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ABSTRACT 

RIMAWI, RANA, A., Masters : June : 2022, Applied Statistics 

Title: Linear and Bayesian Estimation of the Parameters of the Type II Generalized 

Logistic Distribution Based on Progressively Type II Censored Data 

Supervisor of Thesis: Prof. Ayman,S.Bakleezi. 

 

Generalized distributions have become widely used in applications recently. They 

are very flexible in data analysis, especially with skewed models that are important 

and occur frequently in many applications. In particular, the Generalized Logistic 

Distribution with its several types has lately gained a lot of attention in the 

literature. In this study, based on progressively Type II censored data, we obtained 

estimators of the unknown parameters of Type II Generalized Logistic 

Distribution. Several point estimation methods are used. Specifically, we consider 

the maximum likelihood estimation (MLE), the Bayesian estimator based on 

importance sampling and Lindley’s approximation, the linear estimators (BLUE 

and BLEE). The estimators were investigated and compared using simulation 

techniques in a variety of scenarios and progressive censoring schemes. The 

criteria used for comparison are the mean squared error (MSE) and bias. The 

derived estimators are applied to real-world data in order to see how they operate 

in real situations.  

 

Keywords: Point Estimation, Type II Generalized Logistic Distribution, 

Progressive Censoring  
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CHAPTER1: INTRODUATION 

1.1. Introduction 

In this chapter we showed a general overview about survival time, censoring and 

its main types, progressive censoring, generalized distributions and Type II generalized 

logistic distribution. Then we introduced the literature reviews based on generalized 

logistic distribution, progressive censoring sampling and generalized logistic 

distribution under progressive censoring. Also, we introduced the research problem 

statement, research objective and significant, research specific objectives and scope of 

the study. 

1.2. Overview  

Survival time is defined by concepts such as event time, lifespan, and failure 

time. For variable T, that is a continuous random variable with non-negative values. 

The real time of this variable indicates the time spent waiting for a well-defined event 

to occur, i.e., the duration from start time to end time of a considered event for an item 

(Klein and Moeschberger, 2006). The amount of time spent in a job, the gap between 

recurrences of symptoms, or the duration of time jobless can all be used to determine 

the time to event. Time may be represented by fractions of a second, hours, days, 

months, and even years. 

Censoring is a fundamental analytical issue that must be considered in most 

survival analyses. In essence, censorship happens when we have some knowledge 

about a person's survival time but not the precise period. 

1.2.1. Censoring 

By far the most important issue that survival analysis tackles is censorship. 

When the event of interest does not happen for such individuals before the research 

finishes, this is referred to as censoring. When a scholar just has a rudimentary 

awareness of the participants' survival periods and isn't always aware of the exact 
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survival times, this occurs. 

We may use the case study to demonstrate the idea. If a researcher is looking at 

70 recently enlisted soldiers who have had contact with persons who have tested 

positive for COVID-19 throughout a 14-day of quarantine and surveillance time. 

Investigating the incident to see how long it takes for people to show signs of the 

infection. It's probable that some patients may drop out, that others will pass away due 

to unrelated conditions, and that just a handful of the patients will exhibit any evidence 

of infection after the 14-day perception phase but will show signs after the isolation 

time. The researcher might not even be able to estimate the survival period of the 

preceding three instances. They only recognize that the period is at least that long, but 

they have no idea how long it will take them to survive. 

As previously stated, survival data usually comprises a response variable which 

calculates the amount of time up to a certain event happens, as well as a collection of 

independent variables that are assumed to be linked to the event-time variable. 

Event periods include component lifetimes in industrial reliability, work 

durations, and clinical trial survival times. The goal of survival analysis is to find the 

model of the theoretical distribution of event timings as well as determine if the event 

time is dependent on other explanatory variables. Because of a removal or termination 

of the study, the event time is often not recorded; this is known as censoring. Both 

censored and uncensored observations are used correctly in survival analysis methods. 

There are several different sorts of censorship. For instance: left censoring, 

interval censoring, and right censoring. 
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Left Censoring: It is characterized as left censored if a time X linked with a certain 

participant in research does not exceed the time (a) which is a censoring time, then 

we can define this time (a) as a left censoring. To put it in another way, the participant 

must encounter the interested event before being observed in the research at time (a) 

(T< a), entitle capital T as a random variable for a subject's survival period. Because 

T stands for time, it may take on any non-negative value; such that, T can be any 

integer greater than or equal to zero. We believe they saw the occurrence earlier than 

scheduled (a) for such subjects, but the exact date or time is uncertain. X is observed 

if and only if, it is not smaller than the precise time (a). We can represent the data that 

is coming from a left-censored sampling strategy by two random variables (T, δ), 

where T equals X if the lifetime is observed. d denotes if the lifetime points out to an 

observed event (δ = 1) or is censored (δ = 0). For left-censoring T = max  (𝑋𝑖 ,  𝑎), 

where i = 1,…,n. 

Interval Censoring:  The term "interval-censored" refers to a subject that has 

been censored at regular intervals. When it is observed for some time, then goes 

missing from follow-up for some time before returning and continuing to be examined. 

(a < T < b). The observed data in interval-censoring is made up of intervals, with the 

response falling within the interval for each. An uncensored observation of an observed 

death in this situation refers to a single point observed interval. Assume we've 

completed a study on a certain subject, at a certain time in the past (t1), with a negative 

result from the subject. However, the patient tested positive at a later point in time (t2). 

We know the subject was exposed to the virus between t1 and t2, but we don't know 

when. For example, if the time to remission in a clinical trial was properly evaluated, 

and the (𝑖𝑡ℎ) patient was in remission at the 8th week after the trial, but didn’t show up 

for consecutive review, and then recovered and was no longer in remission at the end 
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of the 11𝑡ℎ   week, then (𝑖𝑡ℎ) patient's censoring interval or remission length is defined 

by 𝐼𝑖= [8,11). 

Right Censoring:  If we suppose that there is a time X and a censoring timeframe 

b for a single subject under investigation, where the X's are distributed independently 

identically having f(t) and S(t) as probability function and survival function 

respectively. If X is less than or equal to b, the subject's lifetime X will be defined; if 

it is higher than b, then the subject is known as a survivor, and his event time will be 

censored at b. This study's findings may be expressed by couples of random variables. 

(T, 𝑑), where d denotes if the lifetime is associated with an event (𝛿 = 1) or it is 

censored (𝛿 = 0), we consider T is equal to X when the lifetime is observed otherwise 

it is equal to b when censored. For right-censoring T = min  (𝑋𝑖 ,  𝑏), Considering T as 

a time variable and a and b are time points, and i = 1,…, n. 

Type I Censoring:  When research is expected to be completed at a specific time 

T determined by the experimenter, Type I censoring occurs. Subject who could not 

see the event is considered as censored at the conclusion of the research period. In I 

censorship, the quantity of uncensored items is a random variable. 

Type II Censoring:  It's possible that the time will be left open at the start of Type 

II censoring. The experiment is allowed to be executed until a certain percentage of 

the n objects, r/n, has "failed." The random sample with ordered values 𝑇1, 𝑇2,..., 𝑇𝑛 

are denoted by 𝑇1, 𝑇2,..., 𝑇𝑛. Our concern is the first  𝑟𝑡ℎ smallest observations in a n 

sized random sample, since the observation will end when the 𝑟𝑡ℎ failure time occurs.  

Alternatively, imagine that just the first r < n lifetimes are seen for a given sample 

𝑇1, 𝑇2,..., 𝑇𝑛 of with n items. Before looking at the survival data, the value of r is set. 

This signifies that the observed data is made up of the r observations that are the 

smallest. Other statistics can be used to represent this in terms of random variables. 
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Only the first r ranked replies 𝑇1, 𝑇2,..., 𝑇𝑛are seen among the available responses 

𝑇1, 𝑇2,..., 𝑇𝑛. That is to say, 

 𝑡(1)  ≤   𝑡(2) ≤  𝑡(3) ≤ … ≤   𝑡(𝑟−1) ≤  𝑡(𝑟)   

 Random Censoring: The overall length of observation is fixed in random 

censoring, although individuals begin the study at various times. Some people are 

exposed to interested occurrences. Others do not, and several get lost in the shuffle. 

Some will still be alive after the study is over. The censored objects in random 

censoring do not all have the same censorship time. When there is just one finishing 

time, but the entry times vary randomly among the participants, random censoring can 

be achieved.  

 Double Censoring:  Double censoring is achieved by mixing right and left 

censoring. In this situation, 𝑍𝑖 =max(min(𝑇𝑖 , 𝑡𝑖 ), 𝑙𝑖 ), where 𝑙𝑖 , 𝑡𝑖  are the right and left 

censoring times connected with 𝑇𝑖 , respectively, and 𝑙𝑖 , 𝑡𝑖 , in this example, 𝑇𝑖  is only 

observed if it comes inside a window of observations (𝑙𝑖 , 𝑡𝑖 ),. Otherwise, one of the 

windows' endpoints is noticed, while the other window's endpoint is most likely 

hidden. It is also worth noting that double-censoring differs from interval-censoring. 

 Noninformative Censoring:  Participants who drop out of research using 

noninformative censoring should not act so for any reason unassociated to the 

research. When there is not information on the distribution of censorship times (C) 

gathered from the distribution of survival times (T), noninformative censoring 

happens. That is, the justification for why the circumstance of the occurrence was not 

recorded had nothing to do with the conclusion under investigation. The research 

simply came to an end when the people who were being monitored were still alive. 

The hidden chances of getting the occasion of interest are no different for both 

uncensored and censored information because of noninformative censoring. 
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The distinction between informative and not informative censoring is that the 

censored observations' survival time for acquiring the event of interest is unknown for 

noninformative, while individuals are lost to follow-up for reasons linked to the study, 

is known as informative censoring. 

 Independent Censoring:  Independent censoring happens when the units that 

didn’t experience the interest event at time t, are example of all the units in that 

subgroup who were still at risk, considering their survival experience, at time t. To put 

it another way, items that have risk value different than the average cannot be censored 

(removed). 

1.2.2. Progressive Censoring 

One type of censoring is progressive censoring sampling. The basic idea 

behind a progressive censoring technique is that it allows units to be removed at each 

recorded failure time. Recently, the lifetime distribution which created on 

progressively censored data has received an impressive consideration. Specially to 

estimate unknown parameters or related survival and hazard functions. The scheme of 

progressive censoring is of significant value in life-test studies. It permits the 

elimination of live items from the experiment at diverse levels. This will potentially 

save plenty for the researcher with respect to cost and time. 

 

Type-II Progressive Censoring:  Deletions are carried out during failure periods that 

have been identified in the progressive Type-II censoring procedure. When a failure 

is detected, the number of units, that are pre-established, are instantly taken from the 

remaining units. As a result, the number of observations is predetermined, but the 

duration of the experiment is unpredictable. The following approach can be used to 

generate Type-II censored order statistics in a progressive manner. For example, to 
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test the reliability of products, n units are put down at the same time. When the first 

failure is occurred, 𝑅1 surviving units are randomly selected and removed from the 

experiment. After the second failure, immediately 𝑅2 units are withdrawn and so on. 

After the 𝑚𝑡ℎ  failure, the process is repeated until all Rm remaining units are 

removed. The 𝑅𝑖 ’s are specified before starting the experiment. The investigator 

determines number of items in the sample n, the number of failures m, and scheme of 

the progressive censoring samples. before starting a life experiment. (R1, R2 , …, 

R𝑚). With n = m +∑ 𝑅𝑖𝑚
𝑖=1  . Figure 1 is an explanation of the Type II progressive 

censoring sample where the n, m and R are fixed values while the completed time of 

the experiment is a random variable. (Siyi Chen and Wenhao Gui, 2020) 

 

 

 

 

 

 

Figure 1: Illustration of Progressive Type-II Censoring 

 

Type-I Progressive Censoring:  Type I progressive censoring is based on 

predetermined time points 𝑇1, 𝑇2,..., 𝑇𝑚. The failure times are recorded one by one till 

the experiment is completed at time point 𝑇𝑚. As a result, the intervention times 

𝑇1, 𝑇2,..., 𝑇𝑚 have fixed values, however, the sample size as well as the censoring 

scheme that was utilized were chosen at random (and may vary from the originally 

planned censoring scheme at a certain time owing to the lack of enough surviving units 

to complete the requisite censorship), and the period of the test is constrained by 𝑇𝑚, 

𝑋1:𝑚:𝑛 𝑋2:𝑚:𝑛 

𝑅1 𝑅2 𝑅𝑚−1 𝑅𝑚 

withdrawn withdrawn withdrawn withdrawn 

T 𝑋𝑚:𝑚:𝑛 𝑋𝑚−1:𝑚:𝑛 Start … 
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whereas it is not fixed (random) in the case of progressive Type II censoring. 

Figure 2 is an explanation of the type I progressive censoring sample where the n and 

R are random variables while the completed time of the experiment is a fixed value. 

(Balakrishnan and Cramer, 2014) 

 

 

 

 

 

 

Figure 2: Illustration of Progressive Type-I Censoring 

If R1 = R2 = … = R𝑚 = 0, So, n = m that represents the complete sample. 

If  R1 = R2 = … = R𝑚−1 = 0, we have 𝑅𝑚= n − m that represents to the conventional 

Type. 

 
 

1.2.3. Generalized Distributions 

Distributions in statistics are widely applied to explain actual events. The 

concept of distributions in statistics is being researched in depth, and additional 

distributions are produced, due to its effectiveness. In the statistics profession, there is 

still a lot of interest in constructing more adaptable distributions in statistics. There 

have been several forms of generalized distributions developed and used to diverse 

phenomena. The fact that such generalized distributions have extra parameters is a 

typical feature. According to Johnson et al. (1994), four-parameter distributions 

should suffice for most practical tasks. According to these authors, at least three 

parameters are required, but they doubt that adding a fifth or sixth parameter will result 

𝑇1 𝑇2 𝑇3 𝑇𝑚 

𝑅1 𝑅2 𝑅3 𝑅𝑚 

withdrawn withdrawn withdrawn withdrawn 
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in a significant improvement. 

The induction of location, scale, and shape parameters broadened the 

traditional continuous probability distributions. Recent efforts have been undertaken 

to build novel probability distributions that offer the advantage of greater flexibility in 

fitting specific and multiple real-world sequences of events. The development in G-

Classes began with Alzaatreh et al 's, (2013), essential essay, in which they proposed 

the transformed (T)-transformer (X) (T-X) family. 

Assume the random variable T∈[c,d] for cd−∞≤c<d≤∞  with the probability 

distribution function (pdf) r(t), and a link function, W(.):[0,1]→R, that meets the 

following requirements: W[G(x)]∈[c,d] is monotonically non-decreasing and 

differentiable for any baseline cumulative distribution function (cdf) G(x), for x→−∞, 

W[G(x)]→c, and for x→∞, W[G(x)]→d. As a result, the T-X class's cdf has the form 

𝐹(𝑥) =  ∫ 𝑟(𝑡)𝑑𝑡
𝑊[𝐺(𝑥)]

𝑎
.     

Using the T-X method, many authors created extended generalized families. 

Beta-G, Kw-G type-1, log-gamma-G type-2, gamma-X , exponentiated T-X, Weibull-

G, exponentiated-Weibull-H, and generalized odd Lindley-G  are some examples of 

generalized classes. 

Among the generalized Distributions, Johnson et al. (1995) describe a Type I 

generalized logistic distribution as a special form of exponentiated-exponential-

logistic distribution. If f(x) is the standard logistic distribution p.d.f., then  

𝑔(𝑥) =   
αλ𝑒−λx

(1+𝑒−𝑥)λ+1
 (1 − 

𝑒−λx

(1+𝑒−𝑥)λ
)
α−1

  ;              −∝< 𝑥 < ∝;  α, λ > 0 .   (1) 

The exponentiated-exponential-logistic distribution becomes a Type I 

generalized logistic distribution when 𝜆=1 and reduced to standard logistic distribution 

when 𝛼=𝜆=1. Referring to Balakrishnan and Hossain (2007), if X is a random variable 
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from the probability function Type I Generalized Logistic Distribution, then −X has 

the probability function Type II Generalized Logistic Distribution. Many authors 

turned to use these new generalized distributions because of their flexibility, accuracy 

and ability to be extensible to a new distribution. 

1.2.4. Type II Generalized Logistic Distribution 

Skewed distributions have lately played a significant role in several research 

in order to demonstrate extremes. Some of statistical models exist in the literature are 

used to analyze the lifetime data. The models are chosen in order to present the 

lifetimes as closely as possible. Among current models, logistic distribution has ended 

up very famous within the analysis of statistics springing up within the field of biology, 

actuarial science, industry, and engineering. 

The logistic distribution has for quite some time been one of the most 

successful statistical distributions due to its clarity and traditional relevance as a 

growth curve. (Erkelens, 1968). Johnson and Kotz (1970) demonstrated how logistic 

distribution may be used to examine quanta1 response data, probit analysis, and 

dosage response research, among other things. In a series of investigations, Berkson 

(1944, 1951, 1953) has demonstrated its use in the context of bioassay. Since the 

logistic distribution resembles the normal distribution in shape, it is simpler and more 

lucrative to utilize the logistic distribution instead of the normal probability function 

to simplify the investigation without introducing too many conflicts between the two 

theories. 

