
QATAR UNIVERSITY 

   COLLEGE OF ARTS AND SCIENCES 

VARIOGRAM MODELING FOR SPATIAL CORRELATION IN STRUCTURAL MRI 

IMAGES 

BY 

SAED MARA'BEH 

 

 

 

 

 

 

 
 
 
 
 

A Thesis Submitted to  

the College of Arts and Sciences  

in Partial Fulfillment of the Requirements for the Degree of    

Masters of Science  in Applied Statistics  

 

 June  2022 

 

 

 
© 2022 Saed Mara'Beh. All Rights Reserved. 



 

ii 

COMMITTEE PAGE 

 

The members of the Committee approve the Thesis of  

Saed Mara'Beh defended on 16/05/2022. 

 

 
 

Dr. Esam Mahdi 

 Thesis/Dissertation Supervisor 
 
 

  
Prof. Mohammad Salehi 

 Committee Member 
 
 

 
Dr. Reza Pakyari  

Committee Member 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved: 

 

Ahmed Elzatahry, Dean, College of Arts and Sciences  



 

iii 

ABSTRACT 

MARA'BEH, SAED, Masters : June : 2022, Applied Statistics 

Title: Variogram Modeling for Spatial Correlation in Structural MRI Images 

Supervisor of Thesis: Dr. Esam Mahdi. 

In recent years neuroimaging techniques growth help us to understand the working of 

the human brain by using structural magnetic resonance imaging (sMRI) and functional 

magnetic resonance imaging (fMRI). Structural MRIs are used to show the main 

structure of the brain organism such as gray matter, white matter, and cerebrospinal 

fluid (CSF). The functional MRI is used to study the brain activity when performing an 

assigned task like eyes moving and talking. It uses the bloodoxygen- level dependent 

(BOLD) contrast, when there is an activity in a region of the brain the blood flow to 

that area will increase. In this research, geostatistical techniques such as the variogram 

and kriging approaches are utilized to uncover the spatial correlation in structural 

magnetic resonance imaging (sMRI) data and to predict the effect of a brain tumor on 

brain regions. We propose different variogram models approach for three brain slices 

containing a brain tumor and we find that the best models for slices 10 and 11 is the 

exponential model and for slice 12 is the Gaussian model, the best model is selected by 

using the cross - validation method in kriging. A bootstrap resampling method is used 

to estimate the empirical variogram values and the parameters of the selected models. 
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CHAPTER 1: INTRODUCTION 

The current research studies in medical sciences involve data that are randomly 

collected during the time over specified locations ([14], [22], [28], [31], [33] [38]). The 

variogram models are the most commonly method used to describe the spatial 

continuity of the data. These models measure the variability between pairs of two points 

at various distances. The variogram models are used to describe the statistical characters 

of adjacent points in images, in medical field we apply this technique on Magnetic 

Resonance Imaging (MRI). 

Magnetic Resonance Imaging (MRI) is a radiological technique that is used to 

form images of the body. It can be used to study both brain structure, and brain function 

[29]. The structural MRIs are used to show the main structure of the brain as gray 

matter, white matter and cerebrospinal fluid (CSF). The radiologist uses these images 

to inspect pathological lesions or anatomical deformaties.The functional MRI is used 

to study brain activity when performing an assigned task like eyes moving and talking. 

It uses the blood-oxygen-level dependent (BOLD) contrast, when there is an activity in 

a region of the brain the blood flow to that area will increase ([6], [21]). Up to 60% of 

the human body is water (𝐻2𝑂) so the hydrogen atoms, which consist of a single proton, 

are abundant in human organisms. Protons can be viewed as positively charged spheres 

that are always spinning (see Fig. 1.1).  
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Figure 1.1: Proton spinning movement 

   

 

The net magnetization of all nuclei are measured, it can be viewed as vector of two 

components [18], the longitudinal component parallel to the magnetic field and the 

transverse component perpendicular to the field. In the absence of an external magnetic 

field, the nuclear magnetic moments are randomly oriented. Therefore, the net 

magnetization is zero (see Fig. 1.2).  

 

 

   

Figure 1.2: Protons spinning in random directions with net magnetization equal to 

zero 
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   When we placed a human body in the MRI scanner with a strong magnetic 

field, the nuclei stratify with the field and this will create a net longitudinal 

magnetization in the direction of the field as shown in Fig. 1.3 [21]. 

 

 

Figure  1.3: A longitudinal magnetization in the direction of the field 

 

   

  The nuclei precess about the field with an angular frequency determined by 

the Larmor frequency but at a random phase. A radio frequency (RF) vibration is used 

to range the phase and ‘tip over’ the nuclei. This causes the longitudinal magnetization 

to decrease, and establishes a new transversal magnetization [6]. 

After the RF vibration is removed the transverse magnetization starts to 

disappear and the longitudinal magnetization grows back to its original size. During 

this process, a signal is created that can be measured using a receiver coil, from this 

signal a MRI image is constructed or a matrix of numbers that correspond to spatial 

locations.  

 There are many researches and literature review about the application of 

variogram and kriging in MRI images and data. Katanoda, Matsuda, and Sugishita 
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(2002) used the generalized least squares method (GLS) instead of ordinary least 

squares (OLS) to find a spatio-temporal regression for detecting the active regions in 

the fMRI data. This model take account the spatial autocorrelation between the 

neighborhood voxels in finding the model formula and estimating the parameters [23].  

Feng Gui and Lin Qi Wei (2004) proposed a variogram model of MRI data 

based on image segmentation, which is separating the image into several regions 

regarding to its texture properties. They used the value of the variogram model to 

describe the statistical characters of adjacent locations (points) in the the MR image, 

which implied that different textures have different variogram values [15].  

F Dubois Bowman (2007) presented spatiotemporal models based on a metric 

distance that shows the relations between voxels based on functional relations than 

anatomic relations. These functional relations between voxels measures the similarity 

in brain activity accurately than physical distances [5].  

Xian-Chuan Yu, Xiao-Chun Cheng, Chen Yu, Dig Zhang and Shao-Chun 

Zhnog (2004) used factorial kriging, which is a kriging analysis for a nested 

combination of two or more variogram models. By factorial analysis they recognized 

the active areas in fMRI of auditory stimulation tested data [40]. 

Brandon Whitcher, Volker J. Schmid and Andrew Thornton (2011) developed 

two packages in R for interacting and manipulating medical imaging data that conform 

to NIFTI (Neuroimaging Informatics Technology Initiative) or DICOM (Digital 

Inaging and Communications in Medicine) format, the oro.nifti and oro.dicom 

packages. From these two packages we can read and visualize the functional and 

structural MRI data ([37] and [38]).  

Ye, Lazar and Li (2015) proposed a parametric variogram model which is the 

Gaussian model with sill values 1, 1.5 and 2 and a nonparametric variogram model 
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which merged between the Gaussian model and the Bessel variogram model. The 

proposed function considered the physical and functional relations in the brain voxels 

(volumetric pixel) [39]. 

Wenjie, Haipeng and Young (2016) discussed the strengths and the weaknesses 

of commonly statistical methods used for analysis of fMRI data. They proposed a 

spatio-temporal model that is used for localizing dynamic processes (such as neuronal 

activity) in the brain [7].  

Marschallinger, R., Tur, C., Marschallinger, H., and Sellner, J. (2021) presented 

a script that generates the Multiple Sclerosis - Lesion Pattern Discrimination (MS-LDP) 

Plot and variogram plots by using the R package LDPgenerator.r. The data is three 

phantoms of brains with MS-lesions in Nifti format files with a binary MS-WML mask 

(voxel value is 1 for the region of interest and 0 otherwise). The fitted model was the 

exponential model to the three directional variograms x, y and z. The MS-LDP 

parameters are combining the range and the sill values of the three directional 

variograms by their means [27]. 

Dong, T., Huang, Q., Huang, S., Xin, J., Jia, Q., Gao, Y., Shen, H., Tang, Y., 

and Zhang, H. (2021) tested the correlation of brain activity on Methamphetamine 

(MA) abstainers.They took a resting-state functional magnetic resonance imaging (RS-

fMRI) scan for 47 detoxed people and 44 normal people (control group). The authors 

perform data analysis by using machine learning techniques such as independent 

component analysis (ICA), decision tree, k-means clustering and sliding window 

technique. The results have shown that there is differences in brain network parts of 

MA abstainers from normal people [10]. 

