the network
size) to achieve an adequate generalization capability. Albeit,
we can still leverage their power by finding properly pretrained
models for similar problems. To this end, we use a state-of-
the-art pneumonia detection network, CheXNet, whose details
are summarized in Section III-A. With the pretrained model,
we extract 1024-long vectors, right after the last average
pooling layer. After data normalization (zero mean and unit
variance), we obtain a feature vector s ∈ R

d=1024.
A dimensionality reduction PCA is applied to s in order to

get the query sample, y = As ∈ R
m , where A ∈ R

m×d is PCA
matrix (m < d).

C. Proposed CSEN-Based Classification

Considering the limited number of training data in our
COVID-19 data set, a representation-based classification can
be applied hereafter to obtain the class of y using the dictio-
nary � (in the form of D = A�), whose columns are stacked
training samples with class-specific locations.

As discussed earlier, SRC is an SE problem which is
expected to be an easier task than an SSR problem. On the
other hand, even if the exact signal recovery is not possi-
ble in noisy cases or in cases where x̂ is not exactly but
approximately sparse (which is the case almost all the time in
dictionary-based classification problems), it is still possible to
recover the support set exactly [25], [38], [45], [46] or partially
[46]–[48]. However, many works in the literature dealing with
SE problems tend to first apply a sparse recovery technique
on y to first get x̂, then use simple thresholding over x̂ to
obtain a sparse SE, �̂. However, SSR techniques such as
�1-minimization are rather slow and their performance varies
from one SRR tool to another [9]. In our previous work [9],
we proposed an alternative solution for this iterative sparse
recovery approach which aims to learn a direct mapping from
a test sample y to the corresponding support set �̂. Along with

Fig. 5. Illustration of proposed dictionary design versus conventional design
in representation-based classifiers.

the speed and stability compared to conventional SSR-based
techniques and recent deep learning-based SSR solutions,
CSEN has the crucial advantage of having a compact design
that can achieve a good performance level even over scarce
training data.

Mathematically speaking, an ideal CSEN is supposed to
yield a binary mask v ∈ {0, 1}n

vi =1 if i ∈ � (4)

which indicates the true support, i.e., � =
{i ∈ {1, 2, . . . , n} : vi = 1}. In order to approximate this
ideal case, a CSEN network, P(y, D) produces a probability
vector p which returns a measure about the probability of
each index being in � such that pi ∈ [0, 1]. Having the
estimated probability map, estimating the support can easily
be done via �̂ = {i ∈ {1, 2, . . . , n} : pi > τ }, by thresholding
p with τ where τ is a fixed threshold.

A CSEN is composed of fully convolutional layers, and as
input it takes a proxy, x̃, of sparse coefficient vector, which
is a coarse estimation of x, i.e.,

(
DT D+ λI

)−1
DT y or simply

x̃ = DT y. Then, it yields the aforementioned probability like
vector p via fully convolutional layers. Using such a proxy of
x, instead of making inference directly on y has also studied
in a few more recent studies. For instance, in [49] and [50],
the authors proposed reconstruction-free image classification
from compressively sensed images. Alternatively, one may
design a network to learn proxy x̃ by fully connected dense
layers [49]. However, it increases the computational complex-
ity and may result in an even over-fitting problem with scarce
training data [9].

The input vector x̃ is reshaped to have a 2-D plane rep-
resentation in order to use it with 2-D convolutional layers.
This transformation is performed via reordering the indices
of the atoms in such a way that the nonzero elements of the
representation vector x for a specific class come together in
the 2-D plane. A representative illustration of the proposed
dictionary design compared to the traditional one is shown
in Fig. 5.

Hereafter, the proxy x̃ is convolved with the weight kernels,
connecting the input with the next layer with Nl filters to yield
the inputs of the next layer, with the biases b1 as follows:

f1 =
{

S1
(
ReLu

(
bi

1 + wi
1 ∗ x̃

))}N1

i=1 (5)
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Fig. 6. Baseline Approach I: CRC is fed by deep learning-based extracted features that are preprocessed.