Order statistics from the logistic distribution have been researched in depth by 

a number of authors; see, for example, Birnbaum and Dudman (1963), Gupta and Shah 

(1965), Tarter and Clark (1965), Shah (1966, 1970), and Gupta, Qureishi, and Shah 

(1965, 1967). Tarter (1966) looked at order statistics from truncated logistic 
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distributions, Balakrishnan and Joshi (1983), and Balakrishnan and Kocherlakota 

(1986).   Balakrishnan (1985) carried out a similar study for the half logistic 

distribution, and Balakrishnan and Puthenpura (1986) demonstrated its usefulness in 

the field of dependability Lawless (1982) and Mann, Schafer, and Singpurwalla (1974) 

both mention order statistics from the logistic distribution in the fields of life testing 

and reliability; see also Hall (1975), who established acceptance sampling plans and 

tolerance limits under order statistics from the logistic distribution. 

Balakrishnan and Leung (2007) presented three forms of Generalized Logistic 

Distributions. Type I are positively skewed distributions with a greater kurtosis than 

the logistic; Type II are negatively skewed distributions with a higher kurtosis than 

the logistic; and Type III are symmetric distributions with a lower kurtosis than the 

logistic. As a result, the three forms of Generalized Logistic Distributions described 

in this study will be tremendously useful in research on resilience. 

The different three types of Generalized Logistic Distributions are created by 

combining a double exponential distribution, a reduced log-Weibull distribution, and 

an exponential-gamma distribution with a gamma distribution. 

Hofmann et al. (2005) demonstrated that Type II progressive censoring 

systems outperform standard Type II censoring methods. 

The fact that when α < 1, the Generalized Logistic Distribution is negatively 

skewed and positively skewed when α >1 is one of its features. The Type II 

Generalized Logistic Distribution is a decreasing function of α. The Type II 

Generalized Logistic Distribution has 'heavier tails' if the value of goes to infinity, 

hence it is employed in robustness tests of various standard techniques based on 

normality or skewed distributions. The following are some additional characteristics 

and their relationships with other distributions: 
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1. If α = 1 then we’ll have usual logistic distribution.  

2. If X is a random variable from Type I Generalized Logistic Distribution, 

then −X has a Type II Generalized Logistic Distribution. As a result, their 

attributes are identical.  

3. The moment-generating function (MGF) may be used to produce moments, 

allowing us to calculate the mean and variance.  

4. Applying the standard Type II Generalized Logistic Distribution, the MGF 

is 

M(t) =
Γ(1+t)Γ(α+t)

Γ(α)
   .      (2) 

The Type II Generalized Logistic Distributions have several interesting 

interactions with other distributions: 

5. When X distributed as a Type II Generalized Logistic Distribution, and α 

is near to zero, then αX acts as a random variable with standard negative 

exponential. 

6. If T ∼ beta (α, 1), then S = log {T/ (1 − T)} distributed Generalized Logistic 

Distribution Type II with parameter α as a shape parameter. 

7. Type II Generalized Logistic Distribution and − log V follow similar 

distribution, If V distributed as F with 2α and two degrees of freedom. 

8. When X distributed as Type II distribution, then X−log(α) and −log V has 

the same distribution.  

9. V ∼ Gamma (1, 1) as α increases to infinity. 

10. If Y has a standard Type II Generalized Logistic Distribution with cdf F, 

then F must satisfy the homogeneous differential equation below:     

(1 − e−y)F′ −  αe−αy(1 − F) = 0 .     (3) 
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Using the assumptions from Balakrishnan and Hossain (2007), let X be a 

random variable having the below probability distribution: 

f (X | 𝜆, 𝛼, 𝜇, 𝜎) = 
𝜆𝛼

𝜎Γ(𝛼)
 exp[−𝛼

𝑥− 𝜇

𝜎
 ]exp[−𝜆

𝑥− 𝜇

𝜎
 ] ;  (4) 

−∞ < x < ∞  ,  −∞ < μ < ∞  , σ > 0 , α > 0 , λ > 0 ,  Γ (. ) gamma distribution. 

If Y follows gamma distribution, then X = σlnY +  μ  is double exponential. 

Let λ has gamma distribution: 

g(λ) =  e−λ  λ > 0, 

f (x | λ, α, μ, σ) =∫ f(x|λ)g(λ)dλ
∞

0
 

            =  
e
−α(

x−μ
σ

)

σΓ(α)
 ∫   λα+1−1e−λ(1+e

−(
x− μ
σ

)
)dλ

∞

0
  ,  (5)        

      f (x |α, μ, σ) = 
α

σ

e
−α(

x−μ
σ

)

(1+ e
−(
x−μ
σ

)
)α+1

    ; −∞ < x < ∞.     (6)  

where the previous equation (7) represents the probability function of Type II 

Generalized Logistic Distribution. 

If α = 1,   then equation (7) will present the standard logistic density function. 

To find the CDF of Type II Generalized Logistic Distribution: 

F(x | 𝛼, 𝜇, 𝜎) = 
𝛼

𝜎
∫

1

𝜎

𝑒
−𝛼(

𝑢−𝜇
𝜎

)

(1+ 𝑒
−𝛼(

𝑢−𝜇
𝜎

)
)𝛼+1

𝑥

−∞
 𝑑𝑢.                   (7) 

If we let t = 1/1 +  e−(
u−μ

σ
)
,    we got: 

F(x | α, μ, σ) = 1 − (
e
−(
x−μ
σ

)

(1+ e
−(
x−μ
σ

)
)
)

α

  ; −∞ < x < ∞.   (8) 

Let  

                                                                     Z = 
x−μ

σ
,                                                   (9) 

then Z has standard Type Generalized Logistic Distribution given by 
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f(z|α) =
  αe−(zα)

(1+ e−(z))
α+1

  
;                          − ∞ < z < ∞,     (10) 

F(z|α) = 1 − (
e−(z)

(1+ e−(z))
)
α

;      −∞ < z < ∞.    (11) 

The difficulty of evaluating unknown parameters in lifetime distributions, as 

well as the accompanying survival and hazard functions, using a progressive censored 

sample has lately gained a lot of attention. The scheme of progressive censoring is of 

important value in life-testing experiments. It allows the elimination of live units from 

the experiment at diverse levels. This will potentially save plenty for the experimenter 

in terms of cost and time. So, the Generalized Logistic Distribution Type II with one 

shape parameter under Progressive Type II right censoring is approached lately to 

broaden the scope of distribution in situations in which the data is asymmetric. 

Maximum likelihood was utilized in certain research to estimate the unknown 

parameters of such distributions. In this study we want to make inference about the 

Logistic Distribution, in specific generalized with classification of Type II 

Generalized Logistic Distribution under special censoring technique, Type II 

progressive. Applying Bayesian and classical methods. Then, to compare the results 

with the previous studies. 

Figure 3 illustrates the distribution of the Generalized Logistic Distribution 

which can be skewed to the left, if α parameter is less than1or the right, if α parameter 

is greater than 1. Or symmetric α = 1 which is the logistic distribution. In the figure 

we have the blue plot when μ = 0 , 𝜎 = 1 𝑎𝑛𝑑  α = 0.5 <  1. While the red plot when 

μ = 0 , 𝜎 = 1 𝑎𝑛𝑑  α = 2 > 1 . Finally, the black plot when μ = 0 , 𝜎 = 1 𝑎𝑛𝑑  α =

1. 
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Figure 3: Generalized Logistic Distribution with Different Values of α 

<https://www.vosesoftware.com/riskwiki/Generalisedlogisticdistribution.php> 

 

 
 

1.3. Literature Review  

 

1.3.1. Overview 

The goal of a literature review is to get a better grasp of current research on a 

particular subject or issue. Many scholars have studied the inference of unknown 

parameters of skewed distributions throughout the years. The main goal of these 

conclusions is to find the best estimators for the unknown Generalized Logistic 

Distribution parameters. 

1.3.2. Studies based on Generalized Logistic Distribution 

The logistic distribution has been utilized in growth models as well as in a sort 

of regression called logistic regression. It can also be used to model actual life data. 

This distribution is often used as a parametric model in survival analysis for 

occurrence whose rate increases early and then drops subsequently, such as cancer 
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mortality after diagnosis or treatment. It's also been used to represent stream flow and 

precipitation in hydrology, as well as a simplified model of wealth or income 

distribution in economics. In addition, the Generalized Logistic family of distributions 

is a particular instance of the proportional reversed hazard rate model. Types I, II, III, 

and IV of generalizations of the Logistic Distribution have been presented in the 

literature and explored by Balakrishnan and Leung (1988), Balakrishnan (1992), and 

Johnson et al. (1995).  

Due to the importance of generalized distributions especially the Generalized 

Logistic Distribution, several authors studied it under complete sample or censored 

data. they tried to estimate it's unknow parameters following several methods. For 

example, Balakrishnan (1990) considered estimation of the unknown parameters of 

the Type I Generalized Logistic Distribution. Since it’s not easy to find the MLE 

explicitly for the location and scale parameters under a complete or Type II censored 

samples, the author applied a suitable approximation method to provide a 

straightforward approach for obtaining explicit estimators. To evaluate the 

covariances and variances of these estimators, the author obtained approximate 

expressions. These estimators are also shown to be as efficient as the best linear 

unbiased estimators (BLUE's). Also, Alkasasbeh and Raqab (2009) extensively 

studied the Generalized Logistic Distribution under complete samples. The goal of 

their work is to look at several sorts of estimating processes and see how estimators 

for various unknown parameters/parameters behave when using various sample sizes 

and parameter values. By running large numerical simulations, they compared the 

maximum likelihood estimators, the technique of moments estimators, estimators 

based on percentiles, least squares estimators, weighted least squares estimators, and 

L-moments estimators.  As a result of the evaluation of the performance of each 
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estimator based on bias, the researchers found out that in all of the scenarios the least 

squares estimators (LSE) were the best and most efficient estimators. The weighted 

least squares estimators WLSE's were pretty similar in terms of performance. with 

small sample sizes, in practically all scenarios evaluated for estimating both 

parameters, it is evident that percentile estimators (PCE's) work better. They conclude 

that, when dealing with small sample sizes it’s better to use the PCE and the LSE for 

medium and large sample sizes. Moreover, the Generalized Logistic Distribution was 

studied based on Left Type-II Censoring by Sindhu, Aslam and Hussain (2016). They 

considered the Bayes inference and corresponding risks to estimate the unknown 

parameters of the Generalized Logistic Distribution applying several asymmetric loss 

functions, under the assumption of different informative and non-informative prior 

distributions. It is also described how to extract hyperparameters using a prior 

prediction method. They also obtain the credible Intervals and the formulation for 

posterior predictive distributions. As an experiment, these estimators are compared 

using a simulation process as well as real data examples with graphical findings. The 

study's findings suggest that Bayes estimation using the gamma prior is preferable. 

1.3.3. Studies based on Progressive Censoring Sampling 

Considerable attention has been paid in the literature to inference in parametric 

distributions under a progressive censored data. Balakrishnan and Sandhu (1996) 

considered Type II progressive censored sample to find the best linear unbiased to 

estimate the parameters of the exponential distributions. In addition, they found the 

maximum likelihood estimators (MLE’s) and found that they are equal to the BLUE’s 

of the exponential distribution with two parameters.  

The generalized exponential distribution was studied by Kundu and Pradhan 

(2009). They looked at Bayesian inference to estimate the parameters sampled from 
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progressively censored data using distinct gamma priors for the parameters. The 

Lindley's Approach and Importance Sampling techniques are employed to 

approximate the Bayes estimates using MCMC (Monte Carlo Markov Chain).  The 

authors noted that the Bayes estimates have strong advantages over the MLEs, if 

suitable prior information is available. The generalized Rayleigh distribution was 

considered by Maiti and Kayal (2019) where they looked at parameter estimation and 

reliability features in a progressive censoring- Type II sample. The MLEs and Bayes 

inference of the unknown parameters were evaluated under various loss functions. 

Salah (2020) considered evaluating unknown parameters of 𝛼-power exponential 

distribution based on Type II progressively censored data using the MLEs. Researcher 

found the approximate best linear unbiased estimators (ABLUE’s) as an initial guess 

of the MLEs. The author discovered that ABLUEs and MLEs are so closely related of 

the exponential distribution with two parameters. This closeness provides good initial 

estimates of MLEs.  

1.3.4. Studies based on Generalized Logistic Distribution Under Progressive Censoring 

Sampling 

The Type I Generalized Logistic Distribution was considered by Asgharzadeh 

(2006) where he obtained an approximation to the maximum likelihood estimator and 

the percentage points of some pivotal that are used to construct intervals for the 

parameters. The Type II Generalized Logistic Distribution was considered by 

Balakrishnan and Hossain (2007) considered under progressive Type II censoring, 

with single shape parameter. The authors stated several characteristics of this 

distribution as well as its relationship with other distributions which will help in the 

modelling process. They used point estimation for the location and scale parameters 

using progressive Type II censoring. The (ML) and an approximate ML technique are 

derived and investigated. In a simulation study, multiple progressive censor scheme 
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and sample sizes were used. They found that the approximate maximum likelihood 

estimators and the MLEs have similar performance in terms of bias and variance. The 

IV Generalized Logistic Distribution was studied by Nassar and Elmasri (2012). They 

considered, among other things, parameter estimation using the method of maximum 

likelihood and the method of moments. Aly and Bleed (2013) considered Bayesian 

estimation of the Generalized Logistic Distribution based on progressively censored 

data under accelerated life testing. Azizpour and Asgharzadeh (2018) considered 

Type-II hybrid progressively censored data when the lifetime distributions of the items 

follow Type-II Generalized Logistic Distribution. They derived the Maximum 

likelihood estimators and investigated their performance in estimating the location and 

scale parameters. They provide approximate maximum likelihood estimators and 

proposed asymptotic confidence intervals n addition to bootstrap confidence interval 

are proposed. A new Generalized Logistic Distribution was proposed by Aljarrah et 

al. (2020) that include several distributions as special cases. They obtained the 

maximum likelihood estimators of the parameters and investigated the small sample 

performance of the estimators. It looks that little thought has gone into analyzing the 

performance of Bayesian and linear estimators of the Type II Generalized Logistic 

Distribution parameters based on progressive censoring. In this work, we derived and 

investigated the performance of these estimators using simulation techniques. 

Moreover, we applied the results to real data sets to illustrate the applications of the 

methods developed in this thesis. 

1.4. Research Problem Statement 

A generalized model is more versatile than a conventional model in general, 

and many data analysts prefer it when evaluating statistical data. The Generalized 

Logistic Distribution has been used to model extreme variables, such as share return 
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fluctuations (Gettinby et al., 2004) and sea level variations (van Gelder et al., 2000). 

It has been widely used for maximum rainfall modeling, and it is the standard model 

for flood frequency estimation in hydrological risk assessments in the UK and 

internationally (Centre for Ecology & Hydrology, 1999). 

One of the most common censoring strategies used in clinical investigations, 

reliability trials, product quality control, and industrial tests is Type-II progressive 

censoring. Several researchers have recently expressed an interest in investigating 

parameter inference for various distributions using a progressive censoring Type-II 

scheme (PC) (Kundu (2008), Pradhan and Kundu (2008), Maurya et al. (2019), and 

Bdair et al. (2020)). In this technique, the number of observed failures x1, x2, . . . , xm, 

number of complete observations to be observed m, and the censoring removal 

scheme, (R1, R2 , … , R𝑚), are given in this procedure. 

Azizpour and Asgharzadeh (2018), for example, did some relevant work based 

on Generalized Logistic Distribution. Using the MLE approach, the parameters of the 

Generalized Logistic Distribution were estimated using Type-II hybrid progressively 

censored data. Furthermore, Alkasasbeh and Raqab (2009) used five estimate 

approaches to estimate the unknown parameters of a Generalized Logistic Distribution 

in the case of a full sample, including inference, applying maximum likelihood 

technique, to estimate the unknown parameters of a Generalized Logistic Distribution. 

There is a limited amount of job that can be found based on a censored scheme 

from a Type II progressive sample from a distinct lifespan distribution; for instance, 

Balakrishnan and Hossain (2007) completed the most important study in this subject 

on censored data. The MLE technique and estimated MLE methods were used to 

estimate the unknown parameters of a Generalized Logistic Distribution based on this 

Type II of censoring scheme. Fernandez (2004) has covered the MLE and Bayesian 
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approaches for estimating the parameters of the exponential distribution in general 

Type II progressive censoring data in his study. Furthermore, Balakrishnan and 

Sandhu (1996) used the MLE and BLUE approaches to investigate the exponential 

distributions model for estimating parameters based on a generic progressive Type II 

censored sample. Kundu and Pradhan took into account the most recent research 

(2009). Furthermore, Balakrishnan and Sandhu (1996) used the MLE and BLUE 

approaches to investigate the exponential distributions model for estimating 

parameters based on a generic progressive Type II censored sample. Kundu and 

Pradhan took into account the most recent research (2009) to inference the generalized 

exponential distribution parameters by applying the Lindley’s approaching and 

Importance Sampling technique under the progressively censored data. Although quite 

a bit of work has been done on comparing different estimators to infer parameters of 

distributions under -Type II progressive censoring scheme in the available studies. But 

there is no research comparing different estimators for general logistic distribution 

using Type II progressive censoring.  

As a result of this task constraint, this study will consider ML, Bayesian, BLUE 

and BLEE estimation techniques to estimate parameters under Type II progressive 

censored data and conclude the most efficient estimator. 