In this work we will discuss in chapter 2 the concept of variogram (section 2.1), 

variogram parameter (section 2.2), variogram modeling (section 2.3), fitting variogram 
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(section 2.4), and kriging technique (section 2.5). In chapter 3 we will discuss the 

variogram modeling for structural MRI data. First we read the data from the three slices 

of MRI image contain a brain tumor, this can be done by using the brain mask process 

(subsection 3.1.2). Then we calculate the empirical variogram for the selected slices 

and we use the K-fold cross validation to choose the best model (section 3.2). In section 

3.3 we use the bootstrap sampling technique to estimate the variogram values and 

variogram parameters and in chapter 4 we discuss some future work. 
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CHAPTER 2: THE VARIOGRAM 

2.1 The concept of variogram  

The history of variogram is associated with the field of gold mining. It gives a 

measure of how much two samples taken from the mining area will vary in gold 

percentage depending on the distance between those samples. Samples taken far apart 

will vary more than samples taken close to each other [24].  

let {𝑍(𝑠𝑖)} be the values at locations 𝑠𝑖 , 𝑖 = 1,2, . . . , 𝑛. The general spatial model 

is given by ([21], [25])  

 𝑍(𝑠) = 𝜇 + 휀(𝑠), (2.1) 

 where 𝜇 is a constant population mean and 휀(𝑠) is a random error with mean zero. 𝑍(𝑠) 

is second order stationary if it satisfies the following two conditions:   

    • E(𝑍(𝑠𝑖)) = E(𝑍(𝑠𝑖 + ℎ)) = 𝜇  

    • cov(𝑍(𝑠𝑖 + ℎ), 𝑍(𝑠𝑖)) = 𝐶(ℎ),  

 where lag ℎ is the separation distance in the specified direction between two 

locations 𝑠𝑖 + ℎ and 𝑠𝑖. The value of the variogram is defined by [21] 

 2𝛾(ℎ) = Var(𝑍(𝑠𝑖 + ℎ) − 𝑍(𝑠𝑖)) (2.2) 

 which implies that  

2𝛾(ℎ) = Var(𝑍(𝑠𝑖 + ℎ) − 𝑍(𝑠𝑖)) = E(((𝑍(𝑠𝑖 + ℎ) − 𝜇(𝑠𝑖 + ℎ)) − (𝑍(𝑠𝑖) − 𝜇(𝑠𝑖))
2)                  

                                                                                                                                  (2.3) 

 Since the mean is constant then Eq. (2.3) will be equivalent to  

 2𝛾(ℎ) = E((𝑍(𝑠𝑖 + ℎ) − 𝑍(𝑠𝑖))
2) = 2𝐶(0) − 2𝐶(ℎ),  

 Therefore,  

 𝛾(ℎ) = 𝐶(0) − 𝐶(ℎ), (2.4) 

 where 𝛾(ℎ) is called the semivariogram [35]. 

The empirical semivariogram 𝛾(ℎ) is calculated by  
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𝛾(ℎ) =
1

2𝑁(ℎ)
∑𝑁(ℎ)
𝑖=1 (𝑍(𝑠𝑖 + ℎ) − 𝑍(𝑠𝑖))

2,                        (2.5) 

 Where 𝑁(ℎ) is the number of pairs of samples with a distance of ℎ from each other. 

𝑍(𝑠𝑖 + ℎ) and 𝑍(𝑠𝑖) are the sample values at locations 𝑠𝑖 + ℎ and 𝑠𝑖 respectively. 

Properties:   

 𝛾(𝑠𝑖, 𝑠𝑗) =
1

2𝑁(ℎ)
∑𝑁(ℎ)
𝑖=1 (𝑍(𝑠𝑖) − 𝑍(𝑠𝑗))

2 ≥ 0, for any two locations 𝑠𝑖 and 𝑠𝑗, 

where ℎ = |𝑠𝑖 − 𝑠𝑗|.  

 The semivariogarm at distance zero is zero, 𝛾(𝑠𝑖, 𝑠𝑖) = 0.  

 The semivariogram is symmetric, i.e 𝛾(𝑠𝑖, 𝑠𝑗) = 𝛾(𝑠𝑗 , 𝑠𝑖) for any two locations 

𝑠𝑖 and 𝑠𝑗.  

 The semivariogram is a conditionally negative definite function [18]; that is for 

weights 𝑤1, 𝑤2, . . . , 𝑤𝑛 such that ∑𝑛𝑖=1 𝑤𝑖 = 0 and locations 𝑠1, 𝑠2, . . . , 𝑠𝑛  

∑𝑛𝑖=1 ∑ 𝑤𝑖𝛾(𝑠𝑗, 𝑠𝑖)𝑤𝑗
𝑛
𝑗=1 ≤ 0.                                (2.6) 

 

 The semivariogram is an even function, i.e. 𝛾(ℎ) = 𝛾(−ℎ).  

 

2.2 Variogram parameters 

As the separation distance between two locations increases the value of the 

variogram will also increase. However, as the separation distance increase, the 

variogram reaches the stage of stability which is called the sill 𝑐∘. The distance at which 

the variogram reaches the stability is called the range 𝑎∘. The value of the variogram 

at lag ℎ = 0 is 0, however, for several factors such as sampling error the value of the 

variogram at lag ℎ = 0 may not be equal to 0 and this causes a discontinuity at the 

origin of the variogram graph. The difference between the value 0 at the origin and the 

value of the variogram at the extremely small lag is called the nugget effect 𝑐𝑛, see Fig. 
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2.1 [4].  

 

Figure  2.1: Variogram Parameters 

 

 

 

   Figure  2.2: Variogram of Magnesium concentration in the soil of Walker Lake, lag 

spacing = 5 

 

 

Eq. (2.5) shows how the values 𝑍(𝑠𝑖) depend on the relative orientation of data 
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locations 𝑠𝑖, 𝑖 = 1,2, . . . , 𝑛. If the semivariogram depends on only the (Euclidean) 

distance between locations, then the semivariogram is isotropic. Fig 2.2 shows an 

isotropic variogram for the magnesium concentration in the soil of Walker Lake. 

However, if the semivariogram depends not on only the distance but also on the 

direction then we have an anisotropic semivariogram, as shown in Fig 2.3 

semivariograms of Magnesium concentration in the soil of Walker Lake in different 

directions. There are two types of an anisotropy, geometric and zonal anisotropy. 

Geometric anisotropy exists when the range of the semivariogram changes with 

directions. Zonal anisotropy occurs when the sill and the range of the semivariogram 

changes in a different direction [21].  

 

 

 

Figure 2.3: Anisotropy semivariogram of Magnesium concentration in the soil of 

Walker Lake. 
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2.3 Variogram modelling 

The variograms have different models, most of these models have maximum 

variance known as a sill. The variogram may reach its sill at a finite lag distance called 

the range. The variogram may approach its sill asymptotically or in some models 

fluctuate about it. Here are the most popular variogram models [36].   

    • Linear Model. 

There are two types of linear models, bounded and unbounded models. The 

bounded variogram model is defined by  

𝛾(ℎ) = {
𝑐∘ + 𝑐 (

ℎ

𝑎
) ,  𝑓𝑜𝑟 0 < ℎ ≤ 𝑎

𝑐∘ + 𝑐,  𝑓𝑜𝑟 ℎ > 𝑎
0,  𝑓𝑜𝑟 ℎ = 0

                            (2.7) 

 

where 𝑐∘ is the nugget, 𝑐𝜊 + 𝑐 is the sill, and 𝑎 is the range. The function 𝛾(ℎ) 

tend to 𝑐𝜊 + 𝑐  as ℎ → ∞. This model is valid in one dimension (see Fig. 2.4).  

 

 

 

Figure  2.4: Bounded linear variogram model 

 

 

   The unbounded variogram models is defined by  
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𝛾(ℎ) = {
𝑐∘,  𝑓𝑜𝑟 ℎ = 0
𝑐∘ + 𝑐ℎ,  𝑓𝑜𝑟 ℎ > 0

                                        (2.8) 

 

where 𝑐∘ is the nugget and the function 𝛾(ℎ) tend to ∞ as ℎ → ∞ and it is valid 

in ℝ𝑑 for 𝑑 ≥ 1 (see Fig. 2.5). 