Fig. 7. Baseline Approach II: A 5-layer MLP layer is used over the features of CheXNet.

where b1 is the weight bias, S1(.) is either identity or sub-
sampling operator predefined according to network structure
and ReLu(x) = max(0, x). For other layers, i.e., l > 2, the kth
feature map of layer l is defined as

fk
l = Sl

(
ReLu

(
bk

l +
Nl−1∑

i

wik
l ∗ f i

l−1

))
(6)

where Sl(.) is either identity operator or one the operations
from down- and up-sampling and Nl is the number of feature
maps in lth layer. Therefore, the trainable parameters of CSEN
will be: �CSEN =

{{wi
1, bi

1}N1
i=1, {wi

2, bi
2}N2

i=1, . . . , {wi
L , bi

L}NL
i=1

}
for an L layer CSEN design.

In developing the dictionary that is to be used in the
SRC, the training samples are stacked-in by grouping them
according to their classes. Thus, instead of using tradi-
tional �1-minimization formulation as in (3), the following
group �1-minimization formulation may result in increased
classification accuracy:

min
x

{
‖Dx − y‖2

2 + λ

c∑
i=1

‖xGi‖2

}
(7)

where xGi is the group of coefficients from the i th class. In this
manner, one possible cost function for a SE network would
be

E(x) =
∑

p

(P�(x̃)p − v p)
2 + λ

c∑
i=1

‖P�(x̃)Gi‖2 (8)

where P�(x̃)p is network output at location p and v p is the
ground truth binary mask of the sparse code x. Due to its high
computational complexity, we approximate the cost function
in (8) with a simpler average pooling layer after convolutional
layer, which can produce directly the estimated class in
our CSEN design. An illustration of proposed CSEN-based
COVID-19 recognition is shown in Fig. 3.

D. Competing Methods

This section summarizes the competing methods that are
selected among numerous alternatives due to their superior
performance levels obtained in similar problems. For fair
comparative evaluations, all classification methods have the
same input feature vectors fed to the proposed CSENs.

1) Collaborative Representation-Based Classification: As a
possible competing technique to the proposed CSEN-based
technique which is a hybrid method, CRC [6] is a direct and
representation-based classification method that can be applied
to this problem as shown in Fig. 6. It is a noniterative SE
technique, that satisfies faster and comparable classification
performance with SRC while it is more stable compared
to existing iterative sparse recovery tools as it is shown
in [9]. In the first step of CRC, the tradeoff parameter of
the regularized least-square solution is set as λ = 2 ∗ 10−12.
In order to obtain the best possible λ, a grid search was made
in the range [10−15, 10−1] with a log scale.

2) Multilayer Perceptron (MLP) Classification: The pro-
posed COVID-19 recognition pipeline can be modified by
replacing CSEN or CRC part with another classifier. As one
of the most-common classifiers, a 4-hidden layer multilayer
perceptron (MLP) is used for this problem as shown in Fig. 7.
For training, we used back-propagation (BP) with Adam
optimization technique [51]. The network and training hyper-
parameters are as follows: learning rate, α = 10−4, and
moment updates β1 = 0.9, β2 = 0.999, and 50 as the number
of epochs. Fig. 8 illustrates the network configuration in detail.
This network configuration has achieved the best performance
among others (deeper and shallower) where deep configura-
tions have suffered from over-fitting while the shallow ones
exhibit an inferior learning performance.

3) Support Vector Machines (SVMs): For a multiclass
problem, the first objective is to select the SVM topology for
ensemble learning: one-versus-one or one-versus-all. In order
to find the optimal topology and the hyperparameters (e.g., ker-
nel type and its parameters) we first performed a grid-search
with the following variations and setting: kernel function
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Fig. 8. MLP configuration.