1.5. Research Objective and Significant  

This study is an extension of the study made by Balakrishnan and Hossain 

(2007) and Kundu and Pradhan (2009). In Balakrishnan and Hossain (2007), the 

researchers focused on the logistic distribution that was generalized with classification 

of Type II Generalized Logistic Distribution using Type II as a class of progressive 

censoring, and Kundu and Pradhan (2009) studied Bayesian estimates of the 

parameters under progressively censored with generalized exponential distribution. 
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This study considers Maximum Likelihood Estimator, Bayesian inferences and Linear 

estimations under progressive Type II censored data to estimate unknown parameters 

(location as 𝜇  and scale as 𝜎 ) of Type II Generalized Logistic Distribution.  

Since it is difficult to calculate the double integration when applying the 

Bayesian method analytically, we applied Lindley’s approach and Importance 

Sampling techniques. We assume informative prior distributions as 𝜋1(𝜇) ∝

1 𝑎𝑛𝑑 𝜋2(𝜎/𝜇) ∝ 1/𝜎 and try to find posterior distribution using the likelihood 

function from Balakrishnan and Hossain (2007). Using this posterior distribution to 

find point estimators for the unknown parameters. 

We considered linear estimation, Best Linear Unbiased Estimator (BLUE) and 

Best (Affine) Linear Equivariant Estimator (BLEE), to evaluate the unknown 

parameters of logistic distribution that is generalized with Type II category. Then we 

compared the results of linear estimation with the Bayesian and ML estimators. 

The results of the best estimator with lowest biased and mean squared error 

(MSE) will be of great benefit to estimate unknown parameters (location as and scale 

as) of Type II Generalized Logistic Distribution. This will broaden the scope of the 

distribution in situations in which the data is asymmetric. Also, it will demonstrate the 

adaptability and importance of the Type II Generalized Logistic Distribution in 

survival analysis. 

1.6. Research Specific Objectives  

The following particular objectives will be investigated in this study: 

1.   Obtaining the Maximum Likelihood Estimators of unknown parameters (location 

and scale) of Generalized Logistic Distribution of Type II. 

2.   Obtaining the Bayesian (Lindley’s approach and Importance Sampling) point 

estimators of unknown parameters (location and scale) of Generalized Logistic 
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Distribution of Type II. 

3.   Obtaining the Linear inference (BLUE and BLEE) of the parameters (location 

and scale) of the Generalized Logistic Distribution of Type II. 

4.   Comparing the Bayesian and Linear estimators with the MLEs using MSE and 

bias. 

5.   Applying the inference techniques developed in this thesis for the Generalized 

Logistic Distribution to real or simulated life data sets. 

1.7. Scope of Study  

As previously stated, the work in this thesis focused on estimating the unknown 

parameters of the Generalized Logistic model using classic inference, Bayesian and 

Best Linear Unbiased Estimator techniques in a Type II progressive censored sample. 

Chapter 1 introduces several basic topics in the subject of survival analysis, such as 

survival analysis, censoring types and schemes, and the basis of the Generalized 

Logistic Parametric Model. Chapter 1 also includes assessments of the literature on 

estimating methods such as MLE, Lindley's approach, Importance Sampling, and 

BLUE, as well as Type II progressive censoring. In Chapter 2, the maximum 

likelihood estimator, Bayes inference, BLUE and BLEE will be studied for the 

Generalized Logistic model under Type II progressive censored sample. In addition, 

in Chapter 2, a comparison of estimators based on bias and MSE will be presented. In 

Chapter 3, we executed a Monte Carlo simulation to discuss and analyzed the results. 

In Chapter 4, we explored a real-data applications of Type II progressive censorship. 

Finally, Chapter 5 provided a summary, conclusion, and recommendations for further 

research. 
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CHAPTER2: MAXIMUM LIKELIHOOD, BAYES ESTIMATION AND BEST 

UNBIASED ESTIMATOR 

2.1. Introduction 

We showed a general overview about maximum likelihood approach, 

likelihood based on progressive Type II censored data followed by the maximum 

likelihood method. Then we introduced the Bayesian approach and the Bayesian 

method. After that we explained the lindley’s approximation and the importance 

sampling techniques. Also, we introduced the linear approach under progressive 

censoring. As well as an illustration of the best linear unbiased estimator method and 

best (affine) linear equivariant estimator method.  

2.2. The Maximum Likelihood Approach 

Maximum likelihood estimation is a widely used statistical inference technique 

for estimating parameters in probabilistic data generation models. This approach, 

which is theoretically simple, yields parameter estimates with strong statistical 

features. The MLEs for the two unknowns  𝜇 𝑎𝑛𝑑 𝜎 parameters exhibit highly 

intriguing asymptotic features, as determined by Lehmann et al. (1998). Using this 

approach, the estimators are consistent, best asymptotically normal, and 

asymptotically unbiased. Even when a single consistent root of the likelihood equation 

is known to exist, it is sometimes hard to construct a clear solution for the maximum 

likelihood estimate of a parameter as a function of the sample. In such situations, 

numerical methods must be used to assess the MLE by repeated iteration. The root of 

an equation can be found using a lot of numerical methods.  One of the most 

extensively used methods for root detection is the Newton-Raphson approach. 

Newton's approach may be easily expanded to the challenge of finding solutions to a 

system of non-linear equations. Furthermore, as we get closer to the root, the strategy 

may be proven to be quadratically convergent. 
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2.2.1. Likelihood Based on Progressive Type II Censored Data  

Assume we have a random variable X with a two-parameter GL distribution. 

So, it has the probability density function as Equation 6 and the cumulative distribution 

function as Equation 8: 

Assume n identical objects are presented on a test, each with the Generalized 

Logistic (μ, σ) lifespan distribution. We have the observations sample below with a 

progressive censoring scheme (𝑅1,𝑅2, ..., 𝑅𝑚) Type II: 𝑋1:𝑚:𝑛, 𝑋2:𝑚:𝑛, ... , 𝑋𝑚:𝑚:𝑛. 

Then the joint PDF of 𝑋1:𝑚:𝑛, 𝑋2:𝑚:𝑛, ... , 𝑋𝑚:𝑚:𝑛 is  

𝑓𝑋1:𝑚:𝑛,𝑋2:𝑚:𝑛,...,𝑋𝑚:𝑚:𝑛,(𝑥1,𝑥2, . . . , 𝑥𝑚) =  C ∏  𝑚
𝑖=1 f(xi)[1 −  F(xi)]

𝑅𝑖 ,           (12) 

  where  0 < 𝑥1<𝑥2< ... < 𝑥𝑚< ∞,  

where the PDF and CDF of this sample can be denotes as f(.) and F(.) , respectively, 

as given in Equations (6) and (8) and    

  C = n(n − 𝑅1 − 1)···(n − 𝑅1−𝑅2 - ...  - 𝑅𝑚−1 − m + 1).   (13) 

For more details, see Balakrishnan and Aggarwala (2000) . We assume that 𝑅1,𝑅2, 

... , 𝑅𝑚 the scheme, n the sample size, m the failure numbers, are fixed in advance, 

and   

D = (𝑋1:𝑚:𝑛 , 𝑋2:𝑚:𝑛, . . . , 𝑋𝑚:𝑚:𝑛).     (14) 

2.2.2. Maximum Likelihood Method  

Relay on the items D as mentioned previously (17), then the likelihood 

functions of 𝜇 and 𝜎 can be calculated as: 

𝐿  = 𝑘 ∗   {∏ 𝑓(𝑧𝑖:𝑚:𝑛
𝑚
𝑖=1 )[1 − 𝐹(𝑧𝑖:𝑚:𝑛)]

𝑅𝑖},       (15) 

where     𝑧𝑖:𝑚:𝑛 = (𝑋𝑖:𝑚:𝑛 - 𝜇)/ 𝜎.      

 

We substitute with equation (7) and (9): 
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𝐿  =  𝑘 ∗   ∏ {(
𝛼

𝜎
) ∗ (

𝑒
−𝛼(

𝑥𝑖−𝜇

𝜎
)

(1+𝑒
−(
𝑥𝑖−𝜇
𝜎 )

)

𝛼+1)[(
𝑒
−(
𝑥𝑖−𝜇

𝜎
)

1+𝑒
−(
𝑥𝑖−𝜇
𝜎

)
)

𝛼

]

𝑅𝑖

}𝑚
𝑖=1      

  =  𝑘 ∗   
𝛼𝑚

𝜎𝑚
∏ {(

𝑒
−𝛼(

𝑥𝑖−𝜇

𝜎
)

(1+𝑒
−(
𝑥𝑖−𝜇
𝜎 )

)

𝛼+1)[(
𝑒
−(
𝑥𝑖−𝜇

𝜎
)

1+𝑒
−(
𝑥𝑖−𝜇
𝜎 )
)

𝛼

]

𝑅𝑖

}𝑚
𝑖=1 .  (16) 

Substitute with z =  
x−μ

σ
  to get: 

  𝐿  =  𝑘 ∗ 
𝛼𝑚

𝜎𝑚
{∏

𝑒−(−𝑧𝑖𝛼)

(1+𝑒−(𝑧𝑖))
𝛼+1

𝑚
𝑖=1 ∏ (1 − (1 − {

𝑒−(𝑧𝑖)

1+𝑒−(𝑧𝑖)
}
𝛼

))𝑅𝑖𝑚
𝑖=1 }         

    =  𝑘 ∗ 
𝛼𝑚

𝜎𝑚
{∏

𝑒−(−𝑧𝑖𝛼) 

(1+𝑒−(𝑧𝑖))
𝛼+1

𝑚
𝑖=1 ∏ { {

𝑒−(𝑧𝑖)

1+𝑒−(𝑧𝑖)
}
𝛼

}

𝑅𝑖
𝑚
𝑖=1 } .               

Rearranged the equation, we had the following: 

𝐿  =  𝑘 ∗ 
𝛼𝑚

𝜎𝑚
{∏ { {

𝑒−(𝑧𝑖)

1+𝑒−(𝑧𝑖)
}
𝛼

}

𝑅𝑖+1

𝑚
𝑖=1 ∏

1

1+exp(−𝑧𝑖)
𝑚
𝑖=1 } .            (17) 

The ln of the likelihood function is:  

𝑙 = 𝑙𝑛{𝑘 ∗  {∏ 𝑓(𝑧𝑖:𝑚:𝑛
𝑚
𝑖=1 ){1 − 𝐹(𝑧𝑖:𝑚:𝑛)}

𝑅𝑖}}        

 = 𝑙𝑛 {𝑘 ∗  
𝛼𝑚

𝜎𝑚
{∏ 𝑓(𝑧𝑖:𝑚:𝑛

𝑚
𝑖=1 ){1 − 𝐹(𝑧𝑖:𝑚:𝑛)}

𝑅𝑖}} .   (18) 

Applying the ln for the likelihood function: 

𝑙 =  𝑐𝑜𝑛𝑠𝑡. +𝑚𝑙𝑛𝛼 −𝑚𝑙𝑛𝜎 ∗ ∑ 𝑙𝑛𝑓(𝑧𝑖)
𝑚
𝑖=1 + ∑ 𝑅𝑖ln (1 −  𝐹(𝑧𝑖)

𝑚
𝑖=1 ),     

=  𝑙𝑛𝑘 + 𝑚𝑙𝑛𝛼 −𝑚𝑙𝑛𝜎 +  {∑ (𝑅𝑖 + 1)𝑙𝑛 {{
𝑒−(𝑧𝑖)

1+𝑒−(𝑧𝑖)
}
𝛼

}𝑚
𝑖=1 } + {∑ 𝑙𝑛 {

1

1+𝑒−(𝑧𝑖)
}𝑚

𝑖=1 }. (19)  

To find the maximum likelihood estimator, we need to find the first and second 

derivatives. To simplify the equation. Let:  

∆1(𝑧) =  
𝜕

𝜕𝑧
ln 𝑓(𝑧) =  {

𝑒−𝑧− 𝛼

1+𝑒−𝑧
} ,                                       (20) 

 ∆2(𝑧)  =  
𝑓(𝑧)

1−𝐹(𝑧)
= {

𝛼𝑒(−𝑧𝛼)

𝜎{(1+𝑒−𝑧)}𝛼+1
 

1−(1−[
𝑒−(z)

1+𝑒−(z)
]

𝛼

)

}  =  
 𝛼

𝜎
{
𝑒−(z)

1+𝑒−(z)
}  ,                 (21) 
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(hazard function of Type II Generalized Logistic Distribution). 

z = (x - 𝜇)/𝜎  →
𝜕𝑧

𝜕𝜇
= −

1

𝜎
   →

𝜕𝑧

𝜕𝜎
= −

x − 𝜇

𝜎2
 =  −

1

𝜎
 𝑧 .           (22) 

 

To find the MLE of 𝜇 𝑎𝑛𝑑 𝜎 , we should find the first derivative equations and 

equalize it to 0: 

𝜕𝑙𝑛𝐿

𝜕𝜇
=  −

1

𝜎
∑ ∆1(𝑧𝑖) +

1

𝜎
∑ 𝑅𝑖∆2(𝑧𝑖) =
𝑚
𝑖=1 0 𝑚

𝑖=1 ,   (23) 

𝜕𝑙𝑛𝐿

𝜕𝜎
=  −

𝑚

𝜎
−

1

𝜎
∑ 𝑧𝑖∆1(𝑧𝑖) +

1

𝜎
∑ 𝑅𝑖𝑧𝑖∆2(𝑧𝑖) =
𝑚
𝑖=1 0𝑚

𝑖=1 .   (24) 

Also, we need to find second derivative equations to make sure we have the 

minimum value where we can have the maximum likelihood estimators of 

𝜇 𝑎𝑛𝑑 𝜎: 

𝜕2𝑙

𝜕𝜇2
=  

1

𝜎2
∑ ∆′1(𝑧𝑖) −  

1

𝜎2
∑ 𝑅𝑖∆

′
2(𝑧𝑖)

𝑚
𝑖=1

𝑚
𝑖=1 ,      (25) 

𝜕2𝑙

𝜕𝜎2
=  

𝑚

𝜎2
+

2

𝜎2
∑ 𝑧𝑖∆1(𝑧𝑖)  +

1

𝜎2
∑ 𝑧𝑖

2∆′1(𝑧𝑖) −
2

𝜎2
∑ 𝑅𝑖𝑧𝑖∆2(𝑧𝑖) −

1

𝜎2
∑ 𝑅𝑖𝑧𝑖2∆′2(𝑧𝑖)𝑚
𝑖=1

𝑚
𝑖=1 ,  𝑚

𝑖=1
𝑚
𝑖=1 (26) 

𝜕2𝑙

𝜕𝜇𝜕𝜎
=  

1

𝜎2
∑∆1(𝑧𝑖) −

1

𝜎2
∑𝑅𝑖∆2(𝑧𝑖) +

1

𝜎2
∑𝑧𝑖∆

′
1(𝑧𝑖) −  

𝑚

𝑖=1

𝑚

𝑖=1

1

𝜎2
∑𝑅𝑖𝑧𝑖2∆′2(𝑧𝑖) ,  
𝑚

𝑖=1

𝑚

𝑖=1

(27) 

where  

∆′1(𝑧𝑖) =
 (𝛼+1)𝑒−𝑧

(1+𝑒−𝑧)2
 ,       

∆′2(𝑧𝑖) =
𝑓(𝑧)(1−𝐹(𝑧))∆1(𝑧)+ 𝑓(𝑧)

(1−𝐹(𝑧))2
 .     

The first and second derivative equations for µ, σ cannot be solved explicitly. 

So, we solved them numerically. Some iterative methods must be employed, one of 

these methods is Newton–Raphson approach to compute the MLEs of location and 

scale, a starting value around the global maximum is required. 

2.3.The Bayesian Approach  

The goal of Bayesian probability is to determine the probability density 

function along a set of hypotheses, or the parameters of a probabilistic model, given a 
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set of data. The posterior distribution refers to this quantity of interest. A probability 

distribution over all possible values of a probabilistic model's parameters is known as 

the posterior distribution, which is one of the characteristics of the Bayesian method. 

In contrast, approaches like maximum likelihood estimation provide a single 'optimal' 

set of parameter values, known as a point estimate. 

The posterior distribution is equal to the product of a constant and the 

likelihood, which incorporates the data's information, as well as the prior knowledge. 

Bayes' theorem is used in Bayes estimates: 

p(param∣dt)=  
p(dt∣param)p(param)

p(dt)
;  (28) 

       where: 

 param  : unknown parameters of a model or hypothesis. 

 dt  : whole data. 

 p(param∣dt)  : joint posterior distribution. 

 p(dt∣ param)  : likelihood function. 

 p(param)  : prior distribution. 

 p(dt)   : marginal probability of the data or the evidence, where 

𝑝(𝑑𝑡)  =  ∫ 𝑝(𝑑𝑡,  𝑝𝑎𝑟𝑎𝑚)𝑝(param)𝑝(dt) 𝑑𝑝𝑎𝑟𝑎𝑚𝑑𝑑𝑡.        (29) 

p(dt) is a normalizing constant that depends solely on the data and doesn't have to be 

calculated directly in most scenarios. As a result, Bayes' theorem is frequently used in 

practice in the form: 

p(param∣dt)     ∝      p( dt ∣∣ param )p(param).  (30) 

  Posterior ∝      likelihood  ×   prior. 