  

 

 

Figure  2.5: Unbounded linear variogram model 

    

 

    • Circular Model. The formula of the circle variogram is given by  

𝛾(ℎ) =

{
 
 

 
 𝑐∘ + 𝑐 (1 −

2

𝜋
cos−1(

ℎ

𝑎
) +

2ℎ

𝜋𝑎
√1 −

ℎ2

𝑎2
) ,  𝑓𝑜𝑟 0 < ℎ ≤ 𝑎

𝑐∘ + 𝑐,  𝑓𝑜𝑟 ℎ > 𝑎
0,  𝑓𝑜𝑟 ℎ = 0

 (2.9) 

 

where the nugget, the sill and the range denote𝑐∘, 𝑐∘ + 𝑐 and 𝑎 respectively. It 

is valid for one and two dimensions (see Fig. 2.6).  
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Figure  2.6: Circular variogram model 

    

  

    • Spherical Model 

 

𝛾(ℎ) = {
𝑐∘ + 𝑐 {

3ℎ

2𝑎
−
1

2
(
ℎ

𝑎
)
3

} ,  𝑓𝑜𝑟 0 < ℎ ≤ 𝑎,

𝑐∘ + 𝑐,  𝑓𝑜𝑟 , ℎ > 𝑎
0  𝑓𝑜𝑟 ℎ = 0

 (2.10) 

 where 𝑐∘ is the nugget, 𝑐∘ + 𝑐 is the sill and 𝑎 is the range. This model is valid for one, 

two and three dimensions (see Fig. 2.7). 

 

 

 

Figure  2.7: Spherical variogram model 
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    • Pentaspherical Model  

𝛾(ℎ) = {
𝑐∘ + 𝑐 {

15ℎ

8𝑎
−
5

4
(
ℎ

𝑎
)
3

+
3

8
(
ℎ

𝑎
)
5

}  𝑓𝑜𝑟 0 < ℎ ≤ 𝑎

𝑐∘ + 𝑐  𝑓𝑜𝑟 ℎ > 𝑎
𝑐∘  𝑓𝑜𝑟 ℎ = 0

 (2.11) 

 

where 𝑐∘ is the nugget, 𝑐∘ + 𝑐 is the sill and 𝑎 is the range and it is valid in ℝ𝑑 

for 𝑑 = 1,2  𝑎𝑛𝑑  3 (see Fig. 2.8).  

 

  

 

Figure  2.8: Pentaspherical variogram model 

   

 

    • Exponential Model  

 𝛾(ℎ) = {
𝑐∘ + 𝑐 {1 − 𝑒

−
ℎ

𝑎} ,  𝑓𝑜𝑟 ℎ > 0.

𝑐∘,  𝑓𝑜𝑟 ℎ = 0
 (2.12) 

 This model is valid in ℝ𝑑 for 𝑑 ≥ 1. The sill of this model is 𝑐∘ + 𝑐 and the nugget is 

𝑐∘. The distance parameter 𝑎 defines the spatial extent of the model. This model without 

a finite range since it approaches its sill asymptotically (see Fig. 2.9).  
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Figure  2.9: Exponential variogram model 

   

 

    • Gaussian model 

This model is valid in any dimension and it is given by  

 𝛾(ℎ) = {
𝑐∘ + 𝑐 (1 − 𝑒

−(
ℎ

𝑎
)
2

) ,  𝑓𝑜𝑟 ℎ > 0

𝑐∘ ,  𝑓𝑜𝑟 ℎ = 0

 (2.13) 

 similar to exponential model, 𝑐∘ is the nugget, 𝑐∘ + 𝑐 is the sill and 𝑎 is the distance 

parameter. The model approaches its sill asymptotically and it has a finite effective 

range which is approximately √3𝑎 (see Fig. 2.10).  
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Figure  2.10: Gaussian variogram model 

   

 

    • Cubic Model  

This model is valid in three dimensions. 

 

𝛾(ℎ) =

{
 
 

 
 
𝑐∘ + 𝑐 (−7 (

ℎ

𝑎
)
2

−
35

4
(
ℎ

𝑎
)
3

+
7

2
(
ℎ

𝑎
)
5

−
3

4
(
ℎ

𝑎
)
7

) ,  𝑓𝑜𝑟 0 < ℎ ≤ 𝑎

𝑐∘ + 𝑐,  𝑓𝑜𝑟 ℎ > 𝑎
𝑐∘,  𝑓𝑜𝑟 ℎ = 0

 

                                                                                                                    (2.14) 

The parameters 𝑎, 𝑐∘ and 𝑐∘ + 𝑐 are the range, the nugget, and the sill 

respectively. 

 

    • Matérn Model 

The Matérn model is a generalization of several models as exponential and 

Gaussian models. It is valid for any dimension and its formula defined as the following  

 𝛾(ℎ) = 𝑐∘ + 𝑐 (1 −
1

2𝜈−1Γ(𝜈)
(
ℎ

𝑎
)
𝜈

𝒦𝜈 (
ℎ

𝑎
)), (2.15) 
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 where 𝒦𝜈(𝑥) is the modified Bessel function of second kind of order 𝜈, 𝑎 is the 

distance parameter, 𝑐∘ is the nugget, and 𝑐 is the sill. The case 𝜈 =
1

2
 gives the 

exponential model and 𝜈 = ∞ gives the Gaussian model. 

 

    • Pure Nugget Model In practice, due to measurement error the empirical 

variogram does not approach to 0 as the lag distance converges to 0. We define a pure 

nugget variogram as  

 𝛾(ℎ) = 𝑐0(1 − 𝛿(ℎ)), (2.16) 

 where 𝑐0 is the variance and  

 𝛿(ℎ) = {
1,  𝑖𝑓    ℎ = 0

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (2.17) 

  

 

 

Figure  2.11: Pure nugget model 

   

 

    • Combining Models (Nested Models) All previous models have simple 

formula with simple shapes. However, in many cases the variogram shape appears more 
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complex and therefore we need more complex models to describe it. The best way to 

do this is to combine two or more simple models, for example of combining models is 

the nested spherical, or double spherical model with nugget equal to zero. Its formula 

is giving by  

𝛾(ℎ) =

{
 
 

 
 𝑐1 {1.5

ℎ

𝑎1
− 0.5 (

ℎ

𝑎1
)
3

} + 𝑐2 {1.5
ℎ

𝑎2
− 0.5 (

ℎ

𝑎2
)
3

}  𝑓𝑜𝑟 0 < ℎ ≤ 𝑎1,

𝑐1 + 𝑐2 {1.5
ℎ

𝑎2
− 0.5 (

ℎ

𝑎2
)
3

}  𝑓𝑜𝑟 𝑎1 < ℎ ≤ 𝑎2,

𝑐1 + 𝑐2  𝑓𝑜𝑟 ℎ > 𝑎2

 (2.18) 

 

2.4 Fitting variogram model 

In Section 2.3 we listed some of commonly used semivariograms. In this 

section, we will estimate the model parameters to fit one of these variogram models. 

Consider the empirical semivariogram values 𝛾(ℎ) are our observations and 𝛾(ℎ, 𝛽) are 

the predicted values based on some model, where 𝛽 = (𝑐, 𝑐∘, 𝑎)
′ is a vector of 

parameters. Zimmerman and Zimmerman [41] proposed seven methods to estimate the 

semivariogram parameters. Ordinary least squares (OLS), Cressie’s weighted least 

squares (WLS-1 and WLS-2), Delfiner’s weighted least squares (WLS-3), maximum 

likelihood (ML), restricted maximum likelihood (REML) and generalized minimum 

variance quadratic un- biased (GMIVQU) estimator. They compared the performance 

of these methods by the Monte Carlo simulation and showed that ordinary least squares 

(OLS) provides the best performance in many cases. 
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2.5 Kriging 

Danie Krige was a South African statistician and mining engineer. He estimated 

the distribution of gold grades at Witwatersrand complex in South Africa based on 

samples from few locations. This technique is named kriging [12].  