TABLE I

CLASSIFICATION PERFORMANCES OF THE PROPOSED CSEN AND
COMPETING METHODS. THE BEST COVID-19 RECOGNITION

RATES ARE HIGHLIGHTED

{linear, radial basis function (RBF)}, box constraint
(C parameter) in the range [1, 103] with a log scale, and
kernel scale (γ for the RBF kernel) in the range [10−4, 10−2]
with a log scale.

4) k-Nearest-Neighbor (k-NN): Finally, we use a traditional
approach, k-nearest neighbor (k-NN) is used with PCA dimen-
sionality reduction. In a similar fashion, the distance metric
and the k-value are optimized by a prior grid-search. The
following distance metrics are evaluated: City-block, Cheby-
shev, correlation, cosine, Euclidean, Hamming, Jaccard, Maha-
lanobis, Minkowski, standardized Euclidean, and Spearman
metrics. The k-value is varied within the range of [1, 4416]
with a log scale.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We have performed our experiments over the
QaTa-Cov19 data set, which consists of normal and
three pneumonia classes: bacterial, viral, and COVID-19.

TABLE II

NUMBER OF IMAGES PER CLASS AND PER-FOLD BEFORE AND
AFTER DATA AUGMENTATION

The proposed approach is evaluated using a stratified fivefold
cross-validation (CV) scheme with a ratio of 80% for training
and 20% for the test (unseen folds) splits, respectively.

Table II shows the number of X-ray images per class in the
QaTa-Cov19 data set. Since the data set is unbalanced, we have
applied data augmentation to the training set in order to bal-
ance the size of each class in the train set. Therefore, the X-ray
images in viral and COVID-19 pneumonia and normal classes
are augmented up to the same number as the bacterial pneu-
monia class in the train set. We use Image Data Generator by
Keras to perform data augmentation by randomly rotating the
X-ray images in a range of 10◦, randomly shifting images both
horizontally and vertically within the interval of [−0.1,+0.1].
In each CV fold, we use a total of 8832 and 1257 images in
the train and test (unseen in the fold) sets, respectively.

The experimental evaluations of SVM, k-NN, and CRC are
performed using MATLAB version 2019a, running on PC with
Intel® i7-8650U CPU and 32 GB system memory. On the
other hand, MLP and CSEN methods are implemented using
Tensorflow library [52] with Python on NVidia® TITAN-X
GPU card. For the CSEN training, ADAM optimizer [51] is
used with the proposed default learning parameters: learning
rate, α = 10−3, and moment updates β1 = 0.9, β2 = 0.999
with only 15 back-propagation epochs. Neither grid-search
nor any other parameter or configuration optimization was
performed for CSEN.

B. Experimental Results

The same network configurations are used for CSEN as
in [9]. Accordingly, we use two compact CSEN designs:
CSEN1 and CSEN2, respectively. The first CSEN network
consists of only two hidden convolutional layers, the first
layer has 48 neurons and the second has 24. ReLu activation
function is used in the hidden layers and the filter size was
3×3. On the other hand, CSEN2 uses max-pooling and has one
additional hidden layer with 24 neurons to perform transposed-
convolution. CSEN1 and CSEN2 are compared against the 6
competing methods under the same experimental setup.

For the dictionary construction in � each CSEN design, 625
images for each class (from the augmented training samples
per fold) are stacked in such way that the representation coeffi-
cient in the 2-D plane, X has 50×50 size as shown in Fig. 5.
The rest of the images in the training set are used to train
each CSEN, i.e., 1583 samples from each class. We use PCA
dimensional reduction matrix, A with the compression ratio,
CR = (m/d) = 0.5. Therefore, we have 512×2500 equivalent
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TABLE III

NUMBER OF NETWORK PARAMETERS OF EACH METHOD

dictionary, D, and 2500×512 denoiser B = (
DT D+ λI

)−1
DT

to obtain a coarse estimation of the representation (sparse in
the ideal case) coefficients, x̃ ∈ R

n=2500. Hereafter, the CSEN
networks are trained to obtain the class information of y from
input x̃ as illustrated in Fig. 3.