The Bayesian method, in its most basic version, in light of recent facts, revises 

the prior belief linked with a hypothesis. The prior distribution, of course, contains 

this prior knowledge, whereas the probability incorporates the data's effect. In both 
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Bayesian and frequentist statistics, Bayes' theorem (Equation 39) is a perfectly 

acceptable and rigorous theorem, but its conceptual meaning is unique to the Bayesian 

understanding of probability. 

2.3.1. The Bayesian Method 

Bayesian statistical methods begin with established 'prior' beliefs and update 

them with data to generate 'posterior' beliefs that can be used to make inferences. 

Based on this technique, we are going to estimate Type II Generalized Logistic 

Distribution location and scale parameters (  and ). 

Assuming non informative prior distributions for Type II Generalized Logistic 

Distribution parameters, and applying the joint prior of the location and scale 

parameters, and ,respectively, we got the joint distribution of data,  and  as: 

The unknown parameters have non-informative as shown below: 

𝜋1() = 1;     (31) 

𝜋2() =  1/𝜎 ;     (32) 

The joint prior distribution of  and :  

𝜋(𝜇, 𝜎) = 𝜋1() ∗  𝜋2() .    (33) 

As we know previously (18): 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∶  𝐿(𝑑𝑎𝑡𝑎|𝛼, 𝜇, 𝜎)    𝛼    k ∗ ∏ 𝑓(𝑧𝑖:𝑚:𝑛
𝑚
𝑖=1 )[1 − 𝐹(𝑧𝑖:𝑚:𝑛)]

𝑅𝑖  

 

To derive the joint distribution of data,  and  , we multiply likelihood function with 

the distribution of joint prior of  and  as follows: 

𝐿(𝑑𝑎𝑡𝑎|𝛼, 𝜇, 𝜎) * 𝜋(𝜇, 𝜎).     (34) 

Based on the previous equation, the joint posterior density of, 𝜇 and 𝜎 given the data 

is: 

𝜋(𝜇, 𝜎/𝑑𝑎𝑡𝑎) =
𝐿(𝑑𝑎𝑡𝑎/𝛼,𝜇,𝜎)∗ 𝜋(𝜇,𝜎)

∫ ∫ 𝐿(𝑑𝑎𝑡𝑎|,𝜎)∗ 𝜋(𝜇,𝜎)𝑑𝑑
∞
=0

∞
𝜎=0

 .      (35) 
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In order to find the Bayes estimator of any function of the parameters 𝜇 and 𝜎 , 

assume 𝑡 (𝜇 , 𝜎) under the squared error loss function (SELF), we need to find: 

�̂�(𝜇 , 𝜎)    =   𝐸
𝜇,

𝜎
𝑑𝑎𝑡𝑎

(t(𝜇 , 𝜎)); 

�̂�(𝜇 , 𝜎)    =
∫ ∫ 𝑡(𝜇 ,𝜎)∗𝐿(𝑑𝑎𝑡𝑎|,𝜎)∗ 𝜋(𝜇,𝜎)𝑑𝑑

∞
=0

∞
𝜎=0

∫ ∫ 𝐿(𝑑𝑎𝑡𝑎|,𝜎)∗ 𝜋(𝜇,𝜎)𝑑𝑑
∞
=0

∞
𝜎=0

.         (36) 

It is difficult to calculate the equation (47) analytically. We can approximate this 

Bayes estimators using the Lindley’s approximation method and Importance sampling 

procedures. 

2.3.1.1. Lindley’s Approximation  

In order to derive the ratio of two integrals, Lindley suggested his procedure. 

This approximation method deals with the integral ratio as a whole and yields a single 

numerical solution. Several researchers have used this approximation to obtain Bayes 

estimators for certain lifetime distributions. 

In the following explanation, suppose we have two parameters case, using the 

notation (𝜂1, 𝜂2) for (𝜇 , 𝜎).  The Lindley's approximation can be explained as: 

 

�̂� = 𝑡(𝜂1̂,𝜂2̂) + 
1

2
 ( 𝐴 +  l30B12 +  l03B21 +  l21C12 +  l12C21) +  𝑝1 A12 +  𝑝2 A21,         (37) 

A = ∑ ∑ 𝑤𝑖𝑗𝜏𝑖𝑗
2
𝑗=1

2
𝑖=1 , l𝑖𝑗 =

𝜕𝑖+𝑗𝐿(𝜂1,𝜂2)

𝜕𝜂𝑖1𝜕𝜂
𝑗
2

 ,  𝑖, 𝑗 = 0,1,2,3  𝑎𝑛𝑑 𝑖 + 𝑗 = 3  ,         (38) 

𝐩𝐢 =
𝛛𝐩

𝛛𝛈𝐢
 ,               (39) 𝐰𝐢 =

𝛛𝐭

𝛛𝛈𝐢
  ,                (40) 𝐰𝐢𝐣 =

𝛛𝟐𝐭

𝛛𝛈𝐢𝛛𝛈𝐣
 ,                        (41) 

p = log 𝛑(𝛈𝟏, 𝛈𝟐)(42)    , Aij = wiτii +  wjτji, (43) Bij= (wiτii +  wjτji)τii,  (44) 

𝐜𝐢𝐣= 𝛕𝐢𝐢𝛕𝐢𝐣 +  𝐰𝐣(𝛕𝐢𝐢𝛕𝐣𝐣 + 𝟐𝛕𝐢𝐣
𝟐) .                                                                                    (45) 

In our case log likelihood function,  

𝑙 =𝑐𝑜𝑛𝑠𝑡.  −𝑚𝑙𝑛 𝜎 +  ∑ 𝑙𝑜𝑔𝑓(𝑧𝑖)
𝑚
𝑖=1 + ∑ 𝑅𝑖log(1 −  𝐹(𝑧𝑖)

𝑚
𝑖=1 ) , (46) 

𝑈 = − 
𝜕2𝐿

𝜕𝜇 2
  =

1

𝜎2
∑ ∆′1(𝑧𝑖) −  

1

𝜎2
∑ 𝑅𝑖∆

′
2(𝑧𝑖)

𝑚
𝑖=1

𝑚
𝑖=1   ,            (47) 
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𝑉 = − 
𝜕2𝐿

𝜕𝜇𝜕𝜎
=

1

𝜎2
∑ ∆1(𝑧𝑖) −

1

𝜎2
∑ 𝑅𝑖∆2(𝑧𝑖) +

1

𝜎2
∑ 𝑧𝑖∆

′
1(𝑧𝑖) −  𝑚

𝑖=1
𝑚
𝑖=1

1

𝜎2
∑ 𝑅𝑖𝑧𝑖

2∆′2(𝑧𝑖)  
𝑚
𝑖=1

𝑚
𝑖=1 ,          (48) 

𝑊 = − 
𝜕2𝐿

𝜕𝜎2
= − [

𝑚

𝜎2
+

2

𝜎2
∑ 𝑧𝑖∆1(𝑧𝑖) +

1

𝜎2
∑ 𝑧𝑖

2∆′1(𝑧𝑖) −
2

𝜎2
∑ 𝑅𝑖𝑧𝑖∆2(𝑧𝑖) −

1

𝜎2
∑ 𝑅𝑖𝑧𝑖

2∆′2(𝑧𝑖)],
𝑚
𝑖=1

𝑚
𝑖=1

𝑚
𝑖=1

𝑚
𝑖=1  

                     (49) 

𝜏11 =  
𝑊

𝑈𝑊− 𝑉2
  = {

(− 
𝜕2𝐿

𝜕𝜎2
 )

(− 
𝜕2𝐿

𝜕𝜇 2
 )∗(− 

𝜕2𝐿

𝜕𝜎2
 )− (−

𝜕2𝐿

𝜕𝜇𝜕𝜎
)2
} ,        (50) 

 𝜏12 =  −
𝑉

𝑈𝑊− 𝑉2
= {−

(−
𝜕2𝐿

𝜕𝜇𝜕𝜎
 )

(− 
𝜕2𝐿

𝜕𝜇 2
 )∗(− 

𝜕2𝐿

𝜕𝜎2
 )− (−

𝜕2𝐿

𝜕𝜇𝜕𝜎
)2
}   ,   (51) 

𝜏22 =  
𝑈

𝑈𝑊− 𝑉2
 ={

(− 
𝜕2𝐿

𝜕𝜇2
 )

(− 
𝜕2𝐿

𝜕𝜇 2
 )∗(− 

𝜕2𝐿

𝜕𝜎2
 )− (−

𝜕2𝐿

𝜕𝜇𝜕𝜎
)2
}    ,    (52) 

l30 =  
𝜕3𝐿

𝜕𝜇 3
  =

−1

𝜎3
∑ ∆′′1(𝑧𝑖) +  

1

𝜎3
∑ 𝑅𝑖∆

′′
2(𝑧𝑖)

𝑚
𝑖=1

𝑚
𝑖=1  ,   (53) 

l03 =  
𝜕3𝐿

𝜕𝜎 3
=  {

−2𝑚

𝜎3
−

4

𝜎3
∑ 𝑧𝑖∆1(𝑧𝑖) −

2

𝜎3
∑ 𝑧𝑖

2∆′1(𝑧𝑖) −
2

𝜎3
∑ 𝑧𝑖

2∆1
′(𝑧𝑖)  −

𝑚
𝑖=1

𝑚
𝑖=1

𝑚
𝑖=1

2

𝜎3
∑ 𝑧𝑖

2∆′1(𝑧𝑖) −
1

𝜎3
∑ 𝑧𝑖

3∆1
′′(𝑧𝑖) +

𝑚
𝑖=1

4

𝜎3
∑ 𝑅𝑖𝑧𝑖∆2(𝑧𝑖) +
𝑚
𝑖=1

𝑚
𝑖=1

2

𝜎3
∑ 𝑅𝑖𝑧𝑖

2∆2
′(𝑧𝑖) +

𝑚
𝑖=1  

2

𝜎3
∑ 𝑅𝑖𝑧𝑖

2∆2
′(𝑧𝑖) +

𝑚
𝑖=1  

1

𝜎3
∑ 𝑅𝑖𝑧𝑖

3∆2
′′(𝑧𝑖)

𝑚
𝑖=1  }  ,(54) 

l12 =  
𝜕3𝐿

𝜕𝜇𝜕𝜎 2
 = {−

2

𝜎3
∑ ∆1(𝑧𝑖) −

1

𝜎3
∑ 𝑧𝑖∆1

′(𝑧𝑖) +
2

𝜎3
∑ 𝑅∆2(𝑧𝑖) +
𝑚
𝑖=1

𝑚
𝑖=1

𝑚
𝑖=1

1

𝜎3
∑ 𝑅𝑖𝑧𝑖∆2

′(𝑧𝑖) −
2

𝜎3
∑ 𝑧𝑖∆1

′(𝑧𝑖) −
1

𝜎3
∑ 𝑧𝑖

2∆1
′(𝑧𝑖) +

𝑚
𝑖=1

𝑚
𝑖=1

𝑚
𝑖=1

2

𝜎3
∑ 𝑅𝑖𝑧𝑖∆2

′(𝑧𝑖) +
1

𝜎3
∑ 𝑅𝑖𝑧𝑖

2∆2
′′(𝑧𝑖)

𝑚
𝑖=1  𝑚

𝑖=1     }    ,             (55) 

l21 =  
𝜕3𝐿

𝜕𝜇 2𝜕𝜎
= {

−2

𝜎3
∑ ∆′1(𝑧𝑖) −  

1

𝜎3
∑ 𝑧𝑖∆

′′
1(𝑧𝑖) +

𝑚
𝑖=1

𝑚
𝑖=1

2

𝜎3
∑ 𝑅𝑖∆

′
2
(𝑧𝑖) +  

1

𝜎3
∑ 𝑅𝑖𝑧𝑖∆

′′
2(𝑧𝑖)

𝑚
𝑖=1

𝑚
𝑖=1 },             (56) 

∆′′1(𝑧𝑖) =
 (𝛼+1)𝑒−𝑧∗(1+𝑒−𝑧)2+2(1+𝑒−𝑧)(𝛼+1)𝑒−𝑧

(1+𝑒−𝑧)4
 ,       (57) 

∆′′2(𝑧𝑖) =

{
[𝑓(𝑧)′(1−𝐹(𝑧))∆1(𝑧)+ 𝑓(𝑧)(1−𝐹(𝑧))

′
∆1(𝑧)+𝑓(𝑧)(1−𝐹(𝑧))∆1

′(𝑧)+𝑓(𝑧)′]∗(1−𝐹(𝑧))
2

−𝑓(𝑧)(1−𝐹(𝑧))∆1(𝑧)∗(1−𝐹(𝑧))
2′

}

(1−𝐹(𝑧))4
,(58) 

𝑓(𝑧)′ = [
α

σ

e−α(𝑧)

(1+ e−(𝑧))α+1
 ]   ′ 
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           =
α

σ

{ (−𝛼)𝑒−𝑧𝛼 ∗ (1 + 𝑒−𝑧)α+1 + (𝛼 + 1)(1 + 𝑒−𝑧)𝑒−𝑧α}  

((1 + 𝑒−𝑧)α+1)2 
    

=
α

σ

{ (−𝛼𝑒−𝑧𝛼)(1+𝑒−𝑧)[(1+𝑒−𝑧)α + 𝑒−𝑧]}

((1+𝑒−𝑧)α+1)2 
,        (59) 

(1 − 𝐹(𝑧))
′
 = [1 − (1 − (

e−(z)

(1+ e−(z))
)
α

)]
′

 

        = [(
e−(z)

(1+ e−(z))
)
α

]
′

 

        = 
 (−𝛼𝑒−𝑧𝛼)

(1+𝑒−𝑧)α+1
 ,                  (60) 

The joint prior distribution of 𝜇 𝑎𝑛𝑑 σ = 

π(η1, η2) =  (π(𝜇 ) ∗ π(σ )) = (1 ∗
1

σ
) =  

1

σ
  ,                (61) 

p = ln π(η1, η2) = ln (π(𝜇 ) ∗ π(σ )) = ln (1 ∗
1

σ
) = ln (

1

𝜎
) =  −ln (𝜎) ,             (62) 

𝑝1 =
𝜕𝑝

𝜕𝜂1
= 

𝜕𝑝

𝜕𝜇
= {{𝜕ln(π(η1, η2)}/𝜕𝜇} = {𝜕(−ln (𝜎))/ 𝜕𝜇} = 0 ,                        (63) 

𝑝2 =
𝜕𝑝

𝜕𝜂2
= 

𝜕𝑝

𝜕𝜎
= {{𝜕ln(π(η1, η2)}/𝜕𝜎} = {𝜕(−ln (𝜎))/ 𝜕𝜎} = (-1/ 𝜎) .              (64) 

When estimating the parameter 𝜇: 

A = 0, 𝐵12 =𝜏11
2, 𝐵21 = 𝜏21𝜏22 ,                (65) 

𝑐12 = 3𝜏11𝜏12 , 𝑐21 = 3𝜏11𝜏22 + 2𝜏21
2 ,               (66) 

𝐴12 = 𝜏11 , 𝐴21 = 𝜏12 ,                 (67) 

𝑝1 =
𝜕𝑝

𝜕𝝁
= 0 ,                     (68)  

 𝑝2 =
𝜕𝑝

𝜕𝜎
 = (-1/ 𝜎)  .                              (69) 

When estimating the parameter 𝜎: 

A = 0, 𝐵12 =𝜏11𝜏12, 𝐵21 =𝜏22
2,                (70) 

𝑐12 = 𝜏11𝜏22 + 2𝜏12
2 , 𝑐21 = 3𝜏21𝜏22,               (71) 

𝐴12 = 𝜏21 , 𝐴21 = 𝜏22 ,                 (72) 

𝑝1 =
𝜕𝑝

𝜕𝝁
= 0,                  (73) 
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𝑝2 =
𝜕𝑝

𝜕𝜎
 = (-1/ 𝜎).                                         (74) 

So, the Lindley’s approximation of the  𝜇 : 

 𝜇�̂� =  𝜇 ̂ +
1

2
∗ (
0 + 𝑙30𝜋11

2 +  𝑙03𝜋21𝜋22 + 3𝑙21𝜋11𝜋12 +

 𝑙12(𝜋22𝜋11 +  2𝜋21
2)

) 

+(0 ) ∗ 𝜋11 +  (−
1

𝜎
) ∗ 𝜋12  .        (75) 

And the Lindley’s approximation of the  𝜎  is: 

 𝜎�̂� =   𝜎 ̂+
1

2
∗ (0 + 𝑙30𝜋12𝜋11 +  𝑙03𝜋22

2 +

𝑙21(𝜋22𝜋11 +  2𝜋12
2) +  3𝑙12𝜋22𝜋21) + (0 ) ∗ 𝜋21 +  (−

1

𝜎
) ∗ 𝜋22              (76) 

where μ  ̂and σ ̂ are MLE of 𝜇 ,  𝜎 respectively.  

2.3.1.2.Importance Sampling  

It is a common variance reduction technique. It can be explained as a weighted 

average of random samples taken from another distribution ℎ𝑣(x) ("importance 

sampling" density function) to estimate an expectation with respect to the target 

density function 𝑓𝑥(x). The significance sampling function must be chosen carefully 

to give better estimation result. 

Applying the previous assumption, the prior distribution of 𝜇 and 𝜎 is non-

informative priors for the location and scale parameters (µ and ) (Equations 

42,43,44): 

𝜋1() = 1; 

𝜋2() =
1

𝜎
;  

𝜋(𝜇, 𝜎) = 1* 1/𝜎 = 1/𝜎. 