Let {𝑍(𝑠𝑖)} be the values at locations 𝑠𝑖 , 𝑖 = 1,2, . . . , 𝑛. The aim of kriging is to 

estimate the value of 𝑍(𝑠0) at unsampled location 𝑠0. The most common type of kriging 

is the ordinary kriging which is based on weighted averages of the sampled values 

𝑍(𝑠1), 𝑍(𝑠2), . . . 𝑍(𝑠𝑛). The ordinary kriging estimator is defined by  

�̂�0 = �̂�(𝑠0) = ∑𝑛𝑖=1 𝑤𝑖𝑍(𝑠𝑖) = ∑𝑛𝑖=1 𝑤𝑖𝑍𝑖 = [𝑤1 𝑤2 . . . 𝑤𝑛] [

𝑍1
𝑍2
⋮
𝑍𝑛

] =

𝐰′1𝐙,                                                                                                               (2.19) 

 where 𝑍𝑖 is the 𝑖𝑡ℎ sample value and 𝑤𝑖 is the weight for 𝑍𝑖, 𝑖 = 1,2, . . . , 𝑛. To insure 

the estimator in Eq. (2.19) is unbiased we have two assumptions [35]   

 ∑𝑛𝑖=1 𝑤𝑖 = 1,  

 E(�̂�(𝑠0) − 𝑍(𝑠0)) = 0.  

 The estimator �̂�0 = 𝐰′𝐙 is said to be a best linear unbiased predictor (BLUP) 

if the following conditions satisfied:   

 Unbiased, that is E(�̂�0) = E(𝑍0). This will be satisfied if ∑𝑛𝑖=1 𝑤𝑖 = 1 and 

E(𝑍𝑖) = 𝜇 for 𝑖 = 1,2, . . , 𝑛.  

 The mean square prediction error (MSPE) 𝜎𝜖
2 = E(𝑍0 − �̂�0)

2 = Var((𝑍0 − �̂�0) 

is minimized.  

The weights are based on the covariance among the sampled values, 

𝐶𝑜𝑣(𝑍(𝑠𝑖), 𝑍(𝑠𝑗)), and the covariance between sample values and the predicted value 

�̂�(𝑠0), where 
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 𝐂𝟏 = (

𝐶11 𝐶1,2 ⋯ 𝐶1𝑛
𝐶2,1 𝐶22 ⋯ 𝐶2𝑛
⋮ ⋮ ⋯ ⋮
𝐶𝑛1 𝐶𝑛2 ⋯ 𝐶𝑛𝑛

), (2.20) 

 such that 𝐶𝑖𝑗 = 𝐶(𝑠𝑖, 𝑠𝑗) = Cov(𝑍(𝑠𝑖), 𝑍(𝑠𝑗)), ∀𝑖, 𝑗 = 1,2, . . . , 𝑛 and the covariance 

vector between the sample values and the predicted value is defined by  

 𝐜𝟎 = (

𝐶10
𝐶20
⋮
𝐶𝑛0

), (2.21) 

 where 𝐶𝑖0 = 𝐶(𝑠𝑖, 𝑠0) = Cov(𝑍(𝑠𝑖), �̂�(𝑠0)), ∀𝑖 = 1,2, . . . , 𝑛.  

The mean square prediction error (MSPE) can be written as 

𝜎𝜖
2 = Var(𝑍0 − �̂�0) = Var(𝑍0) + Var(�̂�0) − 2Cov(�̂�0, 𝑍0) 

 = 𝜎2 + Var(∑𝑛𝑖=1 𝑤𝑖𝑍𝑖) − 2Cov(∑
𝑛
𝑖=1 𝑤𝑖𝑍𝑖 , 𝑍0) 

 = 𝜎2 + ∑𝑛𝑖=1 ∑
𝑛
𝑗=1 𝑤𝑖𝑤𝑗Cov(𝑍𝑖𝑍𝑗) − 2∑

𝑛
𝑖=1 𝑤𝑖Cov(𝑍𝑖 , 𝑍0) 

 

which implies that  

𝜎𝜖
2 = Var(𝑍0 − �̂�0) = 𝜎2 + ∑𝑛𝑖=1 ∑

𝑛
𝑗=1 𝑤𝑖𝑤𝑗𝐶𝑖𝑗 − 2∑

𝑛
𝑖=1 𝑤𝑖𝐶𝑖0, (2.22) 

 In order to minimize Var(𝑍0 − �̂�0) subject to ∑𝑛𝑖=1 𝑤𝑖 = 1 we use the Lagrange 

multiplier method [3]. The Lagrangian function is defined as  

 ℒ(𝐰, 𝜆) = Var(𝑍0 − �̂�0) + 2𝜆(∑
𝑛
𝑖=1 𝑤𝑖 − 1), (2.23) 

 Therefore,  

ℒ(𝐰, 𝜆) = 𝜎2 + ∑𝑛𝑖=1 ∑
𝑛
𝑗=1 𝑤𝑖𝑤𝑗𝐶𝑖𝑗 − 2∑

𝑛
𝑖=1 𝑤𝑖𝐶𝑖0 + 2𝜆(∑

𝑛
𝑖=1 𝑤𝑖 − 1) (2.24) 

 Now we want to solve ▽𝐰,𝜆 ℒ(𝐰, 𝜆) = 0, where ▽ is called the gradient which is the 

partial derivatives of 𝜆 at (𝐰, 𝜆). This implies that  
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{
 
 

 
 
2∑𝑛𝑗=1 𝑤𝑗𝐶1𝑗 − 2𝐶10 + 2𝜆 = 0

2∑𝑛𝑗=1 𝑤𝑗𝐶2𝑗 − 2𝐶20 + 2𝜆 = 0

⋮
2∑𝑛𝑗=1 𝑤𝑗𝐶𝑛𝑗 − 2𝐶𝑛0 + 2𝜆 = 0

2(∑𝑛𝑗=1 𝑤𝑗 − 1) = 0.

 (2.25) 

 We rewrite the system of linear equations in (2.25) as  

 

{
 
 

 
 
∑𝑛𝑗=1 𝑤𝑗𝐶1𝑗 + 𝜆 = 𝐶10
∑𝑛𝑗=1 𝑤𝑗𝐶2𝑗 + 𝜆 = 𝐶20
⋮
∑𝑛𝑗=1 𝑤𝑗𝐶𝑛𝑗 + 𝜆 = 𝐶𝑛0
∑𝑛𝑗=1 𝑤𝑗 . 1 + 0 = 1.

 (2.26) 

 The system of linear equations in 2.26 can be written in a matrix form  

 

(

 
 

𝐶11 ⋯ 𝐶1𝑛 1

𝐶21 ⋯ 𝐶2𝑛 1

⋮ ⋮ ⋮
𝐶𝑛1 ⋯ 𝐶𝑛𝑛 1

1 ⋯ 1 0)

 
 

(

 
 

𝑤1
𝑤2
⋮
𝑤𝑛
𝜆 )

 
 
=

(

 
 

𝐶10
𝐶20
⋮
𝐶𝑛0
1 )

 
 
. (2.27) 

 Using the natrix in (2.20) and the vector in (2.21), the matrix equation in 2.27 can be 

written as a partition matrix  

 (
𝐂𝟏 𝟏

𝟏′ 0
) (
𝐰𝟏

𝜆
) = (

𝐜𝟎
1
), (2.28) 

 where 𝐰𝟏 = (𝑤1 𝑤2 ⋯ 𝑤𝑛)′.  

Let 𝐂 = (
𝐂𝟏 𝟏

𝟏′ 0
), 𝐰 = (

𝐰𝟏

𝜆
) and 𝐃 = (

𝐜𝟎
1
), then the weights for the 

ordinary kriging can be obtained by solving 

 

 𝐰 = (
𝐰𝟏

𝜆
) = (

𝐂𝟏 𝟏

𝟏′ 0
)
−1

(
𝐜𝟎
1
) = 𝐂−𝟏𝐃. (2.29) 

 Applying the inverse of the partitioned matrix on the matrix (
𝑪𝟏
𝟏′
|
𝟏
0
) , the weights can 

be written as  

 𝐰𝟏 = 𝐂𝟏
−𝟏𝐜𝟎 −

𝐂𝟏
−𝟏𝟏𝟏′𝐂𝟏

−𝟏𝐜𝟎

𝟏′𝐂𝟏
−𝟏𝟏

+
𝐂−𝟏𝟏

𝟏′𝐂𝟏
−𝟏𝟏
, (2.30) 
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 where (2.28) is known as kriging equation.  