Due to the lack of other learning-based SE studies in the
literature, we chose a deeper network compared to CSEN
designs to investigate the role of network depth in this
problem. ReconNet [53] was proposed as a noniterative deep
learning solution to CS problem, i.e., ŝ← P(y) and it is one of
the state of the art in compressively sensed image recognition
task. It consists of six fully convolutional layers and one dense
layer in front of the convolutional ones, which act as the
learned denoiser for the mapping from y ∈ R

m to s̃ ∈ R
d .

Then, the convolutional layers are responsible for producing
the reconstructed signal, ŝ from s̃. Therefore, by replacing this
dense layer with the denoiser matrix B, this network can be
used as a competing method.

Both CSEN and the modified ReconNet use x̃ as an input,
which is produced using an equivalent dictionary D and its
pseudo-inverse matrix B.

In designing the dictionary of the CRC system, all training
samples are stacked in the dictionary, �, i.e., 2208 samples
from each class. The same PCA matrix used in CSEN-based
recognition, A is applied to features, s ∈ R

d=1024. Therefore,
a dictionary D of size 512 × 8832 and the corresponding
denoiser matrix B of size 8832 × 512 are used in the CRC
framework.

Overall, the confusion matrix elements are formed as fol-
lows: true positive (TP): the number of correctly detected
positive class members, true negative (TN): the number of cor-
rectly detected negative class samples, false positive (FP): the
number of misclassified negative class members as positive,
and FN: the number of misclassified positive class samples
as negative (i.e., missed positive cases). Then, the standard
performance evaluation metrics are defined as follows:

Sensitivity = TP

TP+ FN
(9)

where sensitivity (or Recall) is the rate of correctly detected
positive samples in the positive class

Specificity = TN

TN+ FP
(10)

where specificity is the ratio of accurately detected negative
class samples to all negative class

Precision = TP

TP+ FP
(11)

where precision is the rate of correctly classified positive class
samples among all the members classified as a positive sample

Accuracy = TP+ TN

TN+ TP+ FP+ FN
(12)

TABLE IV

COMPUTATION TIMES (SEC) OF EACH METHOD OVER 1257 TEST IMAGES

TABLE V

OVERALL (CUMULATIVE) CONFUSION MATRIX OF THE

PROPOSED RECOGNITION SCHEME

where accuracy is the ratio of correctly classified elements
among all the data

F(β) = (
1+ β2) (Precision+ Sensitivity)(

β2 ∗ Precision
)+ Sensitivity

(13)

where F-score is defined by the weighting parameter β. The
F1-score is calculated with β = 1, which is the harmonic
average of precision and sensitivity.

The classification performance of the proposed CSEN-based
approach and the competing methods is presented in Table I.
As can be easily observed from Table I, the proposed
approaches surpass all competing methods in COVID-
19 recognition performance by achieving 98.5% sensitivity,
and over 95% specificity. As shown in Table III, compared
to MLP and ReconNet, the proposed CSEN designs are
very compact and computationally efficient. This is evident
in Table IV where the computational complexity (measured as
total computation, time over the 1257 test images) is reported.

Finally, Table V presents the overall (cumulative) confusion
matrix of the proposed CSEN-based COVID-19 recognition
approach over the new QaTa-Cov19 data set. The most critical
misclassifications are the false-positives, i.e., the misclassified
COVID-19 X-ray images. The confusion matrix shows that the
proposed approach has misclassified seven COVID-19 images
(out of 462). The 3 out of 7 misclassifications are still in “viral
pneumonia” category, which can be an expected confusion
due to the viral nature of COVID-19. However, the other four
cases are misclassified as “Normal” which is indeed a severe
clinical misdiagnosis. A close look at these false-negatives
in Fig. 9 reveals the fact that they are indeed very similar to
normal images where typical COVID-19 patterns are hardly
visible even by an expert’s naked eye. It is possible that these
images come from patients who were in the very early stages
of COVID-19.