The posterior function can be derived as the following: 

𝜋(𝜇, 𝜎|𝑑𝑎𝑡𝑎) = 𝐿(𝑑𝑎𝑡𝑎|𝛼, 𝜇, 𝜎) * 𝜋(𝜇, 𝜎),       (77) 

𝜋(𝜇, 𝜎|𝑑𝑎𝑡𝑎) = k ∗ ∏ 𝑓(𝑧𝑖:𝑚:𝑛
𝑚
𝑖=1 )[1 − 𝐹(𝑧𝑖:𝑚:𝑛)]

𝑟𝑖 * 𝜋(𝜇, 𝜎),     
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𝜋(𝜇, 𝜎|𝑑𝑎𝑡𝑎) = 𝑘
𝛼𝑚

𝜎𝑚
∏

{
 

 
(

𝑒
−𝛼(

𝑥𝑖−𝜇

𝜎
)

(1+𝑒
−(
𝑥𝑖−𝜇
𝜎 )

)

𝛼+1)[1 − [1 − [(
𝑒
−(
𝑥𝑖−𝜇

𝜎
)

1+𝑒
−(
𝑥𝑖−𝜇
𝜎 )
)

𝛼

]]]

𝑅𝑖

}
 

 
×𝑚

𝑖=1

1 ×
1

𝜎
  ,       

=  𝑘
𝛼𝑚

𝜎𝑚
∏{(

𝑒−𝛼(
𝑥𝑖−𝜇
𝜎

)

(1 + 𝑒−(
𝑥𝑖−𝜇
𝜎

))
𝛼+1)[(

𝑒−(
𝑥𝑖−𝜇
𝜎

)

1 + 𝑒−(
𝑥𝑖−𝜇
𝜎

)
)

𝛼

]

𝑅𝑖

}× 1 ×
1

𝜎

𝑚

𝑖=1

  ,   

= 𝑘
𝛼𝑚

𝜎𝑚+1
∏ {

1

(1+𝑒
−(
𝑥𝑖−𝜇
𝜎 )

)

(
𝑒
−(
𝑥𝑖−𝜇

𝜎
)

1+𝑒
−(
𝑥𝑖−𝜇
𝜎 )
)

𝛼

[(
𝑒
−(
𝑥𝑖−𝜇

𝜎
)

1+𝑒
−(
𝑥𝑖−𝜇
𝜎 )
)

𝛼

]

𝑅𝑖

}𝑚
𝑖=1 , 

= 𝑘
𝛼𝑚

𝜎𝑚+1
∏ {

1

(1+𝑒
−(
𝑥𝑖−𝜇
𝜎 )

)

(
𝑒
−(
𝑥𝑖−𝜇

𝜎
)

1+𝑒
−(
𝑥𝑖−𝜇
𝜎 )
)

𝛼(𝑅𝑖+1)

}𝑚
𝑖=1 , 

∝
1

𝜎𝑚+1
𝑒−

∑ (𝑥𝑖−𝜇)
𝑚
𝑖=1

𝜎 ∏{
𝑒
−(𝛼(𝑅𝑖+1)−1)(

𝑥𝑖−𝜇
𝜎

)

(1 + 𝑒−(
𝑥𝑖−𝜇
𝜎

))
𝛼(𝑅𝑖+1)+1

}

𝑚

𝑖=1

   ,   

∝
1

𝜎𝑚+1
𝑒
−(

𝜇−�̅�

𝜎 𝑚⁄
)
∏ {

𝑒
−(𝛼(𝑅𝑖+1)−1)(

𝑥𝑖−𝜇

𝜎
)

(1+𝑒
−(
𝑥𝑖−𝜇

𝜎
)
)

𝛼(𝑅𝑖+1)+1
}𝑚

𝑖=1 , 

∝
1

𝜎𝑚
𝑚

𝜎

𝑒
−(
𝜇−�̅�
𝜎 𝑚⁄

)

(1 + 𝑒
−(
𝜇−�̅�
𝜎 𝑚⁄

)
)

2 (1 + 𝑒
−(
𝜇−�̅�
𝜎 𝑚⁄

)
)

2

∏{
𝑒−

(𝛼(𝑅𝑖+1)−1)(
𝑥𝑖−𝜇
𝜎

)

(1 + 𝑒−(
𝑥𝑖−𝜇
𝜎

))
𝛼(𝑅𝑖+1)+1

}

𝑚

𝑖=1

, 

∝ {
𝑚𝑚−1

𝛤(𝑚−1)
(
1

𝜎
)
𝑚

𝑒−𝑚 𝜎⁄ }

{
 

 
𝑚

𝜎

𝑒
−(
𝜇−�̅�
𝜎 𝑚⁄

)

(1+𝑒
−(
𝜇−�̅�
𝜎 𝑚⁄

)
)

2

}
 

 

{
𝑒𝑚 𝜎⁄

𝑚𝑚−1 (1 + 𝑒
−(

𝜇−�̅�

𝜎 𝑚⁄
)
)
2

∏ {
𝑒
−(𝛼(𝑅𝑖+1)−1)(

𝑥𝑖−𝜇
𝜎 )

(1+𝑒
−(
𝑥𝑖−𝜇
𝜎 )

)

𝛼(𝑅𝑖+1)+1
}𝑚

𝑖=1 }.

                                  (78) 

 

Here we have: 

𝑓𝑇 (𝜎) =  {
𝑚𝑚−1

Γ(𝑚−1)
(
1

𝜎
)
𝑚

𝑒−𝑚 𝜎⁄ }               (79) 
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This is the inverse gamma distribution's pdf with parameters 𝑚− 1 and m.  

𝑓𝑇 (𝜇) =  {
𝑚

𝜎

𝑒
𝜇−�̅�
𝜎 𝑚⁄

(1+𝑒
𝜇−�̅�
𝜎 𝑚⁄ )

2}                    (80) 

This is the logistic distribution with parameters �̅� =
∑ 𝑥𝑖
𝑚
𝑖=1

𝑚
 and 𝜎 𝑚⁄ . 

ℎ = {
𝑒𝑚 𝜎⁄

𝑚𝑚−1 (1 + 𝑒
−(

𝜇−�̅�

𝜎 𝑚⁄
)
)
2

∏ {
𝑒
−(𝛼(𝑅𝑖+1)−1)(

𝑥𝑖−𝜇

𝜎
)

(1+𝑒
−(
𝑥𝑖−𝜇

𝜎
)
)

𝛼(𝑟𝑖+1)+1
}𝑚

𝑖=1 }                   (81) 

We can rewrite the posterior function as: 

𝜋 (𝜇,
𝜎

𝑑𝑎𝑡𝑎
) ∝   𝑓𝑇 (𝜇) ∗  𝑓𝑇 (𝜎) ∗ ℎ(𝜇, 𝜎).    (82) 

Using (95), we can use the importance sampling to find the Bayes estimates of any 

function of 𝜇 and 𝜎 ¸for example t (𝜇,𝜎): 

We can start with the right-hand side of (95) and mark it as 𝜋𝑁(𝜇, 𝜎|𝑑𝑎𝑡𝑎). So, 

the difference between 𝜋𝑁(𝜇, 𝜎|𝑑𝑎𝑡𝑎) and 𝜋(𝜇, 𝜎|𝑑𝑎𝑡𝑎) is only the proportionality 

constant. The, Bayes estimate of 𝑡(𝜇, 𝜎) under the squared error loss function is  

�̂�(𝜇 , 𝜎)    =
∫ ∫ 𝑡(𝜇 ,𝜎)∗𝜋𝑁(𝜇,𝜎|𝑑𝑎𝑡𝑎) 𝑑𝑑

∞
=0

∞
𝜎=0

∫ ∫ 𝜋𝑁(𝜇,𝜎|𝑑𝑎𝑡𝑎) 𝑑𝑑
∞
=0

∞
𝜎=0

.   (83) 

It is obvious from (96) that using the importance sampling procedure to 

approximate �̂�(𝜇 , 𝜎), this does not require to determine the normalizing constant. In 

order to find the estimate of the Generalized Logistic Distribution parameters we do 

the following steps: 

Step One:  

Generate 𝜎 from inverse gamma distribution with parameters 𝑚 − 1 and 1 

Step Two:  

Generate 𝜇 from the logistic distribution with parameters �̅� =
∑ 𝑥𝑖
𝑚
𝑖=1

𝑚
 and 𝜎 𝑚⁄ , 
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where 𝜎 is generated from Step One. 

Repeat this step to obtain ((μ1, σ1), (μ2, σ2), … , (μN, σN)) 

Step Three: 

The approximate value of parameters (�̂� , �̂�) can be obtained as: 

 ∑ 𝑡(μi, σi)ℎ((μi, σi)
𝑁
𝑖=1  / ∑ ℎ((μi, σi)

𝑁
𝑖=1      .  (84) 

2.4.The Linear Approach Under Progressive Censoring 

Linear statistics has an easy and accurate structure. Researchers have been very 

interested in using linear inference for parametric distributions with ordered data in a 

variety of applications as a result of this.  

Suppose we have X = (𝑋1:𝑚:𝑛 , … , 𝑋𝑚:𝑚:𝑛)` be a randomly generated vector of 

Type-II censored order statistics with location parameter   and scale parameter . 

And let Y = (𝑌1:𝑚:𝑛 , … , 𝑌𝑚:𝑚:𝑛)` such that: 

𝑌j:𝑚:𝑛 = 
𝑋𝑗:𝑚:𝑛 −μ

σ
 , where j = 1, …., m.               (85) 

Let W = (Y – E(Y)), b = E(Y),  𝜃 = (  )` and B = [𝕝 , b].    (86) 

So, X can be presented as a linear equation:  

𝑋 =  𝜇 . 𝕝 + . Y =   𝜇 . 𝕝 + . E(Y) + W = [𝕝 , b](

) + W = B 𝜃 +𝑊.(87) 

Assuming Σ is regular, and non-singular covariance matrix. 

Σ  is the covariance matrix cov(Y),  

Σ =  ∆ Σ𝑈ℛ  ∆ .     (88) 

2.4.1. Best Linear Unbiased Estimator   

Estimating local and scale parameters model, we suppose we have m ≥ 2  and 

n = ∑ rj + 1 
m
j=1  , so BLUE estimator of  : 

 ̂𝐿𝑈 = 
1

∆
. ((b`Σ−1 b)( 𝕝` Σ−1X) - ( 𝕝` Σ−1b)(b`Σ−1 X)) ,   (89) 

̂𝐿𝑈 = 
1

∆
. ((𝕝`Σ−1 𝕝)( b` Σ−1X) - ( 𝕝` Σ−1b)(𝕝`Σ−1 X))  ,  (90) 
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Where ∆ = ((𝕝`Σ−1 𝕝)( b` Σ−1b) − (𝕝`Σ−1 b)2 > 0   (91) 

In order to find the covariance matrix, we used the following algorithm: 

1. Let 𝛾𝑗 = 𝑛 − 𝑗 + 1,                                     𝑗 = 1,2, … , 𝑛.            (92) 

2. Calculate 𝑐𝑟 = ∏ 𝛾𝑗,
𝑟
𝑗=1                              𝑟 = 1,2, … ,𝑚.                       (93) 

3. Calculate 𝑑𝑟 = ∏ (𝛾𝑗 + 1),
𝑟
𝑗=1                  𝑟 = 1,2, … ,𝑚.                       (94) 

4. Calculate 𝑒𝑟 = ∏ (𝛾𝑗 + 2),
𝑟
𝑗=1                   𝑟 = 1,2, … ,𝑚.                       (95) 

5. Calculate 𝑎𝑟 =
𝑑𝑟

𝑒𝑟
,                                       𝑟 = 1,2, … ,𝑚.            (96) 

6. Calculate 𝑏𝑟 =
𝑐𝑟

𝑑𝑟
,                                       𝑟 = 1,2, … ,𝑚.             (97) 

7. Calculate 𝐸𝑈𝑟 = Π𝑟 = 1 − 𝑏𝑟 ,                𝑟 = 1,2, … ,𝑚.                       (98) 

8. Calculate 𝐶𝑂𝑉𝑈𝑟𝑈𝑠 = (𝑎𝑟 − 𝑏𝑟)𝑏𝑠 , 𝑟 = 1, . . . , 𝑚 , 𝑠 = 1, . . , 𝑚,     (99)

                                                                                                          

(This will give the Matrix Σ𝑈ℛ). 

9. Calculate the diagonal matrix Δ with diagonal elements 

(
1

𝑓(𝐹−1(Π1))
, … ,

1

𝑓(𝐹−1(Π𝑟))
),  

where from (Equations 7 & 9):   

𝑓(𝑥)  = (
𝑒
−𝛼(

𝑥𝑖−𝜇

𝜎
)

(1+𝑒
−(
𝑥𝑖−𝜇
𝜎 )

)

𝛼+1), 

and  

𝐹(𝑥) =  [1 − [(
𝑒
−(
𝑥𝑖−𝜇

𝜎
)

1+𝑒
−(
𝑥𝑖−𝜇
𝜎 )
)

𝛼

]].  

10. Calculate the required covariance matrix (Equation 101) 

Σ = Δ Σ𝑈ℛ  Δ. 
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2.4.2. Best (affine) Linear Equivariant Estimator   

Estimating local and scale parameters model: 

 ̂𝐿𝐸 = 
1

∆1
. ((b`Σ−1 b + 1)( 𝕝` Σ−1X) - ( 𝕝` Σ−1b)(b`Σ−1 X)).   (100) 

̂𝐿𝐸 = 
1

∆1
. ((𝕝`Σ−1 𝕝)( b` Σ−1X) - ( 𝕝` Σ−1b)(𝕝`Σ−1 X)).    (101) 

where ∆1 = ∆ + ((𝕝`Σ
−1 𝕝) .     (102) 

  E( ̂𝐿𝐸) =  + 
( 𝕝` Σ−1b)

∆1
∗  𝜎.      (103) 

E (̂𝐿𝐸) =   
∆

 ∆1
∗  𝜎 .    (104) 

 MSE( ̂𝐿𝐸) =
(b`Σ−1 b+1)

 ∆1
∗  𝜎2  .   (105) 

 MSE (̂𝐿𝐸) =  
(𝕝`Σ−1 𝕝)

 ∆1
∗  𝜎2.         (106) 

E ( ̂𝐿𝐸 −  𝜇) * (̂𝐿𝐸 −  )  =  
( 𝕝` Σ−1b)

 ∆1
∗  𝜎2.  (107) 

The estimators, the Bayesian, and Linear estimators from the previous steps 

with the MLE, will be examined in terms of bias and mean squared errors defined by: 

𝐵𝑖𝑎𝑠 (𝜃) = 𝐸(𝜃) – 𝜃,     (108) 

𝑀𝑆𝐸 (𝜃) =  E(𝜃 −  θ)2     (109) 

 = 𝑉𝑎𝑟 (𝜃)+𝐵𝑖𝑎𝑠2(𝜃).     (110) 
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CHAPTER 3: MONTE CARLO STUDY RESULTS AND FINDINGS 

3.1. Introduction 

The Markov Chain Monte Carlo (MCMC) approach allows for a wide range 

of realistic statistical modeling. Until recently, recognizing the entire complexity and 

structure of many applications was challenging and necessitated the creation of 

specialized methods and technologies. The alternative was to force the problem into 

an overly simplistic framework of an existing approach. MCMC approaches now 

provide an unified framework for the analysis of many difficult issues utilizing generic 

software (Gilks et al. 1996). In this chapter we showed a general overview about 

Monte Carlo technique. Then, we introduced the Monte Carlo study. Finally, the 

results and findings from this technique. 

3.2. Overview  

Many scholars employ Monte Carlo simulation (MCS) techniques in their 

statistical and economic research. It is a very easy to implement method with a lot of 

benefits. General benefits or aims of MCS techniques are: First, assess an inference 

method's performance. Second, assess the parametric inference's resiliency to 

assumption violations. Compare the statistical qualities of different estimators in the 

third step. Finally, make conclusions when an estimator has a poor statistical theory. 

This technique was executed using R program. R is an open-source software and 

simple to learn.  In the R programming language, libraries, also known as packages, 

play a vital role. It is made up of a number of statistical modeling algorithms and 

machine learning ideas that allow users to conduct repeatable research and develop 

informative materials. In order to generate Type II progressive censoring sample in R, 

we employed the same approach that was used in Balakrishnan and Sandhu Source 

(1995) following these steps: 

1. Determine the values of n, m, 𝜇, 𝜎, 𝛼 and 𝑅𝑖 (𝑖 = 1,2, … ,𝑚).  

https://link.springer.com/article/10.3758/s13423-016-1015-8#ref-CR5


 

51 

2. Create m independent units from Uniform (0,1) 𝐴1, 𝐴2,. .., 𝐴𝑚.   

3. Define 𝑊𝑖 = 𝐴𝑖
1/(𝑖+𝑅𝑚 +𝑅𝑚−1+⋯+ 𝑅𝑚−𝑖+1 ), for i= 1,2,..,m.  

4. Define 𝑈𝑖  = 1- 𝑊𝑚  * 𝑊𝑚−1 * ... *𝑊𝑚−𝑖+1  , for i = 1,2,..,m.  

Next 𝑈1 , 𝑈2 ,.., 𝑈𝑚  is the needed progressive Type-II censored sample from 

the Uniform (0,1) distribution.  