To write the mean square prediction error (MSPE) 𝜎𝜖
2 = Var(𝑍0 − �̂�0) in terms 

of kriging estimates, we multiply the ith equation in 2.27 by 𝑤𝑖 and sum the first n 

equations, we get  

 ∑𝑛𝑖=1 𝑤𝑖 ∑
𝑛
𝑗=1 𝑤𝑗𝐶𝑖𝑗 + ∑

𝑛
𝑖=1 𝑤𝑖𝜆 = ∑𝑛𝑖=1 𝑤𝑖𝐶𝑖0. (2.31) 

 Therefore,  

 ∑𝑛𝑖=1 ∑
𝑛
𝑗=1 𝑤𝑖𝑤𝑗𝐶𝑖𝑗 = ∑𝑛𝑖=1 𝑤𝑖𝐶𝑖0 − 𝜆. (2.32) 

 Substituting Eq. (2.32) in Eq. (2.22), we have  

 𝜎𝜖
2 = 𝜎2 − (∑𝑛𝑖=1 𝑤𝑖𝐶𝑖0 + 𝜆). (2.33) 

 Writing Eq. (2.33) in matrix form, we get  

𝜎𝜖
2 = 𝜎2 − (𝑤1 𝑤2 ⋯ 𝑤𝑛 𝜆)

(

 
 

𝐶10
𝐶20
⋮
𝐶𝑛0
1 )

 
 
= 𝜎2 − (𝐰𝟏 𝜆) (

𝐜𝟎
1
). (2.34) 

 Therefore,  

 𝜎𝜖
2 = 𝜎2 −𝐰′𝐃. (2.35) 

 Now we would like to write the kriging equations in (2.28) in terms of the 

semivariogram instead of the covariances. We showed in Eq. (2.4) that the 

semivariogram can be written in terms of covariance function as 𝛾𝑖𝑗 =
1

2
Var(𝑍𝑖 −

𝑍𝑗) = 𝜎
2 − 𝐶𝑖𝑗, which implies that 𝐶𝑖𝑗 = 𝜎2 − 𝛾𝑖𝑗.  

Therefore, the matrices (2.20) and (2.21) can be written as 

𝐂𝟏 = (
𝐶11 ⋯ 𝐶1𝑛
⋮ ⋱ ⋮
𝐶𝑛1 ⋯ 𝐶𝑛𝑛

) = (
𝜎2 ⋯ 𝜎2

⋮ ⋱ ⋮
𝜎2 ⋯ 𝜎2

) − (

𝛾11 ⋯ 𝛾1𝑛
⋮ ⋱ ⋮
𝛾𝑛1 ⋯ 𝛾𝑛𝑛

) = 𝜎2𝟏𝟏′ − 𝚪𝟏 (2.36) 

 and  

 𝐜 = (
𝐶10,
⋮
𝐶𝑛0

) = (
𝜎2

⋮
𝜎2
) − (

𝛾10
⋮
𝛾𝑛0

) = 𝜎2𝟏 − 𝚪𝟎. (2.37) 
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 Substituting (2.36) and (2.37) in the matrix partition (2.28), the kriging equations can 

be written in terms of the semivariogram as follows  

(
𝐂𝟏 𝟏

𝟏′ 0
) (
𝐰𝟏

𝜆
) = (

𝐜𝟎
1
) ⟺ (

𝜎2𝟏𝟏′ − 𝚪𝟏 𝟏

𝟏′ 0
) (
𝐰𝟏

𝜆
) = (𝜎

2𝟏 − 𝚪𝟎
1

), (2.38) 

 which implies that  

 (
𝜎2𝟏𝟏′𝐰𝟏 − 𝚪𝟏𝐰𝟏 + 𝜆𝟏

𝟏′𝐰𝟏
) = (𝜎

2𝟏 − 𝚪𝟎
1

), (2.39) 

 since 𝟏′𝐰𝟏 = ∑
𝑛
𝑖=1 𝑤𝑖 = 1 then 𝜎2𝟏𝟏′𝐰𝟏 = 𝜎

2𝟏. 

Therefore,  

(
−𝚪𝟏𝐰𝟏 + 𝜆𝟏

𝟏′𝐰𝟏
) = (

−𝚪𝟎
1

) ⟺ (
−𝚪𝟏 𝟏

𝟏′ 0
) (
𝐰𝟏

𝜆
) = (

−𝚪𝟎
1

), (2.40) 

 hence the weights can be written as  

 𝐰𝟏 = 𝚪𝟏
−𝟏𝚪𝟎 −

𝚪𝟏
−𝟏𝟏𝟏′𝚪𝟏

−𝟏𝚪𝟎

𝟏′𝚪𝟏
−𝟏𝟏

+
𝚪−𝟏𝟏

𝟏′𝚪𝟏
−𝟏𝟏
. (2.41) 
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CHAPTER 3: VARIOGRAM MODELLING FOR STURCTURAL MRI DATA 

 3.1 Data Description 

3.1.1 Image format 

In this section, we will use the variogram approach to model the spatial 

coorelation in neuroimaging data. We use data that is available from the Coursera 

Course Introduction to Neurohacking In R [1]. The file types that we are working on 

them are DICOM (Digital Inaging and Communications in Medicine) format (.dcm) 

and NIFTI (Neuroimaging Informatics Technology Initiative) formate (.nii, .nii.gz). 

The main difference between these two files is that the DICOM file represents one slice 

of the brain where the NIFTI file represents three dimensional image of the brain. We 

have 22 DICOM files which mean 22 slices of the brain, each image is a matrix with 

dimension of each 288 × 288 pixels, the dimension of each pixel is 0.7986 ×

0.7986  𝑚𝑚 (see Fig. 3.1). The first step is to read the numbers corresponding to each 

pixel of each brain slice. These numbers represent the color intensity of the image which 

will be the data of this work. To read these data we use R and the function readDICOM 

from oro.dicom package ([33], [38]).    

Fig. 3.2 shows the dicom images of slices 10, 11, and 12. We select these images 

because the lighter spot in these images represent a brain tumor which will be the region 

of interest. 

 

 

 



 

25 

    

Figure  3.1: 22 axial slice image of the brain, the slices starts from the bottom to top of 

the head 

  

 

 

(a) Slice 10 

Figure 3.2 DICOM images of the 10𝑡ℎ, 11𝑡ℎ , and 12𝑡ℎ slice of the brain with 

dimension 288 × 288 pixel. 
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(b) Slice 11 

 
(c) Slice 12 

   Figure  3.2: DICOM images of the 10𝑡ℎ, 11𝑡ℎ and 12𝑡ℎ slice of the brain with 

dimension 288 × 288 pixel. 

 

3.1.2 Masking the brain 

In this process, we mask the brain because we want to remove the non-interest 

regions of brain structure before performing any statistical analysis. This step can be 

done by using the ROI image (Region Of Interest image). ROI image correspond to a 

binary matrix with two values 1 for the white color which represents the tumor region 

and 0 for the black color (see Fig. 3.3) ([10], [27]). 

To read the data image of the tumor region we multiply each matrix of images 

in Fig. 3.2 with the corresponding elements of the ROI matrices in Fig. 3.3a, 3.3c, and 

3.3e. Then, we get a matrix with values of the interest region voxels and 0 values for 
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the non-interest region (see Table 3.2). Therefore, the number of voxels in the tumor 

region of each slice in Fig. 3.2 are 

 

 

Table  3.1: Number of voxels for the tumor region in the slices 10, 11 and 12 

Slice Number  Number of Voxels  

Slice 10 1902 

Slice 11 1807 

Slice 12  1044 

 

   

Fig. 3.3b, 3.3d, and 3.3f are plots of ROI images as spatial data, each color 

represents an interval of values at specific locations. The plots show that the values of 

these voxels increased as we move from outside to inside tumor region.  