VI. DISCUSSION

A. CRC Versus CSEN

When compared against CRC in particular, CSEN-based
classification has two advantages; computational efficiency
and, a superior COVID-19 recognition performance. The
computational efficiency comes from the fact that a larger
size dictionary matrix (of the size of 512 × 8832) is used
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Fig. 9. FNs of the proposed COVID-19 recognition scheme.

TABLE VI

PERFORMANCE OF CRC ALGORITHM WHEN THE DICTIONARY (SIZE

OF 625 PER CLASS) THAT IS USED IN CSEN IS USED

in CRC and hence, this requires more computations in
terms of matrix-vector multiplications. Furthermore, saving
the trainable parameters (∼16k) and a light dictionary matrix
coefficients (∼1280k) in the test device is more memory
efficient compared to saving coefficients (∼4521k) of larger
size dictionary used in CRC.

For further analysis, we also tested the CRC framework
by using the light dictionary (of size 512 × 2500) used in
CSEN-based recognition. We called it CRC (light), and as
it can be seen in Table VI, the performance of CRC further
reduced, and there was no significant improvement concerning
the computational cost. When it comes to creating deeper
convolutional layers instead of using CSEN designs, such
as the modified ReconNet, the results presented in Table I
shows us that compact CSEN structures are indeed preferable
to achieve superior classification performances compared to
deeper networks.

B. Compact Versus Deep CSENs

Representation-based classifications are known for provid-
ing satisfactory performance when it comes to limited size data
sets. On the other hand, deep artificial NNs usually require
a large training set to achieve a satisfactory generalization
capability.

In a representation-based (dictionary) classification scheme
when the dictionary size getting bigger (increase the number of
training samples), the computational complexity of the method
drastically increases. The proposed CSEN is an alternative
approach to handle both moderate and scarce data sets via
compact as possible NN structures for the dictionary-based
classification.

Since there is no other learning-based SE method except
CSEN in the literature, we chose ReconNet as a possible
competing algorithm for this problem as explained in detail
in Section V. ReconNet has six fully convolution layers.
As an ablation study, we also add more hidden layers to
proposed CSEN models to compare: CSEN3 and CSEN4 mod-
els were obtained by adding one and two hidden layers to
CSEN2, respectively, after the transposed convolutional layer.

TABLE VII

PERFORMANCE OF ALTERNATIVE DEEPER DESIGNS COMPARED

TO COMPACT CSENS

TABLE VIII

NUMBER OF NETWORK PARAMETERS OF COMPETING SE NETWORKS

Additional layers have 24 neurons, ReLu activation functions
and filter size 3 × 3. As we can observe from Tables VII
and VIII, the proposed compact designs, CSEN1 and CSEN2,
both surpass deeper counterparts both in performance and the
required number of parameters.

VII. CONCLUSION

The commonly used methods in COVID-19 diagnosis,
namely RT-PCR and CT have certain limitations and draw-
backs such as long processing times and unacceptably high
misdiagnosis rates. These drawbacks are also shared by most
of the recent works in the literature based on deep learning
due to data scarcity from the COVID-19 cases. Although deep
learning-based recognition techniques are dominant in com-
puter vision where they achieved state-of-the-art performance,
their performance degrades fast due to data scarcity, which is
the reality in this problem at hand. This study aims to address
such limitations by proposing a robust and highly accurate
COVID-19 recognition approach directly from X-ray images.
The proposed approach is based on the CSEN that can be seen
as a bridge between deep learning models and representation-
based methods. CSEN uses both a dictionary and a set of
training samples to learn a direct mapping from the query
samples to the sparse support set of representation coefficients.
With this unique ability and having the advantage of a compact
network, the proposed CSEN-based COVID-19 recognition
systems surpass the competing methods and achieve over 98%
sensitivity and over 95% specificity. Furthermore, they yield
the most computationally efficient scheme in terms of speed
and memory.
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