5. Lastly, set 𝑋𝑖 = 𝐹
−1 (𝑈𝑗), for i = 1, 2 ,..,m , where 𝐹−1 (.) is the inverse CDF of  

the distribution under study (Equation 10). 

f(z|α) =
  αe−(zα)

(1+ e−(z))
α+1 ;      −∞ < z < ∞ .           

Then 𝑋1 , 𝑋2 ,.., 𝑋𝑚  is the required progressive Type-II censored sample from the 

distribution F(.) (Equation 11). 

F(z|α) = 1 − (
e−(z)

(1+ e−(z))
)
α

;      −∞ < z < ∞.         

6. For a specific n, m and R (the scheme) , calculate the estimator (MLE , Bayesian : 

Lindley’s approach or Importance Sampling BLUE or BLEE. 

7. Repeat the previous steps K times, where K is the simulation times (5000 times). 

8. Compute the Monte Carlo estimator, which is the average of the calculated 

estimators. 

9. Compute the Bias and Mean Squared Error (MSE) of the Monte Carlo estimator. 

For each option of m and n, we executed the Monte Carlo simulation with various 

total sized n samples, with number of failures equals to m, and progressive 

censoring scheme options (CS). 

10. Compare the MLE, Bayesian (Lindley’s approach and Importance Sampling), 

BLUE and BLEE with respect to Bias and MSE. 

In our study we used different schemes to find the estimators. The following 

table illustrate the progressive censoring schemes that we used in our study. 
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Table 1:  Progressive Censoring Schemes Samples 

 n m progressive censoring 

Scheme (CS) 
1 50 30 (0*29,20) 

2  30 (0*10,2*10,0*10) 

3  30 (20,0*29) 

4 50 40 (0*39,10) 

5  40 (0*15,1*10,0*15) 

6  40 (10,0*39) 

7 70 40 (0*39,30) 

8  40 (0*10,2*15,0*15) 

9  40 (30,0*39) 

10 70 50 (0*49,20) 

11  50 (0*20,2*10,0*20) 

12  50 (20,0*49) 

13 90 50 (0*49,40) 

14  50 (0*15,2*20,0*15) 

15  50 (40,0*49) 

16 90 60 (0*59,30) 

17  60 (0*20,2*15,0*25) 

18  60 (30,0*59) 

 

 

3.3.Monte Carlo study 

As a result, to run the simulation. We begin the data creation process. The 

parameters ( , 𝜎) are considered to have starting true values of (0,1), respectively. We 
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assumed  𝜋() = 1 as a flat prior and the Jeffrey prior 𝜋(𝜎) = 1/ 𝜎 for location and 

scale parameters in terms of prior distributions. These are non-informative priors for 

the two parameters. Various sample sizes and progressive censoring strategies are used 

in Monte Carlo simulation research. Balakrishnan and Sandhu (1995), proposed a 

uniform variates-based approach for Type II progressive censored data distributed 

from Type II Generalized Logistic Distribution. The findings of the average values, 

Bias and MSEs of MLEs, Bayesian Lindley's approximation, Bayesian Importance 

Sampling estimators, BLUE and BLEE are presented in Tables 2, 3, 4, 5, 6 and 7. For 

sample sizes n=50, 70 and 90. Having smaller sample sizes will not give us efficient 

estimators, it might not give a defined value for an estimator.  Observed failure periods 

m = 30, 40, 50 and 60, data from Type II Generalized Logistic Distribution with 𝛼 

=1.5 ,1, or 0.5 was used to simulate data. We calculated all the averages across 5000 

simulations.  
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Table 2: Results of Simulation for Parameter  μ  with  Generalized Logistic Distribution (α 

=1.5, μ = 0, σ =1) 

 N m Scheme MLE Bayesian 

Lindley’s 

Bayesian 

Importance 

Sampling 

BLUE BLEE 

 50 30 (0*29,20)      

Mean    -0.0316 -0.0411 -1.7436 0.0295 0.0101 

Bias    -0.0316 -0.0411 -1.7436 0.0295 0.0101 

MSE    0.0010 0.0017 3.0400 0.0660 0.0648 

  30 (0*10,2*10,0*10)      

Mean    -0.0293 -0.0466 -1.3551 2.2187 2.1775 

Bias    -0.0293 -0.0466 -1.3551 2.2187 2.1775 

MSE    0.0009 0.0022 1.8362 4.9878 0.0648 

  30 (20,0*29)      

Mean    -0.0092 -0.0929 -0.8390 2.6077 2.5681 

Bias    -0.0092 -0.0929 -0.8390 2.6077 2.5681 

MSE    0.0001 0.0086 0.7040 6.8653 0.0648 

 50 40 (0*39,10)      

Mean    -0.0160 -0.0226 -1.2661 0.0172 0.0094 

Bias    -0.0160 -0.0226 -1.2661 0.0172 0.0094 

MSE    0.0003 0.0005 1.6030 0.0497 0.0493 

  40 (0*15,1*10,0*15)      

Mean    -0.0137 -0.0421 -1.0062 0.9233 0.9108 

Bias    -0.0137 -0.0421 -1.0062 0.9233 0.9108 

MSE    0.0002 0.0018 1.0125 0.9019 0.0493 

  40 (10,0*39)      

Mean    -0.0067 -0.0586 -0.7654 1.1288 1.1166 

Bias    -0.0067 -0.0586 -0.7654 1.1288 1.1166 

MSE    0.0000 0.0034 0.5858 1.3237 0.0493 

 70 40 (0*39,30)      
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Mean    -0.0246 -0.0294 -1.7559 0.0285 0.0129 

Bias    -0.0246 -0.0294 -1.7559 0.0285 0.0129 

MSE    0.0006 0.0009 3.0832 0.0506 0.0495 

  40 (0*10,2*15,0*15)      

Mean    -0.0246 -0.0366 -1.2942 2.6859 2.6498 

Bias    -0.0246 -0.0366 -1.2942 2.6859 2.6498 

MSE    0.0006 0.0013 1.6750 7.2640 0.0495 

 70 50 (0*49,20)      

Mean    -0.0147 -0.0224 -1.4289 0.0164 0.0085 

Bias    -0.0147 -0.0224 -1.4289 0.0164 0.0085 

MSE    0.0002 0.0005 2.0419 0.0389 0.0385 

  50 (0*20,2*10,0*20)      

Mean    -0.0166 -0.0557 -1.0992 1.5217 1.5064 

Bias    -0.0166 -0.0557 -1.0992 1.5217 1.5064 

MSE    0.0003 0.0031 1.2083 2.3542 0.0385 

  50 (20,0*49)      

Mean    -0.0101 -0.0557 -0.7403 1.8189 1.8040 

Bias    -0.0101 -0.0557 -0.7403 1.8189 1.8040 

MSE    0.0001 0.0031 0.5481 3.3470 0.0385 

 90 50 (0*49,40)      

Mean    -0.0248 -0.0259 -1.7668 0.0183 0.0053 

Bias    -0.0248 -0.0259 -1.7668 0.0183 0.0053 

MSE    0.0006 0.0007 3.1217 0.0406 0.0401 

  50 (0*15,2*20,0*15)      

Mean    -0.0153 -0.0312 -1.3673 2.8937 2.8620 

Bias    -0.0153 -0.0312 -1.3673 2.8937 2.8620 

MSE    0.0002 0.0010 1.8696 8.4135 0.0401 

 90 60 (0*59,30)      

Mean    -0.0076 -0.0180 -1.5100 0.0143 0.0067 
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Bias    -0.0076 -0.0180 -1.5100 0.0143 0.0067 

MSE    0.0001 0.0003 2.2800 0.0323 0.0321 

  60 (0*20,2*15,0*25)      

Mean    -0.0067 -0.0252 -1.1241 2.0089 1.9925 

Bias    -0.0067 -0.0252 -1.1241 2.0089 1.9925 

MSE    0.0000 0.0006 1.2636 4.0679 0.0321 

  60 (30,0*59)      

Mean    -0.0029 -0.0420 -0.7201 2.2792 2.2635 

Bias    -0.0029 -0.0420 -0.7201 2.2792 2.2635 

MSE    0.0000 0.0018 0.5185 5.2268 0.0321 

 

In Table 2, the 5000 simulation executions were done to estimate the location 

parameter of Type II Generalized Logistic Distribution with α =1.5. We can notice 

that when n and m are fixed while changing the progressive censoring scheme, the 

MLE and Bayesian – Importance Sampling estimators are getting better values in 

terms of bias and MSE criteria. Comparing with the other estimators, the Bayesian – 

Lindley’s Approach, BLUE and BLEE estimatots getter worse performance especially 

the BLUE. 

For example, when n = 90 and m = 60 with progressive censoring schemes 

(0*59,30), (0*20,2*15,0*25) and (30,0*59), the MLE bias values are (-0.0076, -

0.0067, -0.0029) , the BLUE bias values are (0.0143, 2.0089, 2.2792). Also, the MSE 

for BLEE is fixed when n and m are fixed. Moreover, such scheme (0*15,2*20,0*15) 

with n = 90 and m =50 has very bad influence on the BLUE estimator performace as 

well as the schema which not starting with zeros. To illustrate this, when having this 

scheme (0*59,30) with n= 90 and m = 60, the MSE for BLUE estimator is 0.0323, 

while when change the schema to (0*20,2*15,0*25) the BLUE MSE = 4.0679 .And 

with (30,0*59) scheme, the MSE of the BLUE = 5.2268. 
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Table 3: Results of Simulation for Parameter  μ  with  Generalized Logistic Distribution (α 

=1.0, μ = 0, σ =1) 

 N m Scheme MLE Bayesian 

Lindley’s 

Bayesian 

Importance 

Sampling 

BLUE BLEE 

 50 30 (0*29,20)      

Mean    -0.0145 -0.0260 -1.2894 0.0078 -0.0010 

Bias    -0.0145 -0.0260 -1.2894 0.0078 -0.0010 

MSE    0.0002 0.0007 1.6625 0.0649 0.0648 

  30 (0*10,2*10,0*10)      

Mean    -0.0223 -0.0400 -0.8053 1.8900 1.8698 

Bias    -0.0223 -0.0400 -0.8053 1.8900 1.8698 

MSE    0.0005 0.0016 0.6485 3.6369 0.0648 

  30 (20,0*29)      

Mean    -0.0030 -0.0845 -0.2378 2.4078 2.3881 

Bias    -0.0030 -0.0845 -0.2378 2.4078 2.3881 

MSE    0.0000 0.0071 0.0565 5.8622 0.0648 

 50 40 (0*39,10)      

Mean    -0.0044 -0.0148 -0.7395 -0.0040 -0.0056 

Bias    -0.0044 -0.0148 -0.7395 -0.0040 -0.0056 

MSE    0.0000 0.0002 0.5468 0.0584 0.0584 

  40 (0*15,1*10,0*15)      

Mean    -0.0108 -0.0322 -0.4200 0.6519 0.6492 

Bias    -0.0108 -0.0322 -0.4200 0.6519 0.6492 

MSE    0.0001 0.0010 0.1764 0.4834 0.0584 

  40 (10,0*39)      

Mean    0.0044 -0.0779 -0.1488 0.9265 0.9239 

Bias    0.0044 -0.0779 -0.1488 0.9265 0.9239 

MSE    0.0000 0.0061 0.0221 0.9169 0.0584 
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 70 40 (0*39,30)      

Mean    -0.0140 -0.0206 -1.3127 0.0046 -0.0028 

Bias    -0.0140 -0.0206 -1.3127 0.0046 -0.0028 

MSE    0.0002 0.0004 1.7231 0.0482 0.0482 

  40 (0*10,2*15,0*15)      

Mean    -0.0094 -0.0276 -0.7473 2.3503 2.3314 

Bias    -0.0094 -0.0276 -0.7473 2.3503 2.3314 

MSE    0.0001 0.0008 0.5585 5.5720 0.0482 

  40 (30,0*39)      

Mean    -0.0027 -0.0730 -0.1854 2.8241 2.8059 

Bias    -0.0027 -0.0730 -0.1854 2.8241 2.8059 

MSE    0.0000 0.0053 0.0344 8.0237 0.0482 

 70 50 (0*49,20)      

Mean    -0.0020 -0.0148 -0.9359 -0.0020 -0.0045 

Bias    -0.0020 -0.0148 -0.9359 -0.0020 -0.0045 

MSE    0.0000 0.0002 0.8759 0.0432 0.0432 

  50 (0*20,2*10,0*20)      

Mean    -0.0093 -0.0213 -0.5268 1.1800 1.1749 

Bias    -0.0093 -0.0213 -0.5268 1.1800 1.1749 

MSE    0.0001 0.0005 0.2775 1.4356 0.0432 

  50 (20,0*49)      

Mean    -0.0081 -0.0561 -0.1273 1.5672 1.5622 

Bias    -0.0081 -0.0561 -0.1273 1.5672 1.5622 

MSE    0.0001 0.0032 0.0162 2.4993 0.0432 

 90 50 (0*49,40)      

Mean    -0.0120 -0.0179 -1.3227 0.0062 -0.0002 

Bias    -0.0120 -0.0179 -1.3227 0.0062 -0.0002 

MSE    0.0001 0.0003 1.7496 0.0385 0.0384 

  50 (0*15,2*20,0*15)      



 

59 

Mean    -0.0150 -0.0156 -0.8236 2.5062 2.4892 

Bias    -0.0150 -0.0156 -0.8236 2.5062 2.4892 

MSE    0.0002 0.0002 0.6784 6.3193 0.0384 

 90 60 (0*59,30)      

Mean    -0.0057 -0.0175 -1.0327 0.0018 -0.0010 

Bias    -0.0057 -0.0175 -1.0327 0.0018 -0.0010 

MSE    0.0000 0.0003 1.0664 0.0346 0.0346 

  60 (0*20,2*15,0*25)      

Mean    -0.0045 -0.0221 -0.5478 1.6323 1.6258 

Bias    -0.0045 -0.0221 -0.5478 1.6323 1.6258 

MSE    0.0000 0.0005 0.3001 2.6990 0.0346 

  60 (30,0*59)      

Mean    0.0012 -0.0510 -0.1158 2.0324 2.0260 

Bias    0.0012 -0.0510 -0.1158 2.0324 2.0260 

MSE    0.0000 0.0026 0.0134 4.1650 0.0346 

 

In Table 3, the 5000 simulation executions were done to estimate the location 

parameter of Type II Generalized Logistic Distribution with α =1.0. We can notice the 

same behaviour of the estimators as when α =1.5, with a slight increase in bias and 

MSE values for MLE estimator when testing with this scheme (0*20,2*10,0*20). 

Also, the decrease in the α values will enhance the performance of the MLE. For 

instant, the bias of MLE when n = 90 and m=60 will be (-0.0076, -0.0076, -0.0029) 

for different values of schemes with α =1.5. on the other hand, it will be (-0.0057, -

0.0045,0.0012) for different values of schemes with α =1.0. The same improvement 

in the performance with all other estimators when α decreases (α =1.0). For the 

Bayesian – Lindley’s Approach, when the scheme is (30,0*59) the performance 

getting worse than with α =1.5. While the Bayesian – Importance Sampling estimator 

has an immense improvement in the performance when α is decreasing.  
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Table 4: Results of Simulation for Parameter  μ  with  Generalized Logistic Distribution (α 

=0.5,μ = 0, σ =1) 

 N m Scheme MLE Bayesian 

Lindley’s 

Bayesian 

Importance 

Sampling 

BLUE BLEE 

 50 30 (0*29,20)      

Mean    0.0155 -0.0507 -0.3528 -0.0283 -0.0219 

Bias    0.0155 -0.0507 -0.3528 -0.0283 -0.0219 

MSE    0.0002 0.0026 0.1245 0.0997 0.0989 

  30 (0*10,2*10,0*10)      

Mean    -0.0015 -0.0836 0.3704 0.8626 0.8792 

Bias    -0.0015 -0.0836 0.3704 0.8626 0.8792 

MSE    0.0000 0.0070 0.1372 0.8430 0.0989 

  30 (20,0*29)      

Mean    0.0007 -0.2832 1.1404 1.6587 1.6758 

Bias    0.0007 -0.2832 1.1404 1.6587 1.6758 

MSE    0.0000 0.0802 1.3005 2.8502 0.0989 

 50 40 (0*39,10)      

Mean    0.0140 -0.0257 0.3215 -0.0389 -0.0319 

Bias    0.0140 -0.0257 0.3215 -0.0389 -0.0319 

MSE    0.0002 0.0007 0.1033 0.1003 0.0987 

  40 (0*15,1*10,0*15)      

Mean    0.0081 -0.1002 0.8464 0.0444 0.0564 

Bias    0.0081 -0.1002 0.8464 0.0444 0.0564 

MSE    0.0001 0.0100 0.7164 0.1007 0.0987 

  40 (10,0*39)      

Mean    0.0062 -0.2277 1.2132 0.4070 0.4193 

Bias    0.0062 -0.2277 1.2132 0.4070 0.4193 

MSE    0.0000 0.0519 1.4719 0.2644 0.0987 

 70 40 (0*39,30)      
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Mean    0.0072 -0.0312 -0.4076 -0.0225 -0.0183 

Bias    0.0072 -0.0312 -0.4076 -0.0225 -0.0183 

MSE    0.0001 0.0010 0.1661 0.0720 0.0715 

  40 (0*10,2*15,0*15)      

Mean    -0.0026 -0.0649 0.4517 1.2506 1.2631 

Bias    -0.0026 -0.0649 0.4517 1.2506 1.2631 

MSE    0.0000 0.0042 0.2040 1.6354 0.0715 

  40 (30,0*39)      