 

 

Table  3.2: A matrix of numbers correspond to 195 to 210 voxel in the x direction and 

130 to 140 voxel in the y direction of the brain slice in figure 16 

     [,1]   [,2]   [,3]   [,4]   [,5]   [,6]   [,7]   [,8]   [,9]   [,10]   [,11]  

[1,]   217   218   227   248   255   248   229   190   160   178   209  

[2,]   217   219   239   258   254   237   221   201   172   149   152  

[3,]   229   240   251   240   222   221   230   217   174   135   145  

[4,]   254   263   249   233   233   227   219   230   213   143   107  

[5,]   236   251   258   263   272   254   223   225   226   170   112  

[6,]   254   250   247   260   269   259   245   241   229   189   149  

[7,]   244   237   229   244   264   264   254   259   251   198   148  

[8,]   215   220   229   240   257   264   258   260   251   212   187  

[9,]   248   246   245   251   258   256   253   256   241   204   198  

[10,]   252   260   261   265   269   261   253   252   229   173   155  

[11,]   244   253   259   253   239   233   250   257   209   136   142  

[12,]   256   246   244   253   250   246   260   249   163   62   88  

[13,]   256   261   240   218   225   239   223   160   66   2   50  

[14,]   256   269   220   132   83   94   97   56   17   29   87  

[15,]   249   226   179   116   58   30   23   24   44   70   75  

[16,]   241   221   203   177   124   54   13   2   36   82   96  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure  3.3: Panels (a), (c) and (e) represent the ROI images of the 10𝑡ℎ, 11𝑡ℎ,  and 

12𝑡ℎ slice of the brain respectively and panels (b), (d), (f) are plots ROI images as 

spatial data 
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3.2 Variogram modelling 

Data are collected from specific voxels related to tumor regions in slices 10, 11, 

and 12. In each slice, we calculate the empirical variogram and we use the K-fold cross 

validation to choose between different variogram models based on their kriging results 

[27]. Consider the voxels values 𝑍(𝑠1), 𝑍(𝑠2), . . . , 𝑍(𝑠𝑁) at locations 𝑠1, 𝑠2, . . . , 𝑠𝑁. The 

K-fold cross validation splits the N voxels into K folds, each fold has n voxels 

𝑍(𝑠1
l ), 𝑍(𝑠2

l ), . . . , 𝑍(𝑠𝑛
l ), where 𝑛 =

𝑁

K
 and l = 1,2, . . . , K. The voxel values 

𝑍(𝑠1
l ), 𝑍(𝑠2

l ), . . . , 𝑍(𝑠𝑛
l ) in each fold removed and the voxel values in the other folds are 

used to predict new values at the locations 𝑠1
l , 𝑠2

l , . . . , 𝑠𝑛
l  by using kriging. Letting 

�̂�(𝑠1
l ), �̂�(𝑠2

l ), . . . , �̂�(𝑠𝑛
l ) be the kriging values predicted at locations 𝑠1

l , 𝑠2
l , . . . , 𝑠𝑛

l  with 

kriging variances 𝜎2(𝑠1
l ), 𝜎2(𝑠2

l ), . . . , 𝜎2(𝑠𝑛
l ), the mean squared deviation ratio 

(MSDR) is defined as the mean square error (MSE) divided by the kriging variances 

and it is calculated as follows [39]  

 𝑀𝑆𝐷𝑅 =
1

𝑁
∑Kl=1 ∑

𝑛
𝑖=1

(𝑍(𝑠𝑖
l)−�̂�(𝑠𝑖

l))2

𝜎2(𝑠𝑖
l)

. (3.1) 

 When 𝑀𝑆𝐷𝑅 > 1, the kriging variance underestimates the true estimation 

variance.  

 When 𝑀𝑆𝐷𝑅 < 1, the kriging variance exaggerates the true estimation 

variance.   

 When 𝑀𝑆𝐷𝑅 ≈ 1, the accurate estimated error equals the error predicted by the 

model.  

 For the selected variogram model, we want the MSDR to approach the value 1. 

We compute the variance for any two locations 𝑠𝑖 and 𝑠𝑗 as  

 𝛾(𝑠𝑖, 𝑠𝑗) =
1

2
(𝑍(𝑠𝑖) − 𝑍(𝑠𝑗))

2. (3.2) 

 The values are plotted against the distance (lag) as a scatter diagram, called the 



 

30 

variogram cloud. We calculate the empirical variogram using Eq. (2.5). Fig. 3.4a, 3.4c, 

and 3.4e show the variogram cloud for the tumor region in the aforementioned slices 

while Fig. 3.4b, 3.4d, and 3.4f show the empirical variogram graphs for these slices. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure  3.4: Panels (a) and (c) show the variogram cloud for the image data in slices 10 

and 11 respectively while panels (b) and (d) show the empirical variogram of these data. 
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(e) 

 
(f) 

 

Figure 3.4: Panel (e) shows the variogram cloud for the image data in slice 12 while 

panel (f) shows the empirical variogram of this data. 

 

 

3.2.1 Validation of Stationary assumption 

The first step prior to variogram modeling is to check the validation of the 

second order stationary of the data. This can be done by computing the global variogram 

as in Fig. 3.4 and local variogram. The local empirical variograms are calculated by 

using the moving windows method. We calculate and plot the local variograms for 

randomly selected points of the interest region (see Fig. 3.5, 3.6, and 3.7). It can be seen 

that the shapes and the variogram parameters are very close to those of the global 

variograms ([8], [16], [17], [39]). Local variogram at other randomly points gives 

similar results. This implies that the second order stationary assumption is valid for the 

image data in slices 10, 11 and 12. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 3.5: Panels (a), (c), and (e) are local variograms for the corresponding randomly 

selected points of slice 10 in panels (b), (d), and (f). The numbers of selected points in 

panels (b), (d), and (f) are 200, 500, and 800 respectively.  
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(g) 

 
(h) 

 
(i) 

 
(j) 

Figure  3.5: Panel (g) and (i) are the local variograms for the corresponding randomly 

selected points of slice 10 in panels (h) and (j). The numbers of selected points in panels 

(h) and (j) are 1200 and 1500 respectively.  

 

 

 
(a) 

 
(b) 

 

Figure  3.6: Panels (a) is local variogram for the corresponding randomly selected 

points of slice 11 in panel (b). The number of selected points in panel (b) is 200. 
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(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 

Figure  3.6: Panels (c), (e), and (g) are local variograms for the corresponding randomly 

selected points of slice 11 in panels (d), (f), and (h). The number of selected points in 

panels (d), (f), and (h) are 500, 800, and 1200 respectively. 
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(i) 

 
(j) 

 

Figure  3.6: Panels (i) is local variogram for the corresponding randomly selected points 

of slice 11 in panel (j). The number of selected points in panel (j) is 1500. 

 

 

 

(a) 

 

(b) 

 

Figure 3.7: Panel (a) is the local variogram for the corresponding randomly selected 

points of slice 12 in panel (b). The number of selected points in panel (b) is 200. 
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(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 

Figure  3.7: Panels (c), (e), and (g) are local variograms for the corresponding randomly 

selected points of slice 12 in panels (d), (f), and (h). The number of selected points in 

panels (d), (f), and (h) are 400, 600, and 800 respectively. 

 

 

  



 

37 

3.2.2 Validation of Isotropy Assumption 

Rose diagram is a graphic tool used to give a brief view of how we can identify a spatial 

correlation structure in different directions ([2], [20]). The diagram places spikes 

releasing from the origin of a circle in different directions, the length of each spike 

corresponding to a selected variogram value for each direction. Fig. 3.8 – 3.10 display 

the rose diagrams of the empirical variogram in different directions for the data in slices 

10, 11 and 12 respectively. It is clear that an anisotropy exist. 

 

 

 

Figure 3.8: Rose diagram of the empirical variogram for data in slice 10 
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Figure 3.9: Rose diagram of the empirical variogram for data in slice 11 

 

 

   

 Figure 3.10: Rose diagram of the empirical variogram for data in slice 12 
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Using a lag spacing of 1, horizontal and vertical tolerance of 5 degrees, 

maximum distance between points of  20 and angles of 60∘, 90∘, and 120∘ we compute 

the empirical variogram of the data in slices 10, 11, and 12 ([26], [31]). Fig. 3.11 shows 

the directional variogram of the aforementioned slices at angles 60∘, 90∘, and 120∘. 

The nugget and the sill values are changed at different directions. 

 

 

 
(a) 60∘ 

 
(b) 90∘ 

 
(c) 120∘ 

 
(d) 60∘ 

 
(e) 90∘ 

 
(f) 120∘ 

 
(g) 60∘ 

 
(h) 90∘ 

 
(i) 120∘ 

 

Figure 3.11: Panels (a) - (c) shows directional variogram for data of slice 10, panels (d) 

- (f) shows directional variogram for data of slice 11, and panels (g) - (i) shows 

directional variogram for data of slice 12 
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3.2.3 Model selection 

Fig. 3.12 – 3.14, show different variogram models fitted for the empirical variograms 

in Fig. 3.4b, 3.4d, and 3.4f. The best variogram model is chosen by the cross validation 

in kriging. We use K = 6, 5, and 6 folds for model selection in data image of slices 10, 

11 and 12 receptively. In each fold we remove 317, 361 and 174 voxel for estimation 

the fitted model of slices 10, 11 and 12 respectively [28]. 

 

 

  

  
Figure 3.12: Exponential, spherical, Gaussian, and circular models are fitted (solid line) 

to the empirical variograms (dotted line) in Fig. 3.4b 
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Figure 3.13: Exponential, spherical, Gaussian, and circular models are fitted (solid line) 

to the empirical variograms (dotted line) in Fig. 3.4d  

 

 

  
 

Figure 3.14: Exponential and spherical models are fitted (solid line) to the empirical 

variograms (dotted line) in Fig. 3.4f  
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Figure 3.14: Gaussian, and circular models are fitted (solid line) to the empirical 

variograms (dotted line) in Fig. 3.4f  

 

 

The MSDR in 3.1 is calculated and the best model will be the one which has 

MSDR value is the closest to 1. Table 3.3 shows the MSDR values for the variogram 

models approach in Fig. 3.12. The closest MSDR value to 1 is attained by the 

exponential model. Thus, the exponential model is the best variogram model approach 

for the empirical variogram in Fig. 3.4b and the estimated parameters for the sill, range 

and nugget are 4851.91, 8.62 , and 91.95 respectively. As shown in table 3.4 the closest 

MSDR value to 1 is attained by the exponential model too. Therefore, the exponential 

model is the best variogram model approach for the empirical variogram in Fig. 3.4d 

and the estimated parameters for the sill, range and nugget are 5270.38, 22.16 and 

582.84 respectively. 

 

  



 

43 

Table 3.3: MSDR of the variogram models approach in 3.12 

  Variogram model  MSDR  

   Exponential Model  0.996  
Spherical model 1.212  

Circular model 1.733  

Gaussian model 2.327 

 

   

  Table 3.4: MSDR of the variogram models approach in 3.13 

    Variogram Model  MSDR  

   Exponential model  0.976  

Spherical model 1.249  

Gaussian model 1.796  

Circular model 1.722  

 

 

   Table 3.5 shows that the best variogram model approach for the empirical 

variogram in Fig. 3.4f is the Gaussian model with parameters estimate 3273.96 for the 

sill, 8.44 for the range and 895.63 for the nugget component.  

 

 

  Table 3.5: MSDR of the variogram models approach in 3.14 

    Variogram Model  MSDR  

   Exponential model  0.42282  

Spherical model 0.5128  

Gaussian model 1.047166  
Circular model 0.78165  

 

 

   Tables 3.6 – 3.8 show the MSDR values for different directional variogram 

approach for angles 60∘, 90∘, and 120∘ . The exponential model is the best variogram 

model approach for the empirical variogram in Fig. 3.11a – 3.11f. On the other hand, 
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the best variogram model approach for the empirical variograms in Fig. 3.11g is the 

circular model and Gaussian model for Fig. 3.11h and 3.11i. The estimated parameters 

for these models are given in Table 3.9. 

 

 

Table  3.6: MSDR of variogram models approach in figures 3, 4, and 5 

Variogram model 60∘ 90∘ 120∘ 

Circular model 1.428 1.842 1.690 

Spherical model 1.126 1.219 1.201 

Exponential model 0.941 1.074 0.978 
Gaussian model 2.063 3.536 1.695 

  

  

Table  3.7: MSDR of variogram models approach in figures 6, 7, and 8 

Variogram model 60∘ 90∘ 120∘ 

Circular model 2.042 2.158 1.859  

Spherical model 1.197 1.432 1.327  

Exponential model 0.920 1.211 0.951  
Gaussian model  1.370 1.949 1.572 

 

 

Table 3.8: MSDR of variogram models approach in figures 9, 10 and 11 

Variogram model 60∘ 90∘ 120∘ 

Circular model 0.680 0.765 0.555  

Spherical model 0.443 0.509 0.467  

Exponential model 0.383 0.429 0.423  

Gaussian model  0.656 0.842 0.864 
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Table 3.9: The estimated parameters for the fitted directional variogram models in 

tables 3.6, 3.7, and 3.8   

Slice 10 

Fitted Variogram model Angle Nugget Sill Range 

Exponential model 60∘ 0.00 6644.13 10.98 

Exponential model 90∘ 199.62 3401.10 76.30 

Exponential model 120∘ 92.27 4629.21 8.10 

Slice 11 

Fitted Variogram model Angle Nugget Sill Range 

Exponential model 60∘ 0.00  4113.82   9.13 

Exponential model 90∘ 0.00  2875.52   7.55 

Exponential model 120∘ 0.00  2938.17   6.63  

Slice 12 

Fitted Variogram model Angle Nugget Sill Range 

  Circular model 60∘ 480.37  3495.13   14.20 

Gaussian model 90∘ 691.60  3400.48   8.52 

Gaussian model 120∘ 1260.02  3696.51   13.15  

 

 

 

3.3 Bootstrap sampling for estimating variogram parameters  

In this section we will use a collection of bootstrap sampling techniques to 

estimate the variogram values and variogram parameters( [11], [13], [33]). Table 3.10 

shows the original variogram values of the image data of interest region in slices 10, 11 

and 12. To estimate the variogram parameters by using the bootstrap sampling 

technique we perform the bootstrap by two methods, the first one is based on the 

variogram cloud , we sample with replacement from each lag of the variogram cloud 

that is calculated by formula (3.2), from the average of the selected pairs in each lag we 

create a new variogram. The second method is based on errors obtained from the fitted 

model of the variogram [9], we sample with replacement from 휀∗ = 휀 − 휀.̅ A new 
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variogram will be defined as 𝛾∗(ℎ) = 𝛾(ℎ) + 휀∗, where 𝛾(ℎ) is the fitted model. Fig. 

3.15 shows the original variogram values and the variogram of each bootstrap 

performed by the aforementioned methods. The bootstrap variogram values based on 

variogram cloud clustered around the original variogram values (see Fig. 3.15b, 3.15d, 

and 3.15f). However, The bootstrap variogram values based on on errors obtained from 

the fitted model of the variogram are far from the original variogram values (see Fig. 

3.15a, 3.15c, and 3.15e). Therefore, the first method gives a better estimate for 

variogram parameters than the second method (see Fig. 3.16 and 3.17). 

 

 

Table 3.10: Original variogram 

Distance 𝛾(ℎ)-slice 10 𝛾(ℎ)-slice 11 𝛾(ℎ)-slice 12 

0.7663407 477.9849 294.0081 347.1577 

2.2990222 1210.5489 848.446 963.5470 

3.8317036 1869.8618 1450.2033 1606.363 

5.36438518 2382.385 1913.6317 2181.6728 

6.8970665 2742.6729 2205.3724 2584.3717 

8.429748 3042.5699 2340.8942 2918.2092 

9.9624294 3377.9585 2458.187 3256.0743 

11.4951109 3714.2686 2627.8597 3592.1196 

13.0277923 3923.8582 2826.7985 3850.6353 

14.5604738 4057.3051 3026.1601 4010.6137 

16.0931552 4201.928 3241.8101 4103.3627 

17.6258367 4265.2613 3500.48 4136.6555 

19.1585181 4437.254 3760.6256 4202.7866 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 3.15: Panels (a), (c), and (d) show the original variogram and the variogram of 

each bootstrap performed by variogram bootstrap for the slices 10, 11, and 12 

respectively. Panels (b), (d), and (f) are the original variogram and the variogram of 

each bootstrap based on variogram cloud. 

 

 

Tables 3.11 and 3.12 show the 95% confidence interval for the nugget, sill and range 

estimated values from bootstrap techniques discussed before. These results shows how 
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the confidence intervals of cloud bootstrap method are tightly comparable with 

variogram bootstrap method. 

 

 

Table  11: 95% confidence interval for the variogram parameters estimated by the cloud 

bootstrap method. 

Slice 10 

Parameter Lower Estimate Upper 

Nugget 9.1364 91.9534 139.6389 

Sill 4852.5042 4943.8684 5006.4070 

Range 8.1207 8.6176 8.8819 

Slice 11 

Parameter Lower Estimate Upper 

Nugget 554.1299  582.8352   646.6061 

Sill  5656.3107  5853.2071  6757.7237  

Range   20.7232   22.1562   27.9232 

Slice 12 

Parameter Lower Estimate Upper 

Nugget 839.0443 895.6139 924.1837 

Sill 4125.5378 4169.5831 4196.9068 

Range 8.1561 8.4401 8.5385 

 

 

 

Table 3.12: 95% confidence interval for the variogram parameters estimated by the 

variogram bootstrap method. 