Mean    0.0013 -0.2201 1.1894 2.0300 2.0426 

Bias    0.0013 -0.2201 1.1894 2.0300 2.0426 

MSE    0.0000 0.0484 1.4147 4.1924 0.0715 

 70 50 (0*49,20)      

Mean    0.0022 -0.0221 0.0621 -0.0313 -0.0263 

Bias    0.0022 -0.0221 0.0621 -0.0313 -0.0263 

MSE    0.0000 0.0005 0.0039 0.0723 0.0713 

  50 (0*20,2*10,0*20)      

Mean    0.0092 -0.0650 0.7188 0.3066 0.3177 

Bias    0.0092 -0.0650 0.7188 0.3066 0.3177 

MSE    0.0001 0.0042 0.5167 0.1653 0.0713 

  50 (20,0*49)      

Mean    0.0082 -0.1819 1.2491 0.8419 0.8532 

Bias    0.0082 -0.1819 1.2491 0.8419 0.8532 

MSE    0.0001 0.0331 1.5603 0.7801 0.0713 

 90 50 (0*49,40)      

Mean    0.0094 -0.0294 -0.4368 -0.0169 -0.0138 

Bias    0.0094 -0.0294 -0.4368 -0.0169 -0.0138 

MSE    0.0001 0.0009 0.1908 0.0563 0.0560 

  50 (0*15,2*20,0*15)      

Mean    0.0023 -0.0443 0.3366 1.3371 1.3468 
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Bias    0.0023 -0.0443 0.3366 1.3371 1.3468 

MSE    0.0000 0.0020 0.1133 1.8439 0.0560 

  50 (40,0*49)      

Mean    0.0066 -0.1864 1.2254 2.2811 2.2910 

Bias    0.0066 -0.1864 1.2254 2.2811 2.2910 

MSE    0.0000 0.0348 1.5017 5.2593 0.0560 

 90 60 (0*59,30)      

Mean    0.0086 -0.0152 -0.0725 -0.0217 -0.0178 

Bias    0.0086 -0.0152 -0.0725 -0.0217 -0.0178 

MSE    0.0001 0.0002 0.0053 0.0563 0.0558 

  60 (0*20,2*15,0*25)      

Mean    0.0041 -0.0531 0.6870 0.5890 0.5989 

Bias    0.0041 -0.0531 0.6870 0.5890 0.5989 

MSE    0.0000 0.0028 0.4719 0.4027 0.0558 

  60 (30,0*59)      

Mean    0.0071 -0.1501 1.2685 1.1942 1.2042 

Bias    0.0071 -0.1501 1.2685 1.1942 1.2042 

MSE    0.0001 0.0225 1.6090 1.4820 0.0558 

 

In Table 4, the 5000 simulation executions were done to estimate the location 

parameter of Type II Generalized Logistic Distribution with α =0.5. The performance 

of the estimators MLE is getting better with different schemes while  n and m are 

fixed. The acting of the estimators are the same as before , the performace is getting 

worse with Bayesian – Lindley’s Approach , BLUE and BLEE . On the contrary, the 

behaviour of the Bayesian – Importance Sampling is getting really worse when α =0.5. 

Overall performance of all estimators when α =0.5 is worse than the one when α =1.0 

and 1.5, except for the BLUE. 
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Table 5: Results of Simulation for Parameter  σ  with  Generalized Logistic Distribution (α 

=1.5, μ = 0, σ =1) 

 N m Scheme MLE Bayesian 

Lindley’s 

Bayesian 

Importance 

Sampling 

BLUE BLEE 

 50 30 (0*29,20)      

Mean    0.9711 0.9991 1.3606 1.0558 1.0291 

Bias    -0.0289 -0.0009 0.3606 0.0558 0.0291 

MSE    0.0008 0.0000 0.1300 0.0290 0.0253 

  30 (0*10,2*10,0*10)      

Mean    0.9789 0.9931 1.0971 2.2428 2.1861 

Bias    -0.0211 -0.0069 0.0971 1.2428 1.1861 

MSE    0.0004 0.0000 0.0094 1.5704 0.0253 

  30 (20,0*29)      

Mean    0.9846 1.0060 1.0508 2.1522 2.0979 

Bias    -0.0154 0.0060 0.0508 1.1522 1.0979 

MSE    0.0002 0.0000 0.0026 1.3535 0.0253 

 50 40 (0*39,10)      

Mean    0.9810 1.0063 1.1550 1.0460 1.0278 

Bias    -0.0190 0.0063 0.1550 0.0460 0.0278 

MSE    0.0004 0.0000 0.0240 0.0198 0.0174 

  40 (0*15,1*10,0*15)      

Mean    0.9848 1.0001 1.0689 1.6908 0.6614 

Bias    -0.0152 0.0001 0.0689 0.6908 0.6614 

MSE    0.0002 0.0000 0.0047 0.4949 0.0174 

  40 (10,0*39)      

Mean    0.9866 1.0010 1.0526 1.6559 1.6272 

Bias    -0.0134 0.0010 0.0526 0.6559 0.6272 

MSE    0.0002 0.0000 0.0028 0.4479 0.0174 

 70 40 (0*39,30)      
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Mean    0.9811 0.9957 1.3667 1.0448 1.0247 

Bias    -0.0189 -0.0043 0.3667 0.0448 0.0247 

MSE    0.0004 0.0000 0.1345 0.0216 0.0192 

  40 (0*10,2*15,0*15)      

Mean    0.9846 0.9983 1.0614 2.4195 2.3730 

Bias    -0.0154 -0.0017 0.0614 1.4195 1.3730 

MSE    0.0002 0.0000 0.0038 2.0347 0.0192 

 70 50 (0*49,20)      

Mean    0.9847 1.0000 1.2044 1.0359 1.0210 

Bias    -0.0153 0.0000 0.2044 0.0359 0.0210 

MSE    0.0002 0.0000 0.0418 0.0159 0.0144 

  50 (0*20,2*10,0*20)      

Mean    0.9874 1.0015 1.0639 1.9904 1.9617 

Bias    -0.0126 0.0015 0.0639 0.9904 0.9617 

MSE    0.0002 0.0000 0.0041 0.9955 0.0144 

  50 (20,0*49)      

Mean    0.9900 1.0015 1.0413 1.9326 1.9047 

Bias    -0.0100 0.0015 0.0413 0.9326 0.9047 

MSE    0.0001 0.0000 0.0017 0.8843 0.0144 

 90 50 (0*49,40)      

Mean    0.9822 0.9975 1.3658 1.0389 1.0228 

Bias    -0.0178 -0.0025 0.3658 0.0389 0.0228 

MSE    0.0003 0.0000 0.1338 0.0173 0.0228 

  50 (0*15,2*20,0*15)      

Mean    0.9892 0.9938 1.0843 2.5284 2.4892 

Bias    -0.0108 -0.0062 0.0843 1.5284 1.4892 

MSE    0.0001 0.0000 0.0071 2.3518 0.0155 

 90 60 (0*59,30)      

Mean    0.9885 0.9992 1.2394 1.0315 1.0188 
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Bias    -0.0115 -0.0008 0.2394 0.0315 0.0188 

MSE    0.0001 0.0000 0.0573 0.0134 0.0123 

  60 (0*20,2*15,0*25)      

Mean    0.9908 0.9994 1.0529 2.2133 2.1860 

Bias    -0.0092 -0.0006 0.0529 1.2133 1.1860 

MSE    0.0001 0.0000 0.0028 1.4845 0.0123 

  60 (30,0*59)      

Mean    0.9879 1.0044 1.0405 2.1111 2.0851 

Bias    -0.0121 0.0044 0.0405 1.1111 1.0851 

MSE    0.0001 0.0000 0.0016 1.2469 0.0123 

 

In Table 5, the 5000 simulation executions were done to estimate the scale 

parameter of Type II Generalized Logistic Distribution with α =1.5. We can notice 

that when n and m are fixed while changing the progressive censoring scheme, the 

MLE and Bayesian – Importance Sampling estimators are getting better values in 

terms of bias and MSE criteria. Comparing with the other estimators, the Bayesian – 

Lindley’s Approach, BLUE and BLEE estimatots getter worse performance especially 

the BLUE. There is a strage behaviour when the scheme is (0*20,2*15,0*25), if the 

estimator is decreasing in the case of this scheme, the estimator is increasing and vise 

versa. 

For example, when n = 50 and m = 30 with progressive censoring scheme 

(0*29,20), (0*10,2*10,0*10) and (20,0*29) , MLE bias (-0.0289, -0.0211,  -0.0154) , 

BLUE bias (0.0558, 1.2428, 1.1522). Also, the MSE for BLEE is fixed when n and m 

are fixed. Moreover, such scheme (0*15,2*20,0*15) has very weired bahaviour. As 

we can see this act from the bias for BLUE started with 0.0558 and ended with 1.1522 

which show the increase in the value, but  having the value 1.2428 with this scheme. 
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Table 6: Results of Simulation for Parameter  σ  with  Generalized Logistic Distribution (α 

=1.0,μ = 0, σ =1) 

 N m Scheme MLE Bayesian 

Lindley’s 

Bayesian 

Importance 

Sampling 

BLUE BLEE 

 50 30 (0*29,20)      

Mean    0.9744 1.0105 1.1913 1.0559 1.0298 

Bias    -0.0256 0.0105 0.1913 0.0559 0.0298 

MSE    0.0007 0.0001 0.0366 0.0285 0.0247 

  30 (0*10,2*10,0*10)      

Mean    0.9811 0.9985 1.0560 2.4334 2.3733 

Bias    -0.0189 -0.0015 0.0560 1.4334 1.3733 

MSE    0.0004 0.0000 0.0031 2.0801 0.0247 

  30 (20,0*29)      

Mean    0.9856 0.9951 1.0532 2.3737 2.3151 

Bias    -0.0144 -0.0049 0.0532 1.3737 1.3151 

MSE    0.0002 0.0000 0.0028 1.9125 0.0247 

 50 40 (0*39,10)      

Mean    0.9850 1.0064 1.0746 1.0473 1.0292 

Bias    -0.0150 0.0064 0.0746 0.0473 0.0292 

MSE    0.0002 0.0000 0.0056 0.0199 0.0173 

  40 (0*15,1*10,0*15)      

Mean    0.9840 1.0019 1.0416 1.7485 1.7182 

Bias    -0.0160 0.0019 0.0416 0.7485 0.7182 

MSE    0.0003 0.0000 0.0017 0.5779 0.0173 

  40 (10,0*39)      

Mean    0.9897 0.9987 1.0398 1.7399 1.7098 

Bias    -0.0103 -0.0013 0.0398 0.7399 0.7098 

MSE    0.0001 0.0000 0.0016 0.5651 0.0173 

 70 40 (0*39,30)      
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Mean    0.9827 1.0067 1.1925 1.0424 1.0228 

Bias    -0.0173 0.0067 0.1925 0.0424 0.0228 

MSE    0.0003 0.0000 0.0371 0.0209 0.0188 

  40 (0*10,2*15,0*15)      

Mean    0.9839 0.9985 1.0332 2.6443 2.5946 

Bias    -0.0161 -0.0015 0.0332 1.6443 1.5946 

MSE    0.0003 0.0000 0.0011 2.7228 0.0188 

  40 (30,0*39)      

Mean    0.9909 0.9997 1.0343 2.5484 2.5005 

Bias    -0.0091 -0.0003 0.0343 1.5484 1.5005 

MSE    0.0001 0.0000 0.0012 2.4167 0.0188 

 70 50 (0*49,20)      

Mean    0.9870 1.0095 1.0982 1.0349 1.0202 

Bias    -0.0130 0.0095 0.0982 0.0349 0.0202 

MSE    0.0002 0.0001 0.0096 0.0157 0.0142 

  50 (0*20,2*10,0*20)      

Mean    0.9885 1.0011 1.0292 2.1164 2.0863 

Bias    -0.0115 0.0011 0.0292 1.1164 1.0863 

MSE    0.0001 0.0000 0.0009 1.2608 0.0142 

  50 (20,0*49)      

Mean    0.9912 0.9992 1.0325 2.0805 2.0509 

Bias    -0.0088 -0.0008 0.0325 1.0805 1.0509 

MSE    0.0001 0.0000 0.0011 1.1820 0.0142 

 90 50 (0*49,40)      

Mean    0.9851 1.0006 1.1943 1.0357 1.0200 

Bias    -0.0149 0.0006 0.1943 0.0357 0.0200 

MSE    0.0002 0.0000 0.0378 0.0167 0.0152 

  50 (0*15,2*20,0*15)      

Mean    0.9871 1.0017 1.0374 2.7541 2.7123 
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Bias    -0.0129 0.0017 0.0374 1.7541 1.7123 

MSE    0.0002 0.0000 0.0014 3.0922 0.0152 

 90 60 (0*59,30)      

Mean    0.9874 1.0030 1.1154 1.0308 1.0183 

Bias    -0.0126 0.0030 0.1154 0.0308 0.0183 

MSE    0.0002 0.0000 0.0133 0.0132 0.0121 

  60 (0*20,2*15,0*25)      

Mean    0.9900 0.9993 1.0269 2.3707 2.3420 

Bias    -0.0100 -0.0007 0.0269 1.3707 1.3420 

MSE    0.0001 0.0000 0.0007 1.8909 0.0121 

  60 (30,0*59)      

Mean    0.9919 1.0004 1.0262 2.3090 2.2812 

Bias    -0.0081 0.0004 0.0262 1.3090 1.2812 

MSE    0.0001 0.0000 0.0007 1.7258 0.0121 

 

In Table 6, the 5000 simulation executions were done to estimate the scale 

parameter of Type II Generalized Logistic Distribution with α =1.0. We can notice the 

same behaviour of the estimators as when α =1.5, with a slight increase in bias and 

MSE values for MLE estimator when testing with this scheme (0*20,2*10,0*20). 

Also, the decrease in the α values will enhance the performance of the MLE. For 

instance, the bias of MLE when n = 50 and m=30 will be (-0.0289, -0.0211, -0.0154) 

for different values of schemes with α =1.5. on the other hand, it will be (-0.0256, -

0.0189, -0.0144) for different values of schemes with α =1.0. The same improvement 

in the performance with all other estimators when α decreases (α =1.0). For the 

Bayesian – Importance Sampling, BLUE and BLEE estimators act in a different way 

when using the (0*20,2*10,0*20) scheme. 
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Table 7: Results of Simulation for Parameter  σ  with  Generalized Logistic Distribution (α 

=0.5,μ = 0, σ =1) 

 N m Scheme MLE Bayesian 

Lindley’s 

Bayesian 

Importance 

Sampling 

BLUE BLEE 

 50 30 (0*29,20)      

Mean    0.9794 1.0537 1.0684 1.0528 1.0274 

Bias    -0.0206 0.0537 0.0684 0.0528 1.0274 

MSE    0.0004 0.0029 0.0047 0.0275 0.0241 

  30 (0*10,2*10,0*10)      

Mean    0.9830 0.9995 1.0779 2.7266 2.6609 

Bias    -0.0170 -0.0005 0.0779 1.7266 1.6609 

MSE    0.0003 0.0000 0.0061 3.0060 0.0241 

  30 (20,0*29)      

Mean    0.9849 0.9940 1.1052 2.8265 2.7584 

Bias    -0.0151 -0.0060 0.1052 1.8265 1.7584 

MSE    0.0002 0.0000 0.0111 3.3607 0.0241 

 50 40 (0*39,10)      

Mean    0.9876 1.0022 1.0422 1.0506 1.0318 

Bias    -0.0124 0.0022 0.0422 0.0506 -0.0319 

MSE    0.0002 0.0000 0.0018 0.0208 0.0179 

  40 (0*15,1*10,0*15)      

Mean    0.9831 1.0018 1.0696 1.8021 1.7697 

Bias    -0.0169 0.0018 0.0696 0.8021 0.7697 

MSE    0.0003 0.0000 0.0048 0.6616 0.0179 

  40 (10,0*39)      

Mean    0.9868 0.9929 1.0963 1.8504 1.8172 

Bias    -0.0132 -0.0071 0.0963 0.8504 0.8172 

MSE    0.0002 0.0001 0.0093 0.7414 0.0179 

 70 40 (0*39,30)      
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Mean    0.9811 1.0416 1.0590 1.0466 1.0275 

Bias    -0.0189 0.0416 0.0590 0.0466 0.0275 

MSE    0.0004 0.0017 0.0035 0.0207 0.0182 

  40 (0*10,2*15,0*15)      

Mean    0.9860 0.9983 1.0670 3.0821 3.0260 

Bias    -0.0140 -0.0017 0.0670 2.0821 2.0260 

MSE    0.0002 0.0000 0.0045 4.3539 0.0182 

  40 (30,0*39)      

Mean    0.9879 0.9915 1.0948 3.1116 3.0549 

Bias    -0.0121 -0.0085 0.0948 2.1116 2.0549 

MSE    0.0001 0.0001 0.0090 4.4772 0.0182 

 70 50 (0*49,20)      

Mean    0.9907 1.0114 1.0332 1.0383 1.0234 

Bias    -0.0093 0.0114 0.0332 0.0383 0.0234 

MSE    0.0001 0.0001 0.0011 0.0160 0.0143 

  50 (0*20,2*10,0*20)      

Mean    0.9887 1.0030 1.0657 2.2792 2.2465 

Bias    -0.0113 0.0030 0.0657 1.2792 1.2465 

MSE    0.0001 0.0000 0.0043 1.6509 0.0143 

  50 (20,0*49)      

Mean    0.9894 0.9911 1.0832 2.3285 2.2951 

Bias    -0.0106 -0.0089 0.0832 1.3285 1.2951 

MSE    0.0001 0.0001 0.0069 1.7796 0.0143 

 90 50 (0*49,40)      

Mean    0.9854 1.0334 1.0548 1.0354 1.0202 

Bias    -0.0146 0.0334 0.0548 0.0354 0.0202 

MSE    0.0002 0.0011 0.0030 0.0161 0.0147 

  50 (0*15,2*20,0*15)      

Mean    0.9866 0.9999 1.0459 3.2139 3.1669 
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Bias    -0.0134 -0.0001 0.0459 2.2139 2.1669 

MSE    0.0002 0.0000 0.0021 4.9164 0.0147 

  50 (40,0*49)      

Mean    0.9919 0.9970 1.0860 3.3172 3.2686 

Bias    -0.0081 -0.0030 0.0860 2.3172 2.2686 

MSE    0.0001 0.0000 0.0074 5.3844 0.0147 

 90 60 (0*59,30)      

Mean    0.9879 1.0179 1.0277 1.0312 1.0188 

Bias    -0.0121 0.0179 0.0277 0.0312 0.0188 

MSE    0.0001 0.0003 0.0008 0.0131 0.0120 

  60 (0*20,2*15,0*25)      

Mean    0.9924 0.9992 1.0602 2.6402 2.6085 

Bias    -0.0076 -0.0008 0.0602 1.6402 1.6085 

MSE    0.0001 0.0000 0.0036 2.7023 0.0120 

  60 (30,0*59)      

Mean    0.9912 0.9964 1.0773 2.6694 2.6373 

Bias    -0.0088 -0.0036 0.0773 1.6694 1.6373 

MSE    0.0001 0.0000 0.0060 2.7990 0.0120 

 

In Table 7, the 5000 simulation executions were done to estimate the scale 

parameter of Type II Generalized Logistic Distribution with α =0.5. The performance 

of the estimators MLE is getting better with different schemes while  n and m are 

fixed. The acting of the estimators are the same as before , but the performace is getting 

worse almost for all estimators. 
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3.4. Results and Findings 

Because of their flexibility in data processing, generalized distributions 

have become popular in applications. The Generalized Logistic Distribution and 

its several forms, in particular, have recently gained a lot of interest. 

We looked at point estimate of location and scale parameters of Type II 

Generalized Logistic Distribution in this study, which was under Type II 

progressively censored sample. Maximum likelihood estimators, Bayes 

estimators (Lindley's approximation and Importance Sampling estimation), 

Best Linear Unbiased Estimator, and Best (Affine) Linear Equivariant 

Estimator were created to inference the unknown parameters. Using bias and 

mean squared error as the criteria of comparison. the estimators were created 

and tested using simulation with different sample sizes with several progressive 

censoring schemes. In general, the results of a simulation study with 

Generalized Logistic Distribution (α =1.5, 𝜇 = 0, , 𝜎 =1), Generalized Logistic 

Distribution (α =1.0, 𝜇 = 0, , 𝜎 =1) and Generalized Logistic Distribution (α 

=0.5, 𝜇 = 0, , 𝜎 =1) reveal the following: 

 When estimating the location parameter 𝜇: 

o  MLE is the most efficient one. The Lindley’s approximation 

(Bayesian) is the one that comes closest to MLE. Then BLEE after 

that BLUE. The worst estimator is the Importance Sampling. 

o As n increases, the estimators getting better with respect to smallest 

Bias and MSE, especially for MLE. Again, MLE is the most efficient 

estimator then Lindley’s approximation (Bayesian), BLEE after that 

BLUE. The worst estimator is the Importance Sampling. 
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o The Importance Sampling estimator is getting worse in term of Bias 

and MSE when the progressive scheme ends with zeros. 

o As α decreases, same efficiency order of the estimators. Also, the 

Importance Sampling estimator getting better. 

 When estimating the scale parameter 𝜎 : 

o The Lindley’s approximation (Bayesian) is the most efficient 

estimator. MLE almost as efficient as the Lindley’s. Then 

Importance Sampling then BLEE. The worst estimator is the BLUE. 

o As n increases, the estimators getting better with respect to smallest 

Bias and MSE. 

o When the progressive scheme ends with zeros, the Importance 

Sampling estimator improves in term of Bias and MSE while the 

BLUE getting worse. 

o As α decreases, same efficiency order of the estimators with slight 

improves in values with respect to bias and MSE. 

o Comparing the BLUE and BLEE estimators, the BLEE is more 

efficient than the BLUE. But Importance Sampling estimators is 

better than both BLUE and BLEE. 
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CHAPTER 4: APPLICATIONS 

 4.1. Introduction  

In this chapter we applied different actual datasets, that fitted the Type 

II Generalized Logistic Distribution, extracted from real-life situations. First 

case was about strength of single carbon fibers. The experiment is based on a 

non-censoring sample. Second one, was about breakdown of an insulating fluid 

under Type II Progressive Censoring. Finally, we had a dataset representing the 

measurements of a certain characteristic in blood cells.  Finally, the real data 

summary. 

4.1. Case 1: Strength of Single Carbon Fibers (Complete Sample)  

Carbon fiber is a material made up of tiny, strong carbon crystalline 

threads. The fibers are stiff, robust, and light, and are utilized in a variety of 

procedures to make high-quality construction materials. Carbon fiber has many 

capabilities, including high rigidity, high tensile strength, low weight-to-

strength ratio, high temperature endurance, low thermal expansion, and strong 

chemical resistance.  

We present the analysis of one actual data set for demonstration 

purposes. Badar and Priest (1982) were the first to examine because of 

the strengthen of the data. The evaluation of data is in GPA. The data reflects 

the strength of single carbon fibers and soaked 1000-carbon fiber tows. 

Individual fibers were stressed at gauge lengths of 1, 10, 20, and 50 mm. At 

gauge lengths of 20, 50, 150, and 300 mm, 1000 fiber-soaked tows were 

examined. For illustrative purposes, we'll utilize the single fibers data set of 10 

mms in gauge lengths with sample size 63.  

Many authors examined and analyzed this data set in their research and 

articles, for example: Gupta and Kundu (2010), Asgharzadeh, Esmaeili, 
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Nadarajah and Shih (2013), Sindhu, Aslam and Hussain (2016), Femi Samuel 

Adeyinka (2019). Referring to Asgharzadeh, Esmaeili, Nadarajah and Shih 

(2013) study, they analyzed the data set using Kolmogorov–Smirnov statistic 

and calculated the p-value. They found K-S test to be 0.097 and the p-value = 

0.571 which proves that the data fitted Generalized Logistic Distribution. 

Table 8: Strength of Single Carbon Fibers Data Set 

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 

2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 

2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 

2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 

3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 

3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 

3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020. 

 

Table 9: Results for μ Estimators Comparison 

𝝁 Estimator Bias MSE 

MLE 3.0245 3.0245 9.1473 

Bayesian – Lindley’s 

Approach 

3.0074 3.0074 9.0441 

Bayesian –Importance 

Sampling 

3.0194 3.0194 9.1168 

BLUE 3.0229 3.0229 9.1843 

BLEE 3.0229 3.0229 0.0462 
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Table 10: Results for σ  Estimators Comparisonsable 

𝝈 Estimator Bias MSE 

MLE 0.3525 -0.6475 0.4193 

Bayesian – Lindley’s Approach 0.3554 -0.6446 0.4155 

Bayesian – Importance Sampling 0.8102 -0.1898 0.0360 

BLUE 0.3711 -0.6289 0.4065 

BLEE 0.3671 -0.6329 0.0109 

Obviously, with the previous the assumptions, the BLEE estimators are 

the most efficient among the other estimators with MSE (0.0462,0.0109) for 

both parameters, location, and scale. It is clear that with complete censoring 

sample, the results are not so efficient as with the progressive censoring data. 

Case 2: Breakdown of an Insulating Fluid (Type II Progressive Censoring)  

To evaluate and analyze the quality of transformers and their insulating 

fluids, a variety of tests have been devised. To explain this, for example, let's 

consider the Dielectric Breakdown Test, which assesses an insulating liquid's 

capacity to endure electrical stress up to the point of failure. It displays the 

voltage at which there will be a breakdown. Moisture, dirt, and conductive 

particle contamination will induce failure at levels below what is considered 

tolerable. 

Nelson (1982) provided a detailed progressively Type II censored data 

for the breakdown of an insulating fluid testing experiment. This data collection 

has been used by Viveros and Balakrishnan (1994). Moreover, it was examined 

and evaluated by Balakrishnan and Hossain (2007) examining Type II 

Generalized Logistic Distribution inference under progressive Type II 
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censoring, which is the base of our research that we build on it to find the best 

estimator. Balakrishnan and Hossain evaluated and examined the data set that 

fits the Type II Generalized Logistic Distribution and finding out that MLE and 

Approximate MLE are very close in the inferencing. Also, Azizpour and 

Asgharzadeh (2018) studied this data set and they used the Kolmogorov-

Smirnov (K-S) test to determine the validity of the Type-II Generalized Logistic 

Distribution with the associated p-values: K-S = 0.1399 and p-value = 0.8281. 

As a result, the Type-II Generalized Logistic Distribution fits the 

aforementioned data set fairly well. 

In this example n= 19 and m=8 with 𝛼 =1. The results are tabulated below: 

Table 11: Breakdown of an Insulating Fluid Data Set 

i 1 2 3 4 5 6 7 8 

𝒙𝒊 -1.6608 -0.2485 -0.0409 0.2700 1.0224 1.5789 1.8718 1.9947 

𝒓𝒊 0 0 3 0 3 0 0 5 

   

Table 12: Results for μ Estimators Comparison 

𝝁 Estimator Bias MSE 

MLE 1.8757 1.8757 3.5184 

Bayesian – Lindley’s Approach 1.8511 1.8511 3.4266 

Bayesian – Importance Sampling -0.2370 -0.2370 0.0562 

BLUE 2.5867 2.5867 2.5867 

BLEE 2.4809 2.4809 0.2377 
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Table 13: Results for σ  Estimators Comparisons 

𝝈 Estimator Bias MSE 

MLE 0.9027 -0.0973 0.0095 

Bayesian – Lindley’s Approach 1.8511 1.8511 3.4266 

Bayesian – Importance Sampling 1.4455 0.4455 0.1985 

BLUE 1.4211 0.4211 0.2887 

BLEE 1.2786 0.2786 0.1003 

From the results above, we conclude that with the previous assumptions, 

the Bayesian – Importance Sampling estimator is the most efficient among the 

other estimators for estimating the location parameter with MSE 0.0562. The 

MLEs almost as efficient as the Bayesian – Lindley’s Approach when 

estimating the scale parameter with MSE (0.0095, 0.0008). Also, we can notice 

that these two estimators are very close in performance when estimating the 

location parameter as well.  

 

4.2. Case 3: Type II Progressive Censoring Data 

The following data set are part of 15 observations, from Tiku and 

Akkaya (2004), representing the measurements of a certain characteristic in 

blood cells. The given data set was fitted with the standard logistic distribution. 

The Kolmogorov-Smirnov (K-S) distances between the fitted and empirical 

distribution functions and the accompanying p value are 0.2155 0.4401 

respectively. This shows that the standard logistic distribution (Type-II 

Generalized Logistic Distribution with α = 1) fits the data rather well. 

The following are the observational data and the progressive censoring 

scheme with sample of size n = 15 and m=5 distributed as Type II Generalized 
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Logistic Distribution with μ = 10.010, σ = 0.843 and α = 1.  

 

Table 14: Type II Progressive Censoring Data Data Set 

 

Table 15: Results for μ Estimators Comparison 

𝝁 Estimator Bias MSE 

MLE 10.6912 0.6812 0.4640 

Bayesian – Lindley’s Approach 10.6830 0.6730 0.4530 

Bayesian – Importance Sampling 9.1055 -0.9045 0.8181 

BLUE -0.4328 -10.4428 121.2788 

BLEE 1.4163 -8.5937 10.1868 

 

Table 16: Results for σ Estimators Comparison 

𝝈 Estimator Bias MSE 

MLE 0.5168 -0.3262 0.1064 

Bayesian – Lindley’s Approach 0.5713 0.2717 0.0738 

Bayesian – Importance Sampling 0.9997 0.1568 0.0246 

BLUE 1.1968 0.3537 0.2694 

BLEE 0.9949 0.1519 0.1199 

Testing the results above, we can notice that the Bayesian – Lindley’s 

Approximation as well as the MLE are the most efficient estimators for 𝜇 with 

MSE (0.4640, 0.4530) respectively. The worst estimator for 𝜇 is the BLUE. While 

i 1 2 3 4 5 

𝒙𝒊 8.921 9.689 9.774 10.485 10.766 

𝒓𝒊 3 1 2 1 3 
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the Bayesian estimator - Importance Sampling is the most efficient estimator for 

𝜎, close to it is the Lindley’s approximation then the MLE followed by the BLEE. 

The worst of all is the BLUE. The MSEs of estimators are (0.0246, 0.0738, 0.1064, 

0.1199, 0.2694) respectively. We can notice that the estimators of 𝜎 are close to 

each other’s.  The effect of small sample size is obvious on the other estimators 

especially the BLUE when estimating 𝜇. 

 

4.3. Real Data Summary: 

As a brief of all the real data sets that we discussed earlier, it’s crystal 

clear how the size of the sample affects the performance of the estimators 

especially with censored data, in specific the Bayesian – Importance Sampling, 

BLUE and BLEE estimators. Moreover, the type of the sample, whether a 

complete or censored one, has a critical impact on the efficiency of the inference 

of the estimators. Finally, the influence of progressive schemes for the censored 

data set is very crucial for the efficiency of the estimator.  
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CHAPTER 5: CONCLUSION AND FUTURE STUDY SUGGESTIONS 

5.1. Introduction 

This chapter will contain a research conclusion that analyzes the 

outcomes of the preceding chapters which focused on the point estimation of 

the unknown parameters of the type II generalized logistic distribution under 

type II progressive censoring sample. We evaluated the MLEs, Bayesian 

estimators and Linear estimators as different methods to do so based on mean 

squared error and bias criteria. To analyze and decide which is the most efficient 

estimator, we constructed a simulation method with 5000 iterations with 

different progressive schemes and sample sizes. Moreover, studied three 

different real data sets.  The other part of this chapter is focused on some ideas 

and suggestions for further research that can be built on the current study. 

5.2. Research Conclusion 

Generalized distributions form a class of skewed distributions and 

gained widespread use in applications because of their flexibility in data 

analysis. More specifically, the Generalized Logistic Distribution with its 

different types has received considerable attention recently. In this study, based 

on progressively Type II censored data, we considered point estimation of 

location and scale parameters in Type II Generalized Logistic Distribution. We 

developed five estimators for its unknown parameters, including maximum 

likelihood estimators and Bayes estimators – Lindley’s Approach and 

Importance Sampling, BLUE and BLEE. The estimators are compared using 

simulation based on the criteria of bias and Mean Squared Error. 

Due to the non-closed form equations, the Newton–Raphson numerical 

method was used to find the ML estimator. Also, the Bayesian estimation were 

based on non-informative priors for both location and scale parameters.  
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Because of the intricacy of the ratio of two integrals, the Bayes estimations 

based on the squared error loss function (SELF) is complicated to be evaluated 

analytically. The Lindley’s approach and Importance Sampling techniques were 

used to solve this situation. Furthermore, the BLUE and BLEE inference were 

considered as more estimators to investigate. Next, simulation research 

investigated the reality of the developed approaches for different value of 

sample sizes with n items, a sufficient failure cases m, and the alternative 

schemes of progressive censoring for each various alternative of n and m using 

a case of 5000. On the basis of a real-life example, the proposed methods were 

evaluated. 

 

Results of this research reveal that MLE and Bayesian – Lindley’s 

Approach are the most efficient estimators for location and scale in terms of 

bias and MSE. They have the smallest bias and MSE values as shown during 

the simulation process and real-life data experiments. Also, we noticed that the 

estimators are very sensitive to the progressive censoring schemes and sample 

size. Having a scheme with larger size. Moreover, conducting our study based 

on progressive censoring sampling gives better results than using complete 

censoring data. Finally, the effect of the α value on the estimator’s bias and MSE 

values. We got better results when the value decreases.  

 

5.3. Suggestions for Further Research 

 

Due to time constraints, the following research ideas are recommended. 

First, using different methods to inference the unknown parameters of the 

location and scale of Type II Generalized Logistic Distribution, like confidence 

interval or testing methods. Secondly, the identical experiment might be run 
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using a different loss function, namely the linear exponential (LINEX), 

balanced linex and balanced entropy loss functions, balanced squared error, and 

a different informative prior distribution with a variety of hyperparameters 

testing. Moreover, different type of progressive censoring data, for example 

Type I progressive censoring or hybrid progressive censoring. Also, further 

study could be conducted in order to establish the optimal progressive 

censorship scheme and redo the comparison with the same estimators. Finally, 

this estimation comparison could be tested on another type of the Generalized 

Logistic Distribution with different comparison criteria, like the mean, variance, 

or covariance (�̂� , �̂�) of the estimator. 
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