Slice 10 

Parameter Lower Estimate Upper 

Nugget  0.0000  91.9534  2142.3364 

Sill 4593.9907  4943.8684  5700.5712 

Range  1.8658   8.6176   7.8430 

Slice 11 
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Parameter Lower Estimate Upper 

Nugget 0.0000 582.8352 1777.2206 

Sill 5255.9936 5853.2071 9548.2481 

Range  4.7487 22.1562 24.9446 

Slice 12 

Parameter Lower Estimate Upper 

Nugget  57.6628  895.6139  1730.7885  

Sill  3885.4564  4169.5831  4521.0533 

Range  3.5628   8.4401   6.9764 

 

 

Fig. 3.16a, 3.16c, and 3.16e show the estimate bootstrap sill values by using the 

bootstrap variogram based on variogram cloud method for slices 10, 11, and 12 

respectively. The red solid line represents the original sill values and the green solid 

lines represent the upper and lower confidence interval bounds of the 1000 bootstrap 

sill values. Fig. 3.16b, 3.16d, and 3.16f show the correspondent estimate bootstrap sill 

values based on error from the fitted model of the variogram. As we can see from Fig. 

3.16b and 3.16d the values of the bootstrap sill are greater than the values in Fig. 3.16a 

and 3.16c, this is because the bootstrap variogram values are far from the original 

values.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

  

Figure  3.16: Panels (a) and (c) shows the original sill and estimated sill values for each 

bootstrap by using bootstrap of the variogram cloud while panels (b) and (d) are from 

boostrap based on error from the fitted model of the variogram. (- original sill, - 

confidence interval bounds, • average of sill bootstrap values). 
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(e) 

 

(f) 

 

Figure  3.16: Panels (e) and (f) shows the original sill and estimated sill values for each 

bootstrap by using bootstrap of the variogram cloud and boostrap based on error from 

the fitted model of the variogram respectively. (- original sill, - confidence interval 

bounds, • average of sill bootstrap values) 

 

 

Fig. 3.17a, 3.17c, and 3.17e show the nugget values of the 1000 variogram 

bootstrap performed based on variogram cloud for slices 10, 11, and 12 respectively. 

These figures show how the estimated nugget values are closer to the original value 

than these performed based on errors obtained from the fitted model of the variogram 

(see Fig. 3.17b, 3.17d, and 3.17f).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure  3.17: Panels (a) and (c) shows the original nugget and estimated nugget values 

for each bootstrap by using bootstrap of the variogram cloud while panels (b) and (d) 

are from bootstrap based on error from the fitted model of the variogram. (- original 

nugget, - confidence interval bounds, • average of nugget bootstrap values) 
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(e) 

 

(f) 

Figure 3.17: Panels (e) and (f) shows the original nugget and estimated nugget values 

for each bootstrap by using bootstrap of the variogram cloud and boostrap based on 

error from the fitted model of the variogram respectively. (- original nugget, - 

confidence interval bounds, • average of nugget bootstrap values) 

  



 

54 

CHAPTER 4: CONCLUSION AND FUTURE WORK 

In this work we applied the variogram and kriging methods to study the spatial 

correlation between the brain tumor voxels in three slices of MRI images (see Fig. 3.2). 

After masking the brain process and checking the validation of the stationary 

assumption we perform statistical analysis to calculate the empirical variogram and we 

used the k-fold cross validation to choose the best variogram model. Finally we found 

that the exponential variogram model is the best model for the spatial correlation in 

slices 10 and 11 and the gaussian model in slice 12. Also, we apply bootstrap sampling 

technique to estimate the variogram values and parameters of the fitted models.  

This work can be extended to spatiotemporal analysis into two ways. First, by 

using the functional magnetic resonance imaging (fMRI) to study the brain activity of 

the tumor region during a time period. Also, in case of availability the MRI images for 

a patient in more than one visit so we can predict the growth of brain for future.  

In this work we performed the variogram analysis for each slice of brain 

separately, where each slice represents a matrix. This work can be extended to be in 3 

dimensions where is third dimension represents the number of slice (see appendix C). 
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APPENDIX A: HISTOGRAM OF THE ESTIMATED PARAMETERS 

The following figures show histograms of variogram parameters estimated by 

using bootstrap of the variogram cloud and from bootstrap based on error from the fitted 

model of the variogram. The vertical red lines are the upper and lower bound of the 

confidence intervals.  

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 1: Panels (a) and (c) show a histogram of bootstrap sill values by using the 

bootstrap of the variogram cloud, while panels (b) and (d) are from bootstrap based on 

error from the fitted model of the variogram (- original sill, - confidence interval 

bounds, • average of sill bootstrap values) 
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(e) 

 

(f) 

Figure 1: Panel (e) shows a histogram of bootstrap sill values by using the bootstrap of 

the variogram cloud, while panel (f) are from bootstrap based on error from the fitted 

model of the variogram (- original sill, - confidence interval bounds, • average of sill 

bootstrap values) 

 

 

 

(a) 

 

(b) 

Figure 2: Panel (a) shows a histogram of bootstrap nugget values by using the bootstrap 

of the variogram cloud, while panel (b) are from bootstrap based on error from the fitted 

model of the variogram (- original nugget, - confidence interval bounds, • average of 

nugget bootstrap values) 
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(a) 
 

(b) 

 

(c) 

 

(d) 

Figure 2: Panels (c) and (e) show a histogram of bootstrap nugget values by using the 

bootstrap of the variogram cloud, while panels (f) and (d) are from bootstrap based on 

error from the fitted model of the variogram (- original nugget, - confidence interval 

bounds, • average of nugget bootstrap values). 
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APPENDIX B: FITTED MODELS TO THE DIRECTIONAL EMPIRICAL 

MODELS 

 

 

  

  

Figure 3: Exponential, Gaussian, circular, and spherical models are fitted (solid line) to 

the empirical variograms (dotted line) in Fig. 3.11a 

 

  



 

64 

  

  

Figure 4: Exponential, Gaussian, circular, and spherical models are fitted (solid line) to 

the empirical variograms (dotted line) in Fig. 3.11b 

 

 

 
 

Figure 5: Exponential and Gaussian models are fitted (solid line) to the empirical 

variograms (dotted line) in Fig. 3.11c 
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Figure 5: Circular and spherical models are fitted (solid line) to the empirical 

variograms (dotted line) in Fig. 3.11c 

 

 

  

  

Figure 6: Exponential, Gaussian, circular, and spherical models are fitted (solid line) to 

the empirical variograms (dotted line) in Fig. 3.11d 
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Figure 7: Exponential, Gaussian, circular, and spherical models are fitted (solid line) to 

the empirical variograms (dotted line) in Fig. 3.11e 

 

 

  

Figure 8: Exponential and Gaussian models are fitted (solid line) to the empirical 

variograms (dotted line) in Fig. 3.11f 
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Figure 8: Circular, and spherical models are fitted (solid line) to the empirical 

variograms (dotted line) in Fig. 3.11f 

 

 

  

 
 

Figure 9: Exponential, Gaussian, circular, and spherical models are fitted (solid line) to 

the empirical variograms (dotted line) in Fig. 3.11g 
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Figure 10: Exponential, Gaussian, circular, and spherical models are fitted (solid line) 

to the empirical variograms (dotted line) in Fig. 3.11h 

 

 

  

Figure 11: Exponential and Gaussian models are fitted (solid line) to the empirical 

variograms (dotted line) in Fig. 3.11i 
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Figure 11: Circular, and spherical models are fitted (solid line) to the empirical 

variograms (dotted line) in Fig. 3.11i 
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APPENDIX C: EMPIRICAL VARIOGRAM OF ALL SLICES 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 12: Panels (a), (c) and (e) show the MRI images for slices 7, 8 and 9 in figure 

15 and panels (b), (d) and (f) represent the region of interest for these slices respectively. 

 

 

 

 



 

71 

 

Figure 13: 3 dimension plot for the data in slices 7,8,9,10,11 and 12 

   

 

 

Figure 14: Empirical variogram for the data in slices 7, 8, 9, 10, 11, and 12 

